Age | Commit message (Collapse) | Author | Files | Lines |
|
gdb/ChangeLog:
* Makefile.in (SUBDIR_PYTHON_OBJS): Add py-unwind.o.
(SUBDIR_PYTHON_SRCS): Add py-unwind.c.
(py-unwind.o): New recipe.
* NEWS: mention Python frame unwinding.
* data-directory/Makefile.in (PYTHON_FILE_LIST): Add
gdb/unwinder.py and gdb/command/unwinder.py
* python/lib/gdb/__init__.py (packages): Add frame_unwinders
list.
(execute_unwinders): New function.
* python/lib/gdb/command/unwinders.py: New file.
* python/lib/gdb/unwinder.py: New file.
* python/py-objfile.c (objfile_object): Add frame_unwinders field.
(objfpy_dealloc): Decrement frame_unwinders reference count.
(objfpy_initialize): Create frame_unwinders list.
(objfpy_get_frame_unwinders): New function.
(objfpy_set_frame_unwinders): Ditto.
(objfile_getset): Add frame_unwinders attribute to Objfile.
* python/py-progspace.c (pspace_object): Add frame_unwinders field.
(pspy_dealloc): Decrement frame_unwinders reference count.
(pspy_initialize): Create frame_unwinders list.
(pspy_get_frame_unwinders): New function.
(pspy_set_frame_unwinders): Ditto.
(pspy_getset): Add frame_unwinders attribute to gdb.Progspace.
* python/py-unwind.c: New file.
* python/python-internal.h (pspy_get_name_unwinders): New prototype.
(objpy_get_frame_unwinders): New prototype.
(gdbpy_initialize_unwind): New prototype.
* python/python.c (gdbpy_apply_type_printers): Call
gdbpy_initialize_unwind.
gdb/doc/ChangeLog:
* doc/python.texi (Writing a Frame Unwinder in Python): Add
section.
gdb/testsuite/ChangeLog:
* gdb.python/py-unwind-maint.c: New file.
* gdb.python/py-unwind-maint.exp: New test.
* gdb.python/py-unwind-maint.py: New file.
* gdb.python/py-unwind.c: New file.
* gdb.python/py-unwind.exp: New test.
* gdb.python/py-unwind.py: New test.
|
|
My all-stop-on-top-of-non-stop series manages to shows regressions due
to this latent bug. currently_stepping returns true if
stepped_breakpoint is set. Obviously we should clear
it before checking currently_stepping, not after.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* infrun.c (resume): Check currently_stepping after clearing
stepped_breakpoint, not before.
|
|
If interrupt_and_wait manages to trigger the FAIL path, we get:
ERROR OCCURED: can't read "test": no such variable
gdb/testsuite/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* gdb.threads/manythreads.exp (interrupt_and_wait): Pass $message
to fail instead of non-existent $test.
|
|
Running attach.exp with a DejaGnu board that sets GDBFLAGS, like
e.g.,:
set GDBFLAGS "-ex \"set displaced off\""
fails with (line breaks added for clarity):
(gdb) PASS: gdb.base/attach.exp: starting with --pid
Executing on build: kill -9 3537 (timeout = 300)
spawn -ignore SIGHUP kill -9 3537
spawn of build/gdb/gdb -nw -nx \
-data-directory build/gdb/testsuite/../data-directory \
-ex "set displaced off"-iex "set height 0" -iex "set width 0" \
^^^^^^^^
--pid=4468 -ex "start" failed
ERROR: Spawning build/gdb/gdb failed.
UNRESOLVED: gdb.base/attach.exp: cmdline attach run: run to prompt
gdb/testsuite/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* lib/gdb.exp (gdb_spawn_with_cmdline_opts): Append space to
GDBFLAGS if not empty.
|
|
Makes "set debug infrun 1" a bit clearer. Before:
infrun: target_wait (-1, status) =
infrun: 6299 [Thread 0x7ffff7fc1700 (LWP 6340)],
after:
infrun: target_wait (-1.0.0, status) =
infrun: 7233.7237.0 [Thread 0x7ffff7fc1700 (LWP 7237)],
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* infrun.c (print_target_wait_results): Print all the ptid
elements.
|
|
By inspection, I noticed a path where we return without discarding the
cleanups.
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* infrun.c (keep_going): Also discard cleanups if inserting
breakpoints fails.
|
|
Noticed that if an error is thrown out of target_wait, we miss running
finish_thread_state_cleanup.
Tested on x86_64 Fedora 20, with "maint set target-async off".
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* infrun.c (wait_for_inferior): Install the
finish_thread_state_cleanup cleanup across the whole function, not
just around handle_inferior_event.
|
|
We can use the recently added do_target_resume do simplify the code a
bit here.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* infrun.c (resume) <step past permanent breakpoint>: Use
do_target_resume.
|
|
My all-stop-on-top-of-non-stop series manages to trip on a bug in the
linux-nat.c backend while running the testsuite. If a thread is
discovered while threads are being momentarily paused (without the
core's intervention), the thread ends up stuck in THREAD_STOPPED
state, even though from the user's perspective, the thread is running
even while it is paused.
From inspection, in the current sources, this can happen if we call
stop_and_resume_callback, though there's no way to test that with
current Linux kernels.
(While trying to come up with test to exercise this, I stumbled on:
https://sourceware.org/ml/gdb-patches/2015-03/msg00850.html
... which does include a non-trivial test, so I think I can still
claim I come out net positive. :-) )
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_handle_extended_wait): Always call set_running.
|
|
gdb/testsuite/ChangeLog:
* gdb.ada/complete.exp: Remove "multi_line".
* gdb.ada/info_exc.exp: Remove "multi_line".
* gdb.ada/packed_tagged.exp: Remove "multi_line".
* gdb.ada/ptype_field.exp: Remove "multi_line".
* gdb.ada/sym_print_name.exp: Remove "multi_line".
* gdb.ada/tagged.exp: Remove "multi_line".
* gdb.btrace/buffer-size.exp: Replace [join [list ...]] with
[multi_line ...]
* gdb.btrace/delta.exp: Likewise.
* gdb.btrace/exception.exp: Likewise.
* gdb.btrace/function_call_history.exp: Likewise.
* gdb.btrace/instruction_history.exp: Likewise.
* gdb.btrace/nohist.exp: Likewise.
* gdb.btrace/record_goto.exp: Likewise.
* gdb.btrace/segv.exp: Likewise.
* gdb.btrace/stepi.exp: Likewise.
* gdb.btrace/tailcall.exp: Likewise.
* gdb.btrace/unknown_functions.exp: Likewise.
* gdb.dwarf2/dw2-undefined-ret-addr.exp: Likewise.
* lib/gdb.exp: Add the "multi_line" helper.
|
|
gdb/ChangeLog:
* MAINTAINERS (Write After Approval): Add "Pierre-Marie de
Rodat".
|
|
On GNU/Linux, if the target reuses the TID of a thread that GDB still
has in its list marked as THREAD_EXITED, GDB crashes, like:
(gdb) continue
Continuing.
src/gdb/thread.c:789: internal-error: set_running: Assertion `tp->state != THREAD_EXITED' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n) FAIL: gdb.threads/tid-reuse.exp: continue to breakpoint: after_reuse_time (GDB internal error)
Here:
(top-gdb) bt
#0 internal_error (file=0x953dd8 "src/gdb/thread.c", line=789, fmt=0x953da0 "%s: Assertion `%s' failed.")
at src/gdb/common/errors.c:54
#1 0x0000000000638514 in set_running (ptid=..., running=1) at src/gdb/thread.c:789
#2 0x00000000004bda42 in linux_handle_extended_wait (lp=0x16f5760, status=0, stopping=0) at src/gdb/linux-nat.c:2114
#3 0x00000000004bfa24 in linux_nat_filter_event (lwpid=20570, status=198015) at src/gdb/linux-nat.c:3127
#4 0x00000000004c070e in linux_nat_wait_1 (ops=0xe193d0, ptid=..., ourstatus=0x7fffffffd2c0, target_options=1) at src/gdb/linux-nat.c:3478
#5 0x00000000004c1015 in linux_nat_wait (ops=0xe193d0, ptid=..., ourstatus=0x7fffffffd2c0, target_options=1) at src/gdb/linux-nat.c:3722
#6 0x00000000004c92d2 in thread_db_wait (ops=0xd80b60 <thread_db_ops>, ptid=..., ourstatus=0x7fffffffd2c0, options=1)
at src/gdb/linux-thread-db.c:1525
#7 0x000000000066db43 in delegate_wait (self=0xd80b60 <thread_db_ops>, arg1=..., arg2=0x7fffffffd2c0, arg3=1) at src/gdb/target-delegates.c:116
#8 0x000000000067e54b in target_wait (ptid=..., status=0x7fffffffd2c0, options=1) at src/gdb/target.c:2206
#9 0x0000000000625111 in fetch_inferior_event (client_data=0x0) at src/gdb/infrun.c:3275
#10 0x0000000000648a3b in inferior_event_handler (event_type=INF_REG_EVENT, client_data=0x0) at src/gdb/inf-loop.c:56
#11 0x00000000004c2ecb in handle_target_event (error=0, client_data=0x0) at src/gdb/linux-nat.c:4655
I managed to come up with a test that reliably reproduces this. It
spawns enough threads for the pid number space to wrap around, so
could potentially take a while. On my box that's 4 seconds; on
gcc110, a PPC box which has max_pid set to 65536, it's over 10
seconds. So I made the test compute how long that would take, and cap
the time waited if it would be unreasonably long.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* linux-thread-db.c (record_thread): Readd the thread to gdb's
list if it was marked exited.
gdb/testsuite/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
* gdb.threads/tid-reuse.c: New file.
* gdb.threads/tid-reuse.exp: New file.
|
|
bfd/
2015-04-01 H.J. Lu <hongjiu.lu@intel.com>
* configure: Regenerated.
binutils/
2015-04-01 H.J. Lu <hongjiu.lu@intel.com>
* configure: Regenerated.
gas/
2015-04-01 H.J. Lu <hongjiu.lu@intel.com>
* configure: Regenerated.
gdb/
2015-04-01 H.J. Lu <hongjiu.lu@intel.com>
* configure: Regenerated.
|
|
--attach/--multi are currently only mentioned on the usage info first
lines, the meaning of PROG is completely absent and the COMM text does
not mention '-/stdio'.
A few options are missing:
. --disable-randomization / --no-disable-randomization is not mentioned.
Although the manual has a comment saying these are superceded by
QDisableRandomization, that only makes sense for "run" in
extended-remote mode. When we start gdbserver passing it a PROG,
--disable-randomization / --no-disable-randomization do take effect.
So I think we should document these.
. We show --debug / --remote-debug, so might as well show --disable-packet too.
GDB's --help has this "For more information, consult the GDB manual"
blurb that is missing in GDBserver's --help.
Then shuffle things around a bit into "Operating modes", "Other
options" and "Debug options" sections, similarly to GDB's --help
structure.
Before:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$ ./gdbserver/gdbserver --help
Usage: gdbserver [OPTIONS] COMM PROG [ARGS ...]
gdbserver [OPTIONS] --attach COMM PID
gdbserver [OPTIONS] --multi COMM
COMM may either be a tty device (for serial debugging), or
HOST:PORT to listen for a TCP connection.
Options:
--debug Enable general debugging output.
--debug-format=opt1[,opt2,...]
Specify extra content in debugging output.
Options:
all
none
timestamp
--remote-debug Enable remote protocol debugging output.
--version Display version information and exit.
--wrapper WRAPPER -- Run WRAPPER to start new programs.
--once Exit after the first connection has closed.
Report bugs to "<http://www.gnu.org/software/gdb/bugs/>".
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$ ./gdbserver/gdbserver --help
Usage: gdbserver [OPTIONS] COMM PROG [ARGS ...]
gdbserver [OPTIONS] --attach COMM PID
gdbserver [OPTIONS] --multi COMM
COMM may either be a tty device (for serial debugging),
HOST:PORT to listen for a TCP connection, or '-' or 'stdio' to use
stdin/stdout of gdbserver.
PROG is the executable program. ARGS are arguments passed to inferior.
PID is the process ID to attach to, when --attach is specified.
Operating modes:
--attach Attach to running process PID.
--multi Start server without a specific program, and
only quit when explicitly commanded.
--once Exit after the first connection has closed.
--help Print this message and then exit.
--version Display version information and exit.
Other options:
--wrapper WRAPPER -- Run WRAPPER to start new programs.
--disable-randomization
Run PROG with address space randomization disabled.
--no-disable-randomization
Don't disable address space randomization when
starting PROG.
Debug options:
--debug Enable general debugging output.
--debug-format=opt1[,opt2,...]
Specify extra content in debugging output.
Options:
all
none
timestamp
--remote-debug Enable remote protocol debugging output.
--disable-packet=opt1[,opt2,...]
Disable support for RSP packets or features.
Options:
vCont, Tthread, qC, qfThreadInfo and
threads (disable all threading packets).
For more information, consult the GDB manual (available as on-line
info or a printed manual).
Report bugs to "<http://www.gnu.org/software/gdb/bugs/>".
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gdb/gdbserver/ChangeLog:
2015-04-01 Pedro Alves <palves@redhat.com>
Cleber Rosa <crosa@redhat.com>
* server.c (gdbserver_usage): Reorganize and extend the usage
message.
|
|
This patch, as the subject says, extends GDB so that it is able to use
the contents of the file /proc/PID/coredump_filter when generating a
corefile. This file contains a bit mask that is a representation of
the different types of memory mappings in the Linux kernel; the user
can choose to dump or not dump a certain type of memory mapping by
enabling/disabling the respective bit in the bit mask. Currently,
here is what is supported:
bit 0 Dump anonymous private mappings.
bit 1 Dump anonymous shared mappings.
bit 2 Dump file-backed private mappings.
bit 3 Dump file-backed shared mappings.
bit 4 (since Linux 2.6.24)
Dump ELF headers.
bit 5 (since Linux 2.6.28)
Dump private huge pages.
bit 6 (since Linux 2.6.28)
Dump shared huge pages.
(This table has been taken from core(5), but you can also read about it
on Documentation/filesystems/proc.txt inside the Linux kernel source
tree).
The default value for this file, used by the Linux kernel, is 0x33,
which means that bits 0, 1, 4 and 5 are enabled. This is also the
default for GDB implemented in this patch, FWIW.
Well, reading the file is obviously trivial. The hard part, mind you,
is how to determine the types of the memory mappings. For that, I
extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and
made it rely *much more* on the information gathered from
/proc/<PID>/smaps. This file contains a "verbose dump" of the
inferior's memory mappings, and we were not using as much information as
we could from it. If you want to read more about this file, take a look
at the proc(5) manpage (I will also write a blog post soon about
everything I had to learn to get this patch done, and when I it is ready
I will post it here).
With Oleg Nesterov's help, we could improve the current algorithm for
determining whether a memory mapping is anonymous/file-backed,
private/shared. GDB now also respects the MADV_DONTDUMP flag and does
not dump the memory mapping marked as so, and will always dump
"[vsyscall]" or "[vdso]" mappings (just like the Linux kernel).
In a nutshell, what the new code is doing is:
- If the mapping is associated to a file whose name ends with
" (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x"
(shared memory), or if there is no file associated with it, or if
the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps
have contents, then GDB considers this mapping to be anonymous.
There is a special case in this, though: if the memory mapping is a
file-backed one, but *also* contains "Anonymous:" or
"AnonHugePages:" pages, then GDB considers this mapping to be *both*
anonymous and file-backed, just like the Linux kernel does. What
that means is simple: this mapping will be dumped if the user
requested anonymous mappings *or* if the user requested file-backed
mappings to be present in the corefile.
It is worth mentioning that, from all those checks described above,
the most fragile is the one to see if the file name ends with
" (deleted)". This does not necessarily mean that the mapping is
anonymous, because the deleted file associated with the mapping may
have been a hard link to another file, for example. The Linux
kernel checks to see if "i_nlink == 0", but GDB cannot easily do
this check (as it has been discussed, GDB would need to run as root,
and would need to check the contents of the /proc/PID/map_files/
directory in order to determine whether the deleted was a hardlink
or not). Therefore, we made a compromise here, and we assume that
if the file name ends with " (deleted)", then the mapping is indeed
anonymous. FWIW, this is something the Linux kernel could do
better: expose this information in a more direct way.
- If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps),
then certainly the memory mapping is shared (VM_SHARED). If we have
access to the VmFlags, and we don't see the "sh" there, then
certainly the mapping is private. However, older Linux kernels (see
the code for more details) do not have the VmFlags field; in that
case, we use another heuristic: if we see 'p' in the permission
flags, then we assume that the mapping is private, even though the
presence of the 's' flag there would mean VM_MAYSHARE, which means
the mapping could still be private. This should work OK enough,
however.
Finally, it is worth mentioning that I added a new command, 'set
use-coredump-filter on/off'. When it is 'on', it will read the
coredump_filter' file (if it exists) and use its value; otherwise, it
will use the default value mentioned above (0x33) to decide which memory
mappings to dump.
gdb/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
Jan Kratochvil <jan.kratochvil@redhat.com>
Oleg Nesterov <oleg@redhat.com>
PR corefiles/16092
* linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'.
New enum identifying the various options of the coredump_filter
file.
(struct smaps_vmflags): New struct.
(use_coredump_filter): New variable.
(decode_vmflags): New function.
(mapping_is_anonymous_p): Likewise.
(dump_mapping_p): Likewise.
(linux_find_memory_regions_full): New variables
'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'.
Removed variable 'modified'. Read /proc/<PID>/smaps file; improve
parsing of its information. Implement memory mapping filtering
based on its contents.
(show_use_coredump_filter): New function.
(_initialize_linux_tdep): New command 'set use-coredump-filter'.
* NEWS: Mention the possibility of using the
'/proc/PID/coredump_filter' file when generating a corefile.
Mention new command 'set use-coredump-filter'.
gdb/doc/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.texinfo (gcore): Mention new command 'set
use-coredump-filter'.
(set use-coredump-filter): Document new command.
gdb/testsuite/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.base/coredump-filter.c: New file.
* gdb.base/coredump-filter.exp: Likewise.
|
|
When loading a corefile that has some inaccessible memory region(s),
GDB complains about it:
(gdb) core /my/corefile
[New LWP 28468]
Cannot access memory at address 0x355fc21148
Cannot access memory at address 0x355fc21140
(gdb)
However, despite not seeing the message "Core was generated by...", it
is still possible to inspect the corefile using regular GDB commands.
The reason for that is because read_memory_unsigned_integer throws an
exception when it cannot read the memory region, but
solib_svr4_r_ldsomap was not catching it. The fix is to catch the
exception and act accordingly.
Tested on Fedora 20 x86_64, no regressions found.
gdb/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
* solib-svr4.c (solib_svr4_r_ldsomap): Catch possible exception by
read_memory_unsigned_integer.
|
|
This patch adds --with-system-zlib and removes --with-zlib in gdb.
* Makefile.in (ZLIB): New.
(ZLIBINC): Likewise.
(INTERNAL_CFLAGS_BASE): Add $(ZLIBINC).
(CLIBS): Add $(ZLIB).
* acinclude.m4: (GDB_AC_CHECK_BFD): Add $zlibdir to LDFLAGS.
Add -lz to LIBS.
* gdb_bfd.c: Don't check HAVE_ZLIB_H to include <zlib.h>.
* top.c (print_gdb_configuration): Remove --with-zlib and
--without-zlib.
* config.in: Regenerated.
* configure: Likewise.
|
|
Example of use:
Dwarf::assemble "foo.s" {
build_id 0102030405060708
declare_labels L;
cu {is_64 0 version 4 addr_size 8} {
DW_TAG_compile_unit {
{DW_AT_stmt_list $L DW_FORM_sec_offset}
} {
DW_TAG_subprogram {
# We can now reference the source file.
{DW_AT_decl_file 1 DW_FORM_data1}
}
}
}
lines {is_64 0 version 2 addr_size 8} L {
include_dir "foo"
include_dir "bar"
file_name "foo.c" 1
file_name "bar.c" 1
file_name "baz.c" 2
}
}
Signed-off-by: Petr Machata <pmachata@redhat.com>
|
|
This patch adds cpu information on linux based on /proc/cpuinfo as :
cpus Listing of all cpus/cores on the system
This patch also reorders the info os commands so that they are listed
in alphabetical order.
gdb/ChangeLog:
* NEWS: Mention info os cpus support.
* gdb/nat/linux-osdata.c (linux_xfer_osdata_cpus): New function.
(struct osdata_type): Add cpus entry, reorder the entries in
alphabetical order.
gdb/doc/ChangeLog:
* gdb.texinfo (Operating System Auxiliary Information): Add info os cpus
documentation, reorder the info os entries in alphabetical order.
|
|
This allows triplets where the vendor is not set.
gdb/ChangeLog:
2015-03-31 Matthias Klose <doko@ubuntu.com>
* compile/compile.c (compile_to_object): Allow triplets with or
without vendor set.
|
|
gdb/ChangeLog:
PR c++/18141
* cp-namespace.c (cp_search_static_and_baseclasses): Always look for
klass in VAR_DOMAIN.
|
|
gdb/ChangeLog:
* remote.c (remote_mourn_1): Remove function. Update all callers
to use remote_mourn.
(extended_remote_mourn_1): Remove function. Update all callers
to use extended_remote_mourn.
(extended_remote_attach_1): Remove function. Update all callers
to use extended_remote_attach.
|
|
FT32 is a new high performance 32-bit RISC core developed by FTDI for
embedded applications.
|
|
Simon Marchi:
I think this patch is wrong. Starting with that commit (f30d5c7),
some tests (e.g. mi-break.exp) started to fail for me, because
of gdb segfaulting.
The address of expr is passed to the cleanup. When the cleanup is ran,
expr is no longer in scope, so what is at that address is probably not
safe to use anymore. That's my guess.
gdb/ChangeLog
2015-03-27 Jan Kratochvil <jan.kratochvil@redhat.com>
Revert:
2015-03-26 Jan Kratochvil <jan.kratochvil@redhat.com>
Code cleanup.
* printcmd.c (print_command_1): Move expr variable scope.
|
|
GCC 4.4.7 generates the following warning:
| cc1: warnings being treated as errors
| dtrace-probe.c: In function ‘dtrace_process_dof_probe’:
| dtrace-probe.c:416: error: ‘expr’ may be used uninitialized in this function
| make[2]: *** [dtrace-probe.o] Error 1
Later versions (GCC 5) do a better job and don't generate the warning,
but it does not hurt to pre-initialize "expr" to NULL.
gdb/ChangeLog:
* dtrace-probe.c (dtrace_process_dof_probe): Initialize expr to NULL.
|
|
Indexes returned for special sections are off by one, i.e. with N+4
sections last one has index N+4 returned which is outside allocated
obstack (at the same time index N is not used at all).
In worst case, if sections obstack is allocated up to end of chunk,
writing last section data will cause buffer overrun and some data
corruption.
Here's output from Valgrind::
==14630== Invalid write of size 8
==14630== at 0x551B1A: add_to_objfile_sections_full (objfiles.c:225)
==14630== by 0x552768: allocate_objfile (objfiles.c:324)
==14630== by 0x4E8E2E: symbol_file_add_with_addrs (symfile.c:1171)
==14630== by 0x4E9453: symbol_file_add_from_bfd (symfile.c:1280)
==14630== by 0x4E9453: symbol_file_add (symfile.c:1295)
==14630== by 0x4E94B7: symbol_file_add_main_1 (symfile.c:1320)
==14630== by 0x514246: catch_command_errors_const (main.c:398)
==14630== by 0x5150AA: captured_main (main.c:1061)
==14630== by 0x51123C: catch_errors (exceptions.c:240)
==14630== by 0x51569A: gdb_main (main.c:1164)
==14630== by 0x408824: main (gdb.c:32)
==14630== Address 0x635f3b8 is 8 bytes after a block of size 4,064 alloc'd
==14630== at 0x4C2ABA0: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==14630== by 0x60F797: xmalloc (common-utils.c:41)
==14630== by 0x5E787FB: _obstack_begin (obstack.c:184)
==14630== by 0x552679: allocate_objfile (objfiles.c:294)
==14630== by 0x4E8E2E: symbol_file_add_with_addrs (symfile.c:1171)
==14630== by 0x4E9453: symbol_file_add_from_bfd (symfile.c:1280)
==14630== by 0x4E9453: symbol_file_add (symfile.c:1295)
==14630== by 0x4E94B7: symbol_file_add_main_1 (symfile.c:1320)
==14630== by 0x514246: catch_command_errors_const (main.c:398)
==14630== by 0x5150AA: captured_main (main.c:1061)
==14630== by 0x51123C: catch_errors (exceptions.c:240)
==14630== by 0x51569A: gdb_main (main.c:1164)
==14630== by 0x408824: main (gdb.c:32)
gdb/ChangeLog:
* gdb_bfd.c (gdb_bfd_section_index): Fix off-by-one for special
sections.
|
|
Exactly like x86_64-*-mingw, SYMBOL_PREFIX should not be set to "_" for
x86_64_*_cygwin
gdb/testuite/ChangeLog:
* lib/gdb.exp (gdb_target_symbol_prefix_flags): Don't set
SYMBOL_PREFIX for x86_64-*-cygwin.
|
|
The debugger on Solaris has been broken since the introduction of
DTrace probe support:
(gdb) start
Temporary breakpoint 1 at 0x80593bc: file simple_main.adb, line 4.
Starting program: /[...]/simple_main
[Thread debugging using libthread_db enabled]
No definition of "mutex_t" in current context.
The problem occurs while trying to parse a probe's argument,
and the exception propagates all the way to the top. This patch
fixes the issue by containing the exception and falling back on
using the "long" builtin type if the argument's type could not
be determined.
Also, the parsing should be done using the C language parser.
gdb/ChangeLog:
* dtrace-probe.c (dtrace_process_dof_probe): Contain any
exception raised while parsing the probe arguments.
Force parsing to be done using the C language parser.
* expression.h (parse_expression_with_language): Declare.
* parse.c (parse_expression_with_language): New function.
|
|
gdb/ChangeLog:
* MAINTAINERS (Write After Approval): Add "Jon Turney".
|
|
* gdb.texinfo (GDB/MI Data Manipulation): Fix copy-paste typo in
-data-write-memory-bytes.
|
|
Variables with a DW_AT_const_value but without a DW_AT_location were not
getting added to the partial symbol table. They are added to the full
symbol table, however, when the compilation unit's psymtabs are
expanded.
Before:
(gdb) p one
No symbol "one" in current context.
(gdb) mt flush-symbol-cache
(gdb) mt expand one.c
(gdb) p one
$1 = 1
After:
(gdb) p one
$1 = 1
To the user it's pretty strange, as depending on whether tab completion
has forced expansion of all CUs or not the lookup might succeed, or not
if the failure was already added to the symbol cache.
This commit simply makes sure to add constants to the partial symbol
tables.
gdb/testsuite/ChangeLog:
PR symtab/18148
* gdb.dwarf2/dw2-intercu.S (one, two): Add variables that have a
const_value but not a location.
* gdb.dwarf2/dw2-intercu.exp: Add tests that constants without
location defined in non-main CUs are visible.
gdb/ChangeLog:
PR symtab/18148
* dwarf2read.c (struct partial_die_info): Add has_const_value
member.
(add_partial_symbol): Don't punt on symbols that have const_value
attributes.
(read_partial_die): Detect DW_AT_const_value.
|
|
gdb/ChangeLog
2015-03-26 Jan Kratochvil <jan.kratochvil@redhat.com>
Code cleanup.
* printcmd.c (print_command_1): Move expr variable scope.
|
|
gdb/ChangeLog
2015-03-26 Jan Kratochvil <jan.kratochvil@redhat.com>
Code cleanup.
* printcmd.c (validate_format): Make the parameter cmdname const.
|
|
gdb/ChangeLog:
2015-03-26 Don Breazeal <donb@codesourcery.com>
* remote.c (_initialize_remote): Update comment.
|
|
On Windows amd64, setting a breakpoint on a symbol imported from a
shared library after that library is loaded creates a breakpoint with
two locations, one on the import stub, and another in the shared
library, while on i386, the breakpoint is only set in the shared
library.
This is due to the minimal symbol for the import stub not being
correctly given the type mst_solib_trampoline on Windows amd64, unlike
Windows i386.
As currently written, coff_symfile_read is always skipping over the
character after the "__imp_" (amd64) or "_imp_" (i386) prefix,
assuming that it is '_'. However, while i386 is an underscored
target, amd64 is not.
On x86_64-pc-cygwin, it fixes:
- FAIL: gdb.base/solib-symbol.exp: foo in libmd
+ PASS: gdb.base/solib-symbol.exp: foo in libmd
Unfortunately, several other tests which passed now fail but that's
because this issue was masking other problems.
No change on i686-pc-cygwin.
gdb/ChangeLog:
2015-03-26 Pedro Alves <palves@redhat.com>
Jon TURNEY <jon.turney@dronecode.org.uk>
* coffread.c (coff_symfile_read): When constructing the name of an
import stub symbol from import symbol for amd64, only skip the
char after _imp_ if the target is underscored (like i386) and the
char is indeed the target's leading char.
|
|
break-asm-file.exp has some manually written dwarf to create some line
number entries like this,
[0x0000013d] Extended opcode 2: set Address to 0x40053f
[0x00000144] Advance Line by 4 to 7
[0x00000146] Copy
[0x00000147] Extended opcode 2: set Address to 0x400541
[0x0000014e] Advance Line by 1 to 8
[0x00000150] Copy
[0x00000151] Extended opcode 2: set Address to 0x400547
[0x00000158] Extended opcode 1: End of Sequence
0x40053f is the start address of function func, and is mapped to line
7. 0x400541 is within function func, and is mapped to line 8.
(gdb) disassemble /r 0x40053f,+8
Dump of assembler code from 0x40053f to 0x400547:
0x000000000040053f <func+0>: 00 00 add %al,(%rax)
0x0000000000400541 <func+2>: 00 00 add %al,(%rax)
0x0000000000400543 <func+4>: 00 00 add %al,(%rax)
0x0000000000400545 <func+6>: 00 00 add %al,(%rax)
in the following test,
(gdb) break a/break-asm-file0.s:func
Breakpoint 1 at 0x40053f: file a/break-asm-file0.s, line 7.
As we can see, breakpoint is set at the start address of function func
on x86, which means no prologue is skipped. On other targets, such as
arm and aarch64, breakpoint is set at the address *after* the start
address, which is mapped to line 8. Then test fails.
In fact, it is lucky this test doesn't fail on x86 and x86_64, whose
gdbarch method skip_prologue doesn't reply on skip_prologue_using_sal
if producer isn't clang.
if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
/* Clang always emits a line note before the prologue and another
one after. We trust clang to emit usable line notes. */
if (post_prologue_pc
&& (cust != NULL
&& COMPUNIT_PRODUCER (cust) != NULL
&& startswith (COMPUNIT_PRODUCER (cust), "clang ")))
return max (start_pc, post_prologue_pc);
}
so it doesn't return and go further to prologue analyser. Since ".int 0"
isn't an instruction of prologue, nothing is skipped, starting address
is used, and test passes.
however, on targets which don't have such producer checking, the first
line number entry is skipped, and skip_prologue_using_sal returns sal
represents the second line number entry.
The idea of this patch is to force GDB stop at somewhere which is stilled
mapped to line 7 after skipping prologue. I choose to add a new line
number entry for the following instruction but mapped to the same line (7),
because I see the comments in dwarf2read.c,
... fact that two consecutive
line number entries for the same line is a heuristic used by gcc
to denote the end of the prologue.
then the line table becomes:
[0x000000d4] Extended opcode 2: set Address to 0x400529
[0x000000db] Advance Line by 4 to 7
[0x000000dd] Copy
[0x000000de] Extended opcode 2: set Address to 0x40052a
[0x000000e5] Advance Line by 0 to 7
[0x000000e7] Copy
[0x000000e8] Extended opcode 2: set Address to 0x40052b
[0x000000ef] Advance Line by 1 to 8
[0x000000f1] Copy
[0x000000f2] Extended opcode 2: set Address to 0x40052c
[0x000000f9] Extended opcode 1: End of Sequence
gdb/testsuite:
2015-03-26 Yao Qi <yao.qi@linaro.org>
PR testsuite/18139
* gdb.linespec/break-asm-file0.s (func): New label .Lfunc_2.
Add a line number entry for the same line.
* gdb.linespec/break-asm-file1.s (func): New label .Lfunc_2.
Add a line number entry for the same line.
|
|
There are some hard-coded stuff in .s files, such as .int 0 and
address offset, which isn't portable. This patch is to replace
".int 0" with nop and address offset with labels.
gdb/testsuite:
2015-03-26 Yao Qi <yao.qi@linaro.org>
* gdb.linespec/break-asm-file0.s (func2): Use nop instead of
.int 0.
(func): Likewise. Add .Lfunc_1 label.
Use .Lfunc_1 label.
* gdb.linespec/break-asm-file1.s (func3): Use nop instead of
.int 0.
(func): Likewise.
Use .Lfunc_1 label.
|
|
If I add some nop into break-asm-file1.s like this,
--- INDEX:/gdb/testsuite/gdb.linespec/break-asm-file1.s
+++ WORKDIR:/gdb/testsuite/gdb.linespec/break-asm-file1.s
@@ -31,8 +31,8 @@ _func:
.type func, %function
func:
.Lbegin_func:
- .int 0
- .int 0
+ nop
+ nop
.Lend_func:
.size func, .-func
.Lend_text1:
I get the following error:
Running gdb/testsuite/gdb.linespec/break-asm-file.exp ...
gdb/testsuite/gdb.linespec/break-asm-file1.s: Assembler messages:^M
gdb/testsuite/gdb.linespec/break-asm-file1.s: Fatal error: duplicate .debug_line sections
break-asm-file0.s and break-asm-file1.s have already had debug information
(written manually), so don't need to generate debug infor for them.
gdb/testsuite:
2015-03-26 Yao Qi <yao.qi@linaro.org>
* gdb.linespec/break-asm-file.exp: Don't call prepare_for_testing.
Call gdb_compile instead to compile each .s files without debug
information.
|
|
Hi,
I see the following two fails in gdb.base/savedregs.exp on aarch64-linux,
info frame 2^M
Stack frame at 0x7ffffffa60:^M
pc = 0x40085c in thrower (/home/yao/SourceCode/gnu/gdb/git/gdb/testsuite/gdb.base/savedregs.c:49); saved pc = 0x400898^M
called by frame at 0x7ffffffa70, caller of frame at 0x7fffffe800^M
source language c.^M
Arglist at 0x7ffffffa60, args: ^M
Locals at 0x7ffffffa60, Previous frame's sp is 0x7ffffffa60^M
(gdb) FAIL: gdb.base/savedregs.exp: Get thrower info frame
info frame 2^M
Stack frame at 0x7fffffe800:^M
pc = 0x400840 in catcher (/home/yao/SourceCode/gnu/gdb/git/gdb/testsuite/gdb.base/savedregs.c:42); saved pc = 0x7fb7ffc350^M
called by frame at 0x7fffffe800, caller of frame at 0x7fffffe7e0^M
source language c.^M
Arglist at 0x7fffffe7f0, args: sig=11^M
Locals at 0x7fffffe7f0, Previous frame's sp is 0x7fffffe800
(gdb) FAIL: gdb.base/savedregs.exp: Get catcher info frame
looks the test expects to match "Saved registers:" from the output of
"info frame", but no registers are saved on these two frames, because
thrower and catcher are simple and leaf functions.
(gdb) disassemble thrower
Dump of assembler code for function thrower:
0x0000000000400858 <+0>: mov x0, #0x0 // #0
0x000000000040085c <+4>: strb wzr, [x0]
0x0000000000400860 <+8>: ret
End of assembler dump.
(gdb) disassemble catcher
Dump of assembler code for function catcher:
0x0000000000400838 <+0>: sub sp, sp, #0x10
0x000000000040083c <+4>: str w0, [sp,#12]
0x0000000000400840 <+8>: adrp x0, 0x410000
0x0000000000400844 <+12>: add x0, x0, #0xb9c
0x0000000000400848 <+16>: mov w1, #0x1 // #1
0x000000000040084c <+20>: str w1, [x0]
0x0000000000400850 <+24>: add sp, sp, #0x10
0x0000000000400854 <+28>: ret
There are two ways to fix these fails, one is to modify functions to
force some registers saved (for example, doing function call in them),
and the other one is to relax the pattern to optionally match
"Saved registers:". I did both, and feel that the latter is simple,
so here is it.
gdb/testsuite:
2015-03-26 Yao Qi <yao.qi@linaro.org>
* gdb.base/savedregs.exp (process_saved_regs): Make
"Saved registers:" optional in the pattern.
|
|
The x86-record_goto.S assembly source file does not build on 32-bit.
This breaks many tests that use this file.
Split it into x86_64-record_goto.S and i686-record_goto.S. Luckily, we
can use either one with the same test .exp file.
It further turned out that most tests do not really need a fixed binary;
they should work pretty well with a newly-compiled C program. The
one thing that breaks this is the heavy use of "record goto" to navigate
inside the recorded execution.
Combine step.exp, next,exp, and finish.exp into a single test step.exp
and use normal stepping and reverse-stepping commands for navigation.
testsuite/
* gdb.btrace/next.exp: Merged into step.exp.
* gdb.btrace/finish.exp: Merged into step.exp.
* gdb.btrace/nexti.exp: Merged into stepi.exp.
* gdb.btrace/step.exp: Use record_goto.c as test file. Avoid using
"record goto" and checking the exact replay position.
* gdb.btrace/stepi.exp: Choose test file based on target. Do not
check for "Recording format" in "info record" output.
* gdb.btrace/record_goto.exp: Choose test file based on target.
* gdb.btrace/x86-record_goto.S: Renamed into ...
* gdb.btrace/x86_64-record_goto.S: ... this.
* gdb.btrace/i686-record_goto.S: New.
* gdb.btrace/x86-tailcall.S: Renamed into ...
* gdb.btrace/x86_64-tailcall.S: ... this.
* gdb.btrace/i686-tailcall.S: New.
* gdb.btrace/x86-tailcall.c: Renamed into ...
* gdb.btrace/tailcall.c: ... this. Split "return ++answer" into two
separate statements. Update test.
* gdb.btrace/delta.exp: Use record_goto.c as test file.
* gdb.btrace/gcore.exp: Use record_goto.c as test file.
* gdb.btrace/nohist.exp: Use record_goto.c as test file.
* gdb.btrace/tailcall.exp: Choose test file based on target.
* gdb.btrace/Makefile.in: Remove next, finish, and nexti.
|
|
The trace for throwing and catching an exception can be quite big.
Increase the buffer size to avoid spurious fails.
testsuite/
* gdb.btrace/exception.exp: Increase BTS buffer size.
|
|
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
|
|
Various target_fileio_* functions use integer file descriptors to
refer to open files. File operation functions are looked up from
the target stack as they are used, which causes problems if the
target stack changes after the file is opened.
For example, if a file is opened on a remote target and the remote
target disconnects or closes the remote target will be popped off
the stack. If target_fileio_close is then called on that file and
"set auto-connect-native-target" is "on" (the default) then the
native target's close method will be called. If the file opened
on the remote happens to share the same number with a file open in
GDB then that file will be closed by mistake.
This commit changes target_fileio_open to store newly opened file
descriptors in a table together with the target_ops used to open
them. The index into the table is returned and used as the file
descriptor argument to all target_fileio_* functions that accept
file descriptor arguments.
gdb/ChangeLog:
* target.c (fileio_ft_t): New typedef, define object vector.
(fileio_fhandles): New static variable.
(is_closed_fileio_fh): New macro.
(lowest_closed_fd): New static variable.
(acquire_fileio_fd): New function.
(release_fileio_fd): Likewise.
(fileio_fd_to_fh): New macro.
(target_fileio_open): Wrap the file descriptor on success.
(target_fileio_pwrite): Updated to use wrapped file descriptor.
(target_fileio_pread): Likewise.
(target_fileio_close): Likewise.
|
|
I noticed that "thread apply all" sometimes crashes.
The problem is that thread_apply_all_command doesn take exited threads
into account, and we qsort and then walk more elements than there
really ever were put in the array. Valgrind shows:
The current thread <Thread ID 3> has terminated. See `help thread'.
(gdb) thread apply all p 1
Thread 1 (Thread 0x7ffff7fc2740 (LWP 29579)):
$1 = 1
==29576== Use of uninitialised value of size 8
==29576== at 0x639CA8: set_thread_refcount (thread.c:1337)
==29576== by 0x5C2C7B: do_my_cleanups (cleanups.c:155)
==29576== by 0x5C2CE8: do_cleanups (cleanups.c:177)
==29576== by 0x63A191: thread_apply_all_command (thread.c:1477)
==29576== by 0x50374D: do_cfunc (cli-decode.c:105)
==29576== by 0x506865: cmd_func (cli-decode.c:1893)
==29576== by 0x7562CB: execute_command (top.c:476)
==29576== by 0x647DA4: command_handler (event-top.c:494)
==29576== by 0x648367: command_line_handler (event-top.c:692)
==29576== by 0x7BF7C9: rl_callback_read_char (callback.c:220)
==29576== by 0x64784C: rl_callback_read_char_wrapper (event-top.c:171)
==29576== by 0x647CB5: stdin_event_handler (event-top.c:432)
==29576==
...
This can happen easily today as linux-nat.c/linux-thread-db.c are
forgetting to purge non-current exited threads. But even with that
fixed, we can always do "thread apply all" with an exited thread
selected, which won't be deleted until the user switches to another
thread. That's what the test added by this commit exercises.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* thread.c (thread_apply_all_command): Take exited threads into
account.
gdb/testsuite/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* gdb.threads/no-unwaited-for-left.exp: Test "thread apply all".
|
|
Whoops, switch_back_to_stepping doesn't exist...
gdb/
2015-03-24 Pedro Alves <palves@redhat.com>
* infrun.c (resume, proceed): Mention
switch_back_to_stepped_thread, not switch_back_to_stepping.
|
|
... and move comment to declaration.
gdb/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* infrun.c (user_visible_resume_ptid): Rewrite going from
most-locked to unlocked instead of the opposite. Move comment ...
* infrun.h (user_visible_resume_ptid): ... here.
|
|
This adds/tweaks a few debug logs I found useful recently.
gdb/gdbserver/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* linux-low.c (check_stopped_by_breakpoint): Tweak debug log
output. Also dump TRAP_TRACE.
(linux_low_filter_event): In debug output, distinguish a
resume_stop SIGSTOP from a delayed SIGSTOP.
gdb/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_nat_resume): Output debug logs before trying
to resume the event lwp. Use the lwp's ptid instead of the passed
in (maybe wildcard) ptid.
(stop_wait_callback): Tweak debug log output.
(check_stopped_by_breakpoint): Tweak debug log output. Also dump
TRAP_TRACE.
(linux_nat_filter_event): In debug output, distinguish a
resume_stop SIGSTOP from a delayed SIGSTOP. Output debug logs
before trying to resume the lwp.
|
|
struct dynamic_prop_list is declared as follow:
struct dynamic_prop_list
{
[...]
/* The dynamic property itself. */
struct dynamic_prop *prop;
[...]
};
In this case, the pointer indirection is unnecessary and costing us,
for each dynamic property, the memory needed to store one pointer.
This patch removes this pointer indirection, savin us a tiny bit of
memory, as well as reduces a bit the complexity by removing the need
to allocate memory for the property, as the allocation is now part
of the struct itself.
gdb/ChangeLog:
* gdbtypes.h (struct dynamic_prop_list) <prop>: Remove
pointer indirection.
* gdbtypes.c (get_dyn_prop): Adjust, following change above.
(add_dyn_prop, copy_dynamic_prop_list): Likewise.
Tested on x86_64-linux.
|
|
The terminology we've been using is (dynamic) "property" rather than
"attribute", so this patch renames an enum to use the same terminology.
No behavior change.
gdb/ChangeLog:
* gdbtypes.h (enum dynamic_prop_node_kind) <DYN_PROP_DATA_LOCATION>:
Renames DYN_ATTR_DATA_LOCATION.
(TYPE_DATA_LOCATION): Use DYN_PROP_DATA_LOCATION instead of
DYN_ATTR_DATA_LOCATION.
* dwarf2read.c (set_die_type): Use DYN_PROP_DATA_LOCATION
instead of DYN_ATTR_DATA_LOCATION.
Tested on x86_64-linux.
|
|
The "step" parameters of 'proceed' and 'resume' aren't really useful
as indication of whether run control wants to single-step the target,
as that information must already be retrievable from
currently_stepping. In fact, if currently_stepping disagrees with
whether we single-stepped the target, then things break. Thus instead
of having the same information in two places, this patch removes those
parameters.
Setting 'step_start_function' is the only user of proceed's 'step'
argument, other than passing the 'step' argument down to 'resume' and
debug log output. Move that instead to set_step_frame, where we
already set other related fields.
clear_proceed_status keeps its "step" parameter for now because it
needs to know which set of threads should have their state cleared,
and is called before the "stepping_command" flag is set.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* breakpoint.c (until_break_command): Adjust call to proceed.
* gdbthread.h (struct thread_control_state) <stepping_command>:
New field.
* infcall.c (run_inferior_call): Adjust call to proceed.
* infcmd.c (run_command_1, proceed_thread_callback, continue_1):
Adjust calls to proceed.
(set_step_frame): Set the current thread's step_start_function
here.
(step_once): Adjust calls to proceed.
(jump_command, signal_command, until_next_command)
(finish_backward, finish_forward, proceed_after_attach_callback)
(attach_command_post_wait): Adjust calls to proceed.
* infrun.c (proceed_after_vfork_done): Adjust call to proceed.
(do_target_resume): New function, factored out from ...
(resume): ... here. Remove 'step' parameter. Instead, check
currently_stepping to determine whether the thread should be
single-stepped.
(proceed): Remove 'step' parameter and don't set the thread's
step_start_function here. Adjust call to 'resume'.
(handle_inferior_event): Adjust calls to 'resume'.
(switch_back_to_stepped_thread): Use do_target_resume instead of
'resume'.
(keep_going): Adjust calls to 'resume'.
* infrun.h (proceed): Remove 'step' parameter.
(resume): Likewise.
* windows-nat.c (do_initial_windows_stuff): Adjust call to
'resume'.
* mi/mi-main.c (proceed_thread): Adjust call to 'proceed'.
|