Age | Commit message (Collapse) | Author | Files | Lines |
|
A user noticed that gdb would crash when printing a packed array after
doing "set lang c". Packed arrays don't exist in C, but it's
occasionally useful to print things in C mode when working in a non-C
language -- this lets you see under the hood a little bit.
The bug here is that generic value printing does not handle packed
arrays at all. This patch fixes the bug by introducing a new function
to extract a value from a bit offset and width.
The new function includes a hack to avoid problems with some existing
test cases when using -fgnat-encodings=all. Cleaning up this code
looked difficult, and since "all" is effectively deprecated, I thought
it made sense to simply work around the problems.
|
|
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
|
|
Remove the macro, replace all uses with calls to type::length.
Change-Id: Ib9bdc954576860b21190886534c99103d6a47afb
|
|
value.h has a declaration of value_print_array_elements that is
incorrect. In C, this would have been an error, but in C++ this is a
declaration of an overload that is neither defined nor used. This
patch removes the declaration.
|
|
In a following patch, I have a const value I want to copy using a
value_copy. However, value_copy takes a non-const source value, at the
moment. Change the paramter to be const,
If the source value is not lazy, we currently call
value_contents_all_raw, which calls allocate_value_contents, to get a
view on the contents. They both take a non-const value, that's a
problem. My first attempt at solving it was to add a const version of
value_contents_all_raw, make allocate_value_contents take a const value,
and either:
- make value::contents mutable
- make allocate_value_contents cast away the const
The idea being that allocating the value contents buffer does modify the
value at the bit level, but logically that doesn't change its state.
That was getting a bit complicated, so what I ended up doing is make
value_copy not call value_contents_all_raw. We know at this point that
the value is not lazy, so value::contents must have been allocate
already.
Change-Id: I3741ab362bce14315f712ec24064ccc17e3578d4
|
|
No kind of internal var uses it remove it. This makes the transition to
using a variant easier, since we don't need to think about where this
should be called (in a destructor or not), if it can throw, etc.
Change-Id: Iebbc867d1ce6716480450d9790410d6684cbe4dd
|
|
Add a new function gdb.history_count to the Python api, this function
returns an integer, the number of items in GDB's value history.
This is useful if you want to pull items from the history by their
absolute number, for example, if you wanted to show a complete history
list. Previously we could figure out how many items are in the
history list by trying to fetch the items, and then catching the
exception when the item is not available, but having this function
seems nicer.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
The function value_subscripted_rvalue is only used in valarith.c, so
lets make it a static function.
There should be no user visible change after this commit.
|
|
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
|
|
This adds an is_optimized_out function pointer to lval_funcs, and
changes value_optimized_out to call it. This new function lets gdb
determine if a value is optimized out without necessarily fetching the
value. This is needed for a subsequent patch, where an attempt to
access a lazy value would fail due to the value size limit -- however,
the access was only needed to determine the optimized-out state.
|
|
I noticed that value_true is declared in language.h and defined in
language.c. However, as part of the value API, I think it would be
better in one of those files. And, because it is very short, I
changed it to be an inline function in value.h. I've also removed a
comment from the implementation, on the basis that it seems obsolete
-- if the change it suggests was needed, it probably would have been
done by now; and if it is needed in the future, odds are it would be
done differently anyway.
Finally, this patch also changes value_true and value_logical_not to
return a bool, and updates some uses.
|
|
This commit was originally part of this patch series:
(v1): https://sourceware.org/pipermail/gdb-patches/2021-May/179357.html
(v2): https://sourceware.org/pipermail/gdb-patches/2021-June/180208.html
(v3): https://sourceware.org/pipermail/gdb-patches/2021-July/181028.html
However, that series is being held up in review, so I wanted to break
out some of the non-related fixes in order to get these merged.
This commit addresses two semi-related issues, both of which are
problems exposed by using 'set debug frame on'.
The first issue is in frame.c in get_prev_frame_always_1, and was
introduced by this commit:
commit a05a883fbaba69d0f80806e46a9457727fcbe74c
Date: Tue Jun 29 12:03:50 2021 -0400
gdb: introduce frame_debug_printf
This commit replaced fprint_frame with frame_info::to_string.
However, the former could handle taking a nullptr while the later, a
member function, obviously requires a non-nullptr in order to make the
function call. In one place we are not-guaranteed to have a
non-nullptr, and so, there is the possibility of triggering undefined
behaviour.
The second issue addressed in this commit has existed for a while in
GDB, and would cause this assertion:
gdb/frame.c:622: internal-error: frame_id get_frame_id(frame_info*): Assertion `fi->this_id.p != frame_id_status::COMPUTING' failed.
We attempt to get the frame_id for a frame while we are computing the
frame_id for that same frame.
What happens is that when GDB stops we create a frame_info object for
the sentinel frame (frame #-1) and then we attempt to unwind this
frame to create a frame_info object for frame #0.
In the test case used here to expose the issue we have created a
Python frame unwinder. In the Python unwinder we attemt to read the
program counter register.
Reading this register will initially create a lazy register value.
The frame-id stored in the lazy register value will be for the
sentinel frame (lazy register values hold the frame-id for the frame
from which the register will be unwound).
However, the Python unwinder does actually want to examine the value
of the program counter, and so the lazy register value is resolved
into a non-lazy value. This sends GDB into value_fetch_lazy_register
in value.c.
Now, inside this function, if 'set debug frame on' is in effect, then
we want to print something like:
frame=%d, regnum=%d(%s), ....
Where 'frame=%d' will be the relative frame level of the frame for
which the register is being fetched, so, in this case we would expect
to see 'frame=0', i.e. we are reading a register as it would be in
frame #0. But, remember, the lazy register value actually holds the
frame-id for frame #-1 (the sentinel frame).
So, to get the frame_info for frame #0 we used to call:
frame = frame_find_by_id (VALUE_FRAME_ID (val));
Where VALUE_FRAME_ID is:
#define VALUE_FRAME_ID(val) (get_prev_frame_id_by_id (VALUE_NEXT_FRAME_ID (val)))
That is, we start with the frame-id for the next frame as obtained by
VALUE_NEXT_FRAME_ID, then call get_prev_frame_id_by_id to get the
frame-id of the previous frame.
The get_prev_frame_id_by_id function finds the frame_info for the
given frame-id (in this case frame #-1), calls get_prev_frame to get
the previous frame, and then calls get_frame_id.
The problem here is that calling get_frame_id requires that we know
the frame unwinder, so then have to try each frame unwinder in turn,
which would include the Python unwinder.... which is where we started,
and thus we have a loop!
To prevent this loop GDB has an assertion in place, which is what
actually triggers.
Solving the assertion failure is pretty easy, if we consider the code
in value_fetch_lazy_register and get_prev_frame_id_by_id then what we
do is:
1. Start with a frame_id taken from a value,
2. Lookup the corresponding frame,
3. Find the previous frame,
4. Get the frame_id for that frame, and
5. Lookup the corresponding frame
6. Print the frame's level
Notice that steps 3 and 5 give us the exact same result, step 4 is
just wasted effort. We could shorten this process such that we drop
steps 4 and 5, thus:
1. Start with a frame_id taken from a value,
2. Lookup the corresponding frame,
3. Find the previous frame,
6. Print the frame's level
This will give the exact same frame as a result, and this is what I
have done in this patch by removing the use of VALUE_FRAME_ID from
value_fetch_lazy_register.
Out of curiosity I looked to see how widely VALUE_FRAME_ID was used,
and saw it was only used in one other place in valops.c:value_assign,
where, once again, we take the result of VALUE_FRAME_ID and pass it to
frame_find_by_id, thus introducing a redundant frame_id lookup.
I don't think the value_assign case risks triggering the assertion
though, as we are unlikely to call value_assign while computing the
frame_id for a frame, however, we could make value_assign slightly
more efficient, with no real additional complexity, by removing the
use of VALUE_FRAME_ID.
So, in this commit, I completely remove VALUE_FRAME_ID, and replace it
with a use of VALUE_NEXT_FRAME_ID, followed by a direct call to
get_prev_frame_always, this should make no difference in either case,
and resolves the assertion issue from value.c.
As I said, this patch was originally part of another series, the
original test relied on the fixes in that original series. However, I
was able to create an alternative test for this issue by enabling
frame debug within an existing test script.
This commit probably fixes bug PR gdb/27938, though the bug doesn't
have a reproducer attached so it is not possible to know for sure.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=27938
|
|
Following on from the previous commit, this commit changes the API of
value_struct_elt to take gdb::optional<gdb::array_view<value *>>
instead of a pointer to the gdb::array_view.
This makes the optional nature of the array_view parameter explicit.
This commit is purely a refactoring commit, there should be no user
visible change after this commit.
I have deliberately kept this refactor separate from the previous two
commits as this is a more extensive change, and I'm not 100% sure that
using gdb::optional for the parameter type, instead of a pointer, is
going to be to everyone's taste. If there's push back on this patch
then this one can be dropped from the series.
gdb/ChangeLog:
* ada-lang.c (desc_bounds): Use '{}' instead of NULL to indicate
an empty gdb::optional when calling value_struct_elt.
(desc_data): Likewise.
(desc_one_bound): Likewise.
* eval.c (structop_base_operation::evaluate_funcall): Pass
gdb::array_view, not a gdb::array_view* to value_struct_elt.
(eval_op_structop_struct): Use '{}' instead of NULL to indicate
an empty gdb::optional when calling value_struct_elt.
(eval_op_structop_ptr): Likewise.
* f-lang.c (fortran_structop_operation::evaluate): Likewise.
* guile/scm-value.c (gdbscm_value_field): Likewise.
* m2-lang.c (eval_op_m2_high): Likewise.
(eval_op_m2_subscript): Likewise.
* opencl-lang.c (opencl_structop_operation::evaluate): Likewise.
* python/py-value.c (valpy_getitem): Likewise.
* rust-lang.c (rust_val_print_str): Likewise.
(rust_range): Likewise.
(rust_subscript): Likewise.
(eval_op_rust_structop): Likewise.
(rust_aggregate_operation::evaluate): Likewise.
* valarith.c (value_user_defined_op): Likewise.
* valops.c (search_struct_method): Change parameter type, update
function body accordingly, and update header comment.
(value_struct_elt): Change parameter type, update function body
accordingly.
* value.h (value_struct_elt): Update declaration.
|
|
After the previous commit, this commit updates the value_struct_elt
function to take an array_view rather than a NULL terminated array of
values.
The requirement for a NULL terminated array of values actually stems
from typecmp, so the change from an array to array_view needs to be
propagated through to this function.
While making this change I noticed that this fixes another bug, in
value_x_binop and value_x_unop GDB creates an array of values which
doesn't have a NULL at the end. An array_view of this array is passed
to value_user_defined_op, which then unpacks the array_view and passed
the raw array to value_struct_elt, but only if the language is not
C++.
As value_x_binop and value_x_unop can only request member functions
with the names of C++ operators, then most of the time, assuming the
inferior is not a C++ program, then GDB will not find a matching
member function with the call to value_struct_elt, and so typecmp will
never be called, and so, GDB will avoid undefined behaviour.
However, it is worth remembering that, when GDB's language is set to
"auto", the current language is selected based on the language of the
current compilation unit. As C++ programs usually link against libc,
which is written in C, then, if the inferior is stopped in libc GDB
will set the language to C. And so, it is possible that we will end
up using value_struct_elt to try and lookup, and match, a C++
operator. If this occurs then GDB will experience undefined
behaviour.
I have extended the test added in the previous commit to also cover
this case.
Finally, this commit changes the API from passing around a pointer to
an array to passing around a pointer to an array_view. The reason for
this is that we need to be able to distinguish between the cases where
we call value_struct_elt with no arguments, i.e. we are looking up a
struct member, but we either don't have the arguments we want to pass
yet, or we don't expect there to be any need for GDB to use the
argument types to resolve any overloading; and the second case where
we call value_struct_elt looking for a function that takes no
arguments, that is, the argument list is empty.
NOTE: While writing this I realise that if we pass an array_view at
all then it will always have at least one item in it, the `this'
pointer for the object we are planning to call the method on. So we
could, I guess, pass an empty array_view to indicate the case where we
don't know anything about the arguments, and when the array_view is
length 1 or more, it means we do have the arguments. However, though
we could do this, I don't think this would be better, the length 0 vs
length 1 difference seems a little too subtle, I think that there's a
better solution...
I think a better solution would be to wrap the array_view in a
gdb::optional, this would make the whole, do we have an array view or
not question explicit.
I haven't done this as part of this commit as making that change is
much more extensive, every user of value_struct_elt will need to be
updated, and as this commit already contains a bug fix, I wanted to
keep the large refactoring in a separate commit, so, check out the
next commit for the use of gdb::optional.
gdb/ChangeLog:
PR gdb/27994
* eval.c (structop_base_operation::evaluate_funcall): Pass
array_view instead of array to value_struct_elt.
* valarith.c (value_user_defined_op): Likewise.
* valops.c (typecmp): Change parameter type from array pointer to
array_view. Update header comment, and update body accordingly.
(search_struct_method): Likewise.
(value_struct_elt): Likewise.
* value.h (value_struct_elt): Update declaration.
gdb/testsuite/ChangeLog:
PR gdb/27994
* gdb.cp/method-call-in-c.cc (struct foo_type): Add operator+=,
change initial value of var member variable.
(main): Make use of foo_type's operator+=.
* gdb.cp/method-call-in-c.exp: Test use of operator+=.
|
|
EVAL_SKIP was needed in the old expression implementation due to its
linearized tree structure. This is not needed in the new
implementation, because it is trivial to not evaluate a subexpression.
This patch removes the last vestiges of EVAL_SKIP.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* value.h (eval_skip_value): Don't declare.
* opencl-lang.c (eval_opencl_assign): Update.
* m2-lang.c (eval_op_m2_high, eval_op_m2_subscript): Update.
* f-lang.c (eval_op_f_abs, eval_op_f_mod, eval_op_f_ceil)
(eval_op_f_floor, eval_op_f_modulo, eval_op_f_cmplx): Remove.
* expression.h (enum noside) <EVAL_SKIP>: Remove.
* expop.h (typeof_operation::evaluate)
(decltype_operation::evaluate, unop_addr_operation::evaluate)
(unop_sizeof_operation::evaluate, assign_operation::evaluate)
(cxx_cast_operation::evaluate): Update.
* eval.c (eval_skip_value): Remove.
(eval_op_scope, eval_op_var_entry_value)
(eval_op_func_static_var, eval_op_string, eval_op_objc_selector)
(eval_op_concat, eval_op_ternop, eval_op_structop_struct)
(eval_op_structop_ptr, eval_op_member, eval_op_add, eval_op_sub)
(eval_op_binary, eval_op_subscript, eval_op_equal)
(eval_op_notequal, eval_op_less, eval_op_gtr, eval_op_geq)
(eval_op_leq, eval_op_repeat, eval_op_plus, eval_op_neg)
(eval_op_complement, eval_op_lognot, eval_op_ind)
(eval_op_memval, eval_op_preinc, eval_op_predec)
(eval_op_postinc, eval_op_postdec, eval_op_type)
(eval_binop_assign_modify, eval_op_objc_msgcall)
(eval_multi_subscript, logical_and_operation::evaluate)
(logical_or_operation::evaluate, array_operation::evaluate)
(operation::evaluate_for_cast)
(var_msym_value_operation::evaluate_for_cast)
(var_value_operation::evaluate_for_cast): Update.
* c-lang.c (c_string_operation::evaluate): Update.
* c-exp.h (objc_nsstring_operation::evaluate)
(objc_selector_operation::evaluate): Update.
* ada-lang.c (ada_assign_operation::evaluate)
(eval_ternop_in_range, ada_unop_neg, ada_unop_in_range)
(ada_atr_size): Update.
|
|
This removes union exp_element functions that either create such
elements or walk them. struct expression no longer holds
exp_elements. A couple of language_defn methods are also removed, as
they are obsolete.
Note that this patch also removes the print_expression code. The only
in-tree caller of this was from dump_prefix_expression, which is only
called when expression debugging is enabled. Implementing this would
involve a fair amount of code, and it seems to me that prefix dumping
is preferable anyway, as it is unambiguous. So, I have not
reimplemented this feature.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* value.h (evaluate_subexp_with_coercion): Don't declare.
* parse.c (exp_descriptor_standard): Remove.
(expr_builder::expr_builder, expr_builder::release): Update.
(expression::expression): Remove size_t parameter.
(expression::~expression): Simplify.
(expression::resize): Remove.
(write_exp_elt, write_exp_elt_opcode, write_exp_elt_sym)
(write_exp_elt_msym, write_exp_elt_block, write_exp_elt_objfile)
(write_exp_elt_longcst, write_exp_elt_floatcst)
(write_exp_elt_type, write_exp_elt_intern, write_exp_string)
(write_exp_string_vector, write_exp_bitstring): Remove.
* p-lang.h (class pascal_language) <opcode_print_table,
op_print_tab>: Remove.
* p-lang.c (pascal_language::op_print_tab): Remove.
* opencl-lang.c (class opencl_language) <opcode_print_table>:
Remove.
* objc-lang.c (objc_op_print_tab): Remove.
(class objc_language) <opcode_print_table>: Remove.
* m2-lang.h (class m2_language) <opcode_print_table,
op_print_tab>: Remove.
* m2-lang.c (m2_language::op_print_tab): Remove.
* language.h (struct language_defn) <post_parser, expression_ops,
opcode_print_table>: Remove.
* language.c (language_defn::expression_ops)
(auto_or_unknown_language::opcode_print_table): Remove.
* go-lang.h (class go_language) <opcode_print_table,
op_print_tab>: Remove.
* go-lang.c (go_language::op_print_tab): Remove.
* f-lang.h (class f_language) <opcode_print_table>: Remove
<op_print_tab>: Remove.
* f-lang.c (f_language::op_print_tab): Remove.
* expression.h (union exp_element): Remove.
(struct expression): Remove size_t parameter from constructor.
<resize>: Remove.
<first_opcode>: Update.
<nelts, elts>: Remove.
(EXP_ELEM_TO_BYTES, BYTES_TO_EXP_ELEM): Remove.
(evaluate_subexp_standard, print_expression, op_string)
(dump_raw_expression): Don't declare.
* expprint.c (print_expression, print_subexp)
(print_subexp_funcall, print_subexp_standard, op_string)
(dump_raw_expression, dump_subexp, dump_subexp_body)
(dump_subexp_body_funcall, dump_subexp_body_standard): Remove.
(dump_prefix_expression): Update.
* eval.c (evaluate_subexp): Remove.
(evaluate_expression, evaluate_type): Update.
(evaluate_subexpression_type): Remove.
(fetch_subexp_value): Remove "pc" parameter. Update.
(extract_field_op, evaluate_struct_tuple, evaluate_funcall)
(evaluate_subexp_standard, evaluate_subexp_for_address)
(evaluate_subexp_with_coercion, evaluate_subexp_for_sizeof)
(evaluate_subexp_for_cast): Remove.
(parse_and_eval_type): Update.
* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
* d-lang.c (d_op_print_tab): Remove.
(class d_language) <opcode_print_table>: Remove.
* c-lang.h (c_op_print_tab): Don't declare.
* c-lang.c (c_op_print_tab): Remove.
(class c_language, class cplus_language, class asm_language, class
minimal_language) <opcode_print_table>: Remove.
* breakpoint.c (update_watchpoint, watchpoint_check)
(watchpoint_exp_is_const, watch_command_1): Update.
* ax-gdb.h (union exp_element): Don't declare.
* ax-gdb.c (const_var_ref, const_expr, maybe_const_expr)
(gen_repeat, gen_sizeof, gen_expr_for_cast, gen_expr)
(gen_expr_binop_rest): Remove.
(gen_trace_for_expr, gen_eval_for_expr, gen_printf): Update.
* ada-lang.c (ada_op_print_tab): Remove.
(class ada_language) <post_parser, opcode_print_table>: Remove.
|
|
This adds an expr::operation_up to struct expression, and then
modifies various parts of GDB to use this member when it is non-null.
The list of such spots was a bit surprising to me, and found only
after writing most of the code and then noticing what no longer
compiled.
In a few spots, new accessor methods are added to operation
subclasses, so that code that dissects an expression will work with
the new scheme.
After this change, code that constructs an expression can be switched
to the new form without breaking.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* ada-exp.h (class ada_var_value_operation) <get_symbol>: Remove;
now in superclass.
* value.h (fetch_subexp_value): Add "op" parameter.
* value.c (init_if_undefined_command): Update.
* tracepoint.c (validate_actionline, encode_actions_1): Update.
* stap-probe.c (stap_probe::compile_to_ax): Update.
* printcmd.c (set_command): Update.
* ppc-linux-nat.c (ppc_linux_nat_target::check_condition):
Update.
* parser-defs.h (struct expr_builder) <set_operation>: New
method.
* parse.c (parse_exp_in_context, exp_uses_objfile): Update.
* expression.h (struct expression) <first_opcode>: Update.
<op>: New member.
* expprint.c (dump_raw_expression, dump_prefix_expression):
Update.
* expop.h (class var_value_operation) <get_symbol>: New method.
(class register_operation) <get_name>: New method.
(class equal_operation): No longer a typedef, now a subclass.
(class unop_memval_operation) <get_type>: New method.
(class assign_operation) <get_lhs>: New method.
(class unop_cast_operation) <get_type>: New method.
* eval.c (evaluate_expression, evaluate_type)
(evaluate_subexpression_type): Update.
(fetch_subexp_value): Add "op" parameter.
(parse_and_eval_type): Update.
* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
* breakpoint.c (update_watchpoint, watchpoint_check)
(watchpoint_exp_is_const, watch_command_1): Update.
* ax-gdb.c (gen_trace_for_expr, gen_eval_for_expr, gen_printf):
Update.
|
|
With a certain Ada program, ada-lang.c:coerce_unspec_val_to_type can
cause a crash. This function may copy a value, and in the particular
case in the crash, the new value's type is smaller than the original
type. This causes coerce_unspec_val_to_type to create a lazy value --
but the original value is also not_lval, so later, when the value is
un-lazied, gdb asserts.
As with the previous patch, we believe there is a compiler bug here,
but it is difficult to reproduce, so we're not completely certain.
In the particular case we saw, the original value has record type, and
the record holds some variable-length arrays. This leads to the
type's length being 0. At the same time, the value is optimized out.
This patch changes coerce_unspec_val_to_type to handle an
optimized-out value correctly.
It also slightly restructures this code to avoid a crash should a
not_lval value wind up here. This is a purely defensive change.
This change also made it clear that value_contents_copy_raw can now be
made static, so that is also done.
gdb/ChangeLog
2021-02-09 Tom Tromey <tromey@adacore.com>
* ada-lang.c (coerce_unspec_val_to_type): Avoid making lazy
not_lval value.
* value.c (value_contents_copy_raw): Now static.
* value.h (value_contents_copy_raw): Don't declare.
|
|
Testing showed that gdb was not correctly handling some fixed-point
binary operations correctly.
Addition and subtraction worked by casting the result to the type of
left hand operand. So, "fixed+int" had a different type -- and
different value -- from "int+fixed".
Furthermore, for multiplication and division, it does not make sense
to first cast both sides to the fixed-point type. For example, this
can prevent "f * 1" from yielding "f", if 1 is not in the domain of
"f". Instead, this patch changes gdb to use the value. (This is
somewhat different from Ada semantics, as those can yield a "universal
fixed point".)
This includes a new test case. It is only run in "minimal" mode, as
the old-style fixed point works differently, and is obsolete, so I
have no plans to change it.
gdb/ChangeLog
2021-01-06 Tom Tromey <tromey@adacore.com>
* ada-lang.c (ada_evaluate_subexp) <BINOP_ADD, BINOP_SUB>:
Do not cast result.
* valarith.c (fixed_point_binop): Handle multiplication
and division specially.
* valops.c (value_to_gdb_mpq): New function.
(value_cast_to_fixed_point): Use it.
gdb/testsuite/ChangeLog
2021-01-06 Tom Tromey <tromey@adacore.com>
* gdb.ada/fixed_points/pck.ads (Delta4): New constant.
(FP4_Type): New type.
(FP4_Var): New variable.
* gdb.ada/fixed_points/fixed_points.adb: Update.
* gdb.ada/fixed_points.exp: Add tests for binary operators.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
While working on the expression rewrite, I found a few spots that
called the internal functions of the expression evaluator, just to
pass in an expected type. This patch adds a parameter to
evaluate_expression so that these functions can avoid this dependency.
Regression tested on x86-64 Fedora 28.
gdb/ChangeLog
2020-12-15 Tom Tromey <tom@tromey.com>
* stap-probe.c (stap_probe::evaluate_argument): Use
evaluate_expression.
* dtrace-probe.c (dtrace_probe::evaluate_argument): Use
evaluate_expression.
* value.h (evaluate_expression): Add expect_type parameter.
* objc-lang.c (print_object_command): Call evaluate_expression.
* eval.c (evaluate_expression): Add expect_type parameter.
|
|
I noticed that the argumen to parse_and_eval_type could be "const".
This patch implements this change.
I wonder if this could be removed. It's only called via
check_stub_method_group, which seems questionable to me. However, I
didn't look into doing this.
gdb/ChangeLog
2020-12-13 Tom Tromey <tom@tromey.com>
* gdbtypes.c (safe_parse_type): Make argument const.
* value.h (parse_and_eval_type): Make argument const.
* eval.c (parse_and_eval_type): Make argument const.
|
|
I noticed that value_internal_function_name should have a const return
type. This patch makes this change.
gdb/ChangeLog
2020-12-04 Tom Tromey <tromey@adacore.com>
* value.c (value_internal_function_name): Make return type const.
* value.h (value_internal_function_name): Make return type const.
|
|
A little int to bool conversion around the 'watch' type commands.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* breakpoint.c (update_watchpoint): Pass 'false' not '0'.
(watch_command_1): Update parameter types. Convert locals to
bool.
(watch_command_wrapper): Change parameter type.
(watch_maybe_just_location): Change locals to bool.
(rwatch_command_wrapper): Update parameter type.
(awatch_command_wrapper): Update parameter type.
* breakpoint.h (watch_command_wrapper): Change parameter type.
(rwatch_command_wrapper): Update parameter type.
(awatch_command_wrapper): Update parameter type.
* eval.c (fetch_subexp_value): Change parameter type.
* ppc-linux-nat.c (ppc_linux_nat_target::check_condition): Pass
'false' not '0'.
* value.h (fetch_subexp_value): Change parameter type in
declaration.
|
|
This changes internalvar_name to return a const char *.
gdb/ChangeLog
2020-11-10 Tom Tromey <tom@tromey.com>
* value.h (internalvar_name): Update.
* value.c (internalvar_name): Make return type const.
|
|
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c). I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it? What if the lines around it are also
wrong, do I fix them too? I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.
So I propose to fix as much as possible once and for all (hopefully).
One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines. My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for. So you
already need a somewhat efficient way to do this.
Using some interactive tool, rather than plain git-blame, makes this
trivial. For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too. My point is that it won't
really make archeology more difficult.
The other typical counter argument is that it will cause conflicts with
existing patches. That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve. I have also tried "git
rebase --ignore-whitespace", it seems to work well. Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).
gdb/ChangeLog:
* aarch64-linux-tdep.c: Fix indentation.
* aarch64-ravenscar-thread.c: Fix indentation.
* aarch64-tdep.c: Fix indentation.
* aarch64-tdep.h: Fix indentation.
* ada-lang.c: Fix indentation.
* ada-lang.h: Fix indentation.
* ada-tasks.c: Fix indentation.
* ada-typeprint.c: Fix indentation.
* ada-valprint.c: Fix indentation.
* ada-varobj.c: Fix indentation.
* addrmap.c: Fix indentation.
* addrmap.h: Fix indentation.
* agent.c: Fix indentation.
* aix-thread.c: Fix indentation.
* alpha-bsd-nat.c: Fix indentation.
* alpha-linux-tdep.c: Fix indentation.
* alpha-mdebug-tdep.c: Fix indentation.
* alpha-nbsd-tdep.c: Fix indentation.
* alpha-obsd-tdep.c: Fix indentation.
* alpha-tdep.c: Fix indentation.
* amd64-bsd-nat.c: Fix indentation.
* amd64-darwin-tdep.c: Fix indentation.
* amd64-linux-nat.c: Fix indentation.
* amd64-linux-tdep.c: Fix indentation.
* amd64-nat.c: Fix indentation.
* amd64-obsd-tdep.c: Fix indentation.
* amd64-tdep.c: Fix indentation.
* amd64-windows-tdep.c: Fix indentation.
* annotate.c: Fix indentation.
* arc-tdep.c: Fix indentation.
* arch-utils.c: Fix indentation.
* arch/arm-get-next-pcs.c: Fix indentation.
* arch/arm.c: Fix indentation.
* arm-linux-nat.c: Fix indentation.
* arm-linux-tdep.c: Fix indentation.
* arm-nbsd-tdep.c: Fix indentation.
* arm-pikeos-tdep.c: Fix indentation.
* arm-tdep.c: Fix indentation.
* arm-tdep.h: Fix indentation.
* arm-wince-tdep.c: Fix indentation.
* auto-load.c: Fix indentation.
* auxv.c: Fix indentation.
* avr-tdep.c: Fix indentation.
* ax-gdb.c: Fix indentation.
* ax-general.c: Fix indentation.
* bfin-linux-tdep.c: Fix indentation.
* block.c: Fix indentation.
* block.h: Fix indentation.
* blockframe.c: Fix indentation.
* bpf-tdep.c: Fix indentation.
* break-catch-sig.c: Fix indentation.
* break-catch-syscall.c: Fix indentation.
* break-catch-throw.c: Fix indentation.
* breakpoint.c: Fix indentation.
* breakpoint.h: Fix indentation.
* bsd-uthread.c: Fix indentation.
* btrace.c: Fix indentation.
* build-id.c: Fix indentation.
* buildsym-legacy.h: Fix indentation.
* buildsym.c: Fix indentation.
* c-typeprint.c: Fix indentation.
* c-valprint.c: Fix indentation.
* c-varobj.c: Fix indentation.
* charset.c: Fix indentation.
* cli/cli-cmds.c: Fix indentation.
* cli/cli-decode.c: Fix indentation.
* cli/cli-decode.h: Fix indentation.
* cli/cli-script.c: Fix indentation.
* cli/cli-setshow.c: Fix indentation.
* coff-pe-read.c: Fix indentation.
* coffread.c: Fix indentation.
* compile/compile-cplus-types.c: Fix indentation.
* compile/compile-object-load.c: Fix indentation.
* compile/compile-object-run.c: Fix indentation.
* completer.c: Fix indentation.
* corefile.c: Fix indentation.
* corelow.c: Fix indentation.
* cp-abi.h: Fix indentation.
* cp-namespace.c: Fix indentation.
* cp-support.c: Fix indentation.
* cp-valprint.c: Fix indentation.
* cris-linux-tdep.c: Fix indentation.
* cris-tdep.c: Fix indentation.
* darwin-nat-info.c: Fix indentation.
* darwin-nat.c: Fix indentation.
* darwin-nat.h: Fix indentation.
* dbxread.c: Fix indentation.
* dcache.c: Fix indentation.
* disasm.c: Fix indentation.
* dtrace-probe.c: Fix indentation.
* dwarf2/abbrev.c: Fix indentation.
* dwarf2/attribute.c: Fix indentation.
* dwarf2/expr.c: Fix indentation.
* dwarf2/frame.c: Fix indentation.
* dwarf2/index-cache.c: Fix indentation.
* dwarf2/index-write.c: Fix indentation.
* dwarf2/line-header.c: Fix indentation.
* dwarf2/loc.c: Fix indentation.
* dwarf2/macro.c: Fix indentation.
* dwarf2/read.c: Fix indentation.
* dwarf2/read.h: Fix indentation.
* elfread.c: Fix indentation.
* eval.c: Fix indentation.
* event-top.c: Fix indentation.
* exec.c: Fix indentation.
* exec.h: Fix indentation.
* expprint.c: Fix indentation.
* f-lang.c: Fix indentation.
* f-typeprint.c: Fix indentation.
* f-valprint.c: Fix indentation.
* fbsd-nat.c: Fix indentation.
* fbsd-tdep.c: Fix indentation.
* findvar.c: Fix indentation.
* fork-child.c: Fix indentation.
* frame-unwind.c: Fix indentation.
* frame-unwind.h: Fix indentation.
* frame.c: Fix indentation.
* frv-linux-tdep.c: Fix indentation.
* frv-tdep.c: Fix indentation.
* frv-tdep.h: Fix indentation.
* ft32-tdep.c: Fix indentation.
* gcore.c: Fix indentation.
* gdb_bfd.c: Fix indentation.
* gdbarch.sh: Fix indentation.
* gdbarch.c: Re-generate
* gdbarch.h: Re-generate.
* gdbcore.h: Fix indentation.
* gdbthread.h: Fix indentation.
* gdbtypes.c: Fix indentation.
* gdbtypes.h: Fix indentation.
* glibc-tdep.c: Fix indentation.
* gnu-nat.c: Fix indentation.
* gnu-nat.h: Fix indentation.
* gnu-v2-abi.c: Fix indentation.
* gnu-v3-abi.c: Fix indentation.
* go32-nat.c: Fix indentation.
* guile/guile-internal.h: Fix indentation.
* guile/scm-cmd.c: Fix indentation.
* guile/scm-frame.c: Fix indentation.
* guile/scm-iterator.c: Fix indentation.
* guile/scm-math.c: Fix indentation.
* guile/scm-ports.c: Fix indentation.
* guile/scm-pretty-print.c: Fix indentation.
* guile/scm-value.c: Fix indentation.
* h8300-tdep.c: Fix indentation.
* hppa-linux-nat.c: Fix indentation.
* hppa-linux-tdep.c: Fix indentation.
* hppa-nbsd-nat.c: Fix indentation.
* hppa-nbsd-tdep.c: Fix indentation.
* hppa-obsd-nat.c: Fix indentation.
* hppa-tdep.c: Fix indentation.
* hppa-tdep.h: Fix indentation.
* i386-bsd-nat.c: Fix indentation.
* i386-darwin-nat.c: Fix indentation.
* i386-darwin-tdep.c: Fix indentation.
* i386-dicos-tdep.c: Fix indentation.
* i386-gnu-nat.c: Fix indentation.
* i386-linux-nat.c: Fix indentation.
* i386-linux-tdep.c: Fix indentation.
* i386-nto-tdep.c: Fix indentation.
* i386-obsd-tdep.c: Fix indentation.
* i386-sol2-nat.c: Fix indentation.
* i386-tdep.c: Fix indentation.
* i386-tdep.h: Fix indentation.
* i386-windows-tdep.c: Fix indentation.
* i387-tdep.c: Fix indentation.
* i387-tdep.h: Fix indentation.
* ia64-libunwind-tdep.c: Fix indentation.
* ia64-libunwind-tdep.h: Fix indentation.
* ia64-linux-nat.c: Fix indentation.
* ia64-linux-tdep.c: Fix indentation.
* ia64-tdep.c: Fix indentation.
* ia64-tdep.h: Fix indentation.
* ia64-vms-tdep.c: Fix indentation.
* infcall.c: Fix indentation.
* infcmd.c: Fix indentation.
* inferior.c: Fix indentation.
* infrun.c: Fix indentation.
* iq2000-tdep.c: Fix indentation.
* language.c: Fix indentation.
* linespec.c: Fix indentation.
* linux-fork.c: Fix indentation.
* linux-nat.c: Fix indentation.
* linux-tdep.c: Fix indentation.
* linux-thread-db.c: Fix indentation.
* lm32-tdep.c: Fix indentation.
* m2-lang.c: Fix indentation.
* m2-typeprint.c: Fix indentation.
* m2-valprint.c: Fix indentation.
* m32c-tdep.c: Fix indentation.
* m32r-linux-tdep.c: Fix indentation.
* m32r-tdep.c: Fix indentation.
* m68hc11-tdep.c: Fix indentation.
* m68k-bsd-nat.c: Fix indentation.
* m68k-linux-nat.c: Fix indentation.
* m68k-linux-tdep.c: Fix indentation.
* m68k-tdep.c: Fix indentation.
* machoread.c: Fix indentation.
* macrocmd.c: Fix indentation.
* macroexp.c: Fix indentation.
* macroscope.c: Fix indentation.
* macrotab.c: Fix indentation.
* macrotab.h: Fix indentation.
* main.c: Fix indentation.
* mdebugread.c: Fix indentation.
* mep-tdep.c: Fix indentation.
* mi/mi-cmd-catch.c: Fix indentation.
* mi/mi-cmd-disas.c: Fix indentation.
* mi/mi-cmd-env.c: Fix indentation.
* mi/mi-cmd-stack.c: Fix indentation.
* mi/mi-cmd-var.c: Fix indentation.
* mi/mi-cmds.c: Fix indentation.
* mi/mi-main.c: Fix indentation.
* mi/mi-parse.c: Fix indentation.
* microblaze-tdep.c: Fix indentation.
* minidebug.c: Fix indentation.
* minsyms.c: Fix indentation.
* mips-linux-nat.c: Fix indentation.
* mips-linux-tdep.c: Fix indentation.
* mips-nbsd-tdep.c: Fix indentation.
* mips-tdep.c: Fix indentation.
* mn10300-linux-tdep.c: Fix indentation.
* mn10300-tdep.c: Fix indentation.
* moxie-tdep.c: Fix indentation.
* msp430-tdep.c: Fix indentation.
* namespace.h: Fix indentation.
* nat/fork-inferior.c: Fix indentation.
* nat/gdb_ptrace.h: Fix indentation.
* nat/linux-namespaces.c: Fix indentation.
* nat/linux-osdata.c: Fix indentation.
* nat/netbsd-nat.c: Fix indentation.
* nat/x86-dregs.c: Fix indentation.
* nbsd-nat.c: Fix indentation.
* nbsd-tdep.c: Fix indentation.
* nios2-linux-tdep.c: Fix indentation.
* nios2-tdep.c: Fix indentation.
* nto-procfs.c: Fix indentation.
* nto-tdep.c: Fix indentation.
* objfiles.c: Fix indentation.
* objfiles.h: Fix indentation.
* opencl-lang.c: Fix indentation.
* or1k-tdep.c: Fix indentation.
* osabi.c: Fix indentation.
* osabi.h: Fix indentation.
* osdata.c: Fix indentation.
* p-lang.c: Fix indentation.
* p-typeprint.c: Fix indentation.
* p-valprint.c: Fix indentation.
* parse.c: Fix indentation.
* ppc-linux-nat.c: Fix indentation.
* ppc-linux-tdep.c: Fix indentation.
* ppc-nbsd-nat.c: Fix indentation.
* ppc-nbsd-tdep.c: Fix indentation.
* ppc-obsd-nat.c: Fix indentation.
* ppc-ravenscar-thread.c: Fix indentation.
* ppc-sysv-tdep.c: Fix indentation.
* ppc64-tdep.c: Fix indentation.
* printcmd.c: Fix indentation.
* proc-api.c: Fix indentation.
* producer.c: Fix indentation.
* producer.h: Fix indentation.
* prologue-value.c: Fix indentation.
* prologue-value.h: Fix indentation.
* psymtab.c: Fix indentation.
* python/py-arch.c: Fix indentation.
* python/py-bpevent.c: Fix indentation.
* python/py-event.c: Fix indentation.
* python/py-event.h: Fix indentation.
* python/py-finishbreakpoint.c: Fix indentation.
* python/py-frame.c: Fix indentation.
* python/py-framefilter.c: Fix indentation.
* python/py-inferior.c: Fix indentation.
* python/py-infthread.c: Fix indentation.
* python/py-objfile.c: Fix indentation.
* python/py-prettyprint.c: Fix indentation.
* python/py-registers.c: Fix indentation.
* python/py-signalevent.c: Fix indentation.
* python/py-stopevent.c: Fix indentation.
* python/py-stopevent.h: Fix indentation.
* python/py-threadevent.c: Fix indentation.
* python/py-tui.c: Fix indentation.
* python/py-unwind.c: Fix indentation.
* python/py-value.c: Fix indentation.
* python/py-xmethods.c: Fix indentation.
* python/python-internal.h: Fix indentation.
* python/python.c: Fix indentation.
* ravenscar-thread.c: Fix indentation.
* record-btrace.c: Fix indentation.
* record-full.c: Fix indentation.
* record.c: Fix indentation.
* reggroups.c: Fix indentation.
* regset.h: Fix indentation.
* remote-fileio.c: Fix indentation.
* remote.c: Fix indentation.
* reverse.c: Fix indentation.
* riscv-linux-tdep.c: Fix indentation.
* riscv-ravenscar-thread.c: Fix indentation.
* riscv-tdep.c: Fix indentation.
* rl78-tdep.c: Fix indentation.
* rs6000-aix-tdep.c: Fix indentation.
* rs6000-lynx178-tdep.c: Fix indentation.
* rs6000-nat.c: Fix indentation.
* rs6000-tdep.c: Fix indentation.
* rust-lang.c: Fix indentation.
* rx-tdep.c: Fix indentation.
* s12z-tdep.c: Fix indentation.
* s390-linux-tdep.c: Fix indentation.
* score-tdep.c: Fix indentation.
* ser-base.c: Fix indentation.
* ser-mingw.c: Fix indentation.
* ser-uds.c: Fix indentation.
* ser-unix.c: Fix indentation.
* serial.c: Fix indentation.
* sh-linux-tdep.c: Fix indentation.
* sh-nbsd-tdep.c: Fix indentation.
* sh-tdep.c: Fix indentation.
* skip.c: Fix indentation.
* sol-thread.c: Fix indentation.
* solib-aix.c: Fix indentation.
* solib-darwin.c: Fix indentation.
* solib-frv.c: Fix indentation.
* solib-svr4.c: Fix indentation.
* solib.c: Fix indentation.
* source.c: Fix indentation.
* sparc-linux-tdep.c: Fix indentation.
* sparc-nbsd-tdep.c: Fix indentation.
* sparc-obsd-tdep.c: Fix indentation.
* sparc-ravenscar-thread.c: Fix indentation.
* sparc-tdep.c: Fix indentation.
* sparc64-linux-tdep.c: Fix indentation.
* sparc64-nbsd-tdep.c: Fix indentation.
* sparc64-obsd-tdep.c: Fix indentation.
* sparc64-tdep.c: Fix indentation.
* stabsread.c: Fix indentation.
* stack.c: Fix indentation.
* stap-probe.c: Fix indentation.
* stubs/ia64vms-stub.c: Fix indentation.
* stubs/m32r-stub.c: Fix indentation.
* stubs/m68k-stub.c: Fix indentation.
* stubs/sh-stub.c: Fix indentation.
* stubs/sparc-stub.c: Fix indentation.
* symfile-mem.c: Fix indentation.
* symfile.c: Fix indentation.
* symfile.h: Fix indentation.
* symmisc.c: Fix indentation.
* symtab.c: Fix indentation.
* symtab.h: Fix indentation.
* target-float.c: Fix indentation.
* target.c: Fix indentation.
* target.h: Fix indentation.
* tic6x-tdep.c: Fix indentation.
* tilegx-linux-tdep.c: Fix indentation.
* tilegx-tdep.c: Fix indentation.
* top.c: Fix indentation.
* tracefile-tfile.c: Fix indentation.
* tracepoint.c: Fix indentation.
* tui/tui-disasm.c: Fix indentation.
* tui/tui-io.c: Fix indentation.
* tui/tui-regs.c: Fix indentation.
* tui/tui-stack.c: Fix indentation.
* tui/tui-win.c: Fix indentation.
* tui/tui-winsource.c: Fix indentation.
* tui/tui.c: Fix indentation.
* typeprint.c: Fix indentation.
* ui-out.h: Fix indentation.
* unittests/copy_bitwise-selftests.c: Fix indentation.
* unittests/memory-map-selftests.c: Fix indentation.
* utils.c: Fix indentation.
* v850-tdep.c: Fix indentation.
* valarith.c: Fix indentation.
* valops.c: Fix indentation.
* valprint.c: Fix indentation.
* valprint.h: Fix indentation.
* value.c: Fix indentation.
* value.h: Fix indentation.
* varobj.c: Fix indentation.
* vax-tdep.c: Fix indentation.
* windows-nat.c: Fix indentation.
* windows-tdep.c: Fix indentation.
* xcoffread.c: Fix indentation.
* xml-syscall.c: Fix indentation.
* xml-tdesc.c: Fix indentation.
* xstormy16-tdep.c: Fix indentation.
* xtensa-config.c: Fix indentation.
* xtensa-linux-nat.c: Fix indentation.
* xtensa-linux-tdep.c: Fix indentation.
* xtensa-tdep.c: Fix indentation.
gdbserver/ChangeLog:
* ax.cc: Fix indentation.
* dll.cc: Fix indentation.
* inferiors.h: Fix indentation.
* linux-low.cc: Fix indentation.
* linux-nios2-low.cc: Fix indentation.
* linux-ppc-ipa.cc: Fix indentation.
* linux-ppc-low.cc: Fix indentation.
* linux-x86-low.cc: Fix indentation.
* linux-xtensa-low.cc: Fix indentation.
* regcache.cc: Fix indentation.
* server.cc: Fix indentation.
* tracepoint.cc: Fix indentation.
gdbsupport/ChangeLog:
* common-exceptions.h: Fix indentation.
* event-loop.cc: Fix indentation.
* fileio.cc: Fix indentation.
* filestuff.cc: Fix indentation.
* gdb-dlfcn.cc: Fix indentation.
* gdb_string_view.h: Fix indentation.
* job-control.cc: Fix indentation.
* signals.cc: Fix indentation.
Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
|
|
The implementation is in valprint.c, so the declaration belongs in
valprint.h.
gdb/ChangeLog:
* value.h (valprint_check_validity): Move declaration from
here...
* valprint.h (valprint_check_validity): ... to here.
Change-Id: Ibe577d3696720099e6d79888d4ee8e3c1bf05a26
|
|
After dereferencing a pointer (in value_ind) or following a
reference (in coerce_ref) we call readjust_indirect_value_type to
"fixup" the type of the resulting value object.
This fixup handles cases relating to the type of the resulting object
being different (a sub-class) of the original pointers target type.
If we encounter a pointer to a dynamic type then after dereferencing a
pointer (in value_ind) the type of the object created will have had
its dynamic type resolved. However, in readjust_indirect_value_type,
we use the target type of the original pointer to "fixup" the type of
the resulting value. In this case, the target type will be a dynamic
type, so the resulting value object, once again has a dynamic type.
This then triggers an assertion later within GDB.
The solution I propose here is that we call resolve_dynamic_type on
the pointer's target type (within readjust_indirect_value_type) so
that the resulting value is not converted back to a dynamic type.
The test case is based on the original test in the bug report.
gdb/ChangeLog:
PR fortran/23051
PR fortran/26139
* valops.c (value_ind): Pass address to
readjust_indirect_value_type.
* value.c (readjust_indirect_value_type): Make parameter
non-const, and add extra address parameter. Resolve original type
before using it.
* value.h (readjust_indirect_value_type): Update function
signature and comment.
gdb/testsuite/ChangeLog:
PR fortran/23051
PR fortran/26139
* gdb.fortran/class-allocatable-array.exp: New file.
* gdb.fortran/class-allocatable-array.f90: New file.
* gdb.fortran/pointer-to-pointer.exp: New file.
* gdb.fortran/pointer-to-pointer.f90: New file.
|
|
This commit changes the language_data::la_read_var_value function
pointer member variable into a member function of language_defn.
An interesting aspect of this change is that the implementation of
language_defn::read_var_value is actually in findvar.c. This is
partly historical, the new language_defn::read_var_value is a rename
of default_read_var_value, which was already in that file, but also,
that is the file that contains the helper functions needed by the
read_var_value method, so it makes sens that the method implementation
should continue to live there (I think).
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_read_var_value): Delete function, move
implementation to...
(ada_language::read_var_value): ...here.
(ada_language_data): Delete la_read_var_value initializer.
* c-lang.c (c_language_data): Likewise.
(cplus_language_data): Likewise.
(minimal_language_data): Likewise.
* d-lang.c (d_language_data): Likewise.
* f-lang.c (f_language_data): Likewise.
* findvar.c (default_read_var_value): Rename to...
(language_defn::read_var_value): ...this.
* findvar.c (read_var_value): Update header comment, and change to
call member function instead of function pointer.
* go-lang.c (go_language_data): Likewise.
* language.c (unknown_language_data): Delete la_read_var_value
initializer.
(auto_language_data): Likewise.
* language.h (struct language_data): Delete la_read_var_value
field.
(language_defn::read_var_value): New member function.
(default_read_var_value): Delete declaration.
* m2-lang.c (m2_language_data): Delete la_read_var_value
initializer.
* objc-lang.c (objc_language_data): Likewise.
* opencl-lang.c (opencl_language_data): Likewise.
* p-lang.c (pascal_language_data): Likewise.
* rust-lang.c (rust_language_data): Likewise.
* value.h (default_read_var_value): Delete declaration.
|
|
This rewrites the existing variant part code to follow the new model
implemented in the previous patch. The old variant part code is
removed.
This only affects Rust for the moment. I tested this using various
version of the Rust compiler, including one that emits old-style enum
debuginfo, exercising the quirks code.
gdb/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
* dwarf2/read.c (struct variant_field): Rewrite.
(struct variant_part_builder): New.
(struct nextfield): Remove "variant" field. Add "offset".
(struct field_info): Add "current_variant_part" and
"variant_parts".
(alloc_discriminant_info): Remove.
(alloc_rust_variant): New function.
(quirk_rust_enum): Update.
(dwarf2_add_field): Set "offset" member. Don't handle
DW_TAG_variant_part.
(offset_map_type): New typedef.
(convert_variant_range, create_one_variant)
(create_one_variant_part, create_variant_parts)
(add_variant_property): New functions.
(dwarf2_attach_fields_to_type): Call add_variant_property.
(read_structure_type): Don't handle DW_TAG_variant_part.
(handle_variant_part, handle_variant): New functions.
(handle_struct_member_die): Use them.
(process_structure_scope): Don't handle variant parts.
* gdbtypes.h (TYPE_FLAG_DISCRIMINATED_UNION): Remove.
(struct discriminant_info): Remove.
(enum dynamic_prop_node_kind) <DYN_PROP_DISCRIMINATED>: Remove.
(struct main_type) <flag_discriminated_union>: Remove.
* rust-lang.c (rust_enum_p, rust_empty_enum_p): Rewrite.
(rust_enum_variant): Return int. Remove "contents". Rewrite.
(rust_print_enum, rust_print_struct_def, rust_evaluate_subexp):
Update.
* valops.c (value_union_variant): Remove.
* value.h (value_union_variant): Don't declare.
|
|
This patch adds the infrastructure for the new variant part code. At
this point, nothing uses this code. This is done in a separate patch
to make it simpler to review.
I examined a few possible approaches to handling variant parts. In
particular, I considered having a DWARF variant part be a union
(similar to how the Rust code works now); and I considered having type
fields have a flag indicating that they are variants.
Having separate types seemed bad conceptually, because these variants
aren't truly separate -- they rely on the "parent" type. And,
changing how fields worked seemed excessively invasive.
So, in the end I thought the approach taken in this patch was both
simple to implement and understand, without losing generality. The
idea in this patch is that all the fields of a type with variant parts
will be stored in a single field array, just as if they'd all been
listed directly. Then, the variants are attached as a dynamic
property. These control which fields end up in the type that's
constructed during dynamic type resolution.
gdb/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
* gdbtypes.c (is_dynamic_type_internal): Check for variant parts.
(variant::matches, compute_variant_fields_recurse)
(compute_variant_fields_inner, compute_variant_fields): New
functions.
(resolve_dynamic_struct): Check for DYN_PROP_VARIANT_PARTS.
Use resolved_type after type is made.
(operator==): Add new cases.
* gdbtypes.h (TYPE_HAS_VARIANT_PARTS): New macro.
(struct discriminant_range, struct variant, struct variant_part):
New.
(union dynamic_prop_data) <variant_parts, original_type>: New
members.
(enum dynamic_prop_node_kind) <DYN_PROP_VARIANT_PARTS>: New constant.
(enum dynamic_prop_kind) <PROP_TYPE, PROP_VARIANT_PARTS>: New
constants.
* value.c (unpack_bits_as_long): Now public.
* value.h (unpack_bits_as_long): Declare.
|
|
Christian pointed out that the value_literal_complex was still a bit
weird; this patch rewrites it and moves it to value.h.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* value.h (value_literal_complex): Add comment.
* valops.c (value_literal_complex): Refer to value.h.
|
|
This introduces two new functions that make it simpler to access the
components of a complex number.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* valprint.c (generic_value_print_complex): Use accessors.
* value.h (value_real_part, value_imaginary_part): Declare.
* valops.c (value_real_part, value_imaginary_part): New
functions.
* value.c (creal_internal_fn, cimag_internal_fn): Use accessors.
|
|
We can finally remove val_print and various helper functions that are
no longer needed.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* value.h (val_print): Don't declare.
* valprint.h (val_print_array_elements)
(val_print_scalar_formatted, generic_val_print): Don't declare.
* valprint.c (generic_val_print_array): Take a struct value.
(generic_val_print_ptr, generic_val_print_memberptr)
(generic_val_print_bool, generic_val_print_int)
(generic_val_print_char, generic_val_print_complex)
(generic_val_print): Remove.
(generic_value_print): Update.
(do_val_print): Remove unused parameters. Don't call
la_val_print.
(val_print): Remove.
(common_val_print): Update. Don't call value_check_printable.
(val_print_scalar_formatted, val_print_array_elements): Remove.
* rust-lang.c (rust_val_print): Remove.
(rust_language_defn): Update.
* p-valprint.c (pascal_val_print): Remove.
(pascal_value_print_inner): Update.
(pascal_object_print_val_fields, pascal_object_print_val):
Remove.
(pascal_object_print_static_field): Update.
* p-lang.h (pascal_val_print): Don't declare.
* p-lang.c (pascal_language_defn): Update.
* opencl-lang.c (opencl_language_defn): Update.
* objc-lang.c (objc_language_defn): Update.
* m2-valprint.c (m2_print_unbounded_array, m2_val_print): Remove.
* m2-lang.h (m2_val_print): Don't declare.
* m2-lang.c (m2_language_defn): Update.
* language.h (struct language_defn) <la_val_print>: Remove.
* language.c (unk_lang_value_print_inner): Rename. Change
argument types.
(unknown_language_defn, auto_language_defn): Update.
* go-valprint.c (go_val_print): Remove.
* go-lang.h (go_val_print): Don't declare.
* go-lang.c (go_language_defn): Update.
* f-valprint.c (f_val_print): Remove.
* f-lang.h (f_value_print): Don't declare.
* f-lang.c (f_language_defn): Update.
* d-valprint.c (d_val_print): Remove.
* d-lang.h (d_value_print): Don't declare.
* d-lang.c (d_language_defn): Update.
* cp-valprint.c (cp_print_value_fields)
(cp_print_value_fields_rtti, cp_print_value): Remove.
(cp_print_static_field): Update.
* c-valprint.c (c_val_print_array, c_val_print_ptr)
(c_val_print_struct, c_val_print_union, c_val_print_int)
(c_val_print_memberptr, c_val_print): Remove.
* c-lang.h (c_val_print_array, cp_print_value_fields)
(cp_print_value_fields_rtti): Don't declare.
* c-lang.c (c_language_defn, cplus_language_defn)
(asm_language_defn, minimal_language_defn): Update.
* ada-valprint.c (ada_val_print_ptr, ada_val_print_num): Remove.
(ada_val_print_enum): Take a struct value.
(ada_val_print_flt, ada_val_print_array, ada_val_print_1)
(ada_val_print): Remove.
(ada_value_print_1): Update.
(printable_val_type): Remove.
* ada-lang.h (ada_val_print): Don't declare.
* ada-lang.c (ada_language_defn): Update.
|
|
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
From what I can tell, set_gdbarch_bits_big_endian has never been used.
That is, all architectures since its introduction have simply used the
default, which is simply check the architecture's byte-endianness.
Because this interferes with the scalar_storage_order code, this patch
removes this gdbarch setting entirely. In some places,
type_byte_order is used rather than the plain gdbarch.
gdb/ChangeLog
2019-12-04 Tom Tromey <tromey@adacore.com>
* ada-lang.c (decode_constrained_packed_array)
(ada_value_assign, value_assign_to_component): Update.
* dwarf2loc.c (rw_pieced_value, access_memory)
(dwarf2_compile_expr_to_ax): Update.
* dwarf2read.c (dwarf2_add_field): Update.
* eval.c (evaluate_subexp_standard): Update.
* gdbarch.c, gdbarch.h: Rebuild.
* gdbarch.sh (bits_big_endian): Remove.
* gdbtypes.h (union field_location): Update comment.
* target-descriptions.c (make_gdb_type): Update.
* valarith.c (value_bit_index): Update.
* value.c (struct value) <bitpos>: Update comment.
(unpack_bits_as_long, modify_field): Update.
* value.h (value_bitpos): Update comment.
Change-Id: I379b5e0c408ec8742f7a6c6b721108e73ed1b018
|
|
This adds a "name_allocated" field to cmd_list_element, so that
commands can own their "name" when necessary. Then, this changes a
few spots in gdb that currently free the name by hand to instead use
this facility.
gdb/ChangeLog
2019-11-26 Tom Tromey <tom@tromey.com>
* python/py-function.c (fnpy_init): Update.
* value.h (add_internal_function): Adjust declaration.
* value.c (function_destroyer): Remove.
(do_add_internal_function): Don't set destroyer or copy name.
(add_internal_function): Take unique_xmalloc_ptr<char> for name.
Set name_allocated.
* python/py-cmd.c (cmdpy_destroyer): Don't free "name".
(cmdpy_init): Set name_allocated.
* cli/cli-decode.h (struct cmd_list_element) <name_allocated>: New
member.
(~cmd_list_element): Free "name" if needed.
Change-Id: Ie1435cea5bbf4bd92056125f112917c607cbb761
|
|
add_internal_function sets a command destroyer that frees the doc
string. However, many callers do not pass in an allocated doc string.
This adds a new overload to clearly differentiate the two cases,
fixing the latent bug.
gdb/ChangeLog
2019-11-26 Tom Tromey <tom@tromey.com>
* value.h (add_internal_function): Add new overload. Move
documentation from value.h.
* value.c (do_add_internal_function): New function.
(add_internal_function): Use it. Add new overload.
(function_destroyer): Don't free doc.
* python/py-function.c (fnpy_init): Update.
Change-Id: I3f6df925bc6b3e1bccbad9eeebc487b908bb5a2a
|
|
Fix typos in comments. NFC.
Tested on x86_64-linux.
gdb/ChangeLog:
2019-10-26 Tom de Vries <tdevries@suse.de>
* aarch64-linux-tdep.c: Fix typos in comments.
* aarch64-tdep.c: Same.
* ada-lang.c: Same.
* amd64-nat.c: Same.
* arc-tdep.c: Same.
* arch/aarch64-insn.c: Same.
* block.c: Same.
* breakpoint.h: Same.
* btrace.h: Same.
* c-varobj.c: Same.
* cli/cli-decode.c: Same.
* cli/cli-script.c: Same.
* cli/cli-utils.h: Same.
* coff-pe-read.c: Same.
* coffread.c: Same.
* compile/compile-cplus-symbols.c: Same.
* compile/compile-object-run.c: Same.
* completer.c: Same.
* corelow.c: Same.
* cp-support.c: Same.
* demangle.c: Same.
* dwarf-index-write.c: Same.
* dwarf2-frame.c: Same.
* dwarf2-frame.h: Same.
* eval.c: Same.
* frame-base.h: Same.
* frame.h: Same.
* gdbcmd.h: Same.
* gdbtypes.h: Same.
* gnu-nat.c: Same.
* guile/scm-objfile.c: Same.
* i386-tdep.c: Same.
* i386-tdep.h: Same.
* infcall.c: Same.
* infcall.h: Same.
* linux-nat.c: Same.
* m68k-tdep.c: Same.
* macroexp.c: Same.
* memattr.c: Same.
* mi/mi-cmd-disas.c: Same.
* mi/mi-getopt.h: Same.
* mi/mi-main.c: Same.
* minsyms.c: Same.
* nat/aarch64-sve-linux-sigcontext.h: Same.
* objfiles.h: Same.
* ppc-linux-nat.c: Same.
* ppc-linux-tdep.c: Same.
* ppc-tdep.h: Same.
* progspace.h: Same.
* prologue-value.h: Same.
* python/py-evtregistry.c: Same.
* python/py-instruction.h: Same.
* record-btrace.c: Same.
* record-full.c: Same.
* remote.c: Same.
* rs6000-tdep.c: Same.
* ser-tcp.c: Same.
* sol-thread.c: Same.
* sparc-sol2-tdep.c: Same.
* sparc64-tdep.c: Same.
* stabsread.c: Same.
* symfile.c: Same.
* symtab.h: Same.
* target.c: Same.
* tracepoint.c: Same.
* tui/tui-data.h: Same.
* tui/tui-io.c: Same.
* tui/tui-win.c: Same.
* tui/tui.c: Same.
* unittests/rsp-low-selftests.c: Same.
* user-regs.h: Same.
* utils.c: Same.
* utils.h: Same.
* valarith.c: Same.
* valops.c: Same.
* valprint.c: Same.
* valprint.h: Same.
* value.c: Same.
* value.h: Same.
* varobj.c: Same.
* x86-nat.h: Same.
* xtensa-tdep.c: Same.
gdb/gdbserver/ChangeLog:
2019-10-26 Tom de Vries <tdevries@suse.de>
* linux-aarch64-low.c: Fix typos in comments.
* linux-arm-low.c: Same.
* linux-low.c: Same.
* linux-ppc-low.c: Same.
* proc-service.c: Same.
* regcache.h: Same.
* server.c: Same.
* tracepoint.c: Same.
* win32-low.c: Same.
gdb/stubs/ChangeLog:
2019-10-26 Tom de Vries <tdevries@suse.de>
* ia64vms-stub.c: Fix typos in comments.
* m32r-stub.c: Same.
* m68k-stub.c: Same.
* sh-stub.c: Same.
gdb/testsuite/ChangeLog:
2019-10-26 Tom de Vries <tdevries@suse.de>
* gdb.base/bigcore.c: Fix typos in comments.
* gdb.base/ctf-ptype.c: Same.
* gdb.base/long_long.c: Same.
* gdb.dwarf2/dw2-op-out-param.S: Same.
* gdb.python/py-evthreads.c: Same.
* gdb.reverse/i387-stack-reverse.c: Same.
* gdb.trace/tfile.c: Same.
* lib/compiler.c: Same.
* lib/compiler.cc: Same.
Change-Id: I8573d84a577894270179ae30f46c48d806fc1beb
|
|
The variable is defined in valops.c and has an extern decl in
eval.c; move it to the header file.
gdb/ChangeLog:
2019-09-19 Christian Biesinger <cbiesinger@google.com>
* eval.c: Move declaration of overload_resolution to...
* value.h: ...here.
|
|
The dynamic lower (and upper) bounds of ranges are stored as type
LONGEST (see union dynamic_prop_data in gdbtypes.h). In most places
that range bounds are handled they are held in a LONGEST, however in
value_subscripted_rvalue the bound is placed into an int.
This commit changes value_subscripted_rvalue to use LONGEST, there
should be no user visible changes after this commit.
gdb/ChangeLog:
* valarith.c (value_subscripted_rvalue): Change lowerbound
parameter type from int to LONGEST.
* value.h (value_subscripted_rvalue): Likewise in declaration.
|
|
... and move comment to header file.
gdb/ChangeLog:
* valops.c (value_must_coerce_to_target): Change return type to
bool.
* value.h (value_must_coerce_to_target): Likewise.
|
|
This is the next patch in the ongoing series to move gdbsever to the
top level.
This patch just renames the "common" directory. The idea is to do
this move in two parts: first rename the directory (this patch), then
move the directory to the top. This approach makes the patches a bit
more tractable.
I chose the name "gdbsupport" for the directory. However, as this
patch was largely written by sed, we could pick a new name without too
much difficulty.
Tested by the buildbot.
gdb/ChangeLog
2019-07-09 Tom Tromey <tom@tromey.com>
* contrib/ari/gdb_ari.sh: Change common to gdbsupport.
* configure: Rebuild.
* configure.ac: Change common to gdbsupport.
* gdbsupport: Rename from common.
* acinclude.m4: Change common to gdbsupport.
* Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES)
(HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to
gdbsupport.
* aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c,
amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c,
amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c,
amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c,
amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c,
arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c,
arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c,
arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c,
arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c,
auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h,
btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c,
charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c,
cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c,
coff-pe-read.c, command.h, compile/compile-c-support.c,
compile/compile-c.h, compile/compile-cplus-symbols.c,
compile/compile-cplus-types.c, compile/compile-cplus.h,
compile/compile-loc2c.c, compile/compile.c, completer.c,
completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c,
cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c,
darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c,
disasm.h, dtrace-probe.c, dwarf-index-cache.c,
dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c,
dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c,
event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c,
features/aarch64-core.c, features/aarch64-fpu.c,
features/aarch64-pauth.c, features/aarch64-sve.c,
features/i386/32bit-avx.c, features/i386/32bit-avx512.c,
features/i386/32bit-core.c, features/i386/32bit-linux.c,
features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c,
features/i386/32bit-segments.c, features/i386/32bit-sse.c,
features/i386/64bit-avx.c, features/i386/64bit-avx512.c,
features/i386/64bit-core.c, features/i386/64bit-linux.c,
features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c,
features/i386/64bit-segments.c, features/i386/64bit-sse.c,
features/i386/x32-core.c, features/riscv/32bit-cpu.c,
features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c,
features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c,
features/riscv/64bit-fpu.c, features/tic6x-c6xp.c,
features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h,
findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h,
gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c,
gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c,
go32-nat.c, guile/guile.c, guile/scm-ports.c,
guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c,
i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c,
i386-linux-tdep.c, i386-tdep.c, i387-tdep.c,
ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c,
inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h,
inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h,
inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c,
linux-tdep.c, linux-thread-db.c, location.c, machoread.c,
macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h,
mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c,
mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h,
minsyms.c, mips-linux-tdep.c, namespace.h,
nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h,
nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c,
nat/amd64-linux-siginfo.c, nat/fork-inferior.c,
nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c,
nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c,
nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h,
nat/linux-waitpid.c, nat/mips-linux-watch.c,
nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c,
nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c,
nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h,
obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c,
parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c,
procfs.c, producer.c, progspace.h, psymtab.h,
python/py-framefilter.c, python/py-inferior.c, python/py-ref.h,
python/py-type.c, python/python.c, record-btrace.c, record-full.c,
record.c, record.h, regcache-dump.c, regcache.c, regcache.h,
remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c,
riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c,
selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c,
ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c,
source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c,
stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h,
symtab.c, symtab.h, target-descriptions.c, target-descriptions.h,
target-memory.c, target.c, target.h, target/waitstatus.c,
target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c,
top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c,
tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h,
unittests/array-view-selftests.c,
unittests/child-path-selftests.c, unittests/cli-utils-selftests.c,
unittests/common-utils-selftests.c,
unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c,
unittests/format_pieces-selftests.c,
unittests/function-view-selftests.c,
unittests/lookup_name_info-selftests.c,
unittests/memory-map-selftests.c, unittests/memrange-selftests.c,
unittests/mkdir-recursive-selftests.c,
unittests/observable-selftests.c,
unittests/offset-type-selftests.c, unittests/optional-selftests.c,
unittests/parse-connection-spec-selftests.c,
unittests/ptid-selftests.c, unittests/rsp-low-selftests.c,
unittests/scoped_fd-selftests.c,
unittests/scoped_mmap-selftests.c,
unittests/scoped_restore-selftests.c,
unittests/string_view-selftests.c, unittests/style-selftests.c,
unittests/tracepoint-selftests.c, unittests/unpack-selftests.c,
unittests/utils-selftests.c, unittests/xml-utils-selftests.c,
utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c,
value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c,
xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c,
xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport.
gdb/gdbserver/ChangeLog
2019-07-09 Tom Tromey <tom@tromey.com>
* configure: Rebuild.
* configure.ac: Change common to gdbsupport.
* acinclude.m4: Change common to gdbsupport.
* Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS)
(version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change
common to gdbsupport.
* ax.c, event-loop.c, fork-child.c, gdb_proc_service.h,
gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c,
inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c,
linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c,
linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c,
linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h,
nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c,
server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h,
thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change
common to gdbsupport.
|
|
When the user exits GDB, we might still have some allocated values in
the chain, which, in specific scenarios, can cause problems when GDB
attempts to destroy them in "quit_force". For example, see the bug
reported at:
https://bugzilla.redhat.com/show_bug.cgi?id=1690120
And the thread starting at:
https://sourceware.org/ml/gdb-patches/2019-03/msg00475.html
Message-ID: <87r2azkhmq.fsf@redhat.com>
In order to avoid that, and to be more aware of our allocated
resources, this commit implements a new function "finalize_values" and
calls it from inside "quit_force".
Tested by the BuildBot.
2019-04-01 Sergio Durigan Junior <sergiodj@redhat.com>
Pedro Alves <palves@redhat.com>
* top.c (quit_force): Call 'finalize_values'.
* value.c (finalize_values): New function.
* value.h (finalize_values): Declare.
|
|
The function value_from_host_double can be moved from f-lang.c into
value.c as a generally useful function, and then used more widely.
Tested on X86-64/GNU Linux with no regressions.
gdb/ChangeLog:
* f-lang.c (value_from_host_double): Moved to...
* value.c (value_from_host_double): ...here.
* value.h (value_from_host_double): Declare.
* guile/scm-math.c (vlscm_convert_typed_number): Use
value_from_host_double.
(vlscm_convert_number): Likewise.
* guile/scm-value.c (gdbscm_value_to_real): Likewise.
* python/py-value.c (convert_value_from_python): Likewise.
|
|
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
This replaces more pointer+length with gdb::array_view. This time,
around invoke_xmethod, and then propagating the fallout around, which
inevitably leaks to the overload resolution code.
There are several places in the code that want to grab a slice of an
array, by advancing the array pointer, and decreasing the length
pointer. This patch introduces a pair of new
gdb::array_view::slice(...) methods to make that convenient and clear.
Unit test included.
gdb/ChangeLog:
2018-11-21 Pedro Alves <palves@redhat.com>
* common/array-view.h (array_view::splice(size_type, size_t)): New.
(array_view::splice(size_type)): New.
* eval.c (eval_call, evaluate_funcall): Adjust to use array_view.
* extension.c (xmethod_worker::get_arg_types): Adjust to return an
std::vector.
(xmethod_worker::get_result_type): Adjust to use gdb::array_view.
* extension.h: Include "common/array-view.h".
(xmethod_worker::invoke): Adjust to use gdb::array_view.
(xmethod_worker::get_arg_types): Adjust to return an std::vector.
(xmethod_worker::get_result_type): Adjust to use gdb::array_view.
(xmethod_worker::do_get_arg_types): Adjust to use std::vector.
(xmethod_worker::do_get_result_type): Adjust to use
gdb::array_view.
* gdbtypes.c (rank_function): Adjust to use gdb::array_view.
* gdbtypes.h: Include "common/array-view.h".
(rank_function): Adjust to use gdb::array_view.
* python/py-xmethods.c (python_xmethod_worker::invoke)
(python_xmethod_worker::do_get_arg_types)
(python_xmethod_worker::do_get_result_type)
(python_xmethod_worker::invoke): Adjust to new interfaces.
* valarith.c (value_user_defined_cpp_op, value_user_defined_op)
(value_x_binop, value_x_unop): Adjust to use gdb::array_view.
* valops.c (find_overload_match, find_oload_champ_namespace)
(find_oload_champ_namespace_loop, find_oload_champ): Adjust to use
gdb:array_view and the new xmethod_worker interfaces.
* value.c (result_type_of_xmethod, call_xmethod): Adjust to use
gdb::array_view.
* value.h (find_overload_match, result_type_of_xmethod)
(call_xmethod): Adjust to use gdb::array_view.
* unittests/array-view-selftests.c: Add slicing tests.
|
|
value_incref returned its argument just as a convenience, which in the
end turned out to only be used in precisely the cases where
new_reference helps. So, this patch changes value_incref to return
void and changes some value-using code to use new_reference.
I also noticed that the comments for value_incref and value_decref
were swapped, so this patch fixes those.
ChangeLog
2018-04-30 Tom Tromey <tom@tromey.com>
* varobj.c (install_new_value): Use new_reference.
* value.h (value_incref): Return void. Swap intro comment with
value_decref.
* value.c (set_value_parent): Use new_reference.
(value_incref): Return void. Update intro comment.
(release_value): Use new_reference.
* dwarf2loc.c (dwarf2_evaluate_loc_desc_full): Use new_reference.
|
|
This patch changes value_release_to_mark and fetch_subexp_value to
return a std::vector of value references, rather than relying on the
"next" field that is contained in a struct value. This makes it
simpler to reason about the returned values, and also allows for the
removal of free_value_chain.
gdb/ChangeLog
2018-04-06 Tom Tromey <tom@tromey.com>
* value.h (fetch_subexp_value, value_release_to_mark): Update.
(free_value_chain): Remove.
* value.c (free_value_chain): Remove.
(value_release_to_mark): Return a std::vector.
* ppc-linux-nat.c (num_memory_accesses): Change "chain" to a
std::vector.
(check_condition): Update.
* eval.c (fetch_subexp_value): Change "val_chain" to a
std::vector.
* breakpoint.c (update_watchpoint): Update.
(can_use_hardware_watchpoint): Change "vals" to a std::vector.
|