aboutsummaryrefslogtreecommitdiff
path: root/gdb/tracepoint.c
AgeCommit message (Expand)AuthorFilesLines
2001-03-01Create new file regcache.h. Update all uses.Andrew Cagney1-1/+2
2001-02-19 * demangle.c (demangling_style_names): New variable.Eli Zaretskii1-2/+6
2000-12-15Replace free() with xfree().Kevin Buettner1-10/+10
2000-12-012000-11-30 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-0/+1
2000-11-16 * tracepoint.c (trace_find_tracepoint_command): Replace call toDavid Taylor1-1/+1
2000-10-30* gdbarch.sh, hp-psymtab-read.c, hpread.c, m3-nat.c, mcore-tdep.c,J.T. Conklin1-1/+1
2000-10-30 * eval.c (parse_and_eval_long): New function.David Taylor1-2/+2
2000-09-01* dcache.c (dcache_info): Output a cache line's state vector so itJ.T. Conklin1-1/+1
2000-08-01* top.c (get_prompt_1), tracepoint.c (replace_comma): UpdateAndrew Cagney1-3/+4
2000-07-30Protoization.Kevin Buettner1-156/+61
2000-06-04Eliminate PARAMS from function pointer declarations.Kevin Buettner1-3/+3
2000-05-28PARAMS removal.Kevin Buettner1-32/+32
2000-05-22Purge (almost) make_cleanup_func.Andrew Cagney1-3/+15
2000-05-15Cleanup free_agent_expr cleanups.Andrew Cagney1-3/+2
2000-04-26 * ax-gdb.c (agent_command): Remove now useless cast ofPhilippe De Muyter1-2/+1
2000-04-14* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two newJim Blandy1-5/+5
1999-12-14import gdb-1999-12-13 snapshotJason Molenda1-2/+2
1999-12-07import gdb-1999-12-06 snapshotJason Molenda1-35/+46
1999-11-02import gdb-1999-11-01 snapshotJason Molenda1-53/+48
1999-09-28import gdb-1999-09-28 snapshotJason Molenda1-1/+1
1999-09-22import gdb-1999-09-21Jason Molenda1-7/+1
1999-08-31import gdb-1999-08-30 snapshotJason Molenda1-96/+134
1999-07-07import gdb-1999-07-07 post reformatJason Molenda1-892/+912
1999-06-14import gdb-1999-06-14 snapshotJason Molenda1-1/+6
1999-05-25import gdb-1999-05-25 snapshotJason Molenda1-4/+20
1999-04-26import gdb-19990422 snapshotStan Shebs1-36/+44
1999-04-16Initial creation of sourceware repositorygdb-4_18-branchpointStan Shebs1-0/+2780
1999-04-16Initial creation of sourceware repositoryStan Shebs1-2780/+0
1998-12-23 * Makefile.in (READLINE_CFLAGS): Search $(READLINE_SRC)/.. ratherPer Bothner1-2/+2
1998-12-22Tue Dec 22 10:51:33 1998 Elena Zannoni <ezannoni@kwikemart.cygnus.com>Elena Zannoni1-1/+1
1998-12-10CARP:Andrew Cagney1-5/+5
1998-12-02Wed Dec 2 15:11:38 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-17/+5
1998-11-24Tue Nov 24 15:46:33 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-11/+42
1998-11-13Thu Nov 12 15:20:15 1998 Jim Ingham <jingham@cygnus.com>Jim Ingham1-0/+5
1998-11-05Merging the Tracepoint changes back into the Trunk:Jim Ingham1-0/+3
1998-10-29Thu Oct 29 10:04:20 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-24/+5
1998-10-141998-10-13 Jason Molenda (jsm@bugshack.cygnus.com)Jason Molenda1-6/+9
1998-09-11Fri Sep 11 14:02:49 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-9/+4
1998-08-25Mon Aug 24 18:29:03 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-0/+5
1998-07-27Mon Jul 27 16:11:42 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-1/+45
1998-07-24Fri Jul 24 14:41:19 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-33/+55
1998-07-24Thu Jul 23 17:01:17 1998 Michael Snyder <msnyder@cleaver.cygnus.com>Michael Snyder1-6/+18
1998-07-15Cope with setting trace points on symbols which do not have an associated dir...Nick Clifton1-12/+20
1998-06-03merged from EMC branch into devoMichael Snyder1-321/+404
1998-04-29 * tracepoint.c (memrange_cmp): Another typo fix; `memrbnge' ->Tom Tromey1-1/+1
1998-04-29 * tracepoint.c (memrange_cmp): Fixed typo in function intro.Tom Tromey1-1/+1
1998-04-29Tue Apr 28 17:41:20 1998 Philippe De Muyter <phdm@macqel.be>Jason Molenda1-2/+7
1998-04-23Thu Apr 23 12:27:43 1998 Philippe De Muyter <phdm@macqel.be>Jason Molenda1-6/+6
1998-03-29 * tracepoint.c (trace_start_command): Set trace_running_p.Keith Seitz1-0/+2
1998-03-27Thu Mar 26 22:29:28 1998 Elena Zannoni <ezannoni@kwikemart.cygnus.com>Elena Zannoni1-2/+11
' href='#n643'>643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/* Target-dependent code for Mitsubishi D10V, for GDB.
   Copyright (C) 1996, 1997, 2000, 2001 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/*  Contributed by Martin Hunt, hunt@cygnus.com */

#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"

#include "floatformat.h"
#include "sim-d10v.h"

#undef XMALLOC
#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))

struct frame_extra_info
  {
    CORE_ADDR return_pc;
    int frameless;
    int size;
  };

struct gdbarch_tdep
  {
    int a0_regnum;
    int nr_dmap_regs;
    unsigned long (*dmap_register) (int nr);
    unsigned long (*imap_register) (int nr);
  };

/* These are the addresses the D10V-EVA board maps data and
   instruction memory to. */

#define DMEM_START	0x2000000
#define IMEM_START	0x1000000
#define STACK_START	0x0007ffe

/* d10v register names. */

enum
  {
    R0_REGNUM = 0,
    LR_REGNUM = 13,
    PSW_REGNUM = 16,
    NR_IMAP_REGS = 2,
    NR_A_REGS = 2
  };
#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)

/* d10v calling convention. */

#define ARG1_REGNUM R0_REGNUM
#define ARGN_REGNUM 3
#define RET1_REGNUM R0_REGNUM

/* Local functions */

extern void _initialize_d10v_tdep (void);

static void d10v_eva_prepare_to_trace (void);

static void d10v_eva_get_trace_data (void);

static int prologue_find_regs (unsigned short op, struct frame_info *fi,
			       CORE_ADDR addr);

extern void d10v_frame_init_saved_regs (struct frame_info *);

static void do_d10v_pop_frame (struct frame_info *fi);

int
d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
{
  return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
}

static CORE_ADDR
d10v_stack_align (CORE_ADDR len)
{
  return (len + 1) & ~1;
}

/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   and TYPE is the type (which is known to be struct, union or array).

   The d10v returns anything less than 8 bytes in size in
   registers. */

int
d10v_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_LENGTH (type) > 8);
}


unsigned char *
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] =
  {0x2f, 0x90, 0x5e, 0x00};
  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Map the REG_NR onto an ascii name.  Return NULL or an empty string
   when the reg_nr isn't valid. */

enum ts2_regnums
  {
    TS2_IMAP0_REGNUM = 32,
    TS2_DMAP_REGNUM = 34,
    TS2_NR_DMAP_REGS = 1,
    TS2_A0_REGNUM = 35
  };

static char *
d10v_ts2_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
    "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
    "imap0", "imap1", "dmap", "a0", "a1"
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

enum ts3_regnums
  {
    TS3_IMAP0_REGNUM = 36,
    TS3_DMAP0_REGNUM = 38,
    TS3_NR_DMAP_REGS = 4,
    TS3_A0_REGNUM = 32
  };

static char *
d10v_ts3_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
    "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
    "a0", "a1",
    "spi", "spu",
    "imap0", "imap1",
    "dmap0", "dmap1", "dmap2", "dmap3"
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

/* Access the DMAP/IMAP registers in a target independent way. */

static unsigned long
d10v_ts2_dmap_register (int reg_nr)
{
  switch (reg_nr)
    {
    case 0:
    case 1:
      return 0x2000;
    case 2:
      return read_register (TS2_DMAP_REGNUM);
    default:
      return 0;
    }
}

static unsigned long
d10v_ts3_dmap_register (int reg_nr)
{
  return read_register (TS3_DMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_dmap_register (int reg_nr)
{
  return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
}

static unsigned long
d10v_ts2_imap_register (int reg_nr)
{
  return read_register (TS2_IMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_ts3_imap_register (int reg_nr)
{
  return read_register (TS3_IMAP0_REGNUM + reg_nr);
}

static unsigned long
d10v_imap_register (int reg_nr)
{
  return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
}

/* MAP GDB's internal register numbering (determined by the layout fo
   the REGISTER_BYTE array) onto the simulator's register
   numbering. */

static int
d10v_ts2_register_sim_regno (int nr)
{
  if (nr >= TS2_IMAP0_REGNUM
      && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
    return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
  if (nr == TS2_DMAP_REGNUM)
    return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
  if (nr >= TS2_A0_REGNUM
      && nr < TS2_A0_REGNUM + NR_A_REGS)
    return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
  return nr;
}

static int
d10v_ts3_register_sim_regno (int nr)
{
  if (nr >= TS3_IMAP0_REGNUM
      && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
    return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
  if (nr >= TS3_DMAP0_REGNUM
      && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
    return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
  if (nr >= TS3_A0_REGNUM
      && nr < TS3_A0_REGNUM + NR_A_REGS)
    return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
  return nr;
}

/* Index within `registers' of the first byte of the space for
   register REG_NR.  */

int
d10v_register_byte (int reg_nr)
{
  if (reg_nr < A0_REGNUM)
    return (reg_nr * 2);
  else if (reg_nr < (A0_REGNUM + NR_A_REGS))
    return (A0_REGNUM * 2
	    + (reg_nr - A0_REGNUM) * 8);
  else
    return (A0_REGNUM * 2
	    + NR_A_REGS * 8
	    + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
}

/* Number of bytes of storage in the actual machine representation for
   register REG_NR.  */

int
d10v_register_raw_size (int reg_nr)
{
  if (reg_nr < A0_REGNUM)
    return 2;
  else if (reg_nr < (A0_REGNUM + NR_A_REGS))
    return 8;
  else
    return 2;
}

/* Number of bytes of storage in the program's representation
   for register N.  */

int
d10v_register_virtual_size (int reg_nr)
{
  return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
}

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

struct type *
d10v_register_virtual_type (int reg_nr)
{
  if (reg_nr >= A0_REGNUM
      && reg_nr < (A0_REGNUM + NR_A_REGS))
    return builtin_type_int64;
  else if (reg_nr == PC_REGNUM
	   || reg_nr == SP_REGNUM)
    return builtin_type_int32;
  else
    return builtin_type_int16;
}

/* convert $pc and $sp to/from virtual addresses */
int
d10v_register_convertible (int nr)
{
  return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
}

void
d10v_register_convert_to_virtual (int regnum, struct type *type, char *from,
				  char *to)
{
  ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
  if (regnum == PC_REGNUM)
    x = (x << 2) | IMEM_START;
  else
    x |= DMEM_START;
  store_unsigned_integer (to, TYPE_LENGTH (type), x);
}

void
d10v_register_convert_to_raw (struct type *type, int regnum, char *from,
			      char *to)
{
  ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
  x &= 0x3ffff;
  if (regnum == PC_REGNUM)
    x >>= 2;
  store_unsigned_integer (to, 2, x);
}


CORE_ADDR
d10v_make_daddr (CORE_ADDR x)
{
  return ((x) | DMEM_START);
}

CORE_ADDR
d10v_make_iaddr (CORE_ADDR x)
{
  return (((x) << 2) | IMEM_START);
}

int
d10v_daddr_p (CORE_ADDR x)
{
  return (((x) & 0x3000000) == DMEM_START);
}

int
d10v_iaddr_p (CORE_ADDR x)
{
  return (((x) & 0x3000000) == IMEM_START);
}


CORE_ADDR
d10v_convert_iaddr_to_raw (CORE_ADDR x)
{
  return (((x) >> 2) & 0xffff);
}

CORE_ADDR
d10v_convert_daddr_to_raw (CORE_ADDR x)
{
  return ((x) & 0xffff);
}

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. 

   We store structs through a pointer passed in the first Argument
   register. */

void
d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (ARG1_REGNUM, (addr));
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  

   Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */

void
d10v_store_return_value (struct type *type, char *valbuf)
{
  write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
			valbuf,
			TYPE_LENGTH (type));
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

CORE_ADDR
d10v_extract_struct_value_address (char *regbuf)
{
  return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
			   REGISTER_RAW_SIZE (ARG1_REGNUM))
	  | DMEM_START);
}

CORE_ADDR
d10v_frame_saved_pc (struct frame_info *frame)
{
  return ((frame)->extra_info->return_pc);
}

/* Immediately after a function call, return the saved pc.  We can't
   use frame->return_pc beause that is determined by reading R13 off
   the stack and that may not be written yet. */

CORE_ADDR
d10v_saved_pc_after_call (struct frame_info *frame)
{
  return ((read_register (LR_REGNUM) << 2)
	  | IMEM_START);
}

/* Discard from the stack the innermost frame, restoring all saved
   registers.  */

void
d10v_pop_frame (void)
{
  generic_pop_current_frame (do_d10v_pop_frame);
}

static void
do_d10v_pop_frame (struct frame_info *fi)
{
  CORE_ADDR fp;
  int regnum;
  char raw_buffer[8];

  fp = FRAME_FP (fi);
  /* fill out fsr with the address of where each */
  /* register was stored in the frame */
  d10v_frame_init_saved_regs (fi);

  /* now update the current registers with the old values */
  for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
    {
      if (fi->saved_regs[regnum])
	{
	  read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
	  write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
	}
    }
  for (regnum = 0; regnum < SP_REGNUM; regnum++)
    {
      if (fi->saved_regs[regnum])
	{
	  write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
	}
    }
  if (fi->saved_regs[PSW_REGNUM])
    {
      write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
    }

  write_register (PC_REGNUM, read_register (LR_REGNUM));
  write_register (SP_REGNUM, fp + fi->extra_info->size);
  target_store_registers (-1);
  flush_cached_frames ();
}

static int
check_prologue (unsigned short op)
{
  /* st  rn, @-sp */
  if ((op & 0x7E1F) == 0x6C1F)
    return 1;

  /* st2w  rn, @-sp */
  if ((op & 0x7E3F) == 0x6E1F)
    return 1;

  /* subi  sp, n */
  if ((op & 0x7FE1) == 0x01E1)
    return 1;

  /* mv  r11, sp */
  if (op == 0x417E)
    return 1;

  /* nop */
  if (op == 0x5E00)
    return 1;

  /* st  rn, @sp */
  if ((op & 0x7E1F) == 0x681E)
    return 1;

  /* st2w  rn, @sp */
  if ((op & 0x7E3F) == 0x3A1E)
    return 1;

  return 0;
}

CORE_ADDR
d10v_skip_prologue (CORE_ADDR pc)
{
  unsigned long op;
  unsigned short op1, op2;
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;

  /* If we have line debugging information, then the end of the */
  /* prologue should the first assembly instruction of  the first source line */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
	return sal.end;
    }

  if (target_read_memory (pc, (char *) &op, 4))
    return pc;			/* Can't access it -- assume no prologue. */

  while (1)
    {
      op = (unsigned long) read_memory_integer (pc, 4);
      if ((op & 0xC0000000) == 0xC0000000)
	{
	  /* long instruction */
	  if (((op & 0x3FFF0000) != 0x01FF0000) &&	/* add3 sp,sp,n */
	      ((op & 0x3F0F0000) != 0x340F0000) &&	/* st  rn, @(offset,sp) */
	      ((op & 0x3F1F0000) != 0x350F0000))	/* st2w  rn, @(offset,sp) */
	    break;
	}
      else
	{
	  /* short instructions */
	  if ((op & 0xC0000000) == 0x80000000)
	    {
	      op2 = (op & 0x3FFF8000) >> 15;
	      op1 = op & 0x7FFF;
	    }
	  else
	    {
	      op1 = (op & 0x3FFF8000) >> 15;
	      op2 = op & 0x7FFF;
	    }
	  if (check_prologue (op1))
	    {
	      if (!check_prologue (op2))
		{
		  /* if the previous opcode was really part of the prologue */
		  /* and not just a NOP, then we want to break after both instructions */
		  if (op1 != 0x5E00)
		    pc += 4;
		  break;
		}
	    }
	  else
	    break;
	}
      pc += 4;
    }
  return pc;
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
 */

CORE_ADDR
d10v_frame_chain (struct frame_info *fi)
{
  d10v_frame_init_saved_regs (fi);

  if (fi->extra_info->return_pc == IMEM_START
      || inside_entry_file (fi->extra_info->return_pc))
    return (CORE_ADDR) 0;

  if (!fi->saved_regs[FP_REGNUM])
    {
      if (!fi->saved_regs[SP_REGNUM]
	  || fi->saved_regs[SP_REGNUM] == STACK_START)
	return (CORE_ADDR) 0;

      return fi->saved_regs[SP_REGNUM];
    }

  if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
				     REGISTER_RAW_SIZE (FP_REGNUM)))
    return (CORE_ADDR) 0;

  return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
					    REGISTER_RAW_SIZE (FP_REGNUM)));
}

static int next_addr, uses_frame;

static int
prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
{
  int n;

  /* st  rn, @-sp */
  if ((op & 0x7E1F) == 0x6C1F)
    {
      n = (op & 0x1E0) >> 5;
      next_addr -= 2;
      fi->saved_regs[n] = next_addr;
      return 1;
    }

  /* st2w  rn, @-sp */
  else if ((op & 0x7E3F) == 0x6E1F)
    {
      n = (op & 0x1E0) >> 5;
      next_addr -= 4;
      fi->saved_regs[n] = next_addr;
      fi->saved_regs[n + 1] = next_addr + 2;
      return 1;
    }

  /* subi  sp, n */
  if ((op & 0x7FE1) == 0x01E1)
    {
      n = (op & 0x1E) >> 1;
      if (n == 0)
	n = 16;
      next_addr -= n;
      return 1;
    }

  /* mv  r11, sp */
  if (op == 0x417E)
    {
      uses_frame = 1;
      return 1;
    }

  /* nop */
  if (op == 0x5E00)
    return 1;

  /* st  rn, @sp */
  if ((op & 0x7E1F) == 0x681E)
    {
      n = (op & 0x1E0) >> 5;
      fi->saved_regs[n] = next_addr;
      return 1;
    }

  /* st2w  rn, @sp */
  if ((op & 0x7E3F) == 0x3A1E)
    {
      n = (op & 0x1E0) >> 5;
      fi->saved_regs[n] = next_addr;
      fi->saved_regs[n + 1] = next_addr + 2;
      return 1;
    }

  return 0;
}

/* Put here the code to store, into fi->saved_regs, the addresses of
   the saved registers of frame described by FRAME_INFO.  This
   includes special registers such as pc and fp saved in special ways
   in the stack frame.  sp is even more special: the address we return
   for it IS the sp for the next frame. */

void
d10v_frame_init_saved_regs (struct frame_info *fi)
{
  CORE_ADDR fp, pc;
  unsigned long op;
  unsigned short op1, op2;
  int i;

  fp = fi->frame;
  memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
  next_addr = 0;

  pc = get_pc_function_start (fi->pc);

  uses_frame = 0;
  while (1)
    {
      op = (unsigned long) read_memory_integer (pc, 4);
      if ((op & 0xC0000000) == 0xC0000000)
	{
	  /* long instruction */
	  if ((op & 0x3FFF0000) == 0x01FF0000)
	    {
	      /* add3 sp,sp,n */
	      short n = op & 0xFFFF;
	      next_addr += n;
	    }
	  else if ((op & 0x3F0F0000) == 0x340F0000)
	    {
	      /* st  rn, @(offset,sp) */
	      short offset = op & 0xFFFF;
	      short n = (op >> 20) & 0xF;
	      fi->saved_regs[n] = next_addr + offset;
	    }
	  else if ((op & 0x3F1F0000) == 0x350F0000)
	    {
	      /* st2w  rn, @(offset,sp) */
	      short offset = op & 0xFFFF;
	      short n = (op >> 20) & 0xF;
	      fi->saved_regs[n] = next_addr + offset;
	      fi->saved_regs[n + 1] = next_addr + offset + 2;
	    }
	  else
	    break;
	}
      else
	{
	  /* short instructions */
	  if ((op & 0xC0000000) == 0x80000000)
	    {
	      op2 = (op & 0x3FFF8000) >> 15;
	      op1 = op & 0x7FFF;
	    }
	  else
	    {
	      op1 = (op & 0x3FFF8000) >> 15;
	      op2 = op & 0x7FFF;
	    }
	  if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
	    break;
	}
      pc += 4;
    }

  fi->extra_info->size = -next_addr;

  if (!(fp & 0xffff))
    fp = D10V_MAKE_DADDR (read_register (SP_REGNUM));

  for (i = 0; i < NUM_REGS - 1; i++)
    if (fi->saved_regs[i])
      {
	fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
      }

  if (fi->saved_regs[LR_REGNUM])
    {
      CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
      fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc);
    }
  else
    {
      fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM));
    }

  /* th SP is not normally (ever?) saved, but check anyway */
  if (!fi->saved_regs[SP_REGNUM])
    {
      /* if the FP was saved, that means the current FP is valid, */
      /* otherwise, it isn't being used, so we use the SP instead */
      if (uses_frame)
	fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
      else
	{
	  fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
	  fi->extra_info->frameless = 1;
	  fi->saved_regs[FP_REGNUM] = 0;
	}
    }
}

void
d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));
  frame_saved_regs_zalloc (fi);

  fi->extra_info->frameless = 0;
  fi->extra_info->size = 0;
  fi->extra_info->return_pc = 0;

  /* The call dummy doesn't save any registers on the stack, so we can
     return now.  */
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    {
      return;
    }
  else
    {
      d10v_frame_init_saved_regs (fi);
    }
}

static void
show_regs (char *args, int from_tty)
{
  int a;
  printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
		   (long) read_register (PC_REGNUM),
		   (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)),
		   (long) read_register (PSW_REGNUM),
		   (long) read_register (24),
		   (long) read_register (25),
		   (long) read_register (23));
  printf_filtered ("R0-R7  %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));
  for (a = 0; a < NR_IMAP_REGS; a++)
    {
      if (a > 0)
	printf_filtered ("    ");
      printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
    }
  if (NR_DMAP_REGS == 1)
    printf_filtered ("    DMAP %04lx\n", d10v_dmap_register (2));
  else
    {
      for (a = 0; a < NR_DMAP_REGS; a++)
	{
	  printf_filtered ("    DMAP%d %04lx", a, d10v_dmap_register (a));
	}
      printf_filtered ("\n");
    }
  printf_filtered ("A0-A%d", NR_A_REGS - 1);
  for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
    {
      char num[MAX_REGISTER_RAW_SIZE];
      int i;
      printf_filtered ("  ");
      read_register_gen (a, (char *) &num);
      for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
	{
	  printf_filtered ("%02x", (num[i] & 0xff));
	}
    }
  printf_filtered ("\n");
}

CORE_ADDR
d10v_read_pc (int pid)
{
  int save_pid;
  CORE_ADDR pc;
  CORE_ADDR retval;

  save_pid = inferior_pid;
  inferior_pid = pid;
  pc = (int) read_register (PC_REGNUM);
  inferior_pid = save_pid;
  retval = D10V_MAKE_IADDR (pc);
  return retval;
}

void
d10v_write_pc (CORE_ADDR val, int pid)
{
  int save_pid;

  save_pid = inferior_pid;
  inferior_pid = pid;
  write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
  inferior_pid = save_pid;
}

CORE_ADDR
d10v_read_sp (void)
{
  return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
}

void
d10v_write_sp (CORE_ADDR val)
{
  write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
}

void
d10v_write_fp (CORE_ADDR val)
{
  write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
}

CORE_ADDR
d10v_read_fp (void)
{
  return (D10V_MAKE_DADDR (read_register (FP_REGNUM)));
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */

CORE_ADDR
d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
  return sp;
}


/* When arguments must be pushed onto the stack, they go on in reverse
   order.  The below implements a FILO (stack) to do this. */

struct stack_item
{
  int len;
  struct stack_item *prev;
  void *data;
};

static struct stack_item *push_stack_item (struct stack_item *prev,
					   void *contents, int len);
static struct stack_item *
push_stack_item (struct stack_item *prev, void *contents, int len)
{
  struct stack_item *si;
  si = xmalloc (sizeof (struct stack_item));
  si->data = xmalloc (len);
  si->len = len;
  si->prev = prev;
  memcpy (si->data, contents, len);
  return si;
}

static struct stack_item *pop_stack_item (struct stack_item *si);
static struct stack_item *
pop_stack_item (struct stack_item *si)
{
  struct stack_item *dead = si;
  si = si->prev;
  xfree (dead->data);
  xfree (dead);
  return si;
}


CORE_ADDR
d10v_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  int i;
  int regnum = ARG1_REGNUM;
  struct stack_item *si = NULL;

  /* Fill in registers and arg lists */
  for (i = 0; i < nargs; i++)
    {
      value_ptr arg = args[i];
      struct type *type = check_typedef (VALUE_TYPE (arg));
      char *contents = VALUE_CONTENTS (arg);
      int len = TYPE_LENGTH (type);
      /* printf ("push: type=%d len=%d\n", type->code, len); */
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
	{
	  /* pointers require special handling - first convert and
	     then store */
	  long val = extract_signed_integer (contents, len);
	  len = 2;
	  if (TYPE_TARGET_TYPE (type)
	      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
	    {
	      /* function pointer */
	      val = D10V_CONVERT_IADDR_TO_RAW (val);
	    }
	  else if (D10V_IADDR_P (val))
	    {
	      /* also function pointer! */
	      val = D10V_CONVERT_DADDR_TO_RAW (val);
	    }
	  else
	    {
	      /* data pointer */
	      val &= 0xFFFF;
	    }
	  if (regnum <= ARGN_REGNUM)
	    write_register (regnum++, val & 0xffff);
	  else
	    {
	      char ptr[2];
	      /* arg will go onto stack */
	      store_address (ptr, 2, val & 0xffff);
	      si = push_stack_item (si, ptr, 2);
	    }
	}
      else
	{
	  int aligned_regnum = (regnum + 1) & ~1;
	  if (len <= 2 && regnum <= ARGN_REGNUM)
	    /* fits in a single register, do not align */
	    {
	      long val = extract_unsigned_integer (contents, len);
	      write_register (regnum++, val);
	    }
	  else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
	    /* value fits in remaining registers, store keeping left
	       aligned */
	    {
	      int b;
	      regnum = aligned_regnum;
	      for (b = 0; b < (len & ~1); b += 2)
		{
		  long val = extract_unsigned_integer (&contents[b], 2);
		  write_register (regnum++, val);
		}
	      if (b < len)
		{
		  long val = extract_unsigned_integer (&contents[b], 1);
		  write_register (regnum++, (val << 8));
		}
	    }
	  else
	    {
	      /* arg will go onto stack */
	      regnum = ARGN_REGNUM + 1;
	      si = push_stack_item (si, contents, len);
	    }
	}
    }

  while (si)
    {
      sp = (sp - si->len) & ~1;
      write_memory (sp, si->data, si->len);
      si = pop_stack_item (si);
    }

  return sp;
}


/* Given a return value in `regbuf' with a type `valtype', 
   extract and copy its value into `valbuf'.  */

void
d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
			   char *valbuf)
{
  int len;
  /*    printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM)));  */
  if (TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_TARGET_TYPE (type)
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
      /* pointer to function */
      int num;
      short snum;
      snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
      store_address (valbuf, 4, D10V_MAKE_IADDR (snum));
    }
  else if (TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      /* pointer to data */
      int num;
      short snum;
      snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
      store_address (valbuf, 4, D10V_MAKE_DADDR (snum));
    }
  else
    {
      len = TYPE_LENGTH (type);
      if (len == 1)
	{
	  unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
	  store_unsigned_integer (valbuf, 1, c);
	}
      else if ((len & 1) == 0)
	memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
      else
	{
	  /* For return values of odd size, the first byte is in the
	     least significant part of the first register.  The
	     remaining bytes in remaining registers. Interestingly,
	     when such values are passed in, the last byte is in the
	     most significant byte of that same register - wierd. */
	  memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
	}
    }
}

/* Translate a GDB virtual ADDR/LEN into a format the remote target
   understands.  Returns number of bytes that can be transfered
   starting at TARG_ADDR.  Return ZERO if no bytes can be transfered
   (segmentation fault).  Since the simulator knows all about how the
   VM system works, we just call that to do the translation. */

static void
remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
				    CORE_ADDR *targ_addr, int *targ_len)
{
  long out_addr;
  long out_len;
  out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
				     &out_addr,
				     d10v_dmap_register,
				     d10v_imap_register);
  *targ_addr = out_addr;
  *targ_len = out_len;
}


/* The following code implements access to, and display of, the D10V's
   instruction trace buffer.  The buffer consists of 64K or more
   4-byte words of data, of which each words includes an 8-bit count,
   an 8-bit segment number, and a 16-bit instruction address.

   In theory, the trace buffer is continuously capturing instruction
   data that the CPU presents on its "debug bus", but in practice, the
   ROMified GDB stub only enables tracing when it continues or steps
   the program, and stops tracing when the program stops; so it
   actually works for GDB to read the buffer counter out of memory and
   then read each trace word.  The counter records where the tracing
   stops, but there is no record of where it started, so we remember
   the PC when we resumed and then search backwards in the trace
   buffer for a word that includes that address.  This is not perfect,
   because you will miss trace data if the resumption PC is the target
   of a branch.  (The value of the buffer counter is semi-random, any
   trace data from a previous program stop is gone.)  */

/* The address of the last word recorded in the trace buffer.  */

#define DBBC_ADDR (0xd80000)

/* The base of the trace buffer, at least for the "Board_0".  */

#define TRACE_BUFFER_BASE (0xf40000)

static void trace_command (char *, int);

static void untrace_command (char *, int);

static void trace_info (char *, int);

static void tdisassemble_command (char *, int);

static void display_trace (int, int);

/* True when instruction traces are being collected.  */

static int tracing;

/* Remembered PC.  */

static CORE_ADDR last_pc;

/* True when trace output should be displayed whenever program stops.  */

static int trace_display;

/* True when trace listing should include source lines.  */

static int default_trace_show_source = 1;

struct trace_buffer
  {
    int size;
    short *counts;
    CORE_ADDR *addrs;
  }
trace_data;

static void
trace_command (char *args, int from_tty)
{
  /* Clear the host-side trace buffer, allocating space if needed.  */
  trace_data.size = 0;
  if (trace_data.counts == NULL)
    trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
  if (trace_data.addrs == NULL)
    trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));

  tracing = 1;

  printf_filtered ("Tracing is now on.\n");
}

static void
untrace_command (char *args, int from_tty)
{
  tracing = 0;

  printf_filtered ("Tracing is now off.\n");
}

static void
trace_info (char *args, int from_tty)
{
  int i;

  if (trace_data.size)
    {
      printf_filtered ("%d entries in trace buffer:\n", trace_data.size);

      for (i = 0; i < trace_data.size; ++i)
	{
	  printf_filtered ("%d: %d instruction%s at 0x%s\n",
			   i,
			   trace_data.counts[i],
			   (trace_data.counts[i] == 1 ? "" : "s"),
			   paddr_nz (trace_data.addrs[i]));
	}
    }
  else
    printf_filtered ("No entries in trace buffer.\n");

  printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
}

/* Print the instruction at address MEMADDR in debugged memory,
   on STREAM.  Returns length of the instruction, in bytes.  */

static int
print_insn (CORE_ADDR memaddr, struct ui_file *stream)
{
  /* If there's no disassembler, something is very wrong.  */
  if (tm_print_insn == NULL)
    internal_error (__FILE__, __LINE__,
		    "print_insn: no disassembler");

  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    tm_print_insn_info.endian = BFD_ENDIAN_BIG;
  else
    tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
  return (*tm_print_insn) (memaddr, &tm_print_insn_info);
}

static void
d10v_eva_prepare_to_trace (void)
{
  if (!tracing)
    return;

  last_pc = read_register (PC_REGNUM);
}

/* Collect trace data from the target board and format it into a form
   more useful for display.  */

static void
d10v_eva_get_trace_data (void)
{
  int count, i, j, oldsize;
  int trace_addr, trace_seg, trace_cnt, next_cnt;
  unsigned int last_trace, trace_word, next_word;
  unsigned int *tmpspace;

  if (!tracing)
    return;

  tmpspace = xmalloc (65536 * sizeof (unsigned int));

  last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;

  /* Collect buffer contents from the target, stopping when we reach
     the word recorded when execution resumed.  */

  count = 0;
  while (last_trace > 0)
    {
      QUIT;
      trace_word =
	read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
      trace_addr = trace_word & 0xffff;
      last_trace -= 4;
      /* Ignore an apparently nonsensical entry.  */
      if (trace_addr == 0xffd5)
	continue;
      tmpspace[count++] = trace_word;
      if (trace_addr == last_pc)
	break;
      if (count > 65535)
	break;
    }

  /* Move the data to the host-side trace buffer, adjusting counts to
     include the last instruction executed and transforming the address
     into something that GDB likes.  */

  for (i = 0; i < count; ++i)
    {
      trace_word = tmpspace[i];
      next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
      trace_addr = trace_word & 0xffff;
      next_cnt = (next_word >> 24) & 0xff;
      j = trace_data.size + count - i - 1;
      trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
      trace_data.counts[j] = next_cnt + 1;
    }

  oldsize = trace_data.size;
  trace_data.size += count;

  xfree (tmpspace);

  if (trace_display)
    display_trace (oldsize, trace_data.size);
}

static void
tdisassemble_command (char *arg, int from_tty)
{
  int i, count;
  CORE_ADDR low, high;
  char *space_index;

  if (!arg)
    {
      low = 0;
      high = trace_data.size;
    }
  else if (!(space_index = (char *) strchr (arg, ' ')))
    {
      low = parse_and_eval_address (arg);
      high = low + 5;
    }
  else
    {
      /* Two arguments.  */
      *space_index = '\0';
      low = parse_and_eval_address (arg);
      high = parse_and_eval_address (space_index + 1);
      if (high < low)
	high = low;
    }

  printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));

  display_trace (low, high);

  printf_filtered ("End of trace dump.\n");
  gdb_flush (gdb_stdout);
}

static void
display_trace (int low, int high)
{
  int i, count, trace_show_source, first, suppress;
  CORE_ADDR next_address;

  trace_show_source = default_trace_show_source;
  if (!have_full_symbols () && !have_partial_symbols ())
    {
      trace_show_source = 0;
      printf_filtered ("No symbol table is loaded.  Use the \"file\" command.\n");
      printf_filtered ("Trace will not display any source.\n");
    }

  first = 1;
  suppress = 0;
  for (i = low; i < high; ++i)
    {
      next_address = trace_data.addrs[i];
      count = trace_data.counts[i];
      while (count-- > 0)
	{
	  QUIT;
	  if (trace_show_source)
	    {
	      struct symtab_and_line sal, sal_prev;

	      sal_prev = find_pc_line (next_address - 4, 0);
	      sal = find_pc_line (next_address, 0);

	      if (sal.symtab)
		{
		  if (first || sal.line != sal_prev.line)
		    print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
		  suppress = 0;
		}
	      else
		{
		  if (!suppress)
		    /* FIXME-32x64--assumes sal.pc fits in long.  */
		    printf_filtered ("No source file for address %s.\n",
				 local_hex_string ((unsigned long) sal.pc));
		  suppress = 1;
		}
	    }
	  first = 0;
	  print_address (next_address, gdb_stdout);
	  printf_filtered (":");
	  printf_filtered ("\t");
	  wrap_here ("    ");
	  next_address = next_address + print_insn (next_address, gdb_stdout);
	  printf_filtered ("\n");
	  gdb_flush (gdb_stdout);
	}
    }
}


static gdbarch_init_ftype d10v_gdbarch_init;

static struct gdbarch *
d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST d10v_call_dummy_words[] =
  {0};
  struct gdbarch *gdbarch;
  int d10v_num_regs;
  struct gdbarch_tdep *tdep;
  gdbarch_register_name_ftype *d10v_register_name;
  gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;

  /* Find a candidate among the list of pre-declared architectures. */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided. */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_d10v_ts2:
      d10v_num_regs = 37;
      d10v_register_name = d10v_ts2_register_name;
      d10v_register_sim_regno = d10v_ts2_register_sim_regno;
      tdep->a0_regnum = TS2_A0_REGNUM;
      tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
      tdep->dmap_register = d10v_ts2_dmap_register;
      tdep->imap_register = d10v_ts2_imap_register;
      break;
    default:
    case bfd_mach_d10v_ts3:
      d10v_num_regs = 42;
      d10v_register_name = d10v_ts3_register_name;
      d10v_register_sim_regno = d10v_ts3_register_sim_regno;
      tdep->a0_regnum = TS3_A0_REGNUM;
      tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
      tdep->dmap_register = d10v_ts3_dmap_register;
      tdep->imap_register = d10v_ts3_imap_register;
      break;
    }

  set_gdbarch_read_pc (gdbarch, d10v_read_pc);
  set_gdbarch_write_pc (gdbarch, d10v_write_pc);
  set_gdbarch_read_fp (gdbarch, d10v_read_fp);
  set_gdbarch_write_fp (gdbarch, d10v_write_fp);
  set_gdbarch_read_sp (gdbarch, d10v_read_sp);
  set_gdbarch_write_sp (gdbarch, d10v_write_sp);

  set_gdbarch_num_regs (gdbarch, d10v_num_regs);
  set_gdbarch_sp_regnum (gdbarch, 15);
  set_gdbarch_fp_regnum (gdbarch, 11);
  set_gdbarch_pc_regnum (gdbarch, 18);
  set_gdbarch_register_name (gdbarch, d10v_register_name);
  set_gdbarch_register_size (gdbarch, 2);
  set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
  set_gdbarch_register_byte (gdbarch, d10v_register_byte);
  set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
  set_gdbarch_max_register_raw_size (gdbarch, 8);
  set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
  set_gdbarch_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);

  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
     double'' is 64 bits. */
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  switch (info.byte_order)
    {
    case BIG_ENDIAN:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
      set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
      set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
      break;
    case LITTLE_ENDIAN:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
      set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
      set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      "d10v_gdbarch_init: bad byte order for float format");
    }

  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
  set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);

  set_gdbarch_register_convertible (gdbarch, d10v_register_convertible);
  set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual);
  set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw);

  set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
  set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);

  set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr);
  set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr);
  set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p);
  set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p);
  set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw);
  set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw);

  set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
  set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);

  set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
  set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);

  set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);

  set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 4);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);

  set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
  set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
  set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
  set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
  set_gdbarch_frame_args_address (gdbarch, default_frame_address);
  set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
  set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_stack_align (gdbarch, d10v_stack_align);

  set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
  set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);

  return gdbarch;
}


extern void (*target_resume_hook) (void);
extern void (*target_wait_loop_hook) (void);

void
_initialize_d10v_tdep (void)
{
  register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);

  tm_print_insn = print_insn_d10v;

  target_resume_hook = d10v_eva_prepare_to_trace;
  target_wait_loop_hook = d10v_eva_get_trace_data;

  add_com ("regs", class_vars, show_regs, "Print all registers");

  add_com ("itrace", class_support, trace_command,
	   "Enable tracing of instruction execution.");

  add_com ("iuntrace", class_support, untrace_command,
	   "Disable tracing of instruction execution.");

  add_com ("itdisassemble", class_vars, tdisassemble_command,
	   "Disassemble the trace buffer.\n\
Two optional arguments specify a range of trace buffer entries\n\
as reported by info trace (NOT addresses!).");

  add_info ("itrace", trace_info,
	    "Display info about the trace data buffer.");

  add_show_from_set (add_set_cmd ("itracedisplay", no_class,
				  var_integer, (char *) &trace_display,
			     "Set automatic display of trace.\n", &setlist),
		     &showlist);
  add_show_from_set (add_set_cmd ("itracesource", no_class,
			   var_integer, (char *) &default_trace_show_source,
		      "Set display of source code with trace.\n", &setlist),
		     &showlist);

}