Age | Commit message (Collapse) | Author | Files | Lines |
|
When installing a fast tracepoint, we create a jump pad with a
spin-lock. This way, only one thread can collect a given tracepoint at
any time. This test case checks that this lock actually works as
expected.
This test works by creating a function which overrides the in-process
agent library's gdb_collect function. On start up, GDBserver will ask
GDB with the 'qSymbol' packet about symbols present in the inferior.
GDB will reply with the gdb_agent_gdb_collect function from the test
case instead of the one from the agent.
gdb/testsuite/ChangeLog:
* gdb.trace/ftrace-lock.c: New file.
* gdb.trace/ftrace-lock.exp: New file.
|
|
This test case makes sure that relocating PC relative instructions does
not change their behaviors. All PC relative AArch64 instructions are
covered. While call and jump (32 bit relative) instructions are covered
on x86.
The test case creates a static array of function pointers for each
supported architecture. Each function in this array tests a specific
instruction using inline assembly. They all need to contain a symbol in
the form of 'set_point\[0-9\]+' and finish by either calling pass or
fail. The number of 'set_pointN' needs to go from 0 to
(ARRAY_SIZE - 1).
The test will:
- look up the number of function pointers in the static array.
- set fast tracepoints on each 'set_point\[0-9\]+' symbol, one in each
functions from 0 to (ARRAY_SIZE - 1).
- run the trace experiment and make sure the pass function is called for
every function.
gdb/testsuite/ChangeLog:
* gdb.arch/insn-reloc.c: New file.
* gdb.arch/ftrace-insn-reloc.exp: New file.
|
|
gdb/testsuite/ChangeLog:
* gdb.trace/change-loc.h (func4) [__aarch64__]: Add a nop
instruction.
* gdb.trace/pendshr1.c (pendfunc): Likewise.
* gdb.trace/pendshr2.c (pendfunc2): Likewise.
* gdb.trace/range-stepping.c: Likewise.
* gdb.trace/trace-break.c: Likewise.
* gdb.trace/trace-mt.c (thread_function): Likewise.
* gdb.trace/ftrace.c (marker): Likewise.
* gdb.trace/trace-condition.c (marker): Likewise.
* gdb.trace/ftrace.exp: Enable ftrace test if is_aarch64_target.
* gdb.trace/trace-condition.exp: Set pcreg to "\$pc" if
is_aarch64_target.
|
|
bfd/ChangeLog:
* targets.c (enum bfd_flavour): Add comment.
(bfd_flavour_name): New function.
* bfd-in2.h: Regenerate.
gdb/ChangeLog:
* findvar.c (default_read_var_value) <LOC_UNRESOLVED>: Include the
kind of minimal symbol in the error message.
* objfiles.c (objfile_flavour_name): New function.
* objfiles.h (objfile_flavour_name): Declare.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-bad-unresolved.c: New file.
* gdb.dwarf2/dw2-bad-unresolved.exp: New file.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.base/dso2dso.exp: Don't use directory prefix when setting
the breakpoint.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.mi/mi-pending.exp: Don't use directory prefix when setting
the pending breakpoint. Remove timeout override for "Run till
MI pending breakpoint on pendfunc3 on thread 2" test.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.mi/mi-cli.exp: Don't require directory prefix in breakpoint
filename pattern.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.mi/mi-dprintf-pending.exp: Don't require directory prefix
in breakpoint filename pattern.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.base/global-var-nested-by-dso.exp: Call gdb_load_shlibs.
|
|
2015-09-18 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.linespec/explicit.exp: Check for readline support for
tab-completion tests. Fix obvious typo.
|
|
In all-stop mode, record btrace maintains the old behaviour of an implicit
scheduler-locking on.
Now that we added a scheduler-locking mode to model this old behaviour, we
don't need the respective code in record btrace anymore. Remove it.
For all-stop targets, step inferior_ptid and continue other threads matching
the argument ptid. Assert that inferior_ptid matches the argument ptid.
This should make record btrace honour scheduler-locking.
gdb/
* record-btrace.c (record_btrace_resume): Honour scheduler-locking.
testsuite/
* gdb.btrace/multi-thread-step.exp: Test scheduler-locking on, step,
and replay.
|
|
Support non-stop mode in record btrace.
gdb/
* record-btrace.c (record_btrace_open): Remove non_stop check.
* NEWS: Announce that record btrace supports non-stop mode.
testsuite/
* gdb.btrace/non-stop.c: New.
* gdb.btrace/non-stop.exp: New.
|
|
This patch adds a test case for tracepoints with a condition expression.
Each case will test a condition against the number of frames that should
have been traced. Some of these tests fail on x86_64 and others on
i386, which have been marked as known failures for now, see PR/18955.
gdb/testsuite/ChangeLog:
2015-09-17 Pierre Langlois <pierre.langlois@arm.com>
Yao Qi <yao.qi@linaro.org>
* gdb.trace/trace-condition.c: New file.
* gdb.trace/trace-condition.exp: New file.
|
|
This patch fixes the argument passed to compiled_cond. It should be
regs buffer instead of tracepoint_hit_ctx. Test case is added as
well for testing compiled-cond.
gdb/gdbserver/ChangeLog
2015-09-16 Wei-cheng Wang <cole945@gmail.com>
* tracepoint.c (eval_result_type): Change prototype.
(condition_true_at_tracepoint): Fix argument to compiled_cond.
gdb/testsuite/ChangeLog
2015-09-16 Wei-cheng Wang <cole945@gmail.com>
* gdb.trace/ftrace.exp: (test_ftrace_condition) New function
for testing bytecode compilation.
|
|
On software single-step targets that don't support displaced stepping,
threads keep hitting each other's single-step breakpoints, and then
GDB needs to pause all threads to step past those. The end result is
that progress in the main thread will be slower and it may take a bit
longer for the signal to be queued. This patch bumps the timeout on
such targets.
gdb/testsuite/ChangeLog:
2015-09-16 Pedro Alves <palves@redhat.com>
Sandra Loosemore <sandra@codesourcery.com>
* gdb.threads/non-stop-fair-events.c (timeout): New global.
(SECONDS): Redefine.
(main): Call pthread_kill and alarm early.
* gdb.threads/non-stop-fair-events.exp: Probe displaced stepping
support.
(test): If the target can't hardware step and doesn't support
displaced stepping, increase the timeout.
|
|
If we enable infrun debug running this test, it quickly fails with a
full expect buffer. That can be simply handled with a couple
exp_continues. As it's annoying to hack this every time we need to
debug the test, this patch adds bits to enable debugging support
easily, with a one-line change.
And then, if any iteration of the test fails, we end up with a long
cascade of time outs. Just bail out when we see the first fail.
gdb/testsuite/
2015-09-16 Pedro Alves <palves@redhat.com>
* gdb.threads/non-stop-fair-events.exp (gdb_test_no_anchor)
(enable_debug): New procedures.
(test): Use them. Bail out if waiting for threads fails.
(top level): Bail out if a test fails.
|
|
This patch adds gdb.asm/aarch64.inc, so asm-source.exp isn't skipped
on aarch64 any more.
gdb/testsuite:
2015-09-16 Yao Qi <yao.qi@linaro.org>
* gdb.asm/asm-source.exp: Set asm-arch for
aarch64*-*-* target.
* gdb.asm/aarch64.inc: New file.
|
|
This change is relevant only for standard DWARF (as opposed to the GNAT
encodings extensions): at the time of writing it only makes a difference
with GCC patches that are to be integrated: see the patch series
submission at
<https://gcc.gnu.org/ml/gcc-patches/2015-07/msg01353.html>.
Given the following Ada declarations:
subtype Small_Int is Natural range 0 .. 100;
type R_Type (L : Small_Int := 0) is record
S : String (1 .. L);
end record;
type A_Type is array (Natural range <>) of R_Type;
A : A_Type := (1 => (L => 0, S => ""),
2 => (L => 2, S => "ab"));
Before this change, we would get the following GDB session:
(gdb) ptype a
type = array (1 .. 2) of foo.r_type <packed: 838-bit elements>
This is wrong: "a" is not a packed array. This output comes from the
fact that, because R_Type has a dynamic size (with a maximum), the
compiler has to describe in the debugging information the size allocated
for each array element (i.e. the stride, in DWARF parlance: see
DW_AT_byte_stride). Ada type printing currently assumes that arrays
with a stride are packed, hence the above output.
In practice, GNAT never performs bit-packing for arrays that contain
variable-sized elements. Leveraging this fact, this patch enhances type
printing so that ptype does not pretend that arrays are packed when they
have a stride and they contain dynamic elements. After this change, we
get the following expected output:
(gdb) ptype a
type = array (1 .. 2) of foo.r_type
gdb/ChangeLog:
* ada-typeprint.c (print_array_type): Do not describe arrays as
packed when they embed dynamic elements.
gdb/testsuite/ChangeLog:
* gdb.ada/array_of_variable_length.exp: New testcase.
* gdb.ada/array_of_variable_length/foo.adb: New file.
* gdb.ada/array_of_variable_length/pck.adb: New file.
* gdb.ada/array_of_variable_length/pck.ads: New file.
Tested on x86_64-linux, no regression.
|
|
clang names the local variable t_structs_a.buf.
gdb/testsuite/ChangeLog:
* gdb.base/callfuncs.exp (do_function_calls): Handle clang naming
of function static local variable.
|
|
Ensure tls variable address is not relocated, as the msym addr
is an offset in the thread local storage of the shared library/object.
|
|
ppc64le loses control when stepping between two PLT-called functions inside
a shared library:
29 shlib_second (); /* first-hit */^M
(gdb) PASS: gdb.base/solib-intra-step.exp: first-hit
step^M
^M
Program received signal SIGABRT, Aborted.^M
0x00003fffb7cbe578 in __GI_raise (sig=<optimized out>) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56^M
56 return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);^M
(gdb) FAIL: gdb.base/solib-intra-step.exp: second-hit
->
29 shlib_second (); /* first-hit */^M
(gdb) PASS: gdb.base/solib-intra-step.exp: first-hit
step^M
shlib_second () at ./gdb.base/solib-intra-step-lib.c:23^M
23 abort (); /* second-hit */^M
(gdb) PASS: gdb.base/solib-intra-step.exp: second-hit
This is because gdbarch_skip_trampoline_code() will resolve the final function
as shlib_second+0 and place there the breakpoint, but ld.so will jump after
the breakpoint - at shlib_second+8 - as it is ELFv2 local symbol optimization:
Dump of assembler code for function shlib_second:
0x0000000000000804 <+0>: addis r2,r12,2
0x0000000000000808 <+4>: addi r2,r2,30668
0x000000000000080c <+8>: mflr r0
Currently gdbarch_skip_entrypoint() has been called in skip_prologue_sal() and
fill_in_stop_func() but that is not enough. I believe
gdbarch_skip_entrypoint() should be called after every
gdbarch_skip_trampoline_code().
gdb/ChangeLog
2015-09-15 Jan Kratochvil <jan.kratochvil@redhat.com>
* linespec.c (minsym_found): Call gdbarch_skip_entrypoint.
* ppc64-tdep.c (ppc64_skip_trampoline_code): Rename to ...
(ppc64_skip_trampoline_code_1): ... here.
(ppc64_skip_trampoline_code): New wrapper function.
* symtab.c (find_function_start_sal): Call gdbarch_skip_entrypoint.
gdb/testsuite/ChangeLog
2015-09-15 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.opt/solib-intra-step-lib.c: New file.
* gdb.opt/solib-intra-step-main.c: New file.
* gdb.opt/solib-intra-step.exp: New file.
|
|
gdb.threads/non-ldr-exc-3.exp is sometimes failing like this:
[Switching to Thread 6831.6832]
Breakpoint 2, thread_execler (arg=0x0) at /home/pedro/gdb/mygit/build/../src/gdb/testsuite/gdb.threads/non-ldr-exc-3.c:41
41 if (execl (image, image, argv1, NULL) == -1) /* break-here */
PASS: gdb.threads/non-ldr-exc-3.exp: lock-sched=on,non-stop=off: continue to breakpoint
(gdb) set scheduler-locking on
(gdb) FAIL: gdb.threads/non-ldr-exc-3.exp: lock-sched=on,non-stop=off: set scheduler-locking on
The problem is that the gdb_test_multiple is missing the prompt
anchor. The problem was introduced by 2fd33e9448. This reverts the
hunk that introduced the problem, reverting back to
gdb_continue_to_breakpoint.
gdb/testsuite/ChangeLog:
2015-09-15 Pedro Alves <palves@redhat.com>
* gdb.threads/non-ldr-exc-3.exp (do_test): Use
gdb_continue_to_breakpoint instead of gdb_test_multiple.
|
|
This patch, relative to a tree with
https://sourceware.org/ml/gdb-patches/2015-08/msg00295.html, fixes
issues/crashes that trigger if something unexpected happens during a
hook-stop.
E.g., if the inferior disappears while running the hook-stop, we hit
failed assertions:
(gdb) define hook-stop
Type commands for definition of "hook-stop".
End with a line saying just "end".
>kill
>end
(gdb) si
Kill the program being debugged? (y or n) [answered Y; input not from terminal]
/home/pedro/gdb/mygit/build/../src/gdb/thread.c:88: internal-error: inferior_thread: Assertion `tp' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
I noticed that if a hook-stop issues a synchronous execution command,
we print the same stop event twice:
(gdb) define hook-stop
Type commands for definition of "hook-stop".
End with a line saying just "end".
>si
>end
(gdb) si
0x000000000040074a 42 args[i] = 1; /* Init value. */ <<<<<<< once
0x000000000040074a 42 args[i] = 1; /* Init value. */ <<<<<<< twice
(gdb)
In MI:
*stopped,reason="end-stepping-range",frame={addr="0x000000000040074a",func="main",args=[],file="threads.c",fullname="/home/pedro/gdb/tests/threads.c",line="42"},thread-id="1",stopped-threads="all",core="0"
*stopped,reason="end-stepping-range",frame={addr="0x000000000040074a",func="main",args=[],file="threads.c",fullname="/home/pedro/gdb/tests/threads.c",line="42"},thread-id="1",stopped-threads="all",core="0"
(gdb)
The fix has GDB stop processing the event if the context changed. I
don't expect people to be doing crazy things from the hook-stop.
E.g., it gives me headaches to try to come up a proper behavior for
handling a thread change from a hook-stop... (E.g., imagine the
hook-stop does thread N; step, with scheduler-locing on). I think the
most important bit here is preventing crashes.
The patch adds a new hook-stop.exp test that covers the above and also
merges in the old hook-stop-continue.exp and hook-stop-frame.exp into
the same framework.
gdb/ChangeLog:
2015-09-14 Pedro Alves <palves@redhat.com>
* infrun.c (current_stop_id): New global.
(get_stop_id, new_stop_id): New functions.
(fetch_inferior_event): Handle normal_stop proceeding the target.
(struct stop_context): New.
(save_stop_context, release_stop_context_cleanup)
(stop_context_changed): New functions.
(normal_stop): Return true if the hook-stop changes the stop
context.
* infrun.h (get_stop_id): Declare.
(normal_stop): Now returns int. Add documentation.
gdb/testsuite/ChangeLog:
2015-09-14 Pedro Alves <palves@redhat.com>
* gdb.base/hook-stop-continue.c: Delete.
* gdb.base/hook-stop-continue.exp: Delete.
* gdb.base/hook-stop-frame.c: Delete.
* gdb.base/hook-stop-frame.exp: Delete.
* gdb.base/hook-stop.c: New file.
* gdb.base/hook-stop.exp: New file.
|
|
This change is relevant only for standard DWARF (as opposed to the GNAT
encodings extensions): at the time of writing it only makes a difference
with GCC patches that are to be integrated: see in particular
<https://gcc.gnu.org/ml/gcc-patches/2015-07/msg01364.html>.
Given the following Ada declarations:
type Small is mod 2 ** 6;
type Array_Type is array (0 .. 9) of Small
with Pack;
type Array_Access is access all Array_Type;
A : aliased Array_Type := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
AA : constant Array_Type := A'Access;
Before this change, we would get the following GDB session:
(gdb) print aa.all(2)
$1 = 3
(gdb) print aa(2)
$2 = 16
This is wrong: both expression should yield the same value: 3. The
problem is simply that the routine which handles accesses to arrays lack
general handling for packed arrays. After this patch, we have the
expected output:
(gdb) print aa.all(2)
$1 = 3
(gdb) print aa(2)
$2 = 3
gdb/ChangeLog:
* ada-lang.c (ada_value_ptr_subscript): Update the heading
comment. Handle packed arrays.
gdb/testsuite/ChangeLog:
* gdb.ada/access_to_packed_array.exp: New testcase.
* gdb.ada/access_to_packed_array/foo.adb: New file.
* gdb.ada/access_to_packed_array/pack.adb: New file.
* gdb.ada/access_to_packed_array/pack.ads: New file.
Tested on x86_64-linux, no regression.
|
|
The gdb.btrace/buffer-size.exp test starts recording with an unlimited
buffer size. This will, for a short time, use up most if not all BTS
resources.
I don' think this test is necessary. Remove it.
testsuite/
* gdb.btrace/buffer-size.exp: Remove recording with unlimited BTS
buffer size test.
|
|
This patch updates several exec-related tests and some of the library
functions in order to get them running with extended-remote. There were
three changes that were required, as follows:
In gdb.base/foll-exec.exp, use 'clean_start' in place of proc 'zap_session'
to reset the state of the debugger between tests. This sets 'remote
exec-file' to execute the correct binary file in each subsequent test.
In gdb.base/pie-execl.exp, there is an expect statement with an expression
that is used to match output from both gdb and the program under debug.
For the remote target, this had to be split into two expressions, using
$inferior_spawn_id to match the output from the program.
Because I had encountered problems with extended-remote exec events in
non-stop mode in my manual testing, I added non-stop testing to the
non-ldr-exc-[1234].exp tests. In order to set non-stop mode for remote
targets, it is necessary to 'set non-stop on' after gdb has started, but
before it connects to gdbserver. This is done using 'save_vars' to set
non-stop mode in GDBFLAGS, so GDB sets non-stop mode on startup.
gdb/testsuite/ChangeLog:
* gdb.base/foll-exec.c: Add copyright header. Fix
formatting issues.
* gdb.base/foll-exec.exp (zap_session): Delete proc.
(do_exec_tests): Use clean_restart in place of zap_session,
and for test initialization. Fix formatting issues. Use
fail in place of perror.
* gdb.base/pie-execl.exp (main): Use 'inferior_spawn_id' in
an expect statement to match an expression with output from
the program under debug.
* gdb.threads/non-ldr-exc-1.exp (do_test, main): Add
non-stop tests and pass stop mode argument to clean_restart.
Use save_vars to enable non-stop in GDBFLAGS.
* gdb.threads/non-ldr-exc-2.exp: Likewise.
* gdb.threads/non-ldr-exc-3.exp: Likewise.
* gdb.threads/non-ldr-exc-4.exp: Likewise.
|
|
gdb/testsuite/ChangeLog:
* gdb.python/py-prettyprint.exp: Check result of run_lang_tests.
|
|
gdb/testsuite/ChangeLog:
* gdb.base/pie-execl.exp: Fix result test of build_executable.
|
|
gdb/testsuite/ChangeLog:
* gdb.base/savedregs.exp: Fix typo.
|
|
This adds an object oriented replacement for the "struct continuation"
mechanism, and converts the stepping commands (step, next, stepi,
nexti) and the "finish" commands to use it.
It adds a new thread "class" (struct thread_fsm) that contains the
necessary info and callbacks to manage the state machine of a thread's
execution command.
This allows getting rid of some hacks. E.g., in fetch_inferior_event
and normal_stop we no longer need to know whether a thread is doing a
multi-step (e.g., step N). This effectively makes the
intermediate_continuations unused -- they'll be garbage collected in a
separate patch. (They were never a proper abstraction, IMO. See how
fetch_inferior_event needs to check step_multi before knowing whether
to call INF_EXEC_CONTINUE or INF_EXEC_COMPLETE.)
The target async vs !async uiout hacks in mi_on_normal_stop go away
too.
print_stop_event is no longer called from normal_stop. Instead it is
now called from within each interpreter's normal_stop observer. This
clears the path to make each interpreter print a stop event the way it
sees fit. Currently we have some hacks in common code to
differenciate CLI vs TUI vs MI around this area.
The "finish" command's FSM class stores the return value plus that
value's position in the value history, so that those can be printed to
both MI and CLI's streams. This fixes the CLI "finish" command when
run from MI -- it now also includes the function's return value in the
CLI stream:
(gdb)
~"callee3 (strarg=0x400730 \"A string argument.\") at src/gdb/testsuite/gdb.mi/basics.c:35\n"
~"35\t}\n"
+~"Value returned is $1 = 0\n"
*stopped,reason="function-finished",frame=...,gdb-result-var="$1",return-value="0",thread-id="1",stopped-threads="all",core="0"
-FAIL: gdb.mi/mi-cli.exp: CLI finish: check CLI output
+PASS: gdb.mi/mi-cli.exp: CLI finish: check CLI output
gdb/ChangeLog:
2015-09-09 Pedro Alves <palves@redhat.com>
* Makefile.in (COMMON_OBS): Add thread-fsm.o.
* breakpoint.c (handle_jit_event): Print debug output.
(bpstat_what): Split event callback handling to ...
(bpstat_run_callbacks): ... this new function.
(momentary_bkpt_print_it): No longer handle bp_finish here.
* breakpoint.h (bpstat_run_callbacks): Declare.
* gdbthread.h (struct thread_info) <step_multi>: Delete field.
<thread_fsm>: New field.
(thread_cancel_execution_command): Declare.
* infcmd.c: Include thread-fsm.h.
(struct step_command_fsm): New.
(step_command_fsm_ops): New global.
(new_step_command_fsm, step_command_fsm_prepare): New functions.
(step_1): Adjust to use step_command_fsm_prepare and
prepare_one_step.
(struct step_1_continuation_args): Delete.
(step_1_continuation): Delete.
(step_command_fsm_should_stop): New function.
(step_once): Delete.
(step_command_fsm_clean_up, step_command_fsm_async_reply_reason)
(prepare_one_step): New function, based on step_once.
(until_next_command): Remove step_multi reference.
(struct return_value_info): New.
(print_return_value): Rename to ...
(print_return_value_1): ... this. New struct return_value_info
parameter. Adjust.
(print_return_value): Reimplement as wrapper around
print_return_value_1.
(struct finish_command_fsm): New.
(finish_command_continuation): Delete.
(finish_command_fsm_ops): New global.
(new_finish_command_fsm, finish_command_fsm_should_stop): New
functions.
(finish_command_fsm_clean_up, finish_command_fsm_return_value):
New.
(finish_command_continuation_free_arg): Delete.
(finish_command_fsm_async_reply_reason): New.
(finish_backward, finish_forward): Change symbol parameter to a
finish_command_fsm. Adjust.
(finish_command): Create a finish_command_fsm. Adjust.
* infrun.c: Include "thread-fsm.h".
(clear_proceed_status_thread): Delete the thread's FSM.
(infrun_thread_stop_requested_callback): Cancel the thread's
execution command.
(clean_up_just_stopped_threads_fsms): New function.
(fetch_inferior_event): Handle the event_thread's should_stop
method saying the command isn't done yet.
(process_event_stop_test): Run breakpoint callbacks here.
(print_stop_event): Rename to ...
(print_stop_location): ... this.
(restore_current_uiout_cleanup): New function.
(print_stop_event): Reimplement.
(normal_stop): No longer notify the end_stepping_range observers
here handle "step N" nor "finish" here. No longer call
print_stop_event here.
* infrun.h (struct return_value_info): Forward declare.
(print_return_value): Declare.
(print_stop_event): Change prototype.
* thread-fsm.c: New file.
* thread-fsm.h: New file.
* thread.c: Include "thread-fsm.h".
(thread_cancel_execution_command): New function.
(clear_thread_inferior_resources): Call it.
* cli/cli-interp.c (cli_on_normal_stop): New function.
(cli_interpreter_init): Install cli_on_normal_stop as normal_stop
observer.
* mi/mi-interp.c: Include "thread-fsm.h".
(restore_current_uiout_cleanup): Delete.
(mi_on_normal_stop): If the thread has an FSM associated, and it
finished, ask it for the async-reply-reason to print. Always call
print_stop_event here, regardless of the top-level interpreter.
Check bpstat_what to tell whether an asynchronous breakpoint hit
triggered.
* tui/tui-interp.c (tui_on_normal_stop): New function.
(tui_init): Install tui_on_normal_stop as normal_stop observer.
gdb/testsuite/ChangeLog:
2015-09-09 Pedro Alves <palves@redhat.com>
* gdb.mi/mi-cli.exp: Add CLI finish tests.
|
|
2015-09-08 Sandra Loosemore <sandra@codesourcery.com>
gdb/testsuite/
* gdb.threads/hand-call-in-threads.exp: Make sure the thread
command actually switches threads. Give up on remaining
tests if target fails to stop at breakpoint.
|
|
Before this change, trying to call an overloaded function with at least
one character literal in argument would fail. For instance, given these
two functions:
function F (C : Character) return Integer is
begin
return Character'Pos (C);
end F;
function F (I : Integer) return Integer is
begin
return -I;
end F;
We would get the following GDB session:
(gdb) p f('A')
$1 = -65
(gdb) p f(1)
$1 = -1
This is wrong because the first call should select the first F function
and thus return 65.
The root problem is that ada-lang.c:ada_language_arch_info stores in
string_char_type a type whose code is TYPE_CODE_INT instead of
TYPE_CODE_CHAR. As a result, all parsed character literals are turned
into integer values and during overload matching, the TYPE_CODE_CHAR
formal rejects the TYPE_CODE_INT actual.
This change turns string_char_type into a true TYPE_CODE_CHAR type in
ada-lang.c so that we have instead the expected:
(gdb) p f('A')
$1 = 65
gdb/ChangeLog:
* ada-lang.c (ada_language_arch_info): Create a TYPE_CODE_CHAR
type instead of a TYPE_CODE_INT one for the string_char_type
and the ada_primitive_type_char types.
gdb/testsuite/ChangeLog:
* gdb.ada/funcall_char.exp: New testcase.
* gdb.ada/funcall_char/foo.adb: New file.
Tested on x86_64-linux, no regression.
|
|
Before this change, trying to complete an expression ending with an
ambiguous function name (i.e. for which there are multiple matches)
would display a menu with a prompt for the user to pick one. For
instance:
(gdb) p func<tab>Multiple matches for func
[0] cancel
[1] pack2.func at pack2.adb:5
[2] pack.func at pack.adb:5
>
This is not user friendly and actually triggered a segmentation fault
after the user did pick one. It is not clear whether the segmentation
fault needs a separate fix, but this is the only known case which
exhibits it at the moment, and this case must be fixed itself.
The problem lies in ada-lang.c (ada_resolve_function): when we got
multiple matches, we should not display the menu if we are in completion
mode. This patch adjusts the corresponding condition accordingly.
gdb/ChangeLog:
* ada-lang.c (ada_resolve_function): Do not ask the user what
match to use when in completion mode.
gdb/testsuite/ChangeLog:
* gdb.ada/complete.exp: Add "pck.ambiguous_func" to the relevant
expected outputs. Add two testcases for completing ambiguous
functions.
* gdb.ada/complete/aux_pck.adb: New file.
* gdb.ada/complete/aux_pck.ads: New file.
* gdb.ada/complete/foo.adb: Pull Aux_Pck and call the two
Ambiguous_Func functions.
* gdb.ada/complete/pck.ads: Add an Ambiguous_Func function.
* gdb.ada/complete/pck.adb: Likewise.
Tested on x86_64-linux, no regression.
|
|
The gdb.cell testcases use the predicate skip_cell_tests defined in
lib/cell.exp to determine whether Cell/B.E. test cases ought to be
run. This tests verifies that we have a toolchain that supports
generating combined Cell/B.E. binaries, and that the target machine
actually is a Cell/B.E.
In order to do so, a small test program is built and run (under the
debugger). Any failure is taken as a sign that we don't have a
Cell/B.E. machine and the tests are to be skipped.
This has the unfortunate effect that a serious bug in GDB that causes
internal compiler errors even on the trivial test program does not
lead to any failures in the testsuite, since now all gdb.cell test
are simply skipped.
This patch changes skip_cell_tests to at least report UNRESOLVED
in cases where execution of the test program fails in unexpected
ways.
testsuite/ChangeLog:
* lib/cell.exp (skip_cell_tests): Report UNRESOLVED on unexpected
failures to run the test program under GDB.
|
|
Due to the lack of debug information in the binary, GDB is unable to figure
out what language is being used. This may be a problem when doing remote
debugging and the binary stops at the entry point containing asm code.
In this case GDB will switch to asm as current language and will not switch
back to C when it reaches main, which in turn causes the compile feature check
to malfunction.
This is solved by forcing the language to C after reaching main.
gdb/testsuite/ChangeLog:
2015-08-26 Luis Machado <lgustavo@codesourcery.com>
* gdb.compile/compile-ifunc.exp (with_test_prefix): Force language
to C.
|
|
We currently set attach_flag when attaching to a process, so we should
make sure to unset it when forking a new process. Otherwise attach_flag
would remain set after forking, if the previous process associated with
the inferior was attached to.
gdb/ChangeLog:
* target.c (target_pre_inferior): Unset attach_flag.
gdb/testsuite/ChangeLog:
* gdb.base/run-after-attach.exp: New test file.
* gdb.base/run-after-attach.c: New test file.
|
|
This patch implements a new GDB test for follow-exec-mode. Although
there is a GDB test for debugging across an exec, there is no test for
follow-exec-mode. This test is derived from gdb.base/foll-exec.exp,
and re-uses execd-prog.c as the program to exec.
The following behavior is tested:
follow-exec-mode == "same"
- 'next' over the exec, check for one inferior
- 'continue' past the exec to a breakpoint, check for one inferior
- after the exec, use a 'run' command to run the current binary
follow-exec-mode == "new"
- 'next' over the exec, check for two inferiors
- 'continue' past the exec to a breakpoint, check for two inferiors
- after the exec, use a 'run' command to run the current binary
- after the exec, use the 'inferior' command to switch inferiors,
then use a 'run' command to run the current binary
Note that single-step breakpoints do not survive across an exec.
There has to be a breakpoint in the execed program in order for
it to stop right after the exec.
gdb/testsuite/ChangeLog:
* gdb.base/foll-exec-2.c: New test program.
* gdb.base/foll-exec-2.exp: New test.
|
|
GDB's current behavior when dealing with non-local references in the
context of nested fuctions is approximative:
- code using valops.c:value_of_variable read the first available stack
frame that holds the corresponding variable (whereas there can be
multiple candidates for this);
- code directly relying on read_var_value will instead read non-local
variables in frames where they are not even defined.
This change adds the necessary context to symbol reads (to get the block
they belong to) and to blocks (the static link property, if any) so that
GDB can make the proper decisions when dealing with non-local varibale
references.
gdb/ChangeLog:
* ada-lang.c (ada_read_var_value): Add a var_block argument
and pass it to default_read_var_value.
* block.c (block_static_link): New accessor.
* block.h (block_static_link): Declare it.
* buildsym.c (finish_block_internal): Add a static_link
argument. If there is a static link, associate it to the new
block.
(finish_block): Add a static link argument and pass it to
finish_block_internal.
(end_symtab_get_static_block): Update calls to finish_block and
to finish_block_internal.
(end_symtab_with_blockvector): Update call to
finish_block_internal.
* buildsym.h: Forward-declare struct dynamic_prop.
(struct context_stack): Add a static_link field.
(finish_block): Add a static link argument.
* c-exp.y: Remove an obsolete comment (evaluation of variables
already start from the selected frame, and now they climb *up*
the call stack) and propagate the block information to the
produced expression.
* d-exp.y: Likewise.
* f-exp.y: Likewise.
* go-exp.y: Likewise.
* jv-exp.y: Likewise.
* m2-exp.y: Likewise.
* p-exp.y: Likewise.
* coffread.c (coff_symtab_read): Update calls to finish_block.
* dbxread.c (process_one_symbol): Likewise.
* xcoffread.c (read_xcoff_symtab): Likewise.
* compile/compile-c-symbols.c (convert_one_symbol): Promote the
"sym" parameter to struct block_symbol, update its uses and pass
its block to calls to read_var_value.
(convert_symbol_sym): Update the calls to convert_one_symbol.
* compile/compile-loc2c.c (do_compile_dwarf_expr_to_c): Update
call to read_var_value.
* dwarf2loc.c (block_op_get_frame_base): New.
(dwarf2_block_frame_base_locexpr_funcs): Implement the
get_frame_base method.
(dwarf2_block_frame_base_loclist_funcs): Likewise.
(dwarf2locexpr_baton_eval): Add a frame argument and use it
instead of the selected frame in order to evaluate the
expression.
(dwarf2_evaluate_property): Add a frame argument. Update call
to dwarf2_locexpr_baton_eval to provide a frame in available and
to handle the absence of address stack.
* dwarf2loc.h (dwarf2_evaluate_property): Add a frame argument.
* dwarf2read.c (attr_to_dynamic_prop): Add a forward
declaration.
(read_func_scope): Record any available static link description.
Update call to finish_block.
(read_lexical_block_scope): Update call to finish_block.
* findvar.c (follow_static_link): New.
(get_hosting_frame): New.
(default_read_var_value): Add a var_block argument. Use
get_hosting_frame to handle non-local references.
(read_var_value): Add a var_block argument and pass it to the
LA_READ_VAR_VALUE method.
* gdbtypes.c (resolve_dynamic_range): Update calls to
dwarf2_evaluate_property.
(resolve_dynamic_type_internal): Likewise.
* guile/scm-frame.c (gdbscm_frame_read_var): Update call to
read_var_value, passing it the block coming from symbol lookup.
* guile/scm-symbol.c (gdbscm_symbol_value): Update call to
read_var_value (TODO).
* infcmd.c (finish_command_continuation): Update call to
read_var_value, passing it the block coming from symbol lookup.
* infrun.c (insert_exception_resume_breakpoint): Likewise.
* language.h (struct language_defn): Add a var_block argument to
the LA_READ_VAR_VALUE method.
* objfiles.c (struct static_link_htab_entry): New.
(static_link_htab_entry_hash): New.
(static_link_htab_entry_eq): New.
(objfile_register_static_link): New.
(objfile_lookup_static_link): New.
(free_objfile): Free the STATIC_LINKS hashed map if needed.
* objfiles.h: Include hashtab.h.
(struct objfile): Add a static_links field.
(objfile_register_static_link): New.
(objfile_lookup_static_link): New.
* printcmd.c (print_variable_and_value): Update call to
read_var_value.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-frame.c (frapy_read_var): Update call to
read_var_value, passing it the block coming from symbol lookup.
* python/py-framefilter.c (extract_sym): Add a sym_block
parameter and set the pointed value to NULL (TODO).
(enumerate_args): Update call to extract_sym.
(enumerate_locals): Update calls to extract_sym and to
read_var_value.
* python/py-symbol.c (sympy_value): Update call to
read_var_value (TODO).
* stack.c (read_frame_local): Update call to read_var_value.
(read_frame_arg): Likewise.
(return_command): Likewise.
* symtab.h (struct symbol_block_ops): Add a get_frame_base
method.
(struct symbol): Add a block field.
(SYMBOL_BLOCK): New accessor.
* valops.c (value_of_variable): Remove frame/block handling and
pass the block argument to read_var_value, which does this job
now.
(value_struct_elt_for_reference): Update calls to
read_var_value.
(value_of_this): Pass the block found to read_var_value.
* value.h (read_var_value): Add a var_block argument.
(default_read_var_value): Likewise.
gdb/testsuite/ChangeLog:
* gdb.base/nested-subp1.exp: New file.
* gdb.base/nested-subp1.c: New file.
* gdb.base/nested-subp2.exp: New file.
* gdb.base/nested-subp2.c: New file.
* gdb.base/nested-subp3.exp: New file.
* gdb.base/nested-subp3.c: New file.
|
|
Ref: https://sourceware.org/ml/gdb-patches/2015-08/msg00675.html
If multiprocess extensions are off (because specific gdbserver port
doesn't support them), then when gdbserver doesn't have a thread
selected yet, and GDB sends Hg packet to select one, gdbserver
crashes. That's because extracting the desired thread id out of the
packet that GDB sent depends on the current thread to fill in the
missing process id ... Fix this by getting the process id from the
first (and only) process in the processes list instead.
The GNU/Linux port doesn't trip on this because it always runs with
multiprocess extensions enabled. To make it easier to catch such
regressions going forward, this commit also adds a new smoke test that
spawns gdbserver, connects to it and runs to main with the
multiprocess extensions force-disabled.
gdb/gdbserver/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* inferiors.c (get_first_process): New function.
* inferiors.h (get_first_process): New declaration.
* remote-utils.c (read_ptid): Default to the first process in the
list, instead of to the current thread's process.
gdb/testsuite/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* gdb.server/connect-without-multi-process.c: New file.
* gdb.server/connect-without-multi-process.exp: New file.
|
|
This makes z an int for gdb/testsuite/gdb.opt/inline-markers.c.
gdb/testsuite/ChangeLog:
2015-08-24 Luis Machado <lgustavo@codesourcery.com>
* gdb.opt/inline-markers.c: Make z int.
|
|
This fixes a typo in gdb/testsuite/gdb.opt/inline-markers.c, making
z a volatile variable.
gdb/testsuite/ChangeLog:
2015-08-24 Luis Machado <lgustavo@codesourcery.com>
* gdb.opt/inline-markers.c: Make z volatile.
|
|
While doing some powerpc Linux tests on a ppc 476 board using GCC 5.2, i
noticed inline-bt.exp, inline-cmds.exp and inline-locals.exp failing.
FAIL: gdb.opt/inline-bt.exp: continue to bar (1)
FAIL: gdb.opt/inline-bt.exp: backtrace from bar (1)
FAIL: gdb.opt/inline-bt.exp: continue to bar (2)
FAIL: gdb.opt/inline-bt.exp: backtrace from bar (2)
FAIL: gdb.opt/inline-bt.exp: continue to bar (3)
FAIL: gdb.opt/inline-bt.exp: backtrace from bar (3)
FAIL: gdb.opt/inline-cmds.exp: continue to bar (1)
FAIL: gdb.opt/inline-cmds.exp: backtrace from bar (1)
FAIL: gdb.opt/inline-cmds.exp: continue to bar (2)
FAIL: gdb.opt/inline-cmds.exp: backtrace from bar (2)
FAIL: gdb.opt/inline-cmds.exp: continue to marker
FAIL: gdb.opt/inline-cmds.exp: backtrace from marker
FAIL: gdb.opt/inline-cmds.exp: step into finish marker
FAIL: gdb.opt/inline-locals.exp: continue to bar (1)
FAIL: gdb.opt/inline-locals.exp: continue to bar (2)
FAIL: gdb.opt/inline-locals.exp: backtrace from bar (2)
FAIL: gdb.opt/inline-locals.exp: continue to bar (3)
FAIL: gdb.opt/inline-locals.exp: backtrace from bar (3)
They failed because the breakpoint supposedly inserted at bar was actually
inserted at noinline.
(gdb) break inline-markers.c:20^M
Breakpoint 2 at 0x1000079c: file gdb/testsuite/gdb.opt/inline-markers.c, line 20.^M
(gdb) continue^M
Continuing.^M
^M
Breakpoint 2, noinline () at gdb/testsuite/gdb.opt/inline-markers.c:35^M
35 inlined_fn (); /* inlined */^M
As we can see, line 20 is really inside bar, not noinline:
18 void bar(void)
19 {
20 x += y; /* set breakpoint 1 here */
21 }
Further investigation shows that this is really due to GCC 5's new
ICF pass (-fipa-icf), now enabled by default at -O2, which folds bar
and marker into noinline, where the call to inlined_fn was inlined.
This breaks the testcase since it expects to stop at specific spots.
I thought about two possible fixes for this issue.
- Disable the ICF pass manually when building the binary (-fno-ipa-icf).
This has the advantage of not having to touch the testcase sources themselves,
but the disadvantage of having to add conditional blocks to test the GCC
version. If we ever change GCC's default, we will have to adjust the
conditional block again to match GCC's behavior.
- Modify the testcase sources to make the identical functions unique.
This solution doesn't touch the testcase itself, but changes the source
code slightly in order to make bar, marker and inlined_fn unique. This
causes GCC's ICF pass to ignore these functions and not fold them into
a common identical function.
I'm good with either of them, but i'm more inclined to go with the second
one.
The attached patch implements this by adding the new global variable z, set
to 0, that gets added in different ways to marker and inlined_fn. Since it
is 0, it doesn't affect any possible value checks that we may wish to do
in the future (we currently only check for values changed by bar).
Ok?
ps: I also noticed GDB doesn't do a great job at stating that the breakpoint
was actually inserted at a different source line than previously requested,
so this sounds like a bug that should be fixed, if it is not just wrong
DWARF information (did not investigate it further).
gdb/testsuite/ChangeLog:
2015-08-24 Luis Machado <lgustavo@codesourcery.com>
* gdb.opt/inline-bt.c: New volatile global z.
* gdb.opt/inline-cmds.c: Likewise.
* gdb.opt/inline-locals.c: Likewise.
* gdb.opt/inline-markers.c: New extern global z.
(marker): Use z.
(inline_fn): Likewise.
|
|
gdb/testsuite/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* config/m32r-stub.exp: Remove file.
* gdb.base/call-ar-st.exp: Remove reference to sparclet.
* gdb.base/call-rt-st.exp: Likewise.
* gdb.base/call-strs.exp: Likewise.
* gdb.base/default.exp: Remove references to h8300-*-hms and
*-*-udi*.
* gdb.base/funcargs.exp: Remove reference to sparclet-*-*.
|
|
This avoids two more types of FAILs with the gnu_vector test case.
First, for POWER targets newer GCCs emit an ABI note when invoked with
"-mcpu=native". Then the test case fell back to non-native compile,
producing code for a non-vector ABI. But that is not supported by GDB.
Thus the compiler note is now suppressed with "-Wno-psabi".
Second, on s390 the test case produced FAILs after falling back to a
non-vector ABI when using "finish" or "return" in a vector-valued
function. This was due to a long-standing known bug (Bug 8549). This
case is now detected, and KFAILs are emitted instead.
gdb/testsuite/ChangeLog:
* gdb.base/gnu_vector.exp: Try compilation with "-mcpu=native
-Wno-psabi" if "-mcpu=native" fails. For the tests with "finish"
and "return" use KFAIL when GDB can not read/write the vector
return value.
|
|
GDB provides no indicator of progress during file operations, and can
appear to have locked up during slow remote transfers. This commit
updates GDB to print a warning each time a file is accessed over RSP.
An additional message detailing how to avoid remote transfers is
printed for the first transfer only.
gdb/ChangeLog:
* target.h (struct target_ops) <to_fileio_open>: New argument
warn_if_slow. Update comment. All implementations updated.
(target_fileio_open_warn_if_slow): New declaration.
* target.c (target_fileio_open): Renamed as...
(target_fileio_open_1): ...this. New argument warn_if_slow.
Pass warn_if_slow to implementation. Update debug printing.
(target_fileio_open): New function.
(target_fileio_open_warn_if_slow): Likewise.
* gdb_bfd.c (gdb_bfd_iovec_fileio_open): Use new function
target_fileio_open_warn_if_slow.
gdb/testsuite/ChangeLog:
* gdb.trace/pending.exp: Cope with remote transfer warnings.
|
|
Commit 221e1a37 (remote non-stop: Process initially stopped threads
before other commands) caused a test regression when testing with the
native-extended-gdbserver board:
FAIL: gdb.server/solib-list.exp: non-stop 1: non-stop interior stop (timeout)
This "interior stop" now happens before "target remote" prints the
prompt, so we should no longer explicitly expect it.
gdb/testsuite/ChangeLog:
2015-08-20 Pedro Alves <palves@redhat.com>
* gdb.server/solib-list.exp: No longer expect an interior stop in
non-stop mode.
|
|
The main motivation for this is making non-stop / all-stop behave
similarly on initial connection, in order to move in the direction of
reimplementing all-stop mode with the remote target always running in
non-stop mode.
When we connect to a remote target in non-stop mode, we may find
threads either running or already stopped. The act of connecting
itself does not force threads to stop. To handle that, the remote
non-stop connection is currently roughly like this:
#1 - Fetch list of remote threads (qXfer:threads:read, qfThreadInfo,
etc). All threads are assumed to be running until the target
reports an asynchronous stop reply for them.
#2 - Fetch the initial set of threads that were already stopped, with
the '?' packet. (In non-stop, this is coupled with the vStopped
mechanism to be able to retrieve the status of more than one
thread.)
The stop replies fetched in #2 are placed in the pending stop reply
queue, and left for the regular event loop to process. That is,
"target remote" finishes and returns _before_ those stops are
processed.
That means that it's possible to have GDB process further commands
before the initial set of stopped threads is reported to the user.
E.g., before the patch, note how the prompt is printed before the
frame:
Remote debugging using :9999
(gdb)
[Thread 15296] #1 stopped.
0x0000003615a011f0 in ?? ()
Even though thread #1 was not running, for a moment, the user can see
it as such:
$ gdb a.out -ex "set non-stop 1" -ex "tar rem :9999" -ex "info threads" -ex "info registers"
Remote debugging using :9999
Id Target Id Frame
* 1 Thread 4772 (running)
Target is executing. <<<<<<< info registers
(gdb)
[Thread 4772] #1 stopped.
0x0000003615a011f0 in ?? ()
To fix that, this commit makes gdb process all threads found already
stopped at connection time, before giving the prompt to the user.
The fix takes a cue from fork-child.c:startup_inferior [1], and
processes the events locally in remote.c, avoiding the whole
wait_for_inferior/handle_inferior_event path. I decided to try this
approach after noticing that:
- several cases in handle_inferior_event miss checking stop_soon.
- we don't want to fetch the thread list in normal_stop.
and trying to fix them was resulting in sprinkling stop_soon checks in
many places, and uglifying normal_stop even more.
While with this patch, I'm avoiding changing GDB's output other than
when the prompt is printed, I think this approach is more flexible if
we do want to change it. And also, it's likely easier to get rid of
the MI *running event that is still sent for threads that are
initially found stopped, if we want to.
This happens to fix the testsuite too. All non-stop tests are racy
against "target remote" / gdbserver testing currently. That is,
sometimes the tests run, but other times they're just skipped without
any indication of PASS/FAIL. When that happens, the logs show:
target remote localhost:2346
Remote debugging using localhost:2346
(gdb)
[Thread 25418] #1 stopped.
0x0000003615a011f0 in ?? ()
^CQuit
(gdb) Remote debugging from host 127.0.0.1
Killing process(es): 25418
monitor exit
(gdb) Remote connection closed
(gdb) testcase /home/pedro/gdb/mygit/build/../src/gdb/testsuite/gdb.threads/multi-create-ns-info-thr.exp completed in 61 seconds
The trouble here is that there's output after the prompt, and the
regex in question doesn't expect that:
-re "Remote debugging using .*$serialport_re.*$gdb_prompt $" {
verbose "Set target to $targetname"
return 0
}
[1] - before startup_inferior was added, we'd go through
wait_for_inferior/handle_inferior_event while going through the shell,
and that turned out problematic.
Tested on x86_64 Fedora 20, gdbserver.
gdb/ChangeLog:
2015-08-20 Pedro Alves <palves@redhat.com>
* infrun.c (print_target_wait_results): Make extern.
* infrun.h (print_target_wait_results): Declare.
* remote.c (set_stop_requested_callback): Delete.
(process_initial_stop_replies): New function.
(remote_start_remote): Use it.
(stop_reply_queue_length): New function.
gdb/testsuite/ChangeLog:
2015-08-20 Pedro Alves <palves@redhat.com>
* gdb.server/connect-stopped-target.c: New file.
* gdb.server/connect-stopped-target.exp: New file.
|
|
Here, in dwarfread.c:process_full_comp_unit:
/* Set symtab language to language from DW_AT_language. If the
compilation is from a C file generated by language preprocessors, do
not set the language if it was already deduced by start_subfile. */
if (!(cu->language == language_c
&& COMPUNIT_FILETABS (cust)->language != language_c))
COMPUNIT_FILETABS (cust)->language = cu->language;
in case start_subfile doesn't manage to deduce a language
COMPUNIT_FILETABS(cust)->language ends up as language_unknown, not
language_c. So the condition above evals false and we never set the
language from the cu's language.
gdb/ChangeLog:
2015-08-20 Pedro Alves <palves@redhat.com>
* dwarf2read.c (process_full_comp_unit): To tell whether
start_subfile managed to deduce a language, test for
language_unknown instead of language_c.
gdb/testsuite/ChangeLog:
2015-08-20 Pedro Alves <palves@redhat.com>
* gdb.dwarf2/comp-unit-lang.exp: New file.
* gdb.dwarf2/comp-unit-lang.c: New file.
|
|
Before this change, trying to evaluate the following Ada expression
yielded a syntax error, even though it's completely legal:
(gdb) p s'first = 'a'
Error in expression, near `'.
The problem lies in the lexer (gdb/ada-lex.l): at the point we reach "'a'",
we're still in the BEFORE_QUAL_QUOTE start condition (the mechanism to
distinguish character literals from other "tick" usages: qualified
expressions and attributes), so we consider that this quote is actually a
separate "tick".
This changes resets the start condition to INITIAL in the
{TICK}[a-zA-Z][a-zA-Z]+ rule (for attributes): attributes activate this
BEFORE_QUAL_QUOTE condition and in this case the above rule is always
executed rather than the <BEFORE_QUAL_QUOTE>"'" one (in flex, it's
always the longest match that is chosen). We now have instead:
(gdb) p s'first = 'a'
$1 = true
gdb/ChangeLog:
* ada-lex.l: Reset the start condition to INITIAL in the rule
that matches attributes.
gdb/testsuite/ChangeLog:
* gdb.ada/attr_ref_and_charlit.exp: New testcase.
* gdb.ada/attr_ref_and_charlit/foo.adb: New file.
Tested on x86_64-linux, no regression.
|
|
This change introduces a new function, dwarf2_string_attr(), which is
a wrapper for dwarf2_attr(). dwarf2read.c has been updated to
call dwarf2_string_attr in most instances where a string-valued
attribute is decoded to produce a string value. In most cases, it
simplifies the code; in some instances, the complexity of the code
remains unchanged.
I performed this change by looking for instances where the
result of DW_STRING was used in an assignment. Many of these
had a pattern which (roughly) looks something like this:
struct attribute *attr = NULL;
attr = dwarf2_attr (die, name, cu);
if (attr != NULL && DW_STRING (attr))
{
const char *str;
...
str = DW_STRING (attr);
... /* Use str in some fashion. */
}
Code of this form is transformed to look like this instead:
const char *str;
str = dwarf2_string_attr (die, name, cu)
if (str != NULL)
{
...
/* Use str in some fashion. */
...
}
In addition to invoking dwarf2_attr() and DW_STRING(),
dwarf2_string_attr() checks to make sure that the attribute's
`form' field matches one of DW_FORM_strp, DW_FORM_string, or
DW_FORM_GNU_strp_alt. If it does not match one of these forms,
it will return a NULL value in addition to calling complaint().
An earlier version of this patch did this type checking for one
particular instance where a string attribute was being decoded.
The situation that I was attempting to handle in that earlier patch is
this:
The Texas Instruments compiler uses the encoding for
DW_AT_MIPS_linkage_name for other purposes. TI uses the encoding,
0x2007, for TI_AT_TI_end_line which, unlike DW_AT_MIPS_linkage_name,
does not have a string-typed value. In this instance, GDB was attempting
to use an integer value as a string pointer, with predictable results.
(GDB would die with a segmentation fault.)
I've added a test which reproduces the problem that I was orignally
wanting to fix. It uses DW_AT_MIPS_linkage name with an associate
value which is a string, and again, where the value is a small
integer.
My test case causes GDB to segfault in an unpatched GDB. There
will be two PASSes in a patched GDB.
Unpatched GDB:
(gdb) ptype f
ERROR: Process no longer exists
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ERROR: Couldn't send ptype g to GDB.
UNRESOLVED: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
Patched GDB:
(gdb) ptype f
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype f
ptype g
type = bool ()
(gdb) PASS: gdb.dwarf2/dw2-bad-mips-linkage-name.exp: ptype g
I see no regressions on an x86_64 native target.
gdb/ChangeLog:
* dwarf2read.c (dwarf2_string_attr): New function.
(lookup_dwo_unit, process_psymtab_comp_unit_reader)
(dwarf2_compute_name, dwarf2_physname, find_file_and_directory)
(read_call_site_scope, namespace_name, guess_full_die_structure_name)
(anonymous_struct_prefix, prepare_one_comp_unit): Use
dwarf2_string_attr in place of dwarf2_attr and DW_STRING.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-bad-mips-linkage-name.c: New file.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp: New file.
|