aboutsummaryrefslogtreecommitdiff
path: root/gdb/testsuite/gdb.fortran
AgeCommit message (Collapse)AuthorFilesLines
2022-05-31gdb, testsuite, fortran: fixup mixed-lang-stack for Intel/LLVM compilersNils-Christian Kempke1-7/+14
When value-printing a pointer within GDB by default GDB will look for defined symbols residing at the address of the pointer. For the given test the Intel/LLVM compiler stacks both display a symbol associated with a printed pointer while the gnu stack does not. This leads to failures in the test when running the test with CC_FOR_TARGET='clang' CXX_FOR_TARGET='clang' F90_FOR_TARGET='flang'" (gdb) b 37 (gdb) r (gdb) f 6 (gdb) info args a = 1 b = 2 c = 3 d = 4 + 5i f = 0x419ed0 "abcdef" g = 0x4041a0 <.BSS4> or CC_FOR_TARGET='icx' CXX_FOR_TARGET='icpx' F90_FOR_TARGET='ifx'" (gdb) b 37 (gdb) r (gdb) f 6 (gdb) info args a = 1 b = 2 c = 3 d = 4 + 5i f = 0x52eee0 "abcdef" g = 0x4ca210 <mixed_func_1a_$OBJ> For the compiled binary the Intel/LLVM compilers both decide to move the local variable g into the .bss section of their executable. The gnu stack will keep the variable locally on the stack and not define a symbol for it. Since the behavior for Intel/LLVM is actually expected I adapted the testcase at this point to be a bit more allowing for other outputs. I added the optional "<SYMBOLNAME>" to the regex testing for g. The given changes reduce the test fails for Intel/LLVM stack by 4 each.
2022-05-31gdb, testsuite, fortran: fix double free in mixed-lang-stack.expNils-Christian Kempke1-11/+1
While testing mixed-lang-stack I realized that valgrind actually complained about a double free in the test. All done ==2503051== ==2503051== HEAP SUMMARY: ==2503051== in use at exit: 0 bytes in 0 blocks ==2503051== total heap usage: 26 allocs, 27 frees, 87,343 bytes allocated ==2503051== ==2503051== All heap blocks were freed -- no leaks are possible ==2503051== ==2503051== For lists of detected and suppressed errors, rerun with: -s ==2503051== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0) Reason for this is that in mixed-lang-stack.cpp in mixed_func_1f an object "derived_type obj" goes on the stack which is then passed-by-value (so copied) to mixed_func_1g. The default copy-ctor will be called but, since derived_type contains a heap allocated string and the copy constructor is not implemented it will only be able to shallow copy the object. Right after each of the functions the object gets freed - on the other hand the d'tor of derived_type actually is implemented and calls free on the heap allocated string which leads to a double free. Instead of obeying the rule of 3/5 I just got rid of all that since it does not serve the test. The string is now just a const char* = ".." object member.
2022-05-31testsuite, fortran: allow additional completions in module.expNils-Christian Kempke1-2/+3
For ifort, ifx, and flang the tests "complete modm" and "complete modmany" fail. This is because all three emit additional completion suggestions. These additional suggestions have their origin in symbols emitted by the compilers which can also be completed from the respective incomplete word (modm or modmany). For this specific example gfortran does not emit any additional symbols. For example, in this test the linkage name for var_a in ifx is "modmany_mp_var_a_" while gfortran uses "__modmany_MOD_var_a" instead. Since modmany_mp_var_a can be completed from modm and also modmany they will get displayed, while gfortran's symbol starts with "__" and thus will be ignored (it cannot be a completion of a word starting with "m"). Similar things happen in flang and ifort. Some example output is shown below: FLANG (gdb) complete p modm p modmany p modmany::var_a p modmany::var_b p modmany::var_c p modmany::var_i p modmany_ IFX/IFORT (gdb) complete p modm p modmany p modmany._ p modmany::var_a p modmany::var_b p modmany::var_c p modmany::var_i p modmany_mp_var_a_ p modmany_mp_var_b_ p modmany_mp_var_c_ p modmany_mp_var_i_ GFORTRAN (gdb) complete p modm p modmany p modmany::var_a p modmany::var_b p modmany::var_c p modmany::var_i I want to emphasize: for Fortran (and also C/C++) the complete command does not actually check whether its suggestions make sense - all it does is look for any symbol (in the minimal symbols, partial symbols etc.) that a given substring can be completed to (meaning that the given substring is the beginning of the symbol). One can easily produce a similar output for the gfortran compiled executable. For this look at the slightly modified "complete p mod" in gfortran: (gdb) complete p mod p mod1 p mod1::var_const ... p mod_1.c p modcounter p mode_t p modf ... p modify_ldt p modmany p modmany::var_a p modmany::var_b p modmany::var_c p modmany::var_i p module p module.f90 p module_entry p moduse p moduse::var_x p moduse::var_y Many of the displayed symbols do not actually work with print: (gdb) p mode_t Attempt to use a type name as an expression (gdb) p mod_1.c No symbol "mod_1" in current context. (gdb) I think that in the given test the output for gfortran only looks nice "by chance" rather than is actually expected. Expected is any output that also contains the completions p modmany p modmany::var_a p modmany::var_b p modmany::var_c p modmany::var_i while anythings else can be displayed as well (depending on the compiler and its emitted symbols). This, I'd consider all three outputs as valid and expected - one is just somewhat lucky that gfortran does not produce any additional symbols that got matched. The given patch improves test performance for all three compilers by allowing additional suggested completions inbetween and after the two given blocks in the test. I did not allow additional print within the modmany_list block since the output is ordered alphabetically and there should normally not appear any additional symbols there. For flang/ifx/ifort I each see 2 failures less (which are exactly the two complete tests). As a side note and since I mentioned C++ in the beginning: I also tried the gdb.cp/completion.exp. The output seems a bit more reasonable, mainly since C++ actually has a demangler in place and linkage symbols do not appear in the output of complete. Still, with a poor enough to-be-completed string one can easily produce similar results: (gdb) complete p t ... p typeinfo name for void p typeinfo name for void const* p typeinfo name for void* p typeinfo name for wchar_t p typeinfo name for wchar_t const* p typeinfo name for wchar_t* p t *** List may be truncated, max-completions reached. *** (gdb) p typeinfo name for void* No symbol "typeinfo" in current context. (gdb) complete p B p BACK_SLASH p BUF_FIRST p BUF_LAST ... p Base p Base::Base() p Base::get_foo() p bad_key_err p buf p buffer p buffer_size p buflen p bufsize p build_charclass.isra (gdb) p bad_key_err No symbol "bad_key_err" in current context. (compiled with gcc/g++ and breaking at main). This patch is only about making the referenced test more 'fair' for the other compilers. Generally, I find the behavior of complete a bit confusing and maybe one wants to change this at some point but this would be a bigger task.
2022-05-31testsuite, fortran: fix info-types for intel compilersNils-Christian Kempke1-3/+17
This info-types.exp test case had a few issues that this patch fixes. First, the emitted symbol character(kind=1)/character*1 (different compilers use different naming converntions here) which is checkedin the test is not actually expected given the test program. There is no variable of that type in the test. Still, gfortran emits it for every Fortran program there is. The reason is the way gfortran handles Fortran's named main program. It generates a wrapper around the Fortran program that is quite similar to a C main function. This C-like wrapper has argc and argv arguments for command line argument passing and the argv pointer type has a base type character(kind=1) DIE emitted at CU scope. Given the program program prog end program prog the degbug info gfortran emits looks somewhat like <0><c>: Abbrev Number: 3 (DW_TAG_compile_unit) ... <1><2f>: Abbrev Number: 4 (DW_TAG_subprogram) <30> DW_AT_external : 1 <30> DW_AT_name : (indirect string, ...): main ... <2><51>: Abbrev Number: 1 (DW_TAG_formal_parameter) <52> DW_AT_name : (indirect string, ...): argc ... <2><5d>: Abbrev Number: 1 (DW_TAG_formal_parameter) <5e> DW_AT_name : (indirect string, ...): argv ... <62> DW_AT_type : <0x77> ... <2><6a>: Abbrev Number: 0 ... <1><77>: Abbrev Number: 6 (DW_TAG_pointer_type) <78> DW_AT_byte_size : 8 <79> DW_AT_type : <0x7d> <1><7d>: Abbrev Number: 2 (DW_TAG_base_type) <7e> DW_AT_byte_size : 1 <7f> DW_AT_encoding : 8 (unsigned char) <80> DW_AT_name : (indirect string, ...): character(kind=1) <1><84>: Abbrev Number: 7 (DW_TAG_subprogram) <85> DW_AT_name : (indirect string, ...): prog ... Ifx and flang do not emit any debug info for a wrapper main method so the type is missing here. There was the possibility of actually adding a character*1 type variable to the Fortran executable, but both, ifx and gfortran chose to emit this variable's type as a DW_TAG_string_type of length one (instead of a character(kind=1), or whatever the respective compiler naming convention is). While string types are printed as character*LENGHT in the fortran language part (e.g. when issuing a 'ptype') they do not generate any symbols inside GDB. In read.c it says /* These dies have a type, but processing them does not create a symbol or recurse to process the children. Therefore we can read them on-demand through read_type_die. */ So they did not add any output to 'info types'. Only flang did emit a character type here. As adding a type would have a) not solved the problem for ifx and would have b) somehow hidden the curious behavior of gfortran, instead, the check for this character type was chagened to optional with the check_optional_entry to allow for the symbols's absence and to allow flang and ifx to pass this test as well. Second, the line checked for s1 was hardcoded as 37 in the test. Given that the type is actually defined on line 41 (which is what is emitted by ifx) it even seems wrong. The line check for s1 was changed to actually check for 41 and a gfortran bug has been filed here https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105454 The test is now marked as xfail for gfortran. Third, the whole test of checking for the 'Type s1' in info types seemed questionable. The type s1 is declared iside the scope of the Fortran program info_types_test. Its DIE however is emitted as a child of the whole compilation unit making it visible outside of the program's scope. The 'info types' command checks for types stored in the GLOBAL_BLOCK, or STATIC_BLOCKm wgucm according to block.h The GLOBAL_BLOCK contains all the symbols defined in this compilation whose scope is the entire program linked together. The STATIC_BLOCK contains all the symbols whose scope is the entire compilation excluding other separate compilations. so for gfortran, the type shows up in the output of 'info types'. For flang and ifx on the other hand this is not the case. The two compilers emit the type (correctly) as a child of the Fortran program, thus not adding it to either, the GLOBAL_BLOCK nor the LOCAL_BLOCK. A bug has been opened for the gfortran scoping issue: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105454 While the most correct change might have been removing the check for s1, the change made here was to only check for this type in case of gfortran being used as the compiler, as this check also covers the declaration line issue mentioned above. A comment was added to maybe remove this check once the scoping issue is resolved (and it starts to fail with newer gfortran versions). The one used to test these changes was 13.0.
2022-05-31testsuite, fortran: add compiler dependent types to dynamic-ptype-whatisNils-Christian Kempke1-38/+41
The test was earlier not using the compiler dependent type print system in fortran.exp. I changed this. It should generally improve the test performance for different compilers. For ifx and gfortran I do not see any failures.
2022-05-31testsuite, fortran: add required external keywordNils-Christian Kempke1-0/+1
Currenlty, ifx/ifort cannot compile the given executable as it is not valid Fortran. It is missing the external keyword on the no_arg_subroutine. Gfortran compiles the example but this is actually a bug and there is an open gcc ticket for this here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=50377 Adding the keyword does not change the gfortran compiling of the example. It will, however, prevent a future fail once 50377 has been addressed.
2022-05-31gdb/testsuite: disable charset.exp for intel compilersNils-Christian Kempke1-0/+5
The test specifically tests for the Fortran CHARACTER(KIND=4) which is not available in ifx/ifort. Since the other characters are also printed elsewhere, we disable this test for the unsupported compilers.
2022-05-31gdb/testsuite: add Fortran compiler identification to GDBCristian Sandu8-13/+14
This commit adds a separate Fortran compiler identification mechanism to the testsuite, similar to the existing one for C/C++. Before this change, the options and version for the Fortran compiler specified when running the testsuite with F90_FOR_TARGET set, was detected via its respective C compiler. So running the testsuite as make check TEST=gdb.fortran/*.exp CC_FOR_TARGET=gcc F90_FOR_TARGET=ifx or even make check TEST=gdb.fortran/*.exp F90_FOR_TARGET=ifx would use the gcc compiler inside the procedures get_compiler_info and test_compiler_info to identify compiler flags and the compiler version. This could sometimes lead to unpredictable outputs. It also limited testsuite execution to combinations where C and Fortran compiler would come from the same family of compiers (gcc/gfortran, icc/ifort, icx/ifx, clang/flang ..). This commit enables GDB to detect C and Fortran compilers independently of each other. As most/nearly all Fortran compilers have a mechanism for preprocessing files in a C like fashion we added the exact same meachnism that already existed for C/CXX. We let GDB preprocess a file with the compilers Fortran preprocessor and evaluate the preprocessor defined macros in that file. This enables GDB to properly run heterogeneous combinations of C and Fortran compilers such as CC_FOR_TARGET='gcc' and F90_FOR_TARGET='ifort' or enables one to run the testsuite without specifying a C compiler as in make check TESTS=gdb.fortran/*.exp F90_FOR_TARGET='ifx' make check TESTS=gdb.fortran/*.exp F90_FOR_TARGET='flang' On the other hand this also requires one to always specify a identification mechanism for Fortran compilers in the compiler.F90 file. We added identification for GFORTRAN, FLANG (CLASSIC and LLVM) IFX, IFORT, and ARMFLANG for now. Classic and LLVM flang were each tested with their latest releases on their respective release pages. Both get recognized by the new compiler identification and we introduced the two names flang-classic and flang-llvm to distinguish the two. While LLVM flang is not quite mature enough yet for running the testsuite we still thought it would be a good idea to include it already. For this we added a case for the fortran_main procedure. LLVM flang uses 'MAIN__' as opposed to classic flang which uses 'MAIN_' here. We did not have the possibility to test ARMFLANG - the versioning scheme here was extracted from its latest online documentation. We changed the test_compiler_info procedure to take another optional argument, the language string, which will be passed though to the get_compiler_info procedure. Passing 'f90' or 'c++' here will then trigger the C++/Fortran compiler identification within get_compiler_info. The latter procedure was extended to also handle the 'f90' argument (similarly to the already existing 'c++' one). Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
2022-05-16gdb/testsuite: fix "continue outside of loop" TCL errorsBruno Larsen28-32/+32
Many test cases had a few lines in the beginning that look like: if { condition } { continue } Where conditions varied, but were mostly in the form of ![runto_main] or [skip_*_tests], making it quite clear that this code block was supposed to finish the test if it entered the code block. This generates TCL errors, as most of these tests are not inside loops. All cases on which this was an obvious mistake are changed in this patch.
2022-05-10gdb/testsuite: fix testsuite regressions for unix/-m32 boardNils-Christian Kempke3-21/+86
This commit fixes two regressions introduced by 891e4190ba705373eec7b374209478215fff5401. Reason for the failures was, that on a 32 bit machine the maximum array length as well as the maximum allocatable memory for arrays (in bytes) both seem to be limited by the maximum value of a 4 byte (signed) Fortran integer. This lead to compiler errors/unexpected behavior when compiling/running the test with the -m32 board. This behavior is compiler dependent and can differ for different compiler implementations, but generally, it seemed like a good idea to simply avoid such situations. The affected tests check for GDB's overflow behavior when using KIND parameters with GDB implemented Fortran intrinsic functions. If these KIND parameters are too small to fit the actual intrinsic function's result, an overflow is expected. This was done for 1, 2, and 4 byte overflows. The last one caused problems, as it tried to allocate arrays of length/byte-size bigger than the 4 byte signed integers which would then be used with the LBOUND/UBOUND/SIZE intrinsics. The tests were adapted to only execute the 4 byte overflow tests when running on targets with 64 bit. For this, the compiled tests evaluate the byte size of a C_NULL_PTR via C_SIZEOF, both defined in the ISO_C_BINDING module. The ISO_C_BINDING constant C_NULL_PTR is a Fortran 2003, the C_SIZEOF a Fortran 2008 extension. Both have been implemented in their respective compilers for while (e.g. C_SIZEOF is available since gfortran 4.6). If this byte size evaluates to less than 8 we skip the 4 byte overflow tests in the compiled tests of size.f90 and lbound-ubound.f90. Similarly, in the lbound-ubound.exp testsfile we skip the 4 byte overflow tests if the procedure is_64_target evaluates to false. In size.f90, additionally, the to-be-allocated amount of bytes did not fit into 4 byte signed integers for some of the arrays, as it was approximately 4 times the maximum size of a 4 byte signed integer. We adapted the dimensions of the arrays in question as the meaningfulness of the test does not suffer from this. With this patch both test run fine with the unix/-m32 board and gcc/gfortran (9.4) as well as the standard board file. We also thought about completely removing the affected test from the testsuite. We decided against this as the 32 bit identification comes with Fortran 2008 and removing tests would have decreased coverage. A last change that happened with this patch was due to gfortran's and ifx's type resolution when assigning big constants to Fortran Integer*8 variables. Before the above changes this happened in a parameter statement. Here, both compilers happily accepted a line like integer*8, parameter :: var = 2147483647 + 5. After this change the assignment is not done as a parameter anymore, as this triggered compile time overflow errors. Instead, the assignment is done dynamically, depending on the kind of machine one is on. Sadly, just changing this line to integer*8 :: var var = 2147483647 + 5 does not work with ifx (or flang for that matter, they behave similarly here). It will create an integer overflow in the addition as ifx deduces the type the additon is done in as Integer*4. So var will actually contain the value -2147483644 after this. The lines integer*8 :: var var = 2147483652 on the other hand fail to compile with gfortran (9.4.0) as the compiler identifies an Integer overflow here. Finally, to make this work with all three compilers an additional parameter has been introduced integer*8, parameter :: helper = 2147483647 integer*8 :: var var = helper + 5. This works on all 3 compilers as expected. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29053 Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29054
2022-04-25gdb/fortran: Support for assumed rank zerorupothar2-0/+9
If a variable is passed to function in FORTRAN as an argument the variable is treated as an array with rank zero. GDB currently does not support the case for assumed rank 0. This patch provides support for assumed rank 0 and updates the testcase as well. Without patch: Breakpoint 1, arank::sub1 (a=<error reading variable: failed to resolve dynamic array rank>) at assumedrank.f90:11 11 PRINT *, RANK(a) (gdb) p a failed to resolve dynamic array rank (gdb) p rank(a) failed to resolve dynamic array rank With patch: Breakpoint 1, arank::sub1 (a=0) at assumedrank.f90:11 11 PRINT *, RANK(a) (gdb) p a $1 = 0 (gdb) p rank(a) $2 = 0
2022-04-11gdb/fortran/testsuite: add complex from integers testNils-Christian Kempke2-1/+12
When working on the files I noted that there was no actual test for a COMPLEX built from two INTEGERS. I added that now for completion.
2022-04-11gdb/fortran: rewrite intrinsic handling and add some missing overloadsNils-Christian Kempke5-70/+351
The operators FLOOR, CEILING, CMPLX, LBOUND, UBOUND, and SIZE accept (some only with Fortran 2003) the optional parameter KIND. This parameter determines the kind of the associated return value. So far, implementation of this kind parameter has been missing in GDB. Additionally, the one argument overload for the CMPLX intrinsic function was not yet available. This patch adds overloads for all above mentioned functions to the Fortran intrinsics handling in GDB. It re-writes the intrinsic function handling section to use the helper methods wrap_unop_intrinsic/wrap_binop_intrinsic/wrap_triop_intrinsic. These methods define the action taken when a Fortran intrinsic function is called with a certain amount of arguments (1/2/3). The helper methods fortran_wrap2_kind and fortran_wrap3_kind have been added as equivalents to the existing wrap and wrap2 methods. After adding more overloads to the intrinsics handling, some of the operation names were no longer accurate. E.g. UNOP_FORTRAN_CEILING has been renamed to FORTRAN_CEILING as it is no longer a purely unary intrinsic function. This patch also introduces intrinsic functions with one, two, or three arguments to the Fortran parser and the UNOP_OR_BINOP_OR_TERNOP_INTRINSIC token has been added.
2022-04-11gdb/fortran: Change GDB print for fortran default typesNils-Christian Kempke2-14/+9
Currently, when asking GDB to print the type of a Fortran default type such as INTEGER or REAL, GDB will return the default name of that type, e.g. "integer"/"real": (gdb) ptype integer type = integer (gdb) ptype real type = real For LOGICAL and COMPLEX it would return the actual underlying types (gdb) ptype logical type = logical*4 (gdb) ptype complex type = complex*4 Similarly, GDB would print the default integer type for the underlying default type: (gdb) ptype integer*4 type = integer (gdb) ptype real*4 type = real (gdb) ptype logical type = logical*4 (gdb) ptype complex*4 type = complex*4 This is inconsistent and a bit confusing. Both options somehow indicate what the internal underlying type for the default type is - but I think the logical/complex version is a bit clearer. Consider again: (gdb) ptype integer type = integer This indicates to a user that the type of "integer" is Fortran's default integer type. Without examining "ptype integer*4" I would expect, that any variable declared integer in the actual code would also fit into a GDB integer. But, since we cannot adapt out internal types to the compiler flags used at compile time of a debugged binary, this might be wrong. Consider debugging Fortran code compiled with GNU and e.g. the "-fdefault-integer-8" flag. In this case the gfortran default integer would be integer*8 while GDB internally still would use a builtin_integer, so an integer of the size of an integer*4 type. On the other hand having GDB print (gdb) ptype integer type = integer*4 makes this clearer. I would still be tempted to fit a variable declared integer in the code into a GDB integer - but at least ptype would directly tell me what is going on. Note, that when debugging a binary compiled with "-fdefault-integer-8" a user will always see the actual underlying type of any variable declared "integer" in the Fortran code. So having the code program test integer :: a = 5 print *, a ! breakpt end program test will, when breaking at breakpt print (gdb) ptype var type = integer(kind=4) or (gdb) ptype var type = integer(kind=8) depending on the compiler flag. This patch changes the outputs for the REAL and INTEGER default types to actually print the internally used type over the default type name. The new behavior for the above examples is: (gdb) ptype integer type = integer*4 (gdb) ptype integer*4 type = integer*4 Existing testcases have been adapted to reflect the new behavior.
2022-04-11gdb/fortran: clean-up Fortran intrinsic typesNils-Christian Kempke1-4/+27
The currently implemented intrinsic type handling for Fortran missed some tokens and their parsing. While still not all Fortran type kinds are implemented this patch at least makes the currently handled types consistent. As an example for what this patch does, consider the intrinsic type INTEGER. GDB implemented the handling of the keywords "integer" and "integer_2" but missed "integer_4" and "integer_8" even though their corresponding internal types were already available as the Fortran builtin types builtin_integer and builtin_integer_s8. Similar problems applied to LOGICAL, REAL, and COMPLEX. This patch adds all missing tokens and their parsing. Whenever a section containing the type handling was touched, it also was reordered to be in a more easy to grasp order. All INTEGER/REAL/LOGICAL/COMPLEX types were grouped together and ordered ascending in their size making a missing one more easy to spot. Before this change GDB would print the following when tyring to use the INTEGER keywords: (gdb) set language fortran (gdb) ptype integer*1 unsupported kind 1 for type integer (gdb) ptype integer_1 No symbol table is loaded. Use the "file" command. (gdb) ptype integer*2 type = integer*2 (gdb) ptype integer_2 type = integer*2 (gdb) ptype integer*4 type = integer (gdb) ptype integer_4 No symbol table is loaded. Use the "file" command. (gdb) ptype integer*8 type = integer*8 (gdb) ptype integer_8 No symbol table is loaded. Use the "file" command. (gdb) ptype integer type = integer With this patch all keywords are available and the GDB prints: (gdb) set language fortran (gdb) ptype integer*1 type = integer*1 (gdb) ptype integer_1 type = integer*1 (gdb) ptype integer*2 type = integer*2 (gdb) ptype integer_2 type = integer*2 (gdb) ptype integer*4 type = integer*4 (gdb) ptype integer_4 type = integer*4 (gdb) ptype integer*8 type = integer*8 (gdb) ptype integer_8 type = integer*8 (gdb) ptype integer type = integer The described changes have been applied to INTEGER, REAL, COMPLEX, and LOGICAL. Existing testcases have been adapted to reflect the new behavior. Tests for formerly missing types have been added.
2022-04-11gdb/fortran: change default logical type to builtin_logicalNils-Christian Kempke1-4/+4
According to the Fortran standard, logical is of the size of a 'single numeric storage unit' (just like real and integer). For gfortran, flang and ifx/ifort this storage unit (or the default logical type) is of size kind 4, actually occupying 4 bytes of storage, and so the default type for logical expressions in Fortran should probably also be Logical*4 and not Logical*2. I adapted GDB's behavior to be in line with gfortran/ifort/ifx/flang.
2022-04-11gdb/fortran: fix complex type in Fortran builtin typesNils-Christian Kempke1-1/+1
Before this patch things like (gdb) ptype complex*8 complex*16 (gdb) ptype complex*4 complex*8 were possible in GDB, which seems confusing for a user. The reason is a mixup in the implementation of the Fortran COMPLEX type. In Fortran the "*X" after a type would normally (I don't think this is language required) specify the type's size in memory. For the COMPLEX type the kind parameters usually (at least for GNU, Intel, Flang) specify not the size of the whole type but the size of the individual two REALs used to form the COMPLEX. Thus, a COMPLEX*4 will usually consist of two REAL*4s. Internally this type was represented by a builtin_complex_s8 - but here I think the s8 actually meant the raw size of the type. This is confusing and I renamed the types (e.g. builting_complex_s8 became builtin_complex_s4 according to its most common useage) and their printed names to their language equivalent. Additionally, I added the default COMPLEX type "COMPLEX" being the same as a COMPLEX*4 (as is normally the case) and removed the latter. I added a few tests for this new behavior as well. The new behavior is (gdb) ptype complex*8 complex*8 (gdb) ptype complex*4 complex*4
2022-04-11gdb/f-lang: add Integer*1 to Fortran builtin typesNils-Christian Kempke2-1/+3
Add builtin_integer_s1 of size TARGET_CHAR_BIT to Fortran builtin types.
2022-04-08gdb/fortran: print fortran extended types with ptypeBernhard Heckel1-17/+48
Add the print of the base-class of an extended type to the output of ptype. This requires the Fortran compiler to emit DW_AT_inheritance for the extended type. Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
2022-04-08gdb/fortran: add support for accessing fields of extended typesBernhard Heckel2-0/+228
Fortran 2003 supports type extension. This patch allows access to inherited members by using their fully qualified name as described in the Fortran standard. In doing so the patch also fixes a bug in GDB when trying to access the members of a base class in a derived class via the derived class' base class member. This patch fixes PR22497 and PR26373 on GDB side. Using the example Fortran program from PR22497 program mvce implicit none type :: my_type integer :: my_int end type my_type type, extends(my_type) :: extended_type end type extended_type type(my_type) :: foo type(extended_type) :: bar foo%my_int = 0 bar%my_int = 1 print*, foo, bar end program mvce and running this with GDB and setting a BP at 17: Before: (gdb) p bar%my_type A syntax error in expression, near `my_type'. (gdb) p bar%my_int There is no member named my_int. (gdb) p bar%my_type%my_int A syntax error in expression, near `my_type%my_int'. (gdb) p bar $1 = ( my_type = ( my_int = 1 ) ) After: (gdb) p bar%my_type $1 = ( my_int = 1 ) (gdb) p bar%my_int $2 = 1 # this line requires DW_TAG_inheritance to work (gdb) p bar%my_type%my_int $3 = 1 (gdb) p bar $4 = ( my_type = ( my_int = 1 ) ) In the above example "p bar%my_int" requires the compiler to emit information about the inheritance relationship between extended_type and my_type which gfortran and flang currently do not de. The respective issue gcc/49475 has been put as kfail. Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com> Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=26373 https://sourceware.org/bugzilla/show_bug.cgi?id=22497
2022-04-07gdb/fortran: fix fetching assumed rank array contentAndrew Burgess2-11/+23
Commit: commit df7a7bdd9766adebc6b117c31bc617d81c1efd43 Date: Thu Mar 17 18:56:23 2022 +0000 gdb: add support for Fortran's ASSUMED RANK arrays Added support for Fortran assumed rank arrays. Unfortunately, this commit contained a bug that means though GDB can correctly calculate the rank of an assumed rank array, GDB can't fetch the contents of an assumed rank array. The history of this patch can be seen on the mailing list here: https://sourceware.org/pipermail/gdb-patches/2022-January/185306.html The patches that were finally committed can be found here: https://sourceware.org/pipermail/gdb-patches/2022-March/186906.html The original patches did support fetching the array contents, it was only the later series that introduced the regression. The problem is that when calculating the array rank the result is a count of the number of ranks, i.e. this is a 1 based result, 1, 2, 3, etc. In contrast, when computing the details of any particular rank the value passed to the DWARF expression evaluator should be a 0 based rank offset, i.e. a 0 based number, 0, 1, 2, etc. In the patches that were originally merged, this was not the case, and we were passing the 1 based rank number to the expression evaluator, e.g. passing 1 when we should pass 0, 2 when we should pass 1, etc. As a result the DWARF expression evaluator was reading the wrong (undefined) memory, and returning garbage results. In this commit I have extended the test case to cover checking the array contents, I've then ensured we make use of the correct rank value, and extended some comments, and added or adjusted some asserts as appropriate.
2022-04-03gdb: add support for Fortran's ASSUMED RANK arraysrupothar2-0/+127
This patch adds a new dynamic property DYN_PROP_RANK, this property is read from the DW_AT_rank attribute and stored within the type just like other dynamic properties. As arrays with dynamic ranks make use of a single DW_TAG_generic_subrange to represent all ranks of the array, support for this tag has been added to dwarf2/read.c. The final piece of this puzzle is to add support in gdbtypes.c so that we can resolve an array type with dynamic rank. To do this the existing resolve_dynamic_array_or_string function is split into two, there's a new resolve_dynamic_array_or_string_1 core that is responsible for resolving each rank of the array, while the now outer resolve_dynamic_array_or_string is responsible for figuring out the array rank (which might require resolving a dynamic property) and then calling the inner core. The resolve_dynamic_range function now takes a rank, which is passed on to the dwarf expression evaluator. This rank will only be used in the case where the array itself has dynamic rank, but we now pass the rank in all cases, this should be harmless if the rank is not needed. The only small nit is that resolve_dynamic_type_internal actually handles resolving dynamic ranges itself, which now obviously requires us to pass a rank value. But what rank value to use? In the end I just passed '1' through here as a sane default, my thinking is that if we are in resolve_dynamic_type_internal to resolve a range, then the range isn't part of an array with dynamic rank, and so the range should actually be using the rank value at all. An alternative approach would be to make the rank value a gdb::optional, however, this ends up adding a bunch of complexity to the code (e.g. having to conditionally build the array to pass to dwarf2_evaluate_property, and handling the 'rank - 1' in resolve_dynamic_array_or_string_1) so I haven't done that, but could, if people think that would be a better approach. Finally, support for assumed rank arrays was only fixed very recently in gcc, so you'll need the latest gcc in order to run the tests for this. Here's an example test program: PROGRAM arank REAL :: a1(10) CALL sub1(a1) CONTAINS SUBROUTINE sub1(a) REAL :: a(..) PRINT *, RANK(a) END SUBROUTINE sub1 END PROGRAM arank Compiler Version: gcc (GCC) 12.0.0 20211122 (experimental) Compilation command: gfortran assumedrank.f90 -gdwarf-5 -o assumedrank Without Patch: gdb -q assumedrank Reading symbols from assumedrank... (gdb) break sub1 Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10. (gdb) run Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank Breakpoint 1, arank::sub1 (a=<unknown type in /home/rupesh/STAGING-BUILD-2787 /bin/assumedrank, CU 0x0, DIE 0xd5>) at assumedrank.f90:10 10 PRINT *, RANK(a) (gdb) print RANK(a) 'a' has unknown type; cast it to its declared type With patch: gdb -q assumedrank Reading symbols from assumedrank... (gdb) break sub1 Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10. (gdb) run Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank Breakpoint 1, arank::sub1 (a=...) at assumedrank.f90:10 10 PRINT *, RANK(a) (gdb) print RANK(a) $1 = 1 (gdb) ptype a type = real(kind=4) (10) (gdb) Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
2022-03-16Make gdb.fortran/{array-slices,lbound-ubound} work against gdbserverPedro Alves3-15/+45
gdb.fortran/array-slices.exp and gdb.fortran/lbound-ubound.exp were recently disabled unless testing with the native target, because they rely on inferior I/O. However, when testing against gdbserver using the native-gdbserver/native-extended-gdbserver boards, we do have access to inferior I/O. The right way to check whether the board can do I/O, is via checking the gdb,noinferiorio board variable. Switch to using that. And then, tweak the testcases to expect output to appear in inferior_spawn_id, instead of gdb_spawn_id. When testing against the native target, inferior_spawn_id is the same as gdb_spawn_id. When testing against gdbserver, it maps to gdbserver_spawn_id. This exposed a buglet in gdb.fortran/array-slices.f90's show_1d subroutine -- it was missing printing newline at the end of the "Expected GDB Output" text, leading to a test timeout. All other subroutines end with advance=yes, except this one. Fix it by using advance=yes here too. Change-Id: I4640729f334431cfc24b0917e7d3977b677c6ca5
2022-02-28Fix gdb.fortran "failed to extract expected results" errorsKeith Seitz2-0/+12
When running the gdb.fortran tests array-slices.exp and lbound-ubound.exp, the test suite throws several ERRORs on native-gdbserver/-m{32,64}, and native-extended-gdbsever/-m{32,64}: [on native-extended-gdbserver/-m64] Running /home/keiths/work/gdb/branches/testsuite-errors/linux/gdb/testsuite/../../../src/gdb/testsuite/gdb.fortran/array-slices.exp ... ERROR: failed to extract expected results ERROR: failed to extract expected results Running /home/keiths/work/gdb/branches/testsuite-errors/linux/gdb/testsuite/../../../src/gdb/testsuite/gdb.fortran/lbound-ubound.exp ... ERROR: failed to extract expected results for lbound This occurs because the tests require inferior I/O which we do not have access to while using these targets. This patch skips these tests when running on non-native targets.
2022-02-11gdb/fortran: support ptype and print commands for namelist variablesBhuvanendra Kumar N2-0/+77
Gfortran supports namelists (a Fortran feature); it emits DW_TAG_namelist and DW_TAG_namelist_item dies. But gdb does not process these dies and does not support 'print' or 'ptype' commands on namelist variables. An attempt to print namelist variables results in gdb bailing out with the error message as shown below. (gdb) print nml No symbol "nml" in current context. This commit is to make the print and ptype commands work for namelist variables and its items. Sample output of these commands is shared below, with fixed gdb. (gdb) ptype nml type = Type nml integer(kind=4) :: a integer(kind=4) :: b End Type nml (gdb) print nml $1 = ( a = 10, b = 20 )
2022-01-31gdb, testsuite, fortran: adapt info symbol expected output for intel compilersNils-Christian Kempke1-2/+27
Info symbol is expected to print the symbol table name of a symbol, since symbol lookup happens via the minimal symbol table. This name corresponds to the linkage name in the full symbol table. For gfortran (and maybe others) these names currently have the form XXXX.NUMBER where XXXX is the symbol name and NUMBER a compiler generated appendix for mangling. An example taken from the modified nested-funcs-2.exp would be ~~~~ $ objdump -t ./outputs/gdb.fortran/nested-funcs-2/nested-funcs-2 | grep \ increment 00000000000014ab l F .text 0000000000000095 increment.3883 000000000000141c l F .text 000000000000008f increment_program_global.3881 ~~~~ This mangled name gets recognized by the Ada demangler/decoder and decoded as Ada to XXXX (setting the symbol language to Ada). This leads to output of XXXX over XXXX.NUMBER for info symbol on gfortran symbols. For ifort and ifx the generated linkage names have the form SCOPEA_SCOPEB_XXXX_ which are not recognized by the Ada decoder (or any other demangler for that matter) and thus printed as is. The respective objdump in the above case looks like ~~~~ $ objdump -t ./outputs/gdb.fortran/nested-funcs-2/nested-funcs-2 | grep \ increment 0000000000403a44 l F .text 0000000000000074 contains_keyword_IP_increment_ 0000000000403ab8 l F .text 0000000000000070 contains_keyword_IP_increment_program_global_ ~~~~ In the unmodified testcase this results in 'fails' when ran with the intel compilers: ~~~~ >> make check RUNTESTFLAGS="gdb.fortran/nested-funcs-2.exp \ GDBFLAGS='$GDBFLAGS' CC_FOR_TARGET='icpc' F90_FOR_TARGET='ifort'" ... === gdb Summary === \# of expected passes 80 \# of unexpected failures 14 ~~~~ Note that there is no Fortran mangling standard. We keep the gfortran behavior as is and modify the test to reflect ifx and ifort mangled names which fixes above fails. Signed-off-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
2022-01-19Respect `set print array-indexes' with Fortran arraysMaciej W. Rozycki1-0/+200
Add `set print array-indexes' handling for Fortran arrays. Currently the setting is ignored and indices are never shown. Keep track of the most recent index handled so that any outstanding repeated elements printed when the limit set by `set print elements' is hit have the correct index shown. Output now looks like: (gdb) set print array-indexes on (gdb) print array_1d $1 = ((-2) = 1, (-1) = 1, (0) = 1, (1) = 1, (2) = 1) (gdb) set print repeats 4 (gdb) set print elements 12 (gdb) print array_2d $2 = ((-2) = ((-2) = 2, <repeats 5 times>) (-1) = ((-2) = 2, <repeats 5 times>) (0) = ((-2) = 2, (-1) = 2, ...) ...) (gdb) for a 5-element vector and a 5 by 5 array filled with the value of 2.
2022-01-19Respect `set print repeats' with Fortran arraysMaciej W. Rozycki5-0/+320
Implement `set print repeats' handling for Fortran arrays. Currently the setting is ignored and always treated as if no limit was set. Unlike the generic array walker implemented decades ago the Fortran one is a proper C++ class. Rather than trying to mimic the old walker then, which turned out a bit of a challenge where interacting with the `set print elements' setting, write it entirely from scratch, by adding an extra specialization handler method for processing dimensions other than the innermost one and letting the specialization class call the `walk_1' method from the handler as it sees fit. This way repeats can be tracked and the next inner dimension recursed into as a need arises only, or unconditionally in the base class. Keep track of the dimension number being handled in the class rather as a parameter to the walker so that it does not have to be passed across by the specialization class. Use per-dimension element count tracking, needed to terminate processing early when the limit set by `set print elements' is hit. This requires extra care too where the limit triggers exactly where another element that is a subarray begins. In that case rather than recursing we need to terminate processing or lone `(...)' would be printed. Additionally if the skipped element is the last one in the current dimension we need to print `...' by hand, because `continue_walking' won't print it at the upper level, because it can see the last element has already been taken care of. Preserve the existing semantics of `set print elements' where the total count of the elements handled is matched against the trigger level which is unlike with the C/C++ array printer where the per-dimension element count is used instead. Output now looks like: (gdb) set print repeats 4 (gdb) print array_2d $1 = ((2, <repeats 5 times>) <repeats 5 times>) (gdb) set print elements 12 (gdb) print array_2d $2 = ((2, <repeats 5 times>) (2, <repeats 5 times>) (2, 2, ...) ...) (gdb) for a 5 by 5 array filled with the value of 2. Amend existing test cases accordingly that rely on the current incorrect behavior and explicitly request that there be no limit for printing repeated elements there. Add suitable test cases as well covering sliced arrays in particular. Co-Authored-By: Andrew Burgess <andrew.burgess@embecosm.com>
2022-01-01Automatic Copyright Year update after running gdb/copyright.pyJoel Brobecker119-119/+119
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script.
2021-10-28[gdb/testsuite] Update some test-cases to GPLv3Tom de Vries8-8/+8
I noticed some files in the test-suite have GPLv2 notices. Update these to GPLv3.
2021-10-13[gdb/exp] Improve <error reading variable> messageTom de Vries2-0/+74
When printing a variable x in a subroutine foo: ... subroutine foo (x) integer(4) :: x (*) x(3) = 1 end subroutine foo ... where x is an array with unknown bounds, we get: ... $ gdb -q -batch outputs/gdb.fortran/array-no-bounds/array-no-bounds \ -ex "break foo" \ -ex run \ -ex "print x" Breakpoint 1 at 0x4005cf: file array-no-bounds.f90, line 18. Breakpoint 1, foo (x=...) at array-no-bounds.f90:18 18 x(3) = 1 $1 = <error reading variable> ... Improve the error message by printing the details of the error, such that we have instead: ... $1 = <error reading variable: failed to get range bounds> ... This is a change in gdb/valprint.c, and grepping through the sources reveals that this is a common pattern. Tested on x86_64-linux.
2021-10-13[gdb/testsuite] Fix gdb.fortran/call-no-debug.exp with native-gdbserverTom de Vries1-1/+3
When running test-case gdb.fortran/call-no-debug.exp with target board native-gdbserver, I run into: ... (gdb) PASS: gdb.fortran/call-no-debug.exp: print string_func_ (&'abcdefg', 3) call (integer) string_func_ (&'abcdefg', 3)^M $2 = 0^M (gdb) FAIL: gdb.fortran/call-no-debug.exp: call (integer) string_func_ (&'abcdefg', 3) ... The problem is that gdb_test is used to match inferior output. Fix this by using gdb_test_stdio. Tested on x86_64-linux.
2021-10-11[gdb/testsuite] Fix FAIL in gdb.mi/mi-var-child-f.expTom de Vries6-0/+35
When running test-case gdb.mi/mi-var-child-f.exp on openSUSE Tumbleweed (with glibc 2.34) I run into: ... (gdb) ^M PASS: gdb.mi/mi-var-child-f.exp: mi runto prog_array Expecting: ^(-var-create array \* array[^M ]+)?(\^done,name="array",numchild="[0-9]+",value=".*",type=.*,has_more="0"[^M ]+[(]gdb[)] ^M [ ]*) -var-create array * array^M &"Attempt to use a type name as an expression.\n"^M ^error,msg="-var-create: unable to create variable object"^M (gdb) ^M FAIL: gdb.mi/mi-var-child-f.exp: create local variable array (unexpected output) ... The problem is that the name array is used both: - as the name for a local variable - as the name of a type in glibc, in file malloc/dynarray-skeleton.c, as included by nss/nss_files/files-hosts.c. Fix this by ignoring the shared lib symbols. Likewise in a couple of other fortran tests. Tested on x86_64-linux.
2021-10-09[gdb/testsuite] Fix fortran module tests with stressed cpuTom de Vries2-0/+12
When running these test-cases: - gdb.fortran/info-modules.exp - gdb.fortran/module.exp - gdb.mi/mi-fortran-modules.exp in conjunction with: ... $ stress -c $(($(cat /proc/cpuinfo | grep -c "^processor") + 1)) ... I run into timeouts. Fix this by using: - "set auto-solib-add off" to avoid symbols of shared libs (which doesn't work for libc, now that libpthread_name_p has been updated to match libc) - "nosharedlibrary" to avoid symbols of libc Tested on x86_64-linux. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28133
2021-09-30gdb/testsuite: make runto_main not pass no-message to runtoSimon Marchi35-35/+0
As follow-up to this discussion: https://sourceware.org/pipermail/gdb-patches/2020-August/171385.html ... make runto_main not pass no-message to runto. This means that if we fail to run to main, for some reason, we'll emit a FAIL. This is the behavior we want the majority of (if not all) the time. Without this, we rely on tests logging a failure if runto_main fails, otherwise. They do so in a very inconsisteny mannet, sometimes using "fail", "unsupported" or "untested". The messages also vary widly. This patch removes all these messages as well. Also, remove a few "fail" where we call runto (and not runto_main). by default (without an explicit no-message argument), runto prints a failure already. In two places, gdb.multi/multi-re-run.exp and gdb.python/py-pp-registration.exp, remove "message" passed to runto. This removes a few PASSes that we don't care about (but FAILs will still be printed if we fail to run to where we want to). This aligns their behavior with the rest of the testsuite. Change-Id: Ib763c98c5f4fb6898886b635210d7c34bd4b9023
2021-09-25[gdb/testsuite] Minimize gdb restartsTom de Vries3-7/+2
Minimize gdb restarts, applying the following rules: - don't use prepare_for_testing unless necessary - don't use clean_restart unless necessary Also, if possible, replace build_for_executable + clean_restart with prepare_for_testing for brevity. Touches 68 test-cases. Tested on x86_64-linux.
2021-09-01[gdb/testsuite] Fix gdb.fortran/call-no-debug.exp symbol searchTom de Vries1-7/+12
On openSUSE Tumbleweed I ran into: ... (gdb) ptype outstring_func.part^M No symbol "outstring_func" in current context.^M (gdb) FAIL: gdb.fortran/call-no-debug.exp: ptype outstring_func.part ... while on openSUSE Leap 15.2 I have instead: ... (gdb) ptype string_func_^M type = <unknown return type> ()^M (gdb) PASS: gdb.fortran/call-no-debug.exp: ptype string_func_ ... The difference is caused by the result for "info function string_func", which is this for the latter: ... (gdb) info function string_func^M All functions matching regular expression "string_func":^M ^M Non-debugging symbols:^M 0x000000000040089c string_func_^M ... but this for the former: ... (gdb) info function string_func^M All functions matching regular expression "string_func":^M ^M Non-debugging symbols:^M 0x00000000004012bb string_func_^M 0x00007ffff7bac5b0 outstring_func.part^M 0x00007ffff7bb1a00 outstring_func.part^M ... The extra symbols are part of glibc: ... $ nm /lib64/libc.so.6 | grep string_func 00000000000695b0 t outstring_func.part.0 000000000006ea00 t outstring_func.part.0 ... If glibc debug info is installed, we get instead: ... (gdb) info function string_func^M All functions matching regular expression "string_func":^M ^M File /usr/src/debug/glibc-2.33-9.1.x86_64/stdio-common/vfprintf-internal.c:^M 236: static int outstring_func(int, size_t, const unsigned int *, FILE *);^M ^M File vfprintf-internal.c:^M 236: static int outstring_func(int, size_t, const unsigned char *, FILE *);^M ^M Non-debugging symbols:^M 0x00000000004012bb string_func_^M ... and the FAIL doesn't trigger. Fix this by calling "info function string_func" before starting the exec, such that only symbols of the exec are taken into account. Tested on x86_64-linux. gdb/testsuite/ChangeLog: 2021-09-01 Tom de Vries <tdevries@suse.de> * gdb.fortran/call-no-debug.exp: Avoid shared lib symbols for find_mangled_name calls.
2021-07-05[gdb/testsuite] Fix fail in gdb.fortran/ptype-on-functions.exp with gcc-7Tom de Vries1-1/+8
Since commit 05b85772061 "gdb/fortran: Add type info of formal parameter for clang" I see: ... (gdb) ptype say_string^M type = void (character*(*), integer(kind=4))^M (gdb) FAIL: gdb.fortran/ptype-on-functions.exp: ptype say_string ... The part of the commit causing the fail is: ... gdb_test "ptype say_string" \ - "type = void \\(character\\*\\(\\*\\), integer\\(kind=\\d+\\)\\)" + "type = void \\(character\[^,\]+, $integer8\\)" ... which fails to take into account that for gcc-7 and before, the type for string length of a string argument is int, not size_t. Fix this by allowing both $integer8 and $integer4. Tested on x86_64-linux, with gcc-7 and gcc-10. gdb/testsuite/ChangeLog: 2021-07-05 Tom de Vries <tdevries@suse.de> * gdb.fortran/ptype-on-functions.exp: Allow both $integer8 and $integer4 for size of string length.
2021-06-28gdb/fortran: Add type info of formal parameter for clang.Bhuvanendra Kumar N1-7/+29
Additional compiler generated formal parameter exist with clang and type information for the same is added accordingly. Also few kind parameter printing are removed which is not default for clang. Note: More details about this kind parameter omission while printing can be found with similar patch commit 0a709cba00d36d490482d0e8673e323ac1e897a6 Author Alok Kumar Sharma (alokkumar.sharma@amd.com) gdb/testsuite/ChangeLog: * gdb.fortran/ptype-on-functions.exp: Add type info of formal parameter for clang. Also removed the kind parameter for clang.
2021-06-08[gdb/testsuite] Disallow single argument in multi_lineTom de Vries1-1/+1
It's a common mistake of mine to do: ... set l [list "foo" "bar"] set re [multi_line $l] ... and to get "foo bar" while I was expecting "foo\r\nbar", which I get after doing instead: ... set re [multi_line {*}$l] ... Detect this type of mistake by erroring out in multi_line when only one argument is passed. Tested on x86_64-linux. gdb/testsuite/ChangeLog: 2021-06-08 Tom de Vries <tdevries@suse.de> * lib/gdb.exp (multi_line): Require more than one argument. * gdb.base/gdbinit-history.exp: Update multi_line call. * gdb.base/jit-reader.exp: Remove multi_line call. * gdb.fortran/dynamic-ptype-whatis.exp: Same.
2021-05-17gdb/fortran: test case modified to suit the clang behavior.Bhuvanendra Kumar N1-3/+10
As mentioned in the test case itself, depending on the fortran compiler used, class member names used in the print commands and also output of these print commands varies. Existing print commands and its output are suited for gfortran, hence they were failing with clang compiler and test case was modified accordingly for clang compiler. gdb/testsuite/ChangeLog: * gdb.base/class-allocatable-array.exp: Modified test for clang.
2021-05-11gdb/fortran: Breakpoint location is modified.Bhuvanendra Kumar N1-2/+2
Breakpoint location is modified to "return" statement which is outside the DO loop. Because the label 100 of DO loop should get executed for each iteration as shared in this external link: http://www-pnp.physics.ox.ac.uk/~gronbech/intfor/node18.html. flang compiler is following this fortran standard, whereas gfortran compiler is not following, hence the test case is passing with gfortran and failing with flang. but to correct this gfortran behavior, bug has been filed in bugzilla (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99816). As reported in the bug, with gfortran, label 100 of DO loop is reached only after the completion of the entire DO loop. Hence at label 100, all the array elements are set and printing of array element a(2) succeeds. whereas with flang, when we are at label 100 for first time, array element a(2) is not yet set, only a(1) is set, hence moving the breakpoint location to outside the DO loop, so that once we are outside the DO loop, we can print any of the array elements. This change in test case is done irrespective of any fortran compiler. gdb/testsuite/ChangeLog: * gdb.fortran/array-element.exp: Breakpoint location is modified.
2021-04-07gdb/fortran: handle dynamic types within arrays and structuresAndrew Burgess2-0/+251
This commit replaces this patch: https://sourceware.org/pipermail/gdb-patches/2021-January/174933.html which was itself a replacement for this patch: https://sourceware.org/pipermail/gdb-patches/2020-July/170335.html The motivation behind the original patch can be seen in the new test, which currently gives a GDB session like this: (gdb) ptype var8 type = Type type6 PTR TO -> ( Type type2 :: ptr_1 ) PTR TO -> ( Type type2 :: ptr_2 ) End Type type6 (gdb) ptype var8%ptr_2 type = PTR TO -> ( Type type2 integer(kind=4) :: spacer Type type1, allocatable :: t2_array(:) <------ Issue #1 End Type type2 ) (gdb) ptype var8%ptr_2%t2_array Cannot access memory at address 0x38 <------ Issue #2 (gdb) Issue #1: Here we see the abstract dynamic type, rather than the resolved concrete type. Though in some cases the user might be interested in the abstract dynamic type, I think that in most cases showing the resolved concrete type will be of more use. Plus, the user can always figure out the dynamic type (by source code inspection if nothing else) given the concrete type, but it is much harder to figure out the concrete type given only the dynamic type. Issue #2: In this example, GDB evaluates the expression in EVAL_AVOID_SIDE_EFFECTS mode (due to ptype). The value returned for var8%ptr_2 will be a non-lazy, zero value of the correct dynamic type. However, when GDB asks about the type of t2_array this requires GDB to access the value of var8%ptr_2 in order to read the dynamic properties. As this value was forced to zero (thanks to the use of EVAL_AVOID_SIDE_EFFECTS) then GDB ends up accessing memory at a base of zero plus some offset. Both this patch, and my previous two attempts, have all tried to resolve this problem by stopping EVAL_AVOID_SIDE_EFFECTS replacing the result value with a zero value in some cases. This new patch is influenced by how Ada handles its tagged typed. There are plenty of examples in ada-lang.c, but one specific case is ada_structop_operation::evaluate. When GDB spots that we are dealing with a tagged (dynamic) type, and we're in EVAL_AVOID_SIDE_EFFECTS mode, then GDB re-evaluates the child operation in EVAL_NORMAL mode. This commit handles two cases like this specifically for Fortran, a new fortran_structop_operation, and the already existing fortran_undetermined, which is where we handle array accesses. In these two locations we spot when we are dealing with a dynamic type and re-evaluate the child operation in EVAL_NORMAL mode so that we are able to access the dynamic properties of the type. The rest of this commit message is my attempt to record why my previous patches failed. To understand my second patch, and why it failed lets consider two expressions, this Fortran expression: (gdb) ptype var8%ptr_2%t2_array --<A> Operation: STRUCTOP_STRUCT --(1) Operation: STRUCTOP_STRUCT --(2) Operation: OP_VAR_VALUE --(3) Symbol: var8 Block: 0x3980ac0 String: ptr_2 String: t2_array And this C expression: (gdb) ptype ptr && ptr->a == 3 --<B> Operation: BINOP_LOGICAL_AND --(4) Operation: OP_VAR_VALUE --(5) Symbol: ptr Block: 0x45a2a00 Operation: BINOP_EQUAL --(6) Operation: STRUCTOP_PTR --(7) Operation: OP_VAR_VALUE --(8) Symbol: ptr Block: 0x45a2a00 String: a Operation: OP_LONG --(9) Type: int Constant: 0x0000000000000003 In expression <A> we should assume that t2_array is of dynamic type. Nothing has dynamic type in expression <B>. This is how GDB currently handles expression <A>, in all cases, EVAL_AVOID_SIDE_EFFECTS or EVAL_NORMAL, an OP_VAR_VALUE operation always returns the real value of the symbol, this is not forced to a zero value even in EVAL_AVOID_SIDE_EFFECTS mode. This means that (3), (5), and (8) will always return a real lazy value for the symbol. However a STRUCTOP_STRUCT will always replace its result with a non-lazy, zero value with the same type as its result. So (2) will lookup the field ptr_2 and create a zero value with that type. In this case the type is a pointer to a dynamic type. Then, when we evaluate (1) to figure out the resolved type of t2_array, we need to read the types dynamic properties. These properties are stored in memory relative to the objects base address, and the base address is in var8%ptr_2, which we already figured out has the value zero. GDB then evaluates the DWARF expressions that take the base address, add an offset and dereference. GDB then ends up trying to access addresses like 0x16, 0x8, etc. To fix this, I proposed changing STRUCTOP_STRUCT so that instead of returning a zero value we instead returned the actual value representing the structure's field in the target. My thinking was that GDB would not try to access the value's contents unless it needed it to resolve a dynamic type. This belief was incorrect. Consider expression <B>. We already know that (5) and (8) will return real values for the symbols being referenced. The BINOP_LOGICAL_AND, operation (4) will evaluate both of its children in EVAL_AVOID_SIDE_EFFECTS in order to get the types, this is required for C++ operator lookup. This means that even if the value of (5) would result in the BINOP_LOGICAL_AND returning false (say, ptr is NULL), we still evaluate (6) in EVAL_AVOID_SIDE_EFFECTS mode. Operation (6) will evaluate both children in EVAL_AVOID_SIDE_EFFECTS mode, operation (9) is easy, it just returns a value with the constant packed into it, but (7) is where the problem lies. Currently in GDB this STRUCTOP_STRUCT will always return a non-lazy zero value of the correct type. When the results of (7) and (9) are back in the BINOP_LOGICAL_AND operation (6), the two values are passed to value_equal which performs the comparison and returns a result. Note, the two things compared here are the immediate value (9), and a non-lazy zero value from (7). However, with my proposed patch operation (7) no longer returns a zero value, instead it returns a lazy value representing the actual value in target memory. When we call value_equal in (6) this code causes GDB to try and fetch the actual value from target memory. If `ptr` is NULL then this will cause GDB to access some invalid address at an offset from zero, this will most likely fail, and cause GDB to throw an error instead of returning the expected type. And so, we can now describe the problem that we're facing. The way GDB's expression evaluator is currently written we assume, when in EVAL_AVOID_SIDE_EFFECTS mode, that any value returned from a child operation can safely have its content read without throwing an error. If child operations start returning real values (instead of the fake zero values), then this is simply not true. If we wanted to work around this then we would need to rewrite almost all operations (I would guess) so that EVAL_AVOID_SIDE_EFFECTS mode does not cause evaluation of an operation to try and read the value of a child operation. As an example, consider this current GDB code from eval.c: struct value * eval_op_equal (struct type *expect_type, struct expression *exp, enum noside noside, enum exp_opcode op, struct value *arg1, struct value *arg2) { if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); int tem = value_equal (arg1, arg2); struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); return value_from_longest (type, (LONGEST) tem); } } We could change this function to be this: struct value * eval_op_equal (struct type *expect_type, struct expression *exp, enum noside noside, enum exp_opcode op, struct value *arg1, struct value *arg2) { if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { struct type *type = language_bool_type (exp->language_defn, exp->gdbarch); if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (type, VALUE_LVAL (arg1)); else { binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); int tem = value_equal (arg1, arg2); return value_from_longest (type, (LONGEST) tem); } } } Now we don't call value_equal unless we really need to. However, we would need to make the same, or similar change to almost all operations, which would be a big task, and might not be a direction we wanted to take GDB in. So, for now, I'm proposing we go with the more targeted, Fortran specific solution, that does the minimal required in order to correctly resolve the dynamic types. gdb/ChangeLog: * f-exp.h (class fortran_structop_operation): New class. * f-exp.y (exp): Create fortran_structop_operation instead of the generic structop_operation. * f-lang.c (fortran_undetermined::evaluate): Re-evaluate expression as EVAL_NORMAL if the result type was dynamic so we can extract the actual array bounds. (fortran_structop_operation::evaluate): New function. gdb/testsuite/ChangeLog: * gdb.fortran/dynamic-ptype-whatis.exp: New file. * gdb.fortran/dynamic-ptype-whatis.f90: New file.
2021-03-09gdb/fortran: Add 'LOC' intrinsic support.Felix Willgerodt1-0/+5
LOC(X) returns the address of X as an integer: https://gcc.gnu.org/onlinedocs/gfortran/LOC.html Before: (gdb) p LOC(r) No symbol "LOC" in current context. After: (gdb) p LOC(r) $1 = 0xffffdf48 gdb/ChangeLog: 2021-03-09 Felix Willgerodt <felix.willgerodt@intel.com> * f-exp.h (eval_op_f_loc): Declare. (expr::fortran_loc_operation): New typedef. * f-exp.y (exp): Handle UNOP_FORTRAN_LOC after parsing an UNOP_INTRINSIC. (f77_keywords): Add LOC keyword. * f-lang.c (eval_op_f_loc): New function. * std-operator.def (UNOP_FORTRAN_LOC): New operator. gdb/testsuite/ChangeLog: 2020-03-09 Felix Willgerodt <felix.willgerodt@intel.com> * gdb.fortran/intrinsics.exp: Add LOC tests.
2021-03-09gdb/fotran: add support for the 'shape' keywordAndrew Burgess2-0/+163
Add support for the SHAPE keyword to GDB's Fortran expression parser. gdb/ChangeLog: * f-exp.h (eval_op_f_array_shape): Declare. (fortran_array_shape_operation): New type. * f-exp.y (exp): Handle UNOP_FORTRAN_SHAPE after parsing UNOP_INTRINSIC. (f77_keywords): Add "shape" keyword. * f-lang.c (fortran_array_shape): New function. (eval_op_f_array_shape): New function. * std-operator.def (UNOP_FORTRAN_SHAPE): New operator. gdb/testsuite/ChangeLog: * gdb.fortran/shape.exp: New file. * gdb.fortran/shape.f90: New file.
2021-03-09gdb/fortran: add support for 'SIZE' keywordAndrew Burgess2-0/+207
Add support for the 'SIZE' keyword to the Fortran expression parser. This returns the number of elements either in an entire array (passing a single argument to SIZE), or in a particular dimension of an array (passing two arguments to SIZE). At this point I have not added support for the optional third argument to SIZE, which controls the exact integer type of the result. gdb/ChangeLog: * f-exp.y (eval_op_f_array_size): Declare 1 and 2 argument forms of this function. (expr::fortran_array_size_1arg): New type. (expr::fortran_array_size_2arg): Likewise. * f-exp.y (exp): Handle FORTRAN_ARRAY_SIZE after parsing UNOP_OR_BINOP_INTRINSIC. (f77_keywords): Add "size" keyword. * f-lang.c (fortran_array_size): New function. (eval_op_f_array_size): New function, has a 1 arg and 2 arg form. * std-operator.def (FORTRAN_ARRAY_SIZE): New operator. gdb/testsuite/ChangeLog: * gdb.fortran/size.exp: New file. * gdb.fortran/size.f90: New file.
2021-03-09gdb/fortran: add support for RANK keywordAndrew Burgess2-0/+136
gfortran supports the RANK keyword, see: https://gcc.gnu.org/onlinedocs/gfortran/RANK.html#RANK this commit adds support for this keyword to GDB's Fortran expression parser. gdb/ChangeLog: * f-exp.h (eval_op_f_rank): Declare. (expr::fortran_rank_operation): New typedef. * f-exp.y (exp): Handle UNOP_FORTRAN_RANK after parsing an UNOP_INTRINSIC. (f77_keywords): Add "rank" keyword. * f-lang.c (eval_op_f_rank): New function. * std-operator.def (UNOP_FORTRAN_RANK): New operator. gdb/testsuite/ChangeLog: * gdb.fortran/rank.exp: New file. * gdb.fortran/rank.f90: New file.
2021-03-08Convert f-exp.y to use operationsTom Tromey1-4/+4
This converts the Fortran parser to generate operations rather than exp_elements. A couple of tests of expression debug dumping are updated to follow the new output. gdb/ChangeLog 2021-03-08 Tom Tromey <tom@tromey.com> * f-exp.y: Create operations. (f_language::parser): Update. gdb/testsuite/ChangeLog 2021-03-08 Tom Tromey <tom@tromey.com> * gdb.fortran/debug-expr.exp: Update tests.
2021-02-25gdb/testsuite: Add a missing -wrap in gdb_test_multipleAndrew Burgess1-1/+1
In commit: commit faeb9f13c179a4c78bc295a0d0bbd788239704d9 Date: Wed Feb 24 12:50:00 2021 +0000 gdb/fortran: add support for ASSOCIATED builtin A test was added that fails to process the trailing gdb prompt inside a gdb_test_multiple call, this will cause a failure if the tests are run with READ1=1, or randomly at other times depending on how the expect buffers are read in. Fixed by adding a -wrap argument. gdb/testsuite/ChangeLog: * gdb.fortran/associated.exp: Add missing '-wrap' argument.
2021-02-25gdb/fortran: don't access non-existent type fieldsAndrew Burgess3-0/+166
When attempting to call a Fortran function for which there is no debug information we currently trigger undefined behaviour in GDB by accessing non-existent type fields. The reason is that in order to prepare the arguments, for a call to a Fortran function, we need to know the type of each argument. If the function being called has no debug information then obviously GDB doesn't know about the argument types and we should either give the user an error or pick a suitable default. What we currently do is just assume the field exist and access undefined memory, which is clearly wrong. The reason GDB needs to know the argument type is to tell if the argument is artificial or not, artificial arguments will be passed by value while non-artificial arguments will be passed by reference. An ideal solution for this problem would be to allow the user to cast the function to the correct type, we already do this to some degree with the return value, for example: (gdb) print some_func_ () 'some_func_' has unknown return type; cast the call to its declared return type (gdb) print (integer) some_func_ () $1 = 1 But if we could extend this to allow casting to the full function type, GDB could figure out from the signature what are real parameters, and what are artificial parameters. Maybe something like this: (gdb) print ((integer () (integer, double)) some_other_func_ (1, 2.3) Alas, right now the Fortran expression parser doesn't seem to support parsing function signatures, and we certainly don't have support for figuring out real vs artificial arguments from a signature. Still, I think we can prevent GDB from accessing undefined memory and provide a reasonable default behaviour. In this commit I: - Only ask if the argument is artificial if the type of the argument is actually known. - Unknown arguments are assumed to be artificial and passed by value (non-artificial arguments are pass by reference). - If an artificial argument is prefixed with '&' by the user then we treat the argument as pass-by-reference. With these three changes we avoid undefined behaviour in GDB, and allow the user, in most cases, to get a reasonably natural default behaviour. gdb/ChangeLog: PR fortran/26155 * f-lang.c (fortran_argument_convert): Delete declaration. (fortran_prepare_argument): New function. (evaluate_subexp_f): Move logic to new function fortran_prepare_argument. gdb/testsuite/ChangeLog: PR fortran/26155 * gdb.fortran/call-no-debug-func.f90: New file. * gdb.fortran/call-no-debug-prog.f90: New file. * gdb.fortran/call-no-debug.exp: New file.