aboutsummaryrefslogtreecommitdiff
path: root/gdb/target.c
AgeCommit message (Collapse)AuthorFilesLines
2021-05-13gdb: on exec, delegate pushing / unpushing target and adding thread to ↵Simon Marchi1-3/+5
target_ops::follow_exec On "exec", some targets need to unpush themselves from the inferior, and do some bookkeeping, like forgetting the data associated to the exec'ing inferior. One such example is the thread-db target. It does so in a special case in thread_db_target::wait, just before returning the TARGET_WAITKIND_EXECD event to its caller. We have another such case in the context of rocm-gdb [1], where the "rocm" target is pushed on top of the linux-nat target. When an exec happens, we want to unpush the rocm target from the exec'ing inferior to close some file descriptors that refer to the pre-exec address space and forget about that inferior. We then want to push the target on the inferior in which execution continues, to open the file descriptors for the post-exec address space. I think that a good way to address this cleanly is to do all this in the target_ops::follow_exec implementations. Make the process_stratum_target::follow_exec implementation have the default behavior of pushing itself to the new inferior's target stack (if execution continues in a new inferior) and add the initial thread. remote_target::follow_exec is an example of process target that wants to do a bit more than the default behavior. So it calls process_stratum_target::follow_exec first and does the extra work second. linux-thread-db (a non-process target) implements follow_exec to do some bookeeping (forget about that process' data), before handing down the event down to the process target (which hits process_stratum_target::follow_exec). gdb/ChangeLog: * target.h (struct target_ops) <follow_exec>: Add ptid_t parameter. (target_follow_exec): Likewise. * target.c (target_follow_exec): Add ptid_t parameter. * infrun.c (follow_exec): Adjust call to target_follow_exec, don't push target nor create thread. * linux-thread-db.c (class thread_db_target) <follow_exec>: New. (thread_db_target::wait): Just return on TARGET_WAITKIND_EXECD. (thread_db_target::follow_exec): New. * remote.c (class remote_target) <follow_exec>: Add ptid_t parameter. (remote_target::follow_exec): Call process_stratum_target::follow_exec. * target-delegates.c: Re-generate. Change-Id: I3f96d0ba3ea0dde6540b7e1b4d5cdb01635088c8
2021-05-12gdb: generate the prefix name for prefix commands on demandMarco Barisione1-1/+1
Previously, the prefixname field of struct cmd_list_element was manually set for prefix commands. This seems verbose and error prone as it required every single call to functions adding prefix commands to specify the prefix name while the same information can be easily generated. Historically, this was not possible as the prefix field was null for many commands, but this was fixed in commit 3f4d92ebdf7f848b5ccc9e8d8e8514c64fde1183 by Philippe Waroquiers, so we can rely on the prefix field being set when generating the prefix name. This commit also fixes a use after free in this scenario: * A command gets created via Python (using the gdb.Command class). The prefix name member is dynamically allocated. * An alias to the new command is created. The alias's prefixname is set to point to the prefixname for the original command with a direct assignment. * A new command with the same name as the Python command is created. * The object for the original Python command gets freed and its prefixname gets freed as well. * The alias is updated to point to the new command, but its prefixname is not updated so it keeps pointing to the freed one. gdb/ChangeLog: * command.h (add_prefix_cmd): Remove the prefixname argument as it can now be generated automatically. Update all callers. (add_basic_prefix_cmd): Ditto. (add_show_prefix_cmd): Ditto. (add_prefix_cmd_suppress_notification): Ditto. (add_abbrev_prefix_cmd): Ditto. * cli/cli-decode.c (add_prefix_cmd): Ditto. (add_basic_prefix_cmd): Ditto. (add_show_prefix_cmd): Ditto. (add_prefix_cmd_suppress_notification): Ditto. (add_prefix_cmd_suppress_notification): Ditto. (add_abbrev_prefix_cmd): Ditto. * cli/cli-decode.h (struct cmd_list_element): Replace the prefixname member variable with a method which generates the prefix name at runtime. Update all code reading the prefix name to use the method, and remove all code setting it. * python/py-cmd.c (cmdpy_destroyer): Remove code to free the prefixname member as it's now a method. (cmdpy_function): Determine if the command is a prefix by looking at prefixlist, not prefixname.
2021-05-07gdb: remove reference to current inferior in target_stack::unpushSimon Marchi1-1/+1
target_stack::unpush needs to get the target beneath the target being unpushed to update the m_top field (which keeps the stratum of the top-most target). It currently does so using target_ops::beneath, which uses the target stack of the current inferior. The target stack of the current inferior is the same as the `this` in the unpush method. Avoid this detour and remove this reference to the current inferior by calling target_ops::find_beneath and passing `this` to find the target beneath `t` in the target stack that is `this`. gdb/ChangeLog: * target.c (target_stack::unpush): Call target_ops::find_beneath to get the target beneath `t`. Change-Id: If9d9661567c5c16f655d270bd2ec9f1b3aa6dadc
2021-05-07gdb: make target_close check that the target isn't pushed in all inferiorsSimon Marchi1-1/+2
The target_close function currently checks that the target to be closed isn't pushed in the current inferior: gdb_assert (!current_inferior ()->target_is_pushed (targ)); Normally, a target is closed when its refcount has dropped to 0, due to not being used in any inferior anymore. I think it would make sense to change that assert to not only check in the current inferior, but to check in all inferiors. It would be quite bad (and a bug) to close a target while it's still pushed in one of the non-current inferiors. gdb/ChangeLog: * target.c (target_close): Check in all inferiors that the target is not pushed. Change-Id: I6e37fc3f3476a0593da1e476604642b2de90f1d5
2021-04-07gdb: make target_ops::follow_fork return voidSimon Marchi1-4/+3
I noticed that all implementations return false, so target_ops::follow_fork doesn't really need to return a value. Change it to return void. gdb/ChangeLog: * target.h (struct target_ops) <follow_fork>: Return void. (target_follow_fork): Likewise. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * infrun.c (follow_fork_inferior): Adjust. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Return void. * fbsd-nat.c (fbsd_nat_target:::follow_fork): Likewise. * linux-nat.h (class linux_nat_target) <follow_fork>: Likewise. * linux-nat.c (linux_nat_target::follow_fork): Return void. * obsd-nat.h (class obsd_nat_target) <follow_fork>: Return void. * obsd-nat.c (obsd_nat_target::follow_fork): Likewise. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise. * target-delegates.c: Re-generate. Change-Id: If908c2f68b29fa275be2b0b9deb41e4c6a1b7879
2021-03-26gdb: defer commit resume until all available events are consumedSimon Marchi1-0/+8
Rationale --------- Let's say you have multiple threads hitting a conditional breakpoint at the same time, and all of these are going to evaluate to false. All these threads will need to be resumed. Currently, GDB fetches one target event (one SIGTRAP representing the breakpoint hit) and decides that the thread should be resumed. It calls resume and commit_resume immediately. It then fetches the second target event, and does the same, until it went through all threads. The result is therefore something like: - consume event for thread A - resume thread A - commit resume (affects thread A) - consume event for thread B - resume thread B - commit resume (affects thread B) - consume event for thread C - resume thread C - commit resume (affects thread C) For targets where it's beneficial to group resumptions requests (most likely those that implement target_ops::commit_resume), it would be much better to have: - consume event for thread A - resume thread A - consume event for thread B - resume thread B - consume event for thread C - resume thread C - commit resume (affects threads A, B and C) Implementation details ---------------------- To achieve this, this patch adds another check in maybe_set_commit_resumed_all_targets to avoid setting the commit-resumed flag of targets that readily have events to provide to infrun. To determine if a target has events readily available to report, this patch adds an `has_pending_events` target_ops method. The method returns a simple bool to say whether or not it has pending events to report. Testing ======= To test this, I start GDBserver with a program that spawns multiple threads: $ ../gdbserver/gdbserver --once :1234 ~/src/many-threads-stepping-over-breakpoints/many-threads-stepping-over-breakpoints I then connect with GDB and install a conditional breakpoint that always evaluates to false (and force the evaluation to be done by GDB): $ ./gdb -nx --data-directory=data-directory \ /home/simark/src/many-threads-stepping-over-breakpoints/many-threads-stepping-over-breakpoints \ -ex "set breakpoint condition-evaluation host" \ -ex "set pag off" \ -ex "set confirm off" \ -ex "maint set target-non-stop on" \ -ex "tar rem :1234" \ -ex "tb main" \ -ex "b 13 if 0" \ -ex c \ -ex "set debug infrun" \ -ex "set debug remote 1" \ -ex "set debug displaced" I then do "continue" and look at the log. The remote target receives a bunch of stop notifications for all threads that have hit the breakpoint. infrun consumes and processes one event, decides it should not cause a stop, prepares a displaced step, after which we should see: [infrun] maybe_set_commit_resumed_all_process_targets: not requesting commit-resumed for target remote, target has pending events Same for a second thread (since we have 2 displaced step buffers). For the following threads, their displaced step is deferred since there are no more buffers available. After consuming the last event the remote target has to offer, we get: [infrun] maybe_set_commit_resumed_all_process_targets: enabling commit-resumed for target remote [infrun] maybe_call_commit_resumed_all_process_targets: calling commit_resumed for target remote [remote] Sending packet: $vCont;s:p14d16b.14d1b1;s:p14d16b.14d1b2#55 [remote] Packet received: OK Without the patch, there would have been one vCont;s just after each prepared displaced step. gdb/ChangeLog: yyyy-mm-dd Simon Marchi <simon.marchi@efficios.com> Pedro Alves <pedro@palves.net> * async-event.c (async_event_handler_marked): New. * async-event.h (async_event_handler_marked): Declare. * infrun.c (maybe_set_commit_resumed_all_targets): Switch to inferior before calling target method. Don't commit-resumed if target_has_pending_events is true. * remote.c (remote_target::has_pending_events): New. * target-delegates.c: Regenerate. * target.c (target_has_pending_events): New. * target.h (target_ops::has_pending_events): New target method. (target_has_pending_events): New. Change-Id: I18112ba19a1ff4986530c660f530d847bb4a1f1d
2021-03-26gdb: generalize commit_resume, avoid commit-resuming when threads have ↵Simon Marchi1-16/+11
pending statuses The rationale for this patch comes from the ROCm port [1], the goal being to reduce the number of back and forths between GDB and the target when doing successive operations. I'll start with explaining the rationale and then go over the implementation. In the ROCm / GPU world, the term "wave" is somewhat equivalent to a "thread" in GDB. So if you read if from a GPU stand point, just s/thread/wave/. ROCdbgapi, the library used by GDB [2] to communicate with the GPU target, gives the illusion that it's possible for the debugger to control (start and stop) individual threads. But in reality, this is not how it works. Under the hood, all threads of a queue are controlled as a group. To stop one thread in a group of running ones, the state of all threads is retrieved from the GPU, all threads are destroyed, and all threads but the one we want to stop are re-created from the saved state. The net result, from the point of view of GDB, is that the library stopped one thread. The same thing goes if we want to resume one thread while others are running: the state of all running threads is retrieved from the GPU, they are all destroyed, and they are all re-created, including the thread we want to resume. This leads to some inefficiencies when combined with how GDB works, here are two examples: - Stopping all threads: because the target operates in non-stop mode, when the user interface mode is all-stop, GDB must stop all threads individually when presenting a stop. Let's suppose we have 1000 threads and the user does ^C. GDB asks the target to stop one thread. Behind the scenes, the library retrieves 1000 thread states and restores the 999 others still running ones. GDB asks the target to stop another one. The target retrieves 999 thread states and restores the 998 remaining ones. That means that to stop 1000 threads, we did 1000 back and forths with the GPU. It would have been much better to just retrieve the states once and stop there. - Resuming with pending events: suppose the 1000 threads hit a breakpoint at the same time. The breakpoint is conditional and evaluates to true for the first thread, to false for all others. GDB pulls one event (for the first thread) from the target, decides that it should present a stop, so stops all threads using stop_all_threads. All these other threads have a breakpoint event to report, which is saved in `thread_info::suspend::waitstatus` for later. When the user does "continue", GDB resumes that one thread that did hit the breakpoint. It then processes the pending events one by one as if they just arrived. It picks one, evaluates the condition to false, and resumes the thread. It picks another one, evaluates the condition to false, and resumes the thread. And so on. In between each resumption, there is a full state retrieval and re-creation. It would be much nicer if we could wait a little bit before sending those threads on the GPU, until it processed all those pending events. To address this kind of performance issue, ROCdbgapi has a concept called "forward progress required", which is a boolean state that allows its user (i.e. GDB) to say "I'm doing a bunch of operations, you can hold off putting the threads on the GPU until I'm done" (the "forward progress not required" state). Turning forward progress back on indicates to the library that all threads that are supposed to be running should now be really running on the GPU. It turns out that GDB has a similar concept, though not as general, commit_resume. One difference is that commit_resume is not stateful: the target can't look up "does the core need me to schedule resumed threads for execution right now". It is also specifically linked to the resume method, it is not used in other contexts. The target accumulates resumption requests through target_ops::resume calls, and then commits those resumptions when target_ops::commit_resume is called. The target has no way to check if it's ok to leave resumed threads stopped in other target methods. To bridge the gap, this patch generalizes the commit_resume concept in GDB to match the forward progress concept of ROCdbgapi. The current name (commit_resume) can be interpreted as "commit the previous resume calls". I renamed the concept to "commit_resumed", as in "commit the threads that are resumed". In the new version, we have two things: - the commit_resumed_state field in process_stratum_target: indicates whether GDB requires target stacks using this target to have resumed threads committed to the execution target/device. If false, an execution target is allowed to leave resumed threads un-committed at the end of whatever method it is executing. - the commit_resumed target method: called when commit_resumed_state transitions from false to true. While commit_resumed_state was false, the target may have left some resumed threads un-committed. This method being called tells it that it should commit them back to the execution device. Let's take the "Stopping all threads" scenario from above and see how it would work with the ROCm target with this change. Before stopping all threads, GDB would set the target's commit_resumed_state field to false. It would then ask the target to stop the first thread. The target would retrieve all threads' state from the GPU and mark that one as stopped. Since commit_resumed_state is false, it leaves all the other threads (still resumed) stopped. GDB would then proceed to call target_stop for all the other threads. Since resumed threads are not committed, this doesn't do any back and forth with the GPU. To simplify the implementation of targets, this patch makes it so that when calling certain target methods, the contract between the core and the targets guarantees that commit_resumed_state is false. This way, the target doesn't need two paths, one for commit_resumed_state == true and one for commit_resumed_state == false. It can just assert that commit_resumed_state is false and work with that assumption. This also helps catch places where we forgot to disable commit_resumed_state before calling the method, which represents a probable optimization opportunity. The commit adds assertions in the target method wrappers (target_resume and friends) to have some confidence that this contract between the core and the targets is respected. The scoped_disable_commit_resumed type is used to disable the commit resumed state of all process targets on construction, and selectively re-enable it on destruction (see below for criteria). Note that it only sets the process_stratum_target::commit_resumed_state flag. A subsequent call to maybe_call_commit_resumed_all_targets is necessary to call the commit_resumed method on all target stacks with process targets that got their commit_resumed_state flag turned back on. This separation is because we don't want to call the commit_resumed methods in scoped_disable_commit_resumed's destructor, as they may throw. On destruction, commit-resumed is not re-enabled for a given target if: 1. this target has no threads resumed, or 2. this target has at least one resumed thread with a pending status known to the core (saved in thread_info::suspend::waitstatus). The first point is not technically necessary, because a proper commit_resumed implementation would be a no-op if the target has no resumed threads. But since we have a flag do to a quick check, it shouldn't hurt. The second point is more important: together with the scoped_disable_commit_resumed instance added in fetch_inferior_event, it makes it so the "Resuming with pending events" described above is handled efficiently. Here's what happens in that case: 1. The user types "continue". 2. Upon destruction, the scoped_disable_commit_resumed in the `proceed` function does not enable commit-resumed, as it sees some threads have pending statuses. 3. fetch_inferior_event is called to handle another event, the breakpoint hit evaluates to false, and that thread is resumed. Because there are still more threads with pending statuses, the destructor of scoped_disable_commit_resumed in fetch_inferior_event still doesn't enable commit-resumed. 4. Rinse and repeat step 3, until the last pending status is handled by fetch_inferior_event. In that case, scoped_disable_commit_resumed's destructor sees there are no more threads with pending statues, so it asks the target to commit resumed threads. This allows us to avoid all unnecessary back and forths, there is a single commit_resumed call once all pending statuses are processed. This change required remote_target::remote_stop_ns to learn how to handle stopping threads that were resumed but pending vCont. The simplest example where that happens is when using the remote target in all-stop, but with "maint set target-non-stop on", to force it to operate in non-stop mode under the hood. If two threads hit a breakpoint at the same time, GDB will receive two stop replies. It will present the stop for one thread and save the other one in thread_info::suspend::waitstatus. Before this patch, when doing "continue", GDB first resumes the thread without a pending status: Sending packet: $vCont;c:p172651.172676#f3 It then consumes the pending status in the next fetch_inferior_event call: [infrun] do_target_wait_1: Using pending wait status status->kind = stopped, signal = GDB_SIGNAL_TRAP for Thread 1517137.1517137. [infrun] target_wait (-1.0.0, status) = [infrun] 1517137.1517137.0 [Thread 1517137.1517137], [infrun] status->kind = stopped, signal = GDB_SIGNAL_TRAP It then realizes it needs to stop all threads to present the stop, so stops the thread it just resumed: [infrun] stop_all_threads: Thread 1517137.1517137 not executing [infrun] stop_all_threads: Thread 1517137.1517174 executing, need stop remote_stop called Sending packet: $vCont;t:p172651.172676#04 This is an unnecessary resume/stop. With this patch, we don't commit resumed threads after proceeding, because of the pending status: [infrun] maybe_commit_resumed_all_process_targets: not requesting commit-resumed for target extended-remote, a thread has a pending waitstatus When GDB handles the pending status and stop_all_threads runs, we stop a resumed but pending vCont thread: remote_stop_ns: Enqueueing phony stop reply for thread pending vCont-resume (1520940, 1520976, 0) That thread was never actually resumed on the remote stub / gdbserver, so we shouldn't send a packet to the remote side asking to stop the thread. Note that there are paths that resume the target and then do a synchronous blocking wait, in sort of nested event loop, via wait_sync_command_done. For example, inferior function calls, or any run control command issued from a breakpoint command list. We handle that making wait_sync_command_one a "sync" point -- force forward progress, or IOW, force-enable commit-resumed state. gdb/ChangeLog: yyyy-mm-dd Simon Marchi <simon.marchi@efficios.com> Pedro Alves <pedro@palves.net> * infcmd.c (run_command_1, attach_command, detach_command) (interrupt_target_1): Use scoped_disable_commit_resumed. * infrun.c (do_target_resume): Remove target_commit_resume call. (commit_resume_all_targets): Remove. (maybe_set_commit_resumed_all_targets): New. (maybe_call_commit_resumed_all_targets): New. (enable_commit_resumed): New. (scoped_disable_commit_resumed::scoped_disable_commit_resumed) (scoped_disable_commit_resumed::~scoped_disable_commit_resumed) (scoped_disable_commit_resumed::reset) (scoped_disable_commit_resumed::reset_and_commit) (scoped_enable_commit_resumed::scoped_enable_commit_resumed) (scoped_enable_commit_resumed::~scoped_enable_commit_resumed): New. (proceed): Use scoped_disable_commit_resumed and maybe_call_commit_resumed_all_targets. (fetch_inferior_event): Use scoped_disable_commit_resumed. * infrun.h (struct scoped_disable_commit_resumed): New. (maybe_call_commit_resumed_all_process_targets): New. (struct scoped_enable_commit_resumed): New. * mi/mi-main.c (exec_continue): Use scoped_disable_commit_resumed. * process-stratum-target.h (class process_stratum_target): <commit_resumed_state>: New. * record-full.c (record_full_wait_1): Change commit_resumed_state around calling commit_resumed. * remote.c (class remote_target) <commit_resume>: Rename to... <commit_resumed>: ... this. (struct stop_reply): Move up. (remote_target::commit_resume): Rename to... (remote_target::commit_resumed): ... this. Check if there is any thread pending vCont resume. (remote_target::remote_stop_ns): Generate stop replies for resumed but pending vCont threads. (remote_target::wait_ns): Add gdb_assert. * target-delegates.c: Regenerate. * target.c (target_wait, target_resume): Assert that the current process_stratum target isn't in commit-resumed state. (defer_target_commit_resume): Remove. (target_commit_resume): Remove. (target_commit_resumed): New. (make_scoped_defer_target_commit_resume): Remove. (target_stop): Assert that the current process_stratum target isn't in commit-resumed state. * target.h (struct target_ops) <commit_resume>: Rename to ... <commit_resumed>: ... this. (target_commit_resume): Remove. (target_commit_resumed): New. (make_scoped_defer_target_commit_resume): Remove. * top.c (wait_sync_command_done): Use scoped_enable_commit_resumed. [1] https://github.com/ROCm-Developer-Tools/ROCgdb/ [2] https://github.com/ROCm-Developer-Tools/ROCdbgapi Change-Id: I836135531a29214b21695736deb0a81acf8cf566
2021-03-26target_is_non_stop_p and sync targetsPedro Alves1-4/+5
gdb.base/maint-target-async-off.exp fails if you test against gdbserver with "maint set target-non-stop on" forced. (gdb) run Starting program: build/gdb/testsuite/outputs/gdb.base/maint-target-async-off/maint-target-async-off Breakpoint 1, main () at src/gdb/testsuite/gdb.base/maint-target-async-off.c:21 21 return 0; (gdb) FAIL: gdb.base/maint-target-async-off.exp: continue until exit (timeout) Above, GDB just stopped listening to stdin. Basically, GDB assumes that a target working in non-stop mode operation also supports async mode; it's a requirement. GDB misbehaves badly otherwise, and even hits failed assertions. Fix this by making target_is_non_stop_p return false if async is off. gdb/ChangeLog: * target.c (target_always_non_stop_p): Also check whether the target can async. Change-Id: I7e52e1061396a5b9b02ada462f68a14b76d68974
2021-03-24gdb: remove current_top_target functionSimon Marchi1-193/+275
The current_top_target function is a hidden dependency on the current inferior. Since I'd like to slowly move towards reducing our dependency on the global current state, remove this function and make callers use current_inferior ()->top_target () There is no expected change in behavior, but this one step towards making those callers use the inferior from their context, rather than refer to the global current inferior. gdb/ChangeLog: * target.h (current_top_target): Remove, make callers use the current inferior instead. * target.c (current_top_target): Remove. Change-Id: Iccd457036f84466cdaa3865aa3f9339a24ea001d
2021-03-24gdb: move all "current target" wrapper implementations to target.cSimon Marchi1-0/+578
The following patch removes the current_top_target function, replacing uses with `current_inferior ()->top_target ()`. This is a problem for uses in target.h, because they don't have access to the current_inferior function and the inferior structure: target.h can't include inferior.h, otherwise that would make a cyclic inclusion. Avoid this by moving all implementations of the wrappers that call target methods with the current target to target.c. Many of them are changed from a macro to a function, which is an improvement for readability and debuggability, IMO. target_shortname and target_longname were not function-like macros, so a few adjustments are needed. gdb/ChangeLog: * target.h (target_shortname): Change to function declaration. (target_longname): Likewise. (target_attach_no_wait): Likewise. (target_post_attach): Likewise. (target_prepare_to_store): Likewise. (target_supports_enable_disable_tracepoint): Likewise. (target_supports_string_tracing): Likewise. (target_supports_evaluation_of_breakpoint_conditions): Likewise. (target_supports_dumpcore): Likewise. (target_dumpcore): Likewise. (target_can_run_breakpoint_commands): Likewise. (target_files_info): Likewise. (target_post_startup_inferior): Likewise. (target_insert_fork_catchpoint): Likewise. (target_remove_fork_catchpoint): Likewise. (target_insert_vfork_catchpoint): Likewise. (target_remove_vfork_catchpoint): Likewise. (target_insert_exec_catchpoint): Likewise. (target_remove_exec_catchpoint): Likewise. (target_set_syscall_catchpoint): Likewise. (target_rcmd): Likewise. (target_can_lock_scheduler): Likewise. (target_can_async_p): Likewise. (target_is_async_p): Likewise. (target_execution_direction): Likewise. (target_extra_thread_info): Likewise. (target_pid_to_exec_file): Likewise. (target_thread_architecture): Likewise. (target_find_memory_regions): Likewise. (target_make_corefile_notes): Likewise. (target_get_bookmark): Likewise. (target_goto_bookmark): Likewise. (target_stopped_by_watchpoint): Likewise. (target_stopped_by_sw_breakpoint): Likewise. (target_supports_stopped_by_sw_breakpoint): Likewise. (target_stopped_by_hw_breakpoint): Likewise. (target_supports_stopped_by_hw_breakpoint): Likewise. (target_have_steppable_watchpoint): Likewise. (target_can_use_hardware_watchpoint): Likewise. (target_region_ok_for_hw_watchpoint): Likewise. (target_can_do_single_step): Likewise. (target_insert_watchpoint): Likewise. (target_remove_watchpoint): Likewise. (target_insert_hw_breakpoint): Likewise. (target_remove_hw_breakpoint): Likewise. (target_can_accel_watchpoint_condition): Likewise. (target_can_execute_reverse): Likewise. (target_get_ada_task_ptid): Likewise. (target_filesystem_is_local): Likewise. (target_trace_init): Likewise. (target_download_tracepoint): Likewise. (target_can_download_tracepoint): Likewise. (target_download_trace_state_variable): Likewise. (target_enable_tracepoint): Likewise. (target_disable_tracepoint): Likewise. (target_trace_start): Likewise. (target_trace_set_readonly_regions): Likewise. (target_get_trace_status): Likewise. (target_get_tracepoint_status): Likewise. (target_trace_stop): Likewise. (target_trace_find): Likewise. (target_get_trace_state_variable_value): Likewise. (target_save_trace_data): Likewise. (target_upload_tracepoints): Likewise. (target_upload_trace_state_variables): Likewise. (target_get_raw_trace_data): Likewise. (target_get_min_fast_tracepoint_insn_len): Likewise. (target_set_disconnected_tracing): Likewise. (target_set_circular_trace_buffer): Likewise. (target_set_trace_buffer_size): Likewise. (target_set_trace_notes): Likewise. (target_get_tib_address): Likewise. (target_set_permissions): Likewise. (target_static_tracepoint_marker_at): Likewise. (target_static_tracepoint_markers_by_strid): Likewise. (target_traceframe_info): Likewise. (target_use_agent): Likewise. (target_can_use_agent): Likewise. (target_augmented_libraries_svr4_read): Likewise. (target_log_command): Likewise. * target.c (target_shortname): New. (target_longname): New. (target_attach_no_wait): New. (target_post_attach): New. (target_prepare_to_store): New. (target_supports_enable_disable_tracepoint): New. (target_supports_string_tracing): New. (target_supports_evaluation_of_breakpoint_conditions): New. (target_supports_dumpcore): New. (target_dumpcore): New. (target_can_run_breakpoint_commands): New. (target_files_info): New. (target_post_startup_inferior): New. (target_insert_fork_catchpoint): New. (target_remove_fork_catchpoint): New. (target_insert_vfork_catchpoint): New. (target_remove_vfork_catchpoint): New. (target_insert_exec_catchpoint): New. (target_remove_exec_catchpoint): New. (target_set_syscall_catchpoint): New. (target_rcmd): New. (target_can_lock_scheduler): New. (target_can_async_p): New. (target_is_async_p): New. (target_execution_direction): New. (target_extra_thread_info): New. (target_pid_to_exec_file): New. (target_thread_architecture): New. (target_find_memory_regions): New. (target_make_corefile_notes): New. (target_get_bookmark): New. (target_goto_bookmark): New. (target_stopped_by_watchpoint): New. (target_stopped_by_sw_breakpoint): New. (target_supports_stopped_by_sw_breakpoint): New. (target_stopped_by_hw_breakpoint): New. (target_supports_stopped_by_hw_breakpoint): New. (target_have_steppable_watchpoint): New. (target_can_use_hardware_watchpoint): New. (target_region_ok_for_hw_watchpoint): New. (target_can_do_single_step): New. (target_insert_watchpoint): New. (target_remove_watchpoint): New. (target_insert_hw_breakpoint): New. (target_remove_hw_breakpoint): New. (target_can_accel_watchpoint_condition): New. (target_can_execute_reverse): New. (target_get_ada_task_ptid): New. (target_filesystem_is_local): New. (target_trace_init): New. (target_download_tracepoint): New. (target_can_download_tracepoint): New. (target_download_trace_state_variable): New. (target_enable_tracepoint): New. (target_disable_tracepoint): New. (target_trace_start): New. (target_trace_set_readonly_regions): New. (target_get_trace_status): New. (target_get_tracepoint_status): New. (target_trace_stop): New. (target_trace_find): New. (target_get_trace_state_variable_value): New. (target_save_trace_data): New. (target_upload_tracepoints): New. (target_upload_trace_state_variables): New. (target_get_raw_trace_data): New. (target_get_min_fast_tracepoint_insn_len): New. (target_set_disconnected_tracing): New. (target_set_circular_trace_buffer): New. (target_set_trace_buffer_size): New. (target_set_trace_notes): New. (target_get_tib_address): New. (target_set_permissions): New. (target_static_tracepoint_marker_at): New. (target_static_tracepoint_markers_by_strid): New. (target_traceframe_info): New. (target_use_agent): New. (target_can_use_agent): New. (target_augmented_libraries_svr4_read): New. (target_log_command): New. * bfin-tdep.c (bfin_sw_breakpoint_from_kind): Adjust. * infrun.c (set_schedlock_func): Adjust. * mi/mi-main.c (exec_reverse_continue): Adjust. * reverse.c (exec_reverse_once): Adjust. * sh-tdep.c (sh_sw_breakpoint_from_kind): Adjust. * tui/tui-stack.c (tui_locator_window::make_status_line): Adjust. * remote-sim.c (gdbsim_target::detach): Adjust. (gdbsim_target::files_info): Adjust. Change-Id: I72ef56e9a25adeb0b91f1ad05e34c89f77ebeaa8
2021-03-23gdb: remove target_is_pushed free functionSimon Marchi1-10/+1
Same principle as the previous patches. gdb/ChangeLog: * target.h (target_is_pushed): Remove, update callers to use inferior::target_is_pushed instead. * target.c (target_is_pushed): Remove. Change-Id: I9862e6205acc65672da807cbe4b46cde009e7b9d
2021-03-23gdb: remove push_target free functionsSimon Marchi1-18/+1
Same as the previous patch, but for the push_target functions. The implementation of the move variant is moved to a new overload of inferior::push_target. gdb/ChangeLog: * target.h (push_target): Remove, update callers to use inferior::push_target. * target.c (push_target): Remove. * inferior.h (class inferior) <push_target>: New overload. Change-Id: I5a95496666278b8f3965e5e8aecb76f54a97c185
2021-03-23gdb: remove unpush_target free functionSimon Marchi1-10/+8
unpush_target unpushes the passed-in target from the current inferior's target stack. Calling it is therefore an implicit dependency on the current global inferior. Remove that function and make the callers use the inferior::unpush_target method directly. This sometimes allows using the inferior from the context rather than the global current inferior. target_unpusher::operator() now needs to be implemented in target.c, otherwise target.h and inferior.h both need to include each other, and that wouldn't work. gdb/ChangeLog: * target.h (unpush_target): Remove, update all callers to use `inferior::unpush_target` instead. (struct target_unpusher) <operator()>: Just declare. * target.c (unpush_target): Remove. (target_unpusher::operator()): New. Change-Id: Ia5172dfb3f373e0a75b991885b50322ca2142a8c
2021-02-25gdb: relax assertion in target_mourn_inferiorSimon Marchi1-1/+1
As reported in PR 26861, when killing an inferior on macOS, we hit the assert: ../../gdb-10.1/gdb/target.c:2149: internal-error: void target_mourn_inferior(ptid_t): Assertion `ptid == inferior_ptid' failed. This is because darwin_nat_target::kill passes a pid-only ptid to target_mourn_inferior, with the pid of the current inferior: target_mourn_inferior (ptid_t (inf->pid)); ... which doesn't satisfy the assert in target_mourn_inferior: gdb_assert (ptid == inferior_ptid); The reason for this assertion is that target_mourn_inferior is a prototype shared between GDB and GDBserver, so that shared code in gdb/nat (used in both GDB and GDBserver) can call target_mourn_inferior. In GDB's implementation, it is likely that some targets still rely on inferior_ptid being set to "the current thread we are working on". So until targets are completely decoupled from inferior_ptid (at least their mourn_inferior implementations), we need to ensure the passed in ptid matches inferior_ptid, to ensure the calling code called target_mourn_inferior with the right global context. However, I think the assert is a bit too restrictive. The mourn_inferior operation works on an inferior, not a specific thread. And by the time we call mourn_inferior, the threads of the inferior don't exist anymore, the process is gone, so it doesn't really make sense to require inferior_ptid to point a specific thread. I looked at all the target_ops::mourn_inferior implementations, those that read inferior_ptid only care about the pid field, which supports the idea that only the inferior matters. Other implementations look at the current inferior (call `current_inferior ()`). I think it would make sense to change target_mourn_inferior to accept only a pid rather than a ptid. It would then assert that the pid is the same as the current inferior's pid. However, this would be a quite involved change, so I'll keep it for later. To fix the macOS issue immediately, I propose to relax the assert to only compare the pids, as is done in this patch. Another solution would obviously be to make darwin_nat_target::kill pass inferior_ptid to target_mourn_inferior. However, the solution I propose is more in line with where I think we want to go (passing a pid to target_mourn_inferior). gdb/ChangeLog: PR gdb/26861 * target.c (target_mourn_inferior): Only compare pids in target_mourn_inferior. Change-Id: If2439ccc5aa67272ea16148a43c5362ef23fb2b8
2021-02-24gdb: move get_section_table from exec_target to dummy_targetAndrew Burgess1-0/+7
The only target that implements target_ops::get_section_table in a meaningful way is exec_target. This target calls back into the program space to return the current global section_table. The global section table is populated whenever the user provides GDB with an executable, or when a symbol file is loaded, e.g. when a dynamic library is loaded, or when the user does add-symbol-file. I recently ran into a situation where a user, debugging a remote target, was not supplying GDB with a main executable at all. Instead the user attached to the target then did add-symbol-file, and then proceeded to debug the target. This works fine, but it was noticed that even when trust-readonly-sections was on GDB was still accessing the target to get the contents of readonly sections. The problem is that by not providing an executable there was no exec_target in the target stack, and so when GDB calls the target_ops::get_section_table function GDB ends up in dummy_target::get_section_table, which just returns NULL. What I want is that even when GDB doesn't have an exec_target in the target stack, a call to target_ops::get_section_table will still return the section_table from the current program space. When considering how to achieve this my first though was, why is the request for the section table going via the target stack at all? The set of sections loaded is a property of the program space, not the target. This is, after all, why the data is being stored in the program space. So I initially tried changing target_get_section_table so that, instead of calling into the target it just returns current_program_space->target_sections (). This would be fine except for one issue, target_bfd (from bfd-target.c). This code is used from solib-svr4.c to create a temporary target_ops structure that implements two functions target_bfd::xfer_partial and target_bfd::get_section_table. The purpose behind the code is to enable two targets, ppc64 and frv to decode function descriptors from the dynamic linker, based on the non-relocated addresses from within the dynamic linker bfd object. Both of the implemented functions in target_bfd rely on the target_bfd object holding a section table, and the ppc64 target requires that the target_bfd implement ::get_section_table. The frv target doesn't require ::get_section_table, instead it requires the ::xfer_partial. We could in theory change the ppc64 target to use the same approach as frv, however, this would be a bad idea. I believe that the frv target approach is broken. I'll explain: The frv target calls get_target_memory_unsigned to read the function descriptor. The address being read is the non-relocated address read from the dynamic linker in solib-srv4.c:enable_break. Calling get_target_memory_unsigned eventually ends up in target_xfer_partial with an object type of TARGET_OBJECT_RAW_MEMORY. This will then call memory_xfer_check_region. I believe that it is quite possible that a the non-relocated addresses pulled from the dynamic linker could be in a memory region that is not readable, while the relocated addresses are in a readable memory region. If this was ever the case for the frv target then GDB would reject the attempt to read the non-relocated function pointer. In contrast the ppc64 target calls target_section_by_addr, which calls target_get_section_table, which then calls the ::get_section_table function on the target. Thus, when reflecting on target_bfd we see two functions, ::xfer_partial and ::get_section_table. The former is required by the frv target, but that target is (I think) potentially broken. While the latter is required by the ppc64 target, but this forces ::get_section_table to exist as a target_ops member function. So my original plan, have target_get_section_table NOT call a target_ops member function appears to be flawed. My next idea was to remove exec_target::get_section_table, and instead move the implementation into dummy_target::get_section_table. Currently the dummy_target implementation always returns NULL indicating no section table, but plenty of other dummy_target member functions do more than just return null values. So now, dummy_target::get_section_table returns the section table from the current program space. This allows target_bfd to remain unchanged, so ppc64 and frv should not be affected. Making this change removes the requirement for the user to provide an executable, GDB can now always access the section_table, as the dummy_target always exists in the target stack. Finally, there's a test that the target_section table is not empty in the case where the user does add-symbol-file without providing an executable. gdb/ChangeLog: * exec.c (exec_target::get_section_table): Delete member function. (section_table_read_available_memory): Use current_top_target, not just the exec_ops target. * target-delegates.c: Regenerate. * target.c (default_get_section_table): New function. * target.h (target_ops::get_section_table): Change default behaviour to call default_get_section_table. (default_get_section_table): Declare.
2021-02-24gdb: spread a little 'const' through the target_section_table codeAndrew Burgess1-9/+8
The code to access the target section table can be made more const, so lets do that. There should be no user visible changes after this commit. gdb/ChangeLog: * gdb/bfd-target.c (class target_bfd) <get_section_table>: Make return type const. * gdb/exec.c (struct exec_target) <get_section_table>: Likewise. (section_table_read_available_memory): Make local const. (exec_target::xfer_partial): Make local const. (print_section_info): Make parameter const. * gdb/exec.h (print_section_info): Likewise. * gdb/ppc64-tdep.c (ppc64_convert_from_func_ptr_addr): Make local const. * gdb/record-btrace.c (record_btrace_target::xfer_partial): Likewise. * gdb/remote.c (remote_target::remote_xfer_live_readonly_partial): Likewise. * gdb/s390-tdep.c (s390_load): Likewise. * gdb/solib-dsbt.c (scan_dyntag): Likewise. * gdb/solib-svr4.c (scan_dyntag): Likewise. * gdb/target-debug.h (target_debug_print_target_section_table_p): Rename to... (target_debug_print_const_target_section_table_p): ...this. * gdb/target-delegates.c: Regenerate. * gdb/target.c (target_get_section_table): Make return type const. (target_section_by_addr): Likewise. Also make some locals const. (memory_xfer_partial_1): Make some locals const. * gdb/target.h (struct target_ops) <get_section_table>: Make return type const. (target_section_by_addr): Likewise. (target_get_section_table): Likewise.
2021-02-04gdb: make target_is_non_stop_p return boolSimon Marchi1-2/+2
gdb/ChangeLog: * target.c (target_is_non_stop_p): Return bool. * target.h (target_is_non_stop_p): Return bool. Change-Id: Icdb37ffe917798e59b822976794d4b1b7aafd709
2021-02-03detach and breakpoint removalPedro Alves1-9/+0
A following patch will add a testcase that has a number of threads constantly stepping over a breakpoint, and then has GDB detach the process. That testcase sometimes fails with the inferior crashing with SIGTRAP after the detach because of the bug fixed by this patch, when tested with the native target. The problem is that target_detach removes breakpoints from the target immediately, and that does not work with the native GNU/Linux target (and probably no other native target) currently. The test wouldn't fail with this issue when testing against gdbserver, because gdbserver does allow accessing memory while the current thread is running, by transparently pausing all threads temporarily, without GDB noticing. Implementing that in gdbserver was a lot of work, so I'm not looking forward right now to do the same in the native target. Instead, I came up with a simpler solution -- push the breakpoints removal down to the targets. The Linux target conveniently already pauses all threads before detaching them, since PTRACE_DETACH only works with stopped threads, so we move removing breakpoints to after that. Only the remote and GNU/Linux targets support support async execution, so no other target should really need this. gdb/ChangeLog: * linux-nat.c (linux_nat_target::detach): Remove breakpoints here... * remote.c (remote_target::remote_detach_1): ... and here ... * target.c (target_detach): ... instead of here. * target.h (target_ops::detach): Add comment.
2021-01-01Update copyright year range in all GDB filesJoel Brobecker1-1/+1
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
2020-11-02gdb, gdbserver, gdbsupport: fix leading space vs tabs issuesSimon Marchi1-25/+25
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-10-29Remove symfile_objfile macroTom Tromey1-3/+6
This removes the symfile_objfile macro, in favor of just spelling out the member access. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * windows-tdep.c (windows_solib_create_inferior_hook): Update. * target.c (info_target_command): Update. * symfile.c (syms_from_objfile_1, finish_new_objfile) (symbol_file_clear, reread_symbols): Update. * symfile-mem.c (add_symbol_file_from_memory_command): Update. * stabsread.c (scan_file_globals): Update. * solib.c (update_solib_list): Update. * solib-svr4.c (elf_locate_base, open_symbol_file_object) (svr4_fetch_objfile_link_map, enable_break) (svr4_relocate_main_executable) (svr4_iterate_over_objfiles_in_search_order): Update. * solib-frv.c (lm_base, enable_break) (frv_relocate_main_executable): Update. (main_got, frv_fdpic_find_canonical_descriptor): Update. (frv_fetch_objfile_link_map): Update. * solib-dsbt.c (lm_base, dsbt_relocate_main_executable): Update. * solib-darwin.c (darwin_solib_create_inferior_hook): Update. * solib-aix.c (solib_aix_solib_create_inferior_hook): Update. * remote.c (remote_target::get_offsets): Update. (remote_target::start_remote) (extended_remote_target::post_attach): Update. * objfiles.c (entry_point_address_query): Update. * nto-procfs.c (nto_procfs_target::create_inferior): Update. * minsyms.c (get_symbol_leading_char): Update. * frame.c (inside_main_func): Update. * progspace.h (symfile_objfile): Remove macro.
2020-10-22gdb: make target_ops::make_corefile_notes return a unique ptrSimon Marchi1-3/+3
Since we converted gdbarch_make_corefile_notes to returning a gdb::unique_xmalloc_ptr, I figured it would make sense to converted target_ops::make_corefile_notes as well. The only implementation of that is in procfs.c, and it should ideally be re-written as a gdbarch method (see comment in write_gcore_file_1), but in the mean time I guess it doesn't hurt to throw some unique pointer at it. I tested that it builds on Solaris 11 (gcc compile farm machine gcc211), but I am not able to test it, because I can't get GDB to start a process (I'll look at that separately). gdb/ChangeLog: * target.h (struct target_ops) <make_corefile_notes>: Change return type to unique pointer. * target.c (dummy_make_corefile_notes): Likewise. * exec.c (struct exec_target) <make_corefile_notes>: Likewise. (exec_target::make_corefile_notes): Likewise. * procfs.c (class procfs_target) <make_corefile_notes>: Likewise. (procfs_do_thread_registers): Adjust to unique pointer. (struct procfs_corefile_thread_data): Add constructor. <note_data>: Change type to unique pointer. (procfs_corefile_thread_callback): Adjust to unique pointer. (procfs_target::make_corefile_notes): Change return type to unique pointer. * target-delegates.c: Re-generate. * gcore.c (write_gcore_file_1): Adjust. * target-debug.h (target_debug_print_gdb_unique_xmalloc_ptr_char): New. Change-Id: I768fb17ac0f7adc67d2fe95e952c784fe0ac37ab
2020-10-13gdb: don't pass TARGET_WNOHANG to targets that can't async (PR 26642)Simon Marchi1-1/+6
Debugging with "maintenance set target-async off" on Linux has been broken since 5b6d1e4fa4f ("Multi-target support"). The issue is easy to reproduce: $ ./gdb -q --data-directory=data-directory -nx ./test Reading symbols from ./test... (gdb) maintenance set target-async off (gdb) start Temporary breakpoint 1 at 0x1151: file test.c, line 5. Starting program: /home/simark/build/binutils-gdb/gdb/test ... and it hangs there. The difference between pre-5b6d1e4fa4f and 5b6d1e4fa4f is that fetch_inferior_event now calls target_wait with TARGET_WNOHANG for non-async-capable targets, whereas it didn't before. For non-async-capable targets, this is how it's expected to work when resuming execution: 1. we call resume 2. the infrun async handler is marked in prepare_to_wait, to immediately wake up the event loop when we get back to it 3. fetch_inferior_event calls the target's wait method without TARGET_WNOHANG, effectively blocking until the target has something to report However, since we call the target's wait method with TARGET_WNOHANG, this happens: 1. we call resume 2. the infrun async handler is marked in prepare_to_wait, to immediately wake up the event loop when we get back to it 3. fetch_inferior_event calls the target's wait method with TARGET_WNOHANG, the target has nothing to report yet 4. we go back to blocking on the event loop 5. SIGCHLD finally arrives, but the event loop is not woken up, because we are not in async mode. Normally, we should have been stuck in waitpid the SIGCHLD would have unblocked us. We end up in this situation because these two necessary conditions are met: 1. GDB uses the TARGET_WNOHANG option with a target that can't do async. I don't think this makes sense. I mean, it's technically possible, the doc for TARGET_WNOHANG is: /* Return immediately if there's no event already queued. If this options is not requested, target_wait blocks waiting for an event. */ TARGET_WNOHANG = 1, ... which isn't in itself necessarily incompatible with synchronous targets. It could be possible for a target to support non-blocking polls, while not having a way to asynchronously wake up the event loop, which is also necessary to support async. But as of today, we don't expect GDB and sync targets to work this way. 2. The linux-nat target, even in the mode where it emulates a synchronous target (with "maintenance set target-async off") respects TARGET_WNOHANG. Other non-async targets, such as windows_nat_target, simply don't check / support TARGET_WNOHANG, so their wait method is always blocking. Fix the first issue by avoiding using TARGET_WNOHANG on non-async targets, in do_target_wait_1. Add an assert in target_wait to verify it doesn't happen. The new test gdb.base/maint-target-async-off.exp is a simple test that just tries running to main and then to the end of the program, with "maintenance set target-async off". gdb/ChangeLog: PR gdb/26642 * infrun.c (do_target_wait_1): Clear TARGET_WNOHANG if the target can't do async. * target.c (target_wait): Assert that we don't pass TARGET_WNOHANG to a target that can't async. gdb/testsuite/ChangeLog: PR gdb/26642 * gdb.base/maint-target-async-off.c: New test. * gdb.base/maint-target-async-off.exp: New test. Change-Id: I69ad3a14598863d21338a8c4e78700a58ce7ad86
2020-10-12Change target_section_table to std::vector aliasTom Tromey1-7/+5
Because target_section_table only holds a vector, and because it is used in an "open" way, this patch makes it just be an alias for the std::vector specialization. This makes the code less wordy. If we do ever want to add more specialized behavior to this type, it's simple enough to convert it back to a struct with the few needed methods implied by this change. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_ops) <get_section_table>: Update. (target_get_section_table): Update. * target.c (target_get_section_table, target_section_by_addr) (memory_xfer_partial_1): Update. * target-section.h (target_section_table): Now an alias. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_section_table_p): Rename from target_debug_print_struct_target_section_table_p. * symfile.c (build_section_addr_info_from_section_table): Update. * solib.c (solib_map_sections, solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_target::xfer_partial): Update. * progspace.h (struct program_space) <target_sections>: Update. * exec.h (print_section_info): Update. * exec.c (exec_target::close, build_section_table) (add_target_sections, add_target_sections_of_objfile) (remove_target_sections, exec_on_vfork) (section_table_available_memory) (section_table_xfer_memory_partial) (exec_target::get_section_table, exec_target::xfer_partial) (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (core_target::build_file_mappings) (core_target::xfer_partial, core_target::info_proc_mappings) (core_target::info_proc_mappings): Update. * bfd-target.c (class target_bfd): Update
2020-10-12Use a std::vector in target_section_tableTom Tromey1-9/+5
This changes target_section_table to wrap a std::vector. This simplifies some code, and also enables the simplifications coming in the subsequent patches. Note that for solib, I chose to have it use a pointer to a target_section_table. This is more convoluted than would be ideal, but I didn't want to convert solib to new/delete as a prerequisite for this series. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.c (target_section_by_addr, memory_xfer_partial_1): Update. * target-section.h (struct target_section_table): Use std::vector. * symfile.h (build_section_addr_info_from_section_table): Take a target_section_table. * symfile.c (build_section_addr_info_from_section_table): Take a target_section_table. * solist.h (struct so_list) <sections>: Change type. <sections_end>: Remove. * solib.c (solib_map_sections, clear_so, solib_read_symbols) (solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_start, record_full_core_end): Remove. (record_full_core_sections): New global. (record_full_core_open_1, record_full_core_target::xfer_partial): Update. * exec.h (build_section_table, section_table_xfer_memory_partial) (add_target_sections): Take a target_section_table. * exec.c (exec_file_attach, clear_section_table): Update. (resize_section_table): Remove. (build_section_table, add_target_sections): Take a target_section_table. (add_target_sections_of_objfile, remove_target_sections) (exec_on_vfork): Update. (section_table_available_memory): Take a target_section_table. (section_table_read_available_memory): Update. (section_table_xfer_memory_partial): Take a target_section_table. (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (class core_target) <m_core_section_table, m_core_file_mappings>: Remove braces. <~core_target>: Remove. (core_target::core_target): Update. (core_target::~core_target): Remove. (core_target::build_file_mappings) (core_target::xfer_memory_via_mappings) (core_target::xfer_partial, core_target::info_proc_mappings): Update. * bfd-target.c (target_bfd::xfer_partial): Update. (target_bfd::target_bfd): Update. (target_bfd::~target_bfd): Remove.
2020-10-07Move simple_search_memory to gdbsupport/search.ccTom Tromey1-102/+8
This moves the simple_search_memory function to a new file, gdbsupport/search.cc. The API is slightly changed to make it more general. This generality is useful for wiring it to gdbserver, and also for unit testing. gdb/ChangeLog 2020-10-07 Tom Tromey <tromey@adacore.com> * target.h (simple_search_memory): Don't declare. * target.c (simple_search_memory): Move to gdbsupport. (default_search_memory): Update. * remote.c (remote_target::search_memory): Update. gdbsupport/ChangeLog 2020-10-07 Tom Tromey <tromey@adacore.com> * Makefile.in: Rebuild. * Makefile.am (libgdbsupport_a_SOURCES): Add search.cc. * search.h: New file. * search.cc: New file.
2020-09-28Remove target_has_execution macroTom Tromey1-10/+7
This removes the object-like macro target_has_execution, replacing it with a function call. target_has_execution_current is also now handled by this function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * inferior.h (class inferior) <has_execution>: Update. * windows-tdep.c (windows_solib_create_inferior_hook): Update. * valops.c (find_function_in_inferior) (value_allocate_space_in_inferior): Update. * top.c (kill_or_detach): Update. * target.c (target_preopen, set_target_permissions): Update. (target_has_execution_current): Remove. * sparc64-tdep.c (adi_examine_command, adi_assign_command): Update. * solib.c (update_solib_list, reload_shared_libraries): Update. * solib-svr4.c (svr4_solib_create_inferior_hook): Update. * solib-dsbt.c (enable_break): Update. * score-tdep.c (score7_fetch_inst): Update. * rs6000-nat.c (rs6000_nat_target::xfer_shared_libraries): Update. * remote.c (remote_target::start_remote) (remote_target::remote_check_symbols, remote_target::open_1) (remote_target::remote_detach_1, remote_target::verify_memory) (remote_target::xfer_partial, remote_target::read_description) (remote_target::get_min_fast_tracepoint_insn_len): Update. * record-full.c (record_full_open_1): Update. * record-btrace.c (record_btrace_target_open): Update. * objc-lang.c (lookup_objc_class, lookup_child_selector) (value_nsstring): Update. * linux-thread-db.c (add_thread_db_info) (thread_db_find_new_threads_silently, check_thread_db_callback) (try_thread_db_load_1, record_thread): Update. * linux-tdep.c (linux_info_proc, linux_vsyscall_range_raw): Update. * linux-fork.c (checkpoint_command): Update. * infrun.c (set_non_stop, set_observer_mode) (check_multi_target_resumption, for_each_just_stopped_thread) (maybe_remove_breakpoints, normal_stop) (class infcall_suspend_state): Update. * infcmd.c (ERROR_NO_INFERIOR, kill_if_already_running) (info_program_command, attach_command): Update. * infcall.c (call_function_by_hand_dummy): Update. * inf-loop.c (inferior_event_handler): Update. * gcore.c (gcore_command, derive_heap_segment): Update. * exec.c (exec_file_command): Update. * eval.c (evaluate_subexp): Update. * compile/compile.c (compile_to_object): Update. * cli/cli-dump.c (restore_command): Update. * breakpoint.c (update_watchpoint) (update_inserted_breakpoint_locations) (insert_breakpoint_locations, get_bpstat_thread): Update. * target.h (target_has_execution): Remove macro. (target_has_execution_current): Don't declare. (target_has_execution): Rename from target_has_execution_1. Add argument default.
2020-09-28Turn target_can_execute_reverse into functionTom Tromey1-1/+1
This changes target_can_execute_reverse from an object-like macro to an inline function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * mi/mi-main.c (exec_reverse_continue) (mi_cmd_list_target_features): Update. * infrun.c (set_exec_direction_func): Update. * target.c (default_execution_direction): Update. * reverse.c (exec_reverse_once): Update. * target.h (target_can_execute_reverse): Now a function.
2020-09-28Remove target_has_registers macroTom Tromey1-1/+1
This removes the target_has_registers object-like macro, replacing it with the underlying function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * tui/tui-regs.c (tui_get_register) (tui_data_window::show_registers): Update. * thread.c (scoped_restore_current_thread::restore) (scoped_restore_current_thread::scoped_restore_current_thread): Update. * regcache-dump.c (regcache_print): Update. * python/py-finishbreakpoint.c (bpfinishpy_detect_out_scope_cb): Update. * mi/mi-main.c (mi_cmd_data_write_register_values): Update. * mep-tdep.c (current_me_module, current_options): Update. * linux-thread-db.c (thread_db_load): Update. * infcmd.c (registers_info, info_vector_command) (info_float_command): Update. * ia64-tdep.c (ia64_frame_prev_register) (ia64_sigtramp_frame_prev_register): Update. * ia64-libunwind-tdep.c (libunwind_frame_prev_register): Update. * gcore.c (derive_stack_segment): Update. * frame.c (get_current_frame, has_stack_frames): Update. * findvar.c (language_defn::read_var_value): Update. * arm-tdep.c (arm_pc_is_thumb): Update. * target.c (target_has_registers): Rename from target_has_registers_1. * target.h (target_has_registers): Remove macro. (target_has_registers): Rename from target_has_registers_1.
2020-09-28Remove target_has_stack macroTom Tromey1-1/+1
This removes the target_has_stack object-like macro, replacing it with the underlying function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * windows-tdep.c (tlb_make_value): Update. * tui/tui-regs.c (tui_data_window::show_registers): Update. * thread.c (scoped_restore_current_thread::restore) (scoped_restore_current_thread::scoped_restore_current_thread) (thread_command): Update. * stack.c (backtrace_command_1, frame_apply_level_command) (frame_apply_all_command, frame_apply_command): Update. * infrun.c (siginfo_make_value, restore_infcall_control_state): Update. * gcore.c (derive_stack_segment): Update. * frame.c (get_current_frame, has_stack_frames): Update. * auxv.c (info_auxv_command): Update. * ada-tasks.c (ada_build_task_list): Update. * target.c (target_has_stack): Rename from target_has_stack_1. * target.h (target_has_stack): Remove macro. (target_has_stack): Rename from target_has_stack_1.
2020-09-28Remove target_has_memory macroTom Tromey1-1/+1
This removes the target_has_memory object-like macro, replacing it with the underlying function. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * target.c (target_has_memory): Rename from target_has_memory_1. * tui/tui-regs.c (tui_data_window::show_registers): Update. * thread.c (scoped_restore_current_thread::restore) (scoped_restore_current_thread::scoped_restore_current_thread): Update. * frame.c (get_current_frame, has_stack_frames): Update. * target.h (target_has_memory): Remove macro. (target_has_memory): Rename from target_has_memory_1.
2020-09-28Remove target_has_all_memoryTom Tromey1-10/+0
target_has_all_memory isn't used anywhere, so this patch removes it. gdb/ChangeLog 2020-09-28 Tom Tromey <tom@tromey.com> * target.c (target_has_all_memory_1): Remove. * target.h (target_has_all_memory): Remove define. (target_has_all_memory_1): Don't declare.
2020-09-18Make target_wait options use enum flagsTom Tromey1-5/+6
This changes TARGET_WNOHANG to be a member of an enum, rather than a define, and also adds a DEF_ENUM_FLAGS_TYPE for this type. Then, it changes target_wait and the various target wait methods to use this type rather than "int". This didn't catch any bugs, but it seems like a decent cleanup nevertheless. I did not change deprecated_target_wait_hook, since that's only used out-of-tree (by Insight), and there didn't seem to be a need. I can't build some of these targets, so I modified them on a best-effort basis. I don't think this patch should go in before the release branch is made. gdb/ChangeLog 2020-09-18 Tom Tromey <tromey@adacore.com> * windows-nat.c (struct windows_nat_target) <wait>: Update. (windows_nat_target::wait): Update. * target/wait.h (enum target_wait_flag): New. Use DEF_ENUM_FLAGS_TYPE. * target/target.h (target_wait): Change type of options. * target.h (target_options_to_string, default_target_wait): Update. (struct target_ops) <wait>: Change type of options. * target.c (target_wait, default_target_wait, do_option): Change type of "options". (target_options_to_string): Likewise. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_wait_flags): Rename from target_debug_print_options. * sol-thread.c (class sol_thread_target) <wait>: Update. (sol_thread_target::wait): Update. * rs6000-nat.c (class rs6000_nat_target) <wait>: Update. (rs6000_nat_target::wait): Update. * remote.c (class remote_target) <wait, wait_ns, wait_as>: Update. (remote_target::wait_ns, remote_target::wait_as): Change type of "options". (remote_target::wait): Update. * remote-sim.c (struct gdbsim_target) <wait>: Update. (gdbsim_target::wait): Update. * record-full.c (class record_full_base_target) <wait>: Update. (record_full_wait_1): Change type of "options". (record_full_base_target::wait): Update. * record-btrace.c (class record_btrace_target) <wait>: Update. (record_btrace_target::wait): Update. * ravenscar-thread.c (struct ravenscar_thread_target) <wait>: Update. (ravenscar_thread_target::wait): Update. * procfs.c (class procfs_target) <wait>: Update. (procfs_target::wait): Update. * obsd-nat.h (class obsd_nat_target) <wait>: Update. * obsd-nat.c (obsd_nat_target::wait): Update. * nto-procfs.c (struct nto_procfs_target) <wait>: Update. (nto_procfs_target::wait): Update. * nbsd-nat.h (struct nbsd_nat_target) <wait>: Update. * nbsd-nat.c (nbsd_wait): Change type of "options". (nbsd_nat_target::wait): Update. * linux-thread-db.c (class thread_db_target) <wait>: Update. (thread_db_target::wait): Update. * linux-nat.h (class linux_nat_target) <wait>: Update. * linux-nat.c (linux_nat_target::wait): Update. (linux_nat_wait_1): Update. * infrun.c (do_target_wait_1, do_target_wait): Change type of "options". * inf-ptrace.h (struct inf_ptrace_target) <wait>: Update. * inf-ptrace.c (inf_ptrace_target::wait): Update. * go32-nat.c (struct go32_nat_target) <wait>: Update. (go32_nat_target::wait): Update. * gnu-nat.h (struct gnu_nat_target) <wait>: Update. * gnu-nat.c (gnu_nat_target::wait): Update. * fbsd-nat.h (class fbsd_nat_target) <wait>: Update. * fbsd-nat.c (fbsd_nat_target::wait): Update. * darwin-nat.h (class darwin_nat_target) <wait>: Update. * darwin-nat.c (darwin_nat_target::wait): Update. * bsd-uthread.c (struct bsd_uthread_target) <wait>: Update. (bsd_uthread_target::wait): Update. * aix-thread.c (class aix_thread_target) <wait>: Update. (aix_thread_target::wait): Update. gdbserver/ChangeLog 2020-09-18 Tom Tromey <tromey@adacore.com> * netbsd-low.h (class netbsd_process_target) <wait>: Update. * netbsd-low.cc (netbsd_waitpid, netbsd_wait) (netbsd_process_target::wait): Change type of target_options. * win32-low.h (class win32_process_target) <wait>: Update. * win32-low.cc (win32_process_target::wait): Update. * target.h (class process_stratum_target) <wait>: Update. (mywait): Update. * target.cc (mywait, target_wait): Change type of "options". * linux-low.h (class linux_process_target) <wait, wait_1>: Update. * linux-low.cc (linux_process_target::wait) (linux_process_target::wait_1): Update.
2020-07-22Provide access to non SEC_HAS_CONTENTS core file sectionsKevin Buettner1-2/+5
Consider the following program: - - - mkmmapcore.c - - - static char *buf; int main (int argc, char **argv) { buf = mmap (NULL, 8192, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); abort (); } - - - end mkmmapcore.c - - - Compile it like this: gcc -g -o mkmmapcore mkmmapcore.c Now let's run it from GDB. I've already placed a breakpoint on the line with the abort() call and have run to that breakpoint. Breakpoint 1, main (argc=1, argv=0x7fffffffd678) at mkmmapcore.c:11 11 abort (); (gdb) x/x buf 0x7ffff7fcb000: 0x00000000 Note that we can examine the memory allocated via the call to mmap(). Now let's try debugging a core file created by running this program. Depending on your system, in order to make a core file, you may have to run the following as root (or using sudo): echo core > /proc/sys/kernel/core_pattern It may also be necessary to do: ulimit -c unlimited I'm using Fedora 31. YMMV if you're using one of the BSDs or some other (non-Linux) system. This is what things look like when we debug the core file: [kev@f31-1 tmp]$ gdb -q ./mkmmapcore core.304767 Reading symbols from ./mkmmapcore... [New LWP 304767] Core was generated by `/tmp/mkmmapcore'. Program terminated with signal SIGABRT, Aborted. #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50 50 return ret; (gdb) x/x buf 0x7ffff7fcb000: Cannot access memory at address 0x7ffff7fcb000 Note that we can no longer access the memory region allocated by mmap(). Back in 2007, a hack for GDB was added to _bfd_elf_make_section_from_phdr() in bfd/elf.c: /* Hack for gdb. Segments that have not been modified do not have their contents written to a core file, on the assumption that a debugger can find the contents in the executable. We flag this case by setting the fake section size to zero. Note that "real" bss sections will always have their contents dumped to the core file. */ if (bfd_get_format (abfd) == bfd_core) newsect->size = 0; You can find the entire patch plus links to other discussion starting here: https://sourceware.org/ml/binutils/2007-08/msg00047.html This hack sets the size of certain BFD sections to 0, which effectively causes GDB to ignore them. I think it's likely that the bug described above existed even before this hack was added, but I have no easy way to test this now. The output from objdump -h shows the result of this hack: 25 load13 00000000 00007ffff7fcb000 0000000000000000 00013000 2**12 ALLOC (The first field, after load13, shows the size of 0.) Once the hack is removed, the output from objdump -h shows the correct size: 25 load13 00002000 00007ffff7fcb000 0000000000000000 00013000 2**12 ALLOC (This is a digression, but I think it's good that objdump will now show the correct size.) If we remove the hack from bfd/elf.c, but do nothing to GDB, we'll see the following regression: FAIL: gdb.base/corefile.exp: print coremaker_ro The reason for this is that all sections which have the BFD flag SEC_ALLOC set, but for which SEC_HAS_CONTENTS is not set no longer have zero size. Some of these sections have data that can (and should) be read from the executable. (Sections for which SEC_HAS_CONTENTS is set should be read from the core file; sections which do not have this flag set need to either be read from the executable or, failing that, from the core file using whatever BFD decides is the best value to present to the user - it uses zeros.) At present, due to the way that the target strata are traversed when attempting to access memory, the non-SEC_HAS_CONTENTS sections will be read as zeroes from the process_stratum (which in this case is the core file stratum) without first checking the file stratum, which is where the data might actually be found. What we should be doing is this: - Attempt to access core file data for SEC_HAS_CONTENTS sections. - Attempt to access executable file data if the above fails. - Attempt to access core file data for non SEC_HAS_CONTENTS sections, if both of the above fail. This corresponds to the analysis of Daniel Jacobowitz back in 2007 when the hack was added to BFD: https://sourceware.org/legacy-ml/binutils/2007-08/msg00045.html The difference, observed by Pedro in his review of my v1 patches, is that I'm using "the section flags as proxy for the p_filesz/p_memsz checks." gdb/ChangeLog: PR corefiles/25631 * corelow.c (core_target:xfer_partial): Revise TARGET_OBJECT_MEMORY case to consider non-SEC_HAS_CONTENTS case after first checking the stratum beneath the core target. (has_all_memory): Return true. * target.c (raw_memory_xfer_partial): Revise comment regarding use of has_all_memory.
2020-07-22section_table_xfer_memory: Replace section name with callback predicateKevin Buettner1-3/+8
This patch is motivated by the need to be able to select sections that section_table_xfer_memory_partial should consider for memory transfers. I'll use this facility in the next patch in this series. section_table_xfer_memory_partial() can currently be passed a section name which may be used to make name-based selections. This is similar to what I want to do, except that I want to be able to consider section flags instead of the name. I'm replacing the section name parameter with a predicate that, when passed a pointer to a target_section struct, will return true if that section should be further considered, or false which indicates that it shouldn't. I've converted the one existing use where a non-NULL section name is passed to section_table_xfer_memory_partial(). Instead of passing the section name, it now looks like this: auto match_cb = [=] (const struct target_section *s) { return (strcmp (section_name, s->the_bfd_section->name) == 0); }; return section_table_xfer_memory_partial (readbuf, writebuf, memaddr, len, xfered_len, table->sections, table->sections_end, match_cb); The other callers all passed NULL; they've been simplified somewhat in that they no longer need to pass NULL. gdb/ChangeLog: * exec.h (section_table_xfer_memory): Revise declaration, replacing section name parameter with an optional callback predicate. * exec.c (section_table_xfer_memory): Likewise. * bfd-target.c, exec.c, target.c, corelow.c: Adjust all callers of section_table_xfer_memory.
2020-07-10Fix latent bug in target_pass_ctrlcPedro Alves1-1/+1
We were checking the thr->executing of an exited thread. gdb/ChangeLog: PR gdb/26199 * target.c (target_pass_ctrlc): Look at the inferior's non-exited threads, not all threads.
2020-06-18Don't write to inferior_ptid in target.cPedro Alves1-1/+1
gdb/ChangeLog: 2020-06-18 Pedro Alves <palves@redhat.com> * target.c (generic_mourn_inferior): Use switch_to_no_thread instead of writing to inferior_ptid.
2020-06-15Change target_read_string APITom Tromey1-15/+11
This simplifies the target_read_string API a bit. Note that some code was using safe_strerror on the error codes returned by target_read_string. It seems to me that this is incorrect (if it was ever correct, it must have been quite a long time ago). gdb/ChangeLog 2020-06-15 Tom Tromey <tromey@adacore.com> * windows-nat.c (windows_nat::handle_output_debug_string): Update. (windows_nat::handle_ms_vc_exception): Update. * target.h (target_read_string): Change API. * target.c (target_read_string): Change API. * solib-svr4.c (open_symbol_file_object, svr4_read_so_list): Update. * solib-frv.c (frv_current_sos): Update. * solib-dsbt.c (dsbt_current_sos): Update. * solib-darwin.c (darwin_current_sos): Update. * linux-thread-db.c (inferior_has_bug): Update. * expprint.c (print_subexp_standard): Update. * ada-lang.c (ada_main_name, ada_tag_name_from_tsd) (ada_exception_message_1): Update.
2020-06-15Rewrite target_read_stringTom Tromey1-62/+10
This rewrites target_read_string in terms of read_string. gdb/ChangeLog 2020-06-15 Tom Tromey <tromey@adacore.com> * valprint.c (read_string): Update comment. * target.c (MIN): Remove. (target_read_string): Rewrite.
2020-05-19Eliminate target_fileio_open_warn_if_slowPedro Alves1-28/+5
This basically makes target_fileio_open_1 extern, renamed to target_fileio_open, and eliminates the current target_fileio_open_warn_if_slow and target_fileio_open. A following parameter will want to change gdb_bfd_iovec_fileio_open, the only caller of target_fileio_open_warn_if_slow, to pass down "warn_if_slow" true/false from the caller, instead of hardcoding "warn_if_slow" true. gdb/ChangeLog: 2020-05-19 Pedro Alves <palves@redhat.com> * gdb_bfd.c (gdb_bfd_iovec_fileio_open): Adjust. * target.c (target_fileio_open_1): Rename to target_fileio_open and make extern. Use bool. (target_fileio_open, target_fileio_open_warn_if_slow): Delete. (target_fileio_read_alloc_1): Adjust. * target.h (target_fileio_open): Add 'warn_if_slow' parameter. (target_fileio_open_warn_if_slow): Delete declaration.
2020-05-03Update more calls to add_prefix_cmdTom Tromey1-11/+2
I looked at all the calls to add_prefix_cmd, and replaced them with calls to add_basic_prefix_cmd or add_show_prefix_cmd when appropriate. This makes gdb's command language a bit more regular. I don't think there's a significant downside. Note that this patch removes a couple of tests. The removed ones are completely redundant. gdb/ChangeLog 2020-05-03 Tom Tromey <tom@tromey.com> * breakpoint.c (catch_command, tcatch_command): Remove. (_initialize_breakpoint): Use add_basic_prefix_cmd, add_show_prefix_cmd. (set_breakpoint_cmd, show_breakpoint_cmd): Remove * utils.c (set_internal_problem_cmd, show_internal_problem_cmd): Remove. (add_internal_problem_command): Use add_basic_prefix_cmd, add_show_prefix_cmd. * mips-tdep.c (set_mipsfpu_command): Remove. (_initialize_mips_tdep): Use add_basic_prefix_cmd. * dwarf2/index-cache.c (set_index_cache_command): Remove. (_initialize_index_cache): Use add_basic_prefix_cmd. * memattr.c (dummy_cmd): Remove. (_initialize_mem): Use add_basic_prefix_cmd, add_show_prefix_cmd. * tui/tui-win.c (set_tui_cmd, show_tui_cmd): Remove. (_initialize_tui_win): Use add_basic_prefix_cmd, add_show_prefix_cmd. * cli/cli-logging.c (set_logging_command): Remove. (_initialize_cli_logging): Use add_basic_prefix_cmd, add_show_prefix_cmd. (show_logging_command): Remove. * target.c (target_command): Remove. (add_target): Use add_basic_prefix_cmd. gdb/testsuite/ChangeLog 2020-05-03 Tom Tromey <tom@tromey.com> * gdb.base/sepdebug.exp: Remove "catch" test. * gdb.base/break.exp: Remove "catch" test. * gdb.base/default.exp: Update expected output.
2020-04-01gdb: define convenience function 'exists_non_stop_target'Tankut Baris Aktemur1-0/+20
Define a predicate function that returns true if there exists an inferior with a non-stop target. gdb/ChangeLog: 2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * target.h (exists_non_stop_target): New function declaration. * target.c (exists_non_stop_target): New function.
2020-03-24gdb: bool-ify follow_forkSimon Marchi1-8/+5
Change parameters and return value of the various follow_fork functions/methods from int to bool. gdb/ChangeLog: * fbsd-nat.c (fbsd_nat_target::follow_fork): Change bool to int. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise. * inf-ptrace.c (inf_ptrace_target::follow_fork): Likewise. * inf-ptrace.h (struct inf_ptrace_target) <follow_fork>: Likewise. * infrun.c (follow_fork): Likewise. (follow_fork_inferior): Likewise. * linux-nat.c (linux_nat_target::follow_fork): Likewise. * linux-nat.h (class linux_nat_target): Likewise. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise. * target-delegates.c: Re-generate. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * target.h (struct target_ops) <follow_fork>: Likewise. (target_follow_fork): Likewise.
2020-02-03Change ints to bools around thread_info executing/resumedSimon Marchi1-1/+1
Switch thread_info::resumed to bool (thread_info::executing already is a bool), and try to change everything more or less related to that to consistently use true/false instead of 1/0. gdb/ChangeLog: * fork-child.c (gdb_startup_inferior): Use bool instead of int. * gdbthread.h (class thread_info) <resumed>: Likewise. * infrun.c (resume_1): Likewise. (proceed): Likewise. (infrun_thread_stop_requested): Likewise. (stop_all_threads): Likewise. (handle_inferior_event): Likewise. (restart_threads): Likewise. (finish_step_over): Likewise. (keep_going_stepped_thread): Likewise. * linux-nat.c (attach_proc_task_lwp_callback): Likewise. (linux_handle_extended_wait): Likewise. * record-btrace.c (get_thread_current_frame_id): Likewise. * record-full.c (record_full_wait_1): Likewise. * remote.c (remote_target::process_initial_stop_replies): Likewise. * target.c (target_resume): Likewise. * thread.c (set_running_thread): Likewise.
2020-01-13gdb: add back declarations for _initialize functionsSimon Marchi1-0/+2
I'd like to enable the -Wmissing-declarations warning. However, it warns for every _initialize function, for example: CXX dcache.o /home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’: /home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations] _initialize_dcache (void) ^~~~~~~~~~~~~~~~~~ The only practical way forward I found is to add back the declarations, which were removed by this commit: commit 481695ed5f6e0a8a9c9c50bfac1cdd2b3151e6c9 Author: John Baldwin <jhb@FreeBSD.org> Date: Sat Sep 9 11:02:37 2017 -0700 Remove unnecessary function prototypes. I don't think it's a big problem to have the declarations for these functions, but if anybody has a better solution for this, I'll be happy to use it. gdb/ChangeLog: * aarch64-fbsd-nat.c (_initialize_aarch64_fbsd_nat): Add declaration. * aarch64-fbsd-tdep.c (_initialize_aarch64_fbsd_tdep): Add declaration. * aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Add declaration. * aarch64-linux-tdep.c (_initialize_aarch64_linux_tdep): Add declaration. * aarch64-newlib-tdep.c (_initialize_aarch64_newlib_tdep): Add declaration. * aarch64-tdep.c (_initialize_aarch64_tdep): Add declaration. * ada-exp.y (_initialize_ada_exp): Add declaration. * ada-lang.c (_initialize_ada_language): Add declaration. * ada-tasks.c (_initialize_tasks): Add declaration. * agent.c (_initialize_agent): Add declaration. * aix-thread.c (_initialize_aix_thread): Add declaration. * alpha-bsd-nat.c (_initialize_alphabsd_nat): Add declaration. * alpha-linux-nat.c (_initialize_alpha_linux_nat): Add declaration. * alpha-linux-tdep.c (_initialize_alpha_linux_tdep): Add declaration. * alpha-nbsd-tdep.c (_initialize_alphanbsd_tdep): Add declaration. * alpha-obsd-tdep.c (_initialize_alphaobsd_tdep): Add declaration. * alpha-tdep.c (_initialize_alpha_tdep): Add declaration. * amd64-darwin-tdep.c (_initialize_amd64_darwin_tdep): Add declaration. * amd64-dicos-tdep.c (_initialize_amd64_dicos_tdep): Add declaration. * amd64-fbsd-nat.c (_initialize_amd64fbsd_nat): Add declaration. * amd64-fbsd-tdep.c (_initialize_amd64fbsd_tdep): Add declaration. * amd64-linux-nat.c (_initialize_amd64_linux_nat): Add declaration. * amd64-linux-tdep.c (_initialize_amd64_linux_tdep): Add declaration. * amd64-nbsd-nat.c (_initialize_amd64nbsd_nat): Add declaration. * amd64-nbsd-tdep.c (_initialize_amd64nbsd_tdep): Add declaration. * amd64-obsd-nat.c (_initialize_amd64obsd_nat): Add declaration. * amd64-obsd-tdep.c (_initialize_amd64obsd_tdep): Add declaration. * amd64-sol2-tdep.c (_initialize_amd64_sol2_tdep): Add declaration. * amd64-tdep.c (_initialize_amd64_tdep): Add declaration. * amd64-windows-nat.c (_initialize_amd64_windows_nat): Add declaration. * amd64-windows-tdep.c (_initialize_amd64_windows_tdep): Add declaration. * annotate.c (_initialize_annotate): Add declaration. * arc-newlib-tdep.c (_initialize_arc_newlib_tdep): Add declaration. * arc-tdep.c (_initialize_arc_tdep): Add declaration. * arch-utils.c (_initialize_gdbarch_utils): Add declaration. * arm-fbsd-nat.c (_initialize_arm_fbsd_nat): Add declaration. * arm-fbsd-tdep.c (_initialize_arm_fbsd_tdep): Add declaration. * arm-linux-nat.c (_initialize_arm_linux_nat): Add declaration. * arm-linux-tdep.c (_initialize_arm_linux_tdep): Add declaration. * arm-nbsd-nat.c (_initialize_arm_netbsd_nat): Add declaration. * arm-nbsd-tdep.c (_initialize_arm_netbsd_tdep): Add declaration. * arm-obsd-tdep.c (_initialize_armobsd_tdep): Add declaration. * arm-pikeos-tdep.c (_initialize_arm_pikeos_tdep): Add declaration. * arm-symbian-tdep.c (_initialize_arm_symbian_tdep): Add declaration. * arm-tdep.c (_initialize_arm_tdep): Add declaration. * arm-wince-tdep.c (_initialize_arm_wince_tdep): Add declaration. * auto-load.c (_initialize_auto_load): Add declaration. * auxv.c (_initialize_auxv): Add declaration. * avr-tdep.c (_initialize_avr_tdep): Add declaration. * ax-gdb.c (_initialize_ax_gdb): Add declaration. * bfin-linux-tdep.c (_initialize_bfin_linux_tdep): Add declaration. * bfin-tdep.c (_initialize_bfin_tdep): Add declaration. * break-catch-sig.c (_initialize_break_catch_sig): Add declaration. * break-catch-syscall.c (_initialize_break_catch_syscall): Add declaration. * break-catch-throw.c (_initialize_break_catch_throw): Add declaration. * breakpoint.c (_initialize_breakpoint): Add declaration. * bsd-uthread.c (_initialize_bsd_uthread): Add declaration. * btrace.c (_initialize_btrace): Add declaration. * charset.c (_initialize_charset): Add declaration. * cli/cli-cmds.c (_initialize_cli_cmds): Add declaration. * cli/cli-dump.c (_initialize_cli_dump): Add declaration. * cli/cli-interp.c (_initialize_cli_interp): Add declaration. * cli/cli-logging.c (_initialize_cli_logging): Add declaration. * cli/cli-script.c (_initialize_cli_script): Add declaration. * cli/cli-style.c (_initialize_cli_style): Add declaration. * coff-pe-read.c (_initialize_coff_pe_read): Add declaration. * coffread.c (_initialize_coffread): Add declaration. * compile/compile-cplus-types.c (_initialize_compile_cplus_types): Add declaration. * compile/compile.c (_initialize_compile): Add declaration. * complaints.c (_initialize_complaints): Add declaration. * completer.c (_initialize_completer): Add declaration. * copying.c (_initialize_copying): Add declaration. * corefile.c (_initialize_core): Add declaration. * corelow.c (_initialize_corelow): Add declaration. * cp-abi.c (_initialize_cp_abi): Add declaration. * cp-namespace.c (_initialize_cp_namespace): Add declaration. * cp-support.c (_initialize_cp_support): Add declaration. * cp-valprint.c (_initialize_cp_valprint): Add declaration. * cris-linux-tdep.c (_initialize_cris_linux_tdep): Add declaration. * cris-tdep.c (_initialize_cris_tdep): Add declaration. * csky-linux-tdep.c (_initialize_csky_linux_tdep): Add declaration. * csky-tdep.c (_initialize_csky_tdep): Add declaration. * ctfread.c (_initialize_ctfread): Add declaration. * d-lang.c (_initialize_d_language): Add declaration. * darwin-nat-info.c (_initialize_darwin_info_commands): Add declaration. * darwin-nat.c (_initialize_darwin_nat): Add declaration. * dbxread.c (_initialize_dbxread): Add declaration. * dcache.c (_initialize_dcache): Add declaration. * disasm-selftests.c (_initialize_disasm_selftests): Add declaration. * disasm.c (_initialize_disasm): Add declaration. * dtrace-probe.c (_initialize_dtrace_probe): Add declaration. * dummy-frame.c (_initialize_dummy_frame): Add declaration. * dwarf-index-cache.c (_initialize_index_cache): Add declaration. * dwarf-index-write.c (_initialize_dwarf_index_write): Add declaration. * dwarf2-frame-tailcall.c (_initialize_tailcall_frame): Add declaration. * dwarf2-frame.c (_initialize_dwarf2_frame): Add declaration. * dwarf2expr.c (_initialize_dwarf2expr): Add declaration. * dwarf2loc.c (_initialize_dwarf2loc): Add declaration. * dwarf2read.c (_initialize_dwarf2_read): Add declaration. * elfread.c (_initialize_elfread): Add declaration. * exec.c (_initialize_exec): Add declaration. * extension.c (_initialize_extension): Add declaration. * f-lang.c (_initialize_f_language): Add declaration. * f-valprint.c (_initialize_f_valprint): Add declaration. * fbsd-nat.c (_initialize_fbsd_nat): Add declaration. * fbsd-tdep.c (_initialize_fbsd_tdep): Add declaration. * filesystem.c (_initialize_filesystem): Add declaration. * findcmd.c (_initialize_mem_search): Add declaration. * findvar.c (_initialize_findvar): Add declaration. * fork-child.c (_initialize_fork_child): Add declaration. * frame-base.c (_initialize_frame_base): Add declaration. * frame-unwind.c (_initialize_frame_unwind): Add declaration. * frame.c (_initialize_frame): Add declaration. * frv-linux-tdep.c (_initialize_frv_linux_tdep): Add declaration. * frv-tdep.c (_initialize_frv_tdep): Add declaration. * ft32-tdep.c (_initialize_ft32_tdep): Add declaration. * gcore.c (_initialize_gcore): Add declaration. * gdb-demangle.c (_initialize_gdb_demangle): Add declaration. * gdb_bfd.c (_initialize_gdb_bfd): Add declaration. * gdbarch-selftests.c (_initialize_gdbarch_selftests): Add declaration. * gdbarch.c (_initialize_gdbarch): Add declaration. * gdbtypes.c (_initialize_gdbtypes): Add declaration. * gnu-nat.c (_initialize_gnu_nat): Add declaration. * gnu-v2-abi.c (_initialize_gnu_v2_abi): Add declaration. * gnu-v3-abi.c (_initialize_gnu_v3_abi): Add declaration. * go-lang.c (_initialize_go_language): Add declaration. * go32-nat.c (_initialize_go32_nat): Add declaration. * guile/guile.c (_initialize_guile): Add declaration. * h8300-tdep.c (_initialize_h8300_tdep): Add declaration. * hppa-linux-nat.c (_initialize_hppa_linux_nat): Add declaration. * hppa-linux-tdep.c (_initialize_hppa_linux_tdep): Add declaration. * hppa-nbsd-nat.c (_initialize_hppanbsd_nat): Add declaration. * hppa-nbsd-tdep.c (_initialize_hppanbsd_tdep): Add declaration. * hppa-obsd-nat.c (_initialize_hppaobsd_nat): Add declaration. * hppa-obsd-tdep.c (_initialize_hppabsd_tdep): Add declaration. * hppa-tdep.c (_initialize_hppa_tdep): Add declaration. * i386-bsd-nat.c (_initialize_i386bsd_nat): Add declaration. * i386-cygwin-tdep.c (_initialize_i386_cygwin_tdep): Add declaration. * i386-darwin-nat.c (_initialize_i386_darwin_nat): Add declaration. * i386-darwin-tdep.c (_initialize_i386_darwin_tdep): Add declaration. * i386-dicos-tdep.c (_initialize_i386_dicos_tdep): Add declaration. * i386-fbsd-nat.c (_initialize_i386fbsd_nat): Add declaration. * i386-fbsd-tdep.c (_initialize_i386fbsd_tdep): Add declaration. * i386-gnu-nat.c (_initialize_i386gnu_nat): Add declaration. * i386-gnu-tdep.c (_initialize_i386gnu_tdep): Add declaration. * i386-go32-tdep.c (_initialize_i386_go32_tdep): Add declaration. * i386-linux-nat.c (_initialize_i386_linux_nat): Add declaration. * i386-linux-tdep.c (_initialize_i386_linux_tdep): Add declaration. * i386-nbsd-nat.c (_initialize_i386nbsd_nat): Add declaration. * i386-nbsd-tdep.c (_initialize_i386nbsd_tdep): Add declaration. * i386-nto-tdep.c (_initialize_i386nto_tdep): Add declaration. * i386-obsd-nat.c (_initialize_i386obsd_nat): Add declaration. * i386-obsd-tdep.c (_initialize_i386obsd_tdep): Add declaration. * i386-sol2-nat.c (_initialize_amd64_sol2_nat): Add declaration. * i386-sol2-tdep.c (_initialize_i386_sol2_tdep): Add declaration. * i386-tdep.c (_initialize_i386_tdep): Add declaration. * i386-windows-nat.c (_initialize_i386_windows_nat): Add declaration. * ia64-libunwind-tdep.c (_initialize_libunwind_frame): Add declaration. * ia64-linux-nat.c (_initialize_ia64_linux_nat): Add declaration. * ia64-linux-tdep.c (_initialize_ia64_linux_tdep): Add declaration. * ia64-tdep.c (_initialize_ia64_tdep): Add declaration. * ia64-vms-tdep.c (_initialize_ia64_vms_tdep): Add declaration. * infcall.c (_initialize_infcall): Add declaration. * infcmd.c (_initialize_infcmd): Add declaration. * inflow.c (_initialize_inflow): Add declaration. * infrun.c (_initialize_infrun): Add declaration. * interps.c (_initialize_interpreter): Add declaration. * iq2000-tdep.c (_initialize_iq2000_tdep): Add declaration. * jit.c (_initialize_jit): Add declaration. * language.c (_initialize_language): Add declaration. * linux-fork.c (_initialize_linux_fork): Add declaration. * linux-nat.c (_initialize_linux_nat): Add declaration. * linux-tdep.c (_initialize_linux_tdep): Add declaration. * linux-thread-db.c (_initialize_thread_db): Add declaration. * lm32-tdep.c (_initialize_lm32_tdep): Add declaration. * m2-lang.c (_initialize_m2_language): Add declaration. * m32c-tdep.c (_initialize_m32c_tdep): Add declaration. * m32r-linux-nat.c (_initialize_m32r_linux_nat): Add declaration. * m32r-linux-tdep.c (_initialize_m32r_linux_tdep): Add declaration. * m32r-tdep.c (_initialize_m32r_tdep): Add declaration. * m68hc11-tdep.c (_initialize_m68hc11_tdep): Add declaration. * m68k-bsd-nat.c (_initialize_m68kbsd_nat): Add declaration. * m68k-bsd-tdep.c (_initialize_m68kbsd_tdep): Add declaration. * m68k-linux-nat.c (_initialize_m68k_linux_nat): Add declaration. * m68k-linux-tdep.c (_initialize_m68k_linux_tdep): Add declaration. * m68k-tdep.c (_initialize_m68k_tdep): Add declaration. * machoread.c (_initialize_machoread): Add declaration. * macrocmd.c (_initialize_macrocmd): Add declaration. * macroscope.c (_initialize_macroscope): Add declaration. * maint-test-options.c (_initialize_maint_test_options): Add declaration. * maint-test-settings.c (_initialize_maint_test_settings): Add declaration. * maint.c (_initialize_maint_cmds): Add declaration. * mdebugread.c (_initialize_mdebugread): Add declaration. * memattr.c (_initialize_mem): Add declaration. * mep-tdep.c (_initialize_mep_tdep): Add declaration. * mi/mi-cmd-env.c (_initialize_mi_cmd_env): Add declaration. * mi/mi-cmds.c (_initialize_mi_cmds): Add declaration. * mi/mi-interp.c (_initialize_mi_interp): Add declaration. * mi/mi-main.c (_initialize_mi_main): Add declaration. * microblaze-linux-tdep.c (_initialize_microblaze_linux_tdep): Add declaration. * microblaze-tdep.c (_initialize_microblaze_tdep): Add declaration. * mips-fbsd-nat.c (_initialize_mips_fbsd_nat): Add declaration. * mips-fbsd-tdep.c (_initialize_mips_fbsd_tdep): Add declaration. * mips-linux-nat.c (_initialize_mips_linux_nat): Add declaration. * mips-linux-tdep.c (_initialize_mips_linux_tdep): Add declaration. * mips-nbsd-nat.c (_initialize_mipsnbsd_nat): Add declaration. * mips-nbsd-tdep.c (_initialize_mipsnbsd_tdep): Add declaration. * mips-sde-tdep.c (_initialize_mips_sde_tdep): Add declaration. * mips-tdep.c (_initialize_mips_tdep): Add declaration. * mips64-obsd-nat.c (_initialize_mips64obsd_nat): Add declaration. * mips64-obsd-tdep.c (_initialize_mips64obsd_tdep): Add declaration. * mipsread.c (_initialize_mipsread): Add declaration. * mn10300-linux-tdep.c (_initialize_mn10300_linux_tdep): Add declaration. * mn10300-tdep.c (_initialize_mn10300_tdep): Add declaration. * moxie-tdep.c (_initialize_moxie_tdep): Add declaration. * msp430-tdep.c (_initialize_msp430_tdep): Add declaration. * nds32-tdep.c (_initialize_nds32_tdep): Add declaration. * nios2-linux-tdep.c (_initialize_nios2_linux_tdep): Add declaration. * nios2-tdep.c (_initialize_nios2_tdep): Add declaration. * nto-procfs.c (_initialize_procfs): Add declaration. * objc-lang.c (_initialize_objc_language): Add declaration. * observable.c (_initialize_observer): Add declaration. * opencl-lang.c (_initialize_opencl_language): Add declaration. * or1k-linux-tdep.c (_initialize_or1k_linux_tdep): Add declaration. * or1k-tdep.c (_initialize_or1k_tdep): Add declaration. * osabi.c (_initialize_gdb_osabi): Add declaration. * osdata.c (_initialize_osdata): Add declaration. * p-valprint.c (_initialize_pascal_valprint): Add declaration. * parse.c (_initialize_parse): Add declaration. * ppc-fbsd-nat.c (_initialize_ppcfbsd_nat): Add declaration. * ppc-fbsd-tdep.c (_initialize_ppcfbsd_tdep): Add declaration. * ppc-linux-nat.c (_initialize_ppc_linux_nat): Add declaration. * ppc-linux-tdep.c (_initialize_ppc_linux_tdep): Add declaration. * ppc-nbsd-nat.c (_initialize_ppcnbsd_nat): Add declaration. * ppc-nbsd-tdep.c (_initialize_ppcnbsd_tdep): Add declaration. * ppc-obsd-nat.c (_initialize_ppcobsd_nat): Add declaration. * ppc-obsd-tdep.c (_initialize_ppcobsd_tdep): Add declaration. * printcmd.c (_initialize_printcmd): Add declaration. * probe.c (_initialize_probe): Add declaration. * proc-api.c (_initialize_proc_api): Add declaration. * proc-events.c (_initialize_proc_events): Add declaration. * proc-service.c (_initialize_proc_service): Add declaration. * procfs.c (_initialize_procfs): Add declaration. * producer.c (_initialize_producer): Add declaration. * psymtab.c (_initialize_psymtab): Add declaration. * python/python.c (_initialize_python): Add declaration. * ravenscar-thread.c (_initialize_ravenscar): Add declaration. * record-btrace.c (_initialize_record_btrace): Add declaration. * record-full.c (_initialize_record_full): Add declaration. * record.c (_initialize_record): Add declaration. * regcache-dump.c (_initialize_regcache_dump): Add declaration. * regcache.c (_initialize_regcache): Add declaration. * reggroups.c (_initialize_reggroup): Add declaration. * remote-notif.c (_initialize_notif): Add declaration. * remote-sim.c (_initialize_remote_sim): Add declaration. * remote.c (_initialize_remote): Add declaration. * reverse.c (_initialize_reverse): Add declaration. * riscv-fbsd-nat.c (_initialize_riscv_fbsd_nat): Add declaration. * riscv-fbsd-tdep.c (_initialize_riscv_fbsd_tdep): Add declaration. * riscv-linux-nat.c (_initialize_riscv_linux_nat): Add declaration. * riscv-linux-tdep.c (_initialize_riscv_linux_tdep): Add declaration. * riscv-tdep.c (_initialize_riscv_tdep): Add declaration. * rl78-tdep.c (_initialize_rl78_tdep): Add declaration. * rs6000-aix-tdep.c (_initialize_rs6000_aix_tdep): Add declaration. * rs6000-lynx178-tdep.c (_initialize_rs6000_lynx178_tdep): Add declaration. * rs6000-nat.c (_initialize_rs6000_nat): Add declaration. * rs6000-tdep.c (_initialize_rs6000_tdep): Add declaration. * run-on-main-thread.c (_initialize_run_on_main_thread): Add declaration. * rust-exp.y (_initialize_rust_exp): Add declaration. * rx-tdep.c (_initialize_rx_tdep): Add declaration. * s12z-tdep.c (_initialize_s12z_tdep): Add declaration. * s390-linux-nat.c (_initialize_s390_nat): Add declaration. * s390-linux-tdep.c (_initialize_s390_linux_tdep): Add declaration. * s390-tdep.c (_initialize_s390_tdep): Add declaration. * score-tdep.c (_initialize_score_tdep): Add declaration. * ser-go32.c (_initialize_ser_dos): Add declaration. * ser-mingw.c (_initialize_ser_windows): Add declaration. * ser-pipe.c (_initialize_ser_pipe): Add declaration. * ser-tcp.c (_initialize_ser_tcp): Add declaration. * ser-uds.c (_initialize_ser_socket): Add declaration. * ser-unix.c (_initialize_ser_hardwire): Add declaration. * serial.c (_initialize_serial): Add declaration. * sh-linux-tdep.c (_initialize_sh_linux_tdep): Add declaration. * sh-nbsd-nat.c (_initialize_shnbsd_nat): Add declaration. * sh-nbsd-tdep.c (_initialize_shnbsd_tdep): Add declaration. * sh-tdep.c (_initialize_sh_tdep): Add declaration. * skip.c (_initialize_step_skip): Add declaration. * sol-thread.c (_initialize_sol_thread): Add declaration. * solib-aix.c (_initialize_solib_aix): Add declaration. * solib-darwin.c (_initialize_darwin_solib): Add declaration. * solib-dsbt.c (_initialize_dsbt_solib): Add declaration. * solib-frv.c (_initialize_frv_solib): Add declaration. * solib-svr4.c (_initialize_svr4_solib): Add declaration. * solib-target.c (_initialize_solib_target): Add declaration. * solib.c (_initialize_solib): Add declaration. * source-cache.c (_initialize_source_cache): Add declaration. * source.c (_initialize_source): Add declaration. * sparc-linux-nat.c (_initialize_sparc_linux_nat): Add declaration. * sparc-linux-tdep.c (_initialize_sparc_linux_tdep): Add declaration. * sparc-nat.c (_initialize_sparc_nat): Add declaration. * sparc-nbsd-nat.c (_initialize_sparcnbsd_nat): Add declaration. * sparc-nbsd-tdep.c (_initialize_sparcnbsd_tdep): Add declaration. * sparc-obsd-tdep.c (_initialize_sparc32obsd_tdep): Add declaration. * sparc-sol2-tdep.c (_initialize_sparc_sol2_tdep): Add declaration. * sparc-tdep.c (_initialize_sparc_tdep): Add declaration. * sparc64-fbsd-nat.c (_initialize_sparc64fbsd_nat): Add declaration. * sparc64-fbsd-tdep.c (_initialize_sparc64fbsd_tdep): Add declaration. * sparc64-linux-nat.c (_initialize_sparc64_linux_nat): Add declaration. * sparc64-linux-tdep.c (_initialize_sparc64_linux_tdep): Add declaration. * sparc64-nat.c (_initialize_sparc64_nat): Add declaration. * sparc64-nbsd-nat.c (_initialize_sparc64nbsd_nat): Add declaration. * sparc64-nbsd-tdep.c (_initialize_sparc64nbsd_tdep): Add declaration. * sparc64-obsd-nat.c (_initialize_sparc64obsd_nat): Add declaration. * sparc64-obsd-tdep.c (_initialize_sparc64obsd_tdep): Add declaration. * sparc64-sol2-tdep.c (_initialize_sparc64_sol2_tdep): Add declaration. * sparc64-tdep.c (_initialize_sparc64_adi_tdep): Add declaration. * stabsread.c (_initialize_stabsread): Add declaration. * stack.c (_initialize_stack): Add declaration. * stap-probe.c (_initialize_stap_probe): Add declaration. * std-regs.c (_initialize_frame_reg): Add declaration. * symfile-debug.c (_initialize_symfile_debug): Add declaration. * symfile-mem.c (_initialize_symfile_mem): Add declaration. * symfile.c (_initialize_symfile): Add declaration. * symmisc.c (_initialize_symmisc): Add declaration. * symtab.c (_initialize_symtab): Add declaration. * target.c (_initialize_target): Add declaration. * target-connection.c (_initialize_target_connection): Add declaration. * target-dcache.c (_initialize_target_dcache): Add declaration. * target-descriptions.c (_initialize_target_descriptions): Add declaration. * thread.c (_initialize_thread): Add declaration. * tic6x-linux-tdep.c (_initialize_tic6x_linux_tdep): Add declaration. * tic6x-tdep.c (_initialize_tic6x_tdep): Add declaration. * tilegx-linux-nat.c (_initialize_tile_linux_nat): Add declaration. * tilegx-linux-tdep.c (_initialize_tilegx_linux_tdep): Add declaration. * tilegx-tdep.c (_initialize_tilegx_tdep): Add declaration. * tracectf.c (_initialize_ctf): Add declaration. * tracefile-tfile.c (_initialize_tracefile_tfile): Add declaration. * tracefile.c (_initialize_tracefile): Add declaration. * tracepoint.c (_initialize_tracepoint): Add declaration. * tui/tui-hooks.c (_initialize_tui_hooks): Add declaration. * tui/tui-interp.c (_initialize_tui_interp): Add declaration. * tui/tui-layout.c (_initialize_tui_layout): Add declaration. * tui/tui-regs.c (_initialize_tui_regs): Add declaration. * tui/tui-stack.c (_initialize_tui_stack): Add declaration. * tui/tui-win.c (_initialize_tui_win): Add declaration. * tui/tui.c (_initialize_tui): Add declaration. * typeprint.c (_initialize_typeprint): Add declaration. * ui-style.c (_initialize_ui_style): Add declaration. * unittests/array-view-selftests.c (_initialize_array_view_selftests): Add declaration. * unittests/child-path-selftests.c (_initialize_child_path_selftests): Add declaration. * unittests/cli-utils-selftests.c (_initialize_cli_utils_selftests): Add declaration. * unittests/common-utils-selftests.c (_initialize_common_utils_selftests): Add declaration. * unittests/copy_bitwise-selftests.c (_initialize_copy_bitwise_utils_selftests): Add declaration. * unittests/environ-selftests.c (_initialize_environ_selftests): Add declaration. * unittests/filtered_iterator-selftests.c (_initialize_filtered_iterator_selftests): Add declaration. * unittests/format_pieces-selftests.c (_initialize_format_pieces_selftests): Add declaration. * unittests/function-view-selftests.c (_initialize_function_view_selftests): Add declaration. * unittests/help-doc-selftests.c (_initialize_help_doc_selftests): Add declaration. * unittests/lookup_name_info-selftests.c (_initialize_lookup_name_info_selftests): Add declaration. * unittests/main-thread-selftests.c (_initialize_main_thread_selftests): Add declaration. * unittests/memory-map-selftests.c (_initialize_memory_map_selftests): Add declaration. * unittests/memrange-selftests.c (_initialize_memrange_selftests): Add declaration. * unittests/mkdir-recursive-selftests.c (_initialize_mkdir_recursive_selftests): Add declaration. * unittests/observable-selftests.c (_initialize_observer_selftest): Add declaration. * unittests/offset-type-selftests.c (_initialize_offset_type_selftests): Add declaration. * unittests/optional-selftests.c (_initialize_optional_selftests): Add declaration. * unittests/parse-connection-spec-selftests.c (_initialize_parse_connection_spec_selftests): Add declaration. * unittests/rsp-low-selftests.c (_initialize_rsp_low_selftests): Add declaration. * unittests/scoped_fd-selftests.c (_initialize_scoped_fd_selftests): Add declaration. * unittests/scoped_mmap-selftests.c (_initialize_scoped_mmap_selftests): Add declaration. * unittests/scoped_restore-selftests.c (_initialize_scoped_restore_selftests): Add declaration. * unittests/string_view-selftests.c (_initialize_string_view_selftests): Add declaration. * unittests/style-selftests.c (_initialize_style_selftest): Add declaration. * unittests/tracepoint-selftests.c (_initialize_tracepoint_selftests): Add declaration. * unittests/tui-selftests.c (_initialize_tui_selftest): Add declaration. * unittests/unpack-selftests.c (_initialize_unpack_selftests): Add declaration. * unittests/utils-selftests.c (_initialize_utils_selftests): Add declaration. * unittests/vec-utils-selftests.c (_initialize_vec_utils_selftests): Add declaration. * unittests/xml-utils-selftests.c (_initialize_xml_utils): Add declaration. * user-regs.c (_initialize_user_regs): Add declaration. * utils.c (_initialize_utils): Add declaration. * v850-tdep.c (_initialize_v850_tdep): Add declaration. * valops.c (_initialize_valops): Add declaration. * valprint.c (_initialize_valprint): Add declaration. * value.c (_initialize_values): Add declaration. * varobj.c (_initialize_varobj): Add declaration. * vax-bsd-nat.c (_initialize_vaxbsd_nat): Add declaration. * vax-nbsd-tdep.c (_initialize_vaxnbsd_tdep): Add declaration. * vax-tdep.c (_initialize_vax_tdep): Add declaration. * windows-nat.c (_initialize_windows_nat): Add declaration. (_initialize_check_for_gdb_ini): Add declaration. (_initialize_loadable): Add declaration. * windows-tdep.c (_initialize_windows_tdep): Add declaration. * x86-bsd-nat.c (_initialize_x86_bsd_nat): Add declaration. * x86-linux-nat.c (_initialize_x86_linux_nat): Add declaration. * xcoffread.c (_initialize_xcoffread): Add declaration. * xml-support.c (_initialize_xml_support): Add declaration. * xstormy16-tdep.c (_initialize_xstormy16_tdep): Add declaration. * xtensa-linux-nat.c (_initialize_xtensa_linux_nat): Add declaration. * xtensa-linux-tdep.c (_initialize_xtensa_linux_tdep): Add declaration. * xtensa-tdep.c (_initialize_xtensa_tdep): Add declaration. Change-Id: I13eec7e0ed2b3c427377a7bdb055cf46da64def9
2020-01-10Add "info connections" command, "info inferiors" connection number/stringPedro Alves1-1/+9
This commit extends the CLI a bit for multi-target, in three ways. #1 - New "info connections" command. This is a new command that lists the open connections (process_stratum targets). For example, if you're debugging two remote connections, a couple local/native processes, and a core dump, all at the same time, you might see something like this: (gdb) info connections Num What Description 1 remote 192.168.0.1:9999 Remote serial target in gdb-specific protocol 2 remote 192.168.0.2:9998 Remote serial target in gdb-specific protocol * 3 native Native process 4 core Local core dump file #2 - New "info inferiors" "Connection" column You'll also see a new matching "Connection" column in "info inferiors", showing you which connection an inferior is bound to: (gdb) info inferiors Num Description Connection Executable 1 process 18526 1 (remote 192.168.0.1:9999) target:/tmp/a.out 2 process 18531 2 (remote 192.168.0.2:9998) target:/tmp/a.out 3 process 19115 3 (native) /tmp/prog1 4 process 6286 4 (core) myprogram * 5 process 19122 3 (native) /bin/hello #3 - Makes "add-inferior" show the inferior's target connection "add-inferior" now shows you the connection you've just bound the inferior to, which is the current process_stratum target: (gdb) add-inferior [New inferior 2] Added inferior 2 on connection 1 (extended-remote localhost:2346) gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * Makefile.in (COMMON_SFILES): Add target-connection.c. * inferior.c (uiout_field_connection): New function. (print_inferior): Add new "connection-id" column. (add_inferior_command): Show connection number/string of added inferior. * process-stratum-target.h (process_stratum_target::connection_string): New virtual method. (process_stratum_target::connection_number): New field. * remote.c (remote_target::connection_string): New override. * target-connection.c: New file. * target-connection.h: New file. * target.c (decref_target): Remove process_stratum targets from the connection list. (target_stack::push): Add process_stratum targets to the connection list. gdb/testsuite/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdb.base/kill-detach-inferiors-cmd.exp: Adjust expected output of "add-inferior". * gdb.base/quit-live.exp: Likewise. * gdb.base/remote-exec-file.exp: Likewise. * gdb.guile/scm-progspace.exp: Likewise. * gdb.linespec/linespec.exp: Likewise. * gdb.mi/new-ui-mi-sync.exp: Likewise. * gdb.mi/user-selected-context-sync.exp: Likewise. * gdb.multi/multi-target.exp (setup): Add "info connection" and "info inferiors" tests. * gdb.multi/remove-inferiors.exp: Adjust expected output of "add-inferior". * gdb.multi/watchpoint-multi.exp: Likewise. * gdb.python/py-inferior.exp: Likewise. * gdb.server/extended-remote-restart.exp: Likewise. * gdb.threads/fork-plus-threads.exp: Adjust expected output of "info inferiors". * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.trace/report.exp: Likewise.
2020-01-10Multi-target supportPedro Alves1-65/+105
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target.
2020-01-10Make target_ops::has_execution take an 'inferior *' instead of a ptid_tPedro Alves1-6/+6
With the multi-target work, each inferior will have its own target stack, so to call a target method, we'll need to make sure that the inferior in question is the current one, otherwise target->beneath() calls will find the target beneath in the wrong inferior. In some places, it's much more convenient to be able to check whether an inferior has execution without having to switch to it in order to call target_has_execution on the right inferior/target stack, to avoid side effects with switching inferior/thread/program space. The current target_ops::has_execution method takes a ptid_t as parameter, which, in a multi-target world, isn't sufficient to identify the target. This patch prepares to address that, by changing the parameter to an inferior pointer instead. From the inferior, we'll be able to query its target stack to tell which target is beneath. Also adds a new inferior::has_execution() method to make callers a bit more natural to read. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * corelow.c (core_target::has_execution): Change parameter type to inferior pointer. * inferior.c (number_of_live_inferiors): Use inferior::has_execution instead of target_has_execution_1. * inferior.h (inferior::has_execution): New. * linux-thread-db.c (thread_db_target::update_thread_list): Use inferior::has_execution instead of target_has_execution_1. * process-stratum-target.c (process_stratum_target::has_execution): Change parameter type to inferior pointer. Check the inferior's PID instead of inferior_ptid. * process-stratum-target.h (process_stratum_target::has_execution): Change parameter type to inferior pointer. * record-full.c (record_full_core_target::has_execution): Change parameter type to inferior pointer. * target.c (target_has_execution_1): Change parameter type to inferior pointer. (target_has_execution_current): Adjust. * target.h (target_ops::has_execution): Change parameter type to inferior pointer. (target_has_execution_1): Change parameter type to inferior pointer. Change return type to bool. * tracefile.h (tracefile_target::has_execution): Change parameter type to inferior pointer.
2020-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
gdb/ChangeLog: Update copyright year range in all GDB files.
2019-11-18Fix crash with core + TUI + runSergio Durigan Junior1-5/+1
Ref.: https://bugzilla.redhat.com/show_bug.cgi?id=1765117 A segfault can happen in a specific scenario when using TUI + a corefile, as explained in the bug mentioned above. The problem happens when opening a corefile on GDB: $ gdb ./core program entering TUI (C-x a), and then issuing a "run" command. GDB segfaults with the following stack trace: (top-gdb) bt #0 0x00000000004cd5da in target_ops::shortname (this=0x0) at ../../binutils-gdb/gdb/target.h:449 #1 0x0000000000ac08fb in target_shortname () at ../../binutils-gdb/gdb/target.h:1323 #2 0x0000000000ac09ae in tui_locator_window::make_status_line[abi:cxx11]() const (this=0x23e1fa0 <_locator>) at ../../binutils-gdb/gdb/tui/tui-stack.c:86 #3 0x0000000000ac1043 in tui_locator_window::rerender (this=0x23e1fa0 <_locator>) at ../../binutils-gdb/gdb/tui/tui-stack.c:231 #4 0x0000000000ac1632 in tui_show_locator_content () at ../../binutils-gdb/gdb/tui/tui-stack.c:369 #5 0x0000000000ac63b6 in tui_set_key_mode (mode=TUI_COMMAND_MODE) at ../../binutils-gdb/gdb/tui/tui.c:321 #6 0x0000000000aaf9be in tui_inferior_exit (inf=0x2d446a0) at ../../binutils-gdb/gdb/tui/tui-hooks.c:181 #7 0x000000000044cddf in std::_Function_handler<void (inferior*), void (*)(inferior*)>::_M_invoke(std::_Any_data const&, inferior*&&) (__functor=..., __args#0=@0x7fffffffd650: 0x2d446a0) at /usr/include/c++/9/bits/std_function.h:300 #8 0x0000000000757db9 in std::function<void (inferior*)>::operator()(inferior*) const (this=0x2cf3168, __args#0=0x2d446a0) at /usr/include/c++/9/bits/std_function.h:690 #9 0x0000000000757876 in gdb::observers::observable<inferior*>::notify (this=0x23de0c0 <gdb::observers::inferior_exit>, args#0=0x2d446a0) at ../../binutils-gdb/gdb/gdbsupport/observable.h:106 #10 0x000000000075532d in exit_inferior_1 (inftoex=0x2d446a0, silent=1) at ../../binutils-gdb/gdb/inferior.c:191 #11 0x0000000000755460 in exit_inferior_silent (inf=0x2d446a0) at ../../binutils-gdb/gdb/inferior.c:234 #12 0x000000000059f47c in core_target::close (this=0x2d68590) at ../../binutils-gdb/gdb/corelow.c:265 #13 0x0000000000a7688c in target_close (targ=0x2d68590) at ../../binutils-gdb/gdb/target.c:3293 #14 0x0000000000a63d74 in target_stack::push (this=0x23e1800 <g_target_stack>, t=0x23c38c8 <the_amd64_linux_nat_target>) at ../../binutils-gdb/gdb/target.c:568 #15 0x0000000000a63dbf in push_target (t=0x23c38c8 <the_amd64_linux_nat_target>) at ../../binutils-gdb/gdb/target.c:583 #16 0x0000000000748088 in inf_ptrace_target::create_inferior (this=0x23c38c8 <the_amd64_linux_nat_target>, exec_file=0x2d58d30 "/usr/bin/cat", allargs="", env=0x25f12b0, from_tty=1) at ../../binutils-gdb/gdb/inf-ptrace.c:128 #17 0x0000000000795ccb in linux_nat_target::create_inferior (this=0x23c38c8 <the_amd64_linux_nat_target>, exec_file=0x2d58d30 "/usr/bin/cat", allargs="", env=0x25f12b0, from_tty=1) at ../../binutils-gdb/gdb/linux-nat.c:1094 #18 0x000000000074eae9 in run_command_1 (args=0x0, from_tty=1, run_how=RUN_NORMAL) at ../../binutils-gdb/gdb/infcmd.c:639 ... The problem happens because 'tui_locator_window::make_status_line' needs the value of 'target_shortname' in order to update the status line. 'target_shortname' is a macro which expands to: #define target_shortname (current_top_target ()->shortname ()) and, in our scenario, 'current_top_target ()' returns NULL, which obviously causes a segfault. But why does it return NULL, since, according to its comment on target.h, it should never do that? What is happening is that we're being caught in the middle of a "target switch". We had the 'core_target' on top, because we were inspecting a corefile, but when the user decided to invoke "run" GDB had to actually create the inferior, which ends up detecting that we have a target already, and tries to close it (from target.c): /* See target.h. */ void target_stack::push (target_ops *t) { /* If there's already a target at this stratum, remove it. */ strata stratum = t->stratum (); if (m_stack[stratum] != NULL) { target_ops *prev = m_stack[stratum]; m_stack[stratum] = NULL; target_close (prev); // <-- here } ... When the current target ('core_target') is being closed, it checks for possible observers registered with it and calls them. TUI is one of those observers, it gets called, tries to update the status line, and GDB crashes. The real problem is that we are clearing 'm_stack[stratum]', but forgetting to adjust 'm_top'. Interestingly, this scenario is covered in 'target_stack::unpush', but Pedro said he forgot to call it here.. The fix, therefore, is to call '::unpush' if there's a target on the stack. This patch has been tested on the Buildbot and no regressions have been found. I'm also submitting a testcase for it. gdb/ChangeLog: 2019-11-18 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> https://bugzilla.redhat.com/show_bug.cgi?id=1765117 * target.c (target_stack::push): Call 'unpush' if there's a target on top of the stack. gdb/testsuite/ChangeLog: 2019-11-18 Sergio Durigan Junior <sergiodj@redhat.com> https://bugzilla.redhat.com/show_bug.cgi?id=1765117 * gdb.tui/corefile-run.exp: New file. Change-Id: I39e2f8b538c580c8ea5bf1d657ee877e47746c8f