aboutsummaryrefslogtreecommitdiff
path: root/gdb/target-delegates.c
AgeCommit message (Collapse)AuthorFilesLines
2023-01-01Update copyright year range in header of all files managed by GDBJoel Brobecker1-1/+1
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
2022-09-29gdb: constify auxv parse functionsSimon Marchi1-7/+7
Constify the input parameters of the various auxv parse functions, they don't need to modify the raw auxv data. Change-Id: I13eacd5ab8e925ec2b5c1f7722cbab39c41516ec
2022-07-22Change target_ops::async to accept boolTom Tromey1-6/+6
This changes the parameter of target_ops::async from int to bool. Regression tested on x86-64 Fedora 34.
2022-05-13Constify target_pid_to_exec_fileTom Tromey1-7/+7
This changes target_pid_to_exec_file and target_ops::pid_to_exec_file to return a "const char *". I couldn't build many of these targets, but did examine the code by hand -- also, as this only affects the return type, it's normally pretty safe. This brings gdb and gdbserver a bit closer, and allows for the removal of a const_cast as well.
2022-03-29Unify gdb printf functionsTom Tromey1-332/+332
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script.
2022-03-29Unify gdb puts functionsTom Tromey1-368/+368
Now that filtered and unfiltered output can be treated identically, we can unify the puts family of functions. This is done under the name "gdb_puts". Most of this patch was written by script.
2022-03-02Rewrite make-target-delegates in PythonTom Tromey1-3/+23
I think gdb is probably better off having fewer languages involved when generating code. 'sh' is unavoidable for build-time generation, but for other things, let's use Python. This rewrites make-target-delegates in Python. I've stuck pretty closely to the original code in this rewrite, so it may look slightly weird from a Python perspective. The only output difference is that a copyright header is now generated, using the code introduced in the previous patch. make-target-delegates.py is simpler to invoke, as it knows the correct input file to scan and it creates the output file itself.
2022-01-27gdb, gdbserver: update thread identifier in enable_btrace target methodMarkus Metzger1-6/+6
The enable_btrace target method takes a ptid_t to identify the thread on which tracing shall be enabled. Change this to thread_info * to avoid translating back and forth between the two. This will be used in a subsequent patch.
2021-12-13gdb: make post_startup_inferior a virtual method on inf_ptrace_targetAndrew Burgess1-23/+0
While working on a later patch that required me to understand how GDB starts up inferiors, I was confused by the target_ops::post_startup_inferior method. The post_startup_inferior target function is only called from inf_ptrace_target::create_inferior. Part of the target class hierarchy looks like this: inf_child_target | '-- inf_ptrace_target | |-- linux_nat_target | |-- fbsd_nat_target | |-- nbsd_nat_target | |-- obsd_nat_target | '-- rs6000_nat_target Every sub-class of inf_ptrace_target, except rs6000_nat_target, implements ::post_startup_inferior. The rs6000_nat_target picks up the implementation of ::post_startup_inferior not from inf_ptrace_target, but from inf_child_target. No descendent of inf_child_target, outside the inf_ptrace_target sub-tree, implements ::post_startup_inferior, which isn't really surprising, as they would never see the method called (remember, the method is only called from inf_ptrace_target::create_inferior). What I find confusing is the role inf_child_target plays in implementing, what is really a helper function for just one of its descendents. In this commit I propose that we formally make ::post_startup_inferior a helper function of inf_ptrace_target. To do this I will remove the ::post_startup_inferior from the target_ops API, and instead make this a protected, pure virtual function on inf_ptrace_target. I'll remove the empty implementation of ::post_startup_inferior from the inf_child_target class, and add a new empty implementation to the rs6000_nat_target class. All the other descendents of inf_ptrace_target already provide an implementation of this method and so don't need to change beyond making the method protected within their class declarations. To me, this makes much more sense now. The helper function, which is only called from within the inf_ptrace_target class, is now a part of the inf_ptrace_target class. The only way in which this change is visible to a user is if the user turns on 'set debug target 1'. With this debug flag on, prior to this patch the user would see something like: -> native->post_startup_inferior (...) <- native->post_startup_inferior (2588939) After this patch these lines are no longer present, as the post_startup_inferior is no longer a top level target method. For me, this is an acceptable change.
2021-09-23Change get_ada_task_ptid parameter typeTom Tromey1-6/+6
get_ada_task_ptid currently takes a 'long' as its 'thread' parameter type. However, on some platforms this is actually a pointer, and using 'long' can sometimes end up with the value being sign-extended. This sign extension can cause problems later, if the tid is then later used as an address again. This patch changes the parameter type to ULONGEST and updates all the uses. This approach preserves sign extension on the targets where it is apparently intended, while avoiding it on others. Co-Authored-By: John Baldwin <jhb@FreeBSD.org>
2021-08-03gdb: follow-fork: push target and add thread in target_follow_forkSimon Marchi1-11/+13
In the context of ROCm-gdb [1], the ROCm target sits on top of the linux-nat target. when a process forks, it needs to carry over some data from the forking inferior to the fork child inferior. Ideally, the ROCm target would implement the follow_fork target_ops method, but there are some small problems. This patch fixes these, which helps the ROCm target, but also makes things more consistent and a bit nicer in general, I believe. The main problem is: when follow-fork-mode is "parent", target_follow_fork is called with the parent as the current inferior. When it's "child", target_follow_fork is called with the child as the current inferior. This means that target_follow_fork is sometimes called on the parent's target stack and sometimes on the child's target stack. The parent's target stack may contain targets above the process target, such as the ROCm target. So if follow-fork-child is "parent", the ROCm target would get notified of the fork and do whatever is needed. But the child's target stack, at that moment, only contains the exec and process target copied over from the parent. The child's target stack is set up by follow_fork_inferior, before calling target_follow_fork. In that case, the ROCm target wouldn't get notified of the fork. For consistency, I think it would be good to always call target_follow_fork on the parent inferior's target stack. I think it makes sense as a way to indicate "this inferior has called fork, do whatever is needed". The desired outcome of the fork (whether an inferior is created for the child, do we need to detach from the child) can be indicated by passed parameter. I therefore propose these changes: - make follow_fork_inferior always call target_follow_fork with the parent as the current inferior. That lets all targets present on the parent's target stack do some fork-related handling and push themselves on the fork child's target stack if needed. For this purpose, pass the child inferior down to target_follow_fork and follow_fork implementations. This is nullptr if no inferior is created for the child, because we want to detach from it. - as a result, in follow_fork_inferior, detach from the parent inferior (if needed) only after the target_follow_fork call. This is needed because we want to call target_follow_fork before the parent's target stack is torn down. - hand over to the targets in the parent's target stack (including the process target) the responsibility to push themselves, if needed, to the child's target stack. Also hand over the responsibility to the process target, at the same time, to create the child's initial thread (just like we do for follow_exec). - pass the child inferior to exec_on_vfork, so we don't need to swap the current inferior between parent and child. Nothing in exec_on_vfork depends on the current inferior, after this change. Although this could perhaps be replaced with just having the exec target implement follow_fork and push itself in the child's target stack, like the process target does... We would just need to make sure the process target calls beneath()->follow_fork(...). I'm not sure about this one. gdb/ChangeLog: * target.h (struct target_ops) <follow_fork>: Add inferior* parameter. (target_follow_fork): Likewise. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise. (fbsd_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * linux-nat.h (class linux_nat_target) <follow_fork>: Likewise. * linux-nat.c (linux_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * obsd-nat.h (obsd_nat_target) <follow_fork>: Likewise. * obsd-nat.c (obsd_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise, and call process_stratum_target::follow_fork. * process-stratum-target.h (class process_stratum_target) <follow_fork>: New. * process-stratum-target.c (process_stratum_target::follow_fork): New. * target-delegates.c: Re-generate. [1] https://github.com/ROCm-Developer-Tools/ROCgdb Change-Id: I460bd0af850f0485e8aed4b24c6d8262a4c69929
2021-07-14gdb: pass child_ptid and fork kind to target_ops::follow_forkSimon Marchi1-10/+14
This is a small cleanup I think would be nice, that I spotted while doing the following patch. gdb/ChangeLog: * target.h (struct target_ops) <follow_fork>: Add ptid and target_waitkind parameters. (target_follow_fork): Likewise. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise. * fbsd-nat.c (fbsd_nat_target::follow_fork): Likewise. * linux-nat.h (class linux_nat_target) <follow_fork>: Likewise. * linux-nat.c (linux_nat_target::follow_fork): Likewise. * obsd-nat.h (class obsd_nat_target) <follow_fork>: Likewise. * obsd-nat.c (obsd_nat_target::follow_fork): Likewise. * remote.c (class remote_target) <follow_fork>: Likewise. * target-debug.h (target_debug_print_target_waitkind): New. * target-delegates.c: Re-generate. Change-Id: I5421a542f2e19100a22b74cc333d2b235d0de3c8
2021-05-13gdb: on exec, delegate pushing / unpushing target and adding thread to ↵Simon Marchi1-9/+11
target_ops::follow_exec On "exec", some targets need to unpush themselves from the inferior, and do some bookkeeping, like forgetting the data associated to the exec'ing inferior. One such example is the thread-db target. It does so in a special case in thread_db_target::wait, just before returning the TARGET_WAITKIND_EXECD event to its caller. We have another such case in the context of rocm-gdb [1], where the "rocm" target is pushed on top of the linux-nat target. When an exec happens, we want to unpush the rocm target from the exec'ing inferior to close some file descriptors that refer to the pre-exec address space and forget about that inferior. We then want to push the target on the inferior in which execution continues, to open the file descriptors for the post-exec address space. I think that a good way to address this cleanly is to do all this in the target_ops::follow_exec implementations. Make the process_stratum_target::follow_exec implementation have the default behavior of pushing itself to the new inferior's target stack (if execution continues in a new inferior) and add the initial thread. remote_target::follow_exec is an example of process target that wants to do a bit more than the default behavior. So it calls process_stratum_target::follow_exec first and does the extra work second. linux-thread-db (a non-process target) implements follow_exec to do some bookeeping (forget about that process' data), before handing down the event down to the process target (which hits process_stratum_target::follow_exec). gdb/ChangeLog: * target.h (struct target_ops) <follow_exec>: Add ptid_t parameter. (target_follow_exec): Likewise. * target.c (target_follow_exec): Add ptid_t parameter. * infrun.c (follow_exec): Adjust call to target_follow_exec, don't push target nor create thread. * linux-thread-db.c (class thread_db_target) <follow_exec>: New. (thread_db_target::wait): Just return on TARGET_WAITKIND_EXECD. (thread_db_target::follow_exec): New. * remote.c (class remote_target) <follow_exec>: Add ptid_t parameter. (remote_target::follow_exec): Call process_stratum_target::follow_exec. * target-delegates.c: Re-generate. Change-Id: I3f96d0ba3ea0dde6540b7e1b4d5cdb01635088c8
2021-04-07gdb: make target_ops::follow_fork return voidSimon Marchi1-13/+9
I noticed that all implementations return false, so target_ops::follow_fork doesn't really need to return a value. Change it to return void. gdb/ChangeLog: * target.h (struct target_ops) <follow_fork>: Return void. (target_follow_fork): Likewise. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * infrun.c (follow_fork_inferior): Adjust. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Return void. * fbsd-nat.c (fbsd_nat_target:::follow_fork): Likewise. * linux-nat.h (class linux_nat_target) <follow_fork>: Likewise. * linux-nat.c (linux_nat_target::follow_fork): Return void. * obsd-nat.h (class obsd_nat_target) <follow_fork>: Return void. * obsd-nat.c (obsd_nat_target::follow_fork): Likewise. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise. * target-delegates.c: Re-generate. Change-Id: If908c2f68b29fa275be2b0b9deb41e4c6a1b7879
2021-03-26gdb: defer commit resume until all available events are consumedSimon Marchi1-0/+27
Rationale --------- Let's say you have multiple threads hitting a conditional breakpoint at the same time, and all of these are going to evaluate to false. All these threads will need to be resumed. Currently, GDB fetches one target event (one SIGTRAP representing the breakpoint hit) and decides that the thread should be resumed. It calls resume and commit_resume immediately. It then fetches the second target event, and does the same, until it went through all threads. The result is therefore something like: - consume event for thread A - resume thread A - commit resume (affects thread A) - consume event for thread B - resume thread B - commit resume (affects thread B) - consume event for thread C - resume thread C - commit resume (affects thread C) For targets where it's beneficial to group resumptions requests (most likely those that implement target_ops::commit_resume), it would be much better to have: - consume event for thread A - resume thread A - consume event for thread B - resume thread B - consume event for thread C - resume thread C - commit resume (affects threads A, B and C) Implementation details ---------------------- To achieve this, this patch adds another check in maybe_set_commit_resumed_all_targets to avoid setting the commit-resumed flag of targets that readily have events to provide to infrun. To determine if a target has events readily available to report, this patch adds an `has_pending_events` target_ops method. The method returns a simple bool to say whether or not it has pending events to report. Testing ======= To test this, I start GDBserver with a program that spawns multiple threads: $ ../gdbserver/gdbserver --once :1234 ~/src/many-threads-stepping-over-breakpoints/many-threads-stepping-over-breakpoints I then connect with GDB and install a conditional breakpoint that always evaluates to false (and force the evaluation to be done by GDB): $ ./gdb -nx --data-directory=data-directory \ /home/simark/src/many-threads-stepping-over-breakpoints/many-threads-stepping-over-breakpoints \ -ex "set breakpoint condition-evaluation host" \ -ex "set pag off" \ -ex "set confirm off" \ -ex "maint set target-non-stop on" \ -ex "tar rem :1234" \ -ex "tb main" \ -ex "b 13 if 0" \ -ex c \ -ex "set debug infrun" \ -ex "set debug remote 1" \ -ex "set debug displaced" I then do "continue" and look at the log. The remote target receives a bunch of stop notifications for all threads that have hit the breakpoint. infrun consumes and processes one event, decides it should not cause a stop, prepares a displaced step, after which we should see: [infrun] maybe_set_commit_resumed_all_process_targets: not requesting commit-resumed for target remote, target has pending events Same for a second thread (since we have 2 displaced step buffers). For the following threads, their displaced step is deferred since there are no more buffers available. After consuming the last event the remote target has to offer, we get: [infrun] maybe_set_commit_resumed_all_process_targets: enabling commit-resumed for target remote [infrun] maybe_call_commit_resumed_all_process_targets: calling commit_resumed for target remote [remote] Sending packet: $vCont;s:p14d16b.14d1b1;s:p14d16b.14d1b2#55 [remote] Packet received: OK Without the patch, there would have been one vCont;s just after each prepared displaced step. gdb/ChangeLog: yyyy-mm-dd Simon Marchi <simon.marchi@efficios.com> Pedro Alves <pedro@palves.net> * async-event.c (async_event_handler_marked): New. * async-event.h (async_event_handler_marked): Declare. * infrun.c (maybe_set_commit_resumed_all_targets): Switch to inferior before calling target method. Don't commit-resumed if target_has_pending_events is true. * remote.c (remote_target::has_pending_events): New. * target-delegates.c: Regenerate. * target.c (target_has_pending_events): New. * target.h (target_ops::has_pending_events): New target method. (target_has_pending_events): New. Change-Id: I18112ba19a1ff4986530c660f530d847bb4a1f1d
2021-03-26gdb: generalize commit_resume, avoid commit-resuming when threads have ↵Simon Marchi1-9/+9
pending statuses The rationale for this patch comes from the ROCm port [1], the goal being to reduce the number of back and forths between GDB and the target when doing successive operations. I'll start with explaining the rationale and then go over the implementation. In the ROCm / GPU world, the term "wave" is somewhat equivalent to a "thread" in GDB. So if you read if from a GPU stand point, just s/thread/wave/. ROCdbgapi, the library used by GDB [2] to communicate with the GPU target, gives the illusion that it's possible for the debugger to control (start and stop) individual threads. But in reality, this is not how it works. Under the hood, all threads of a queue are controlled as a group. To stop one thread in a group of running ones, the state of all threads is retrieved from the GPU, all threads are destroyed, and all threads but the one we want to stop are re-created from the saved state. The net result, from the point of view of GDB, is that the library stopped one thread. The same thing goes if we want to resume one thread while others are running: the state of all running threads is retrieved from the GPU, they are all destroyed, and they are all re-created, including the thread we want to resume. This leads to some inefficiencies when combined with how GDB works, here are two examples: - Stopping all threads: because the target operates in non-stop mode, when the user interface mode is all-stop, GDB must stop all threads individually when presenting a stop. Let's suppose we have 1000 threads and the user does ^C. GDB asks the target to stop one thread. Behind the scenes, the library retrieves 1000 thread states and restores the 999 others still running ones. GDB asks the target to stop another one. The target retrieves 999 thread states and restores the 998 remaining ones. That means that to stop 1000 threads, we did 1000 back and forths with the GPU. It would have been much better to just retrieve the states once and stop there. - Resuming with pending events: suppose the 1000 threads hit a breakpoint at the same time. The breakpoint is conditional and evaluates to true for the first thread, to false for all others. GDB pulls one event (for the first thread) from the target, decides that it should present a stop, so stops all threads using stop_all_threads. All these other threads have a breakpoint event to report, which is saved in `thread_info::suspend::waitstatus` for later. When the user does "continue", GDB resumes that one thread that did hit the breakpoint. It then processes the pending events one by one as if they just arrived. It picks one, evaluates the condition to false, and resumes the thread. It picks another one, evaluates the condition to false, and resumes the thread. And so on. In between each resumption, there is a full state retrieval and re-creation. It would be much nicer if we could wait a little bit before sending those threads on the GPU, until it processed all those pending events. To address this kind of performance issue, ROCdbgapi has a concept called "forward progress required", which is a boolean state that allows its user (i.e. GDB) to say "I'm doing a bunch of operations, you can hold off putting the threads on the GPU until I'm done" (the "forward progress not required" state). Turning forward progress back on indicates to the library that all threads that are supposed to be running should now be really running on the GPU. It turns out that GDB has a similar concept, though not as general, commit_resume. One difference is that commit_resume is not stateful: the target can't look up "does the core need me to schedule resumed threads for execution right now". It is also specifically linked to the resume method, it is not used in other contexts. The target accumulates resumption requests through target_ops::resume calls, and then commits those resumptions when target_ops::commit_resume is called. The target has no way to check if it's ok to leave resumed threads stopped in other target methods. To bridge the gap, this patch generalizes the commit_resume concept in GDB to match the forward progress concept of ROCdbgapi. The current name (commit_resume) can be interpreted as "commit the previous resume calls". I renamed the concept to "commit_resumed", as in "commit the threads that are resumed". In the new version, we have two things: - the commit_resumed_state field in process_stratum_target: indicates whether GDB requires target stacks using this target to have resumed threads committed to the execution target/device. If false, an execution target is allowed to leave resumed threads un-committed at the end of whatever method it is executing. - the commit_resumed target method: called when commit_resumed_state transitions from false to true. While commit_resumed_state was false, the target may have left some resumed threads un-committed. This method being called tells it that it should commit them back to the execution device. Let's take the "Stopping all threads" scenario from above and see how it would work with the ROCm target with this change. Before stopping all threads, GDB would set the target's commit_resumed_state field to false. It would then ask the target to stop the first thread. The target would retrieve all threads' state from the GPU and mark that one as stopped. Since commit_resumed_state is false, it leaves all the other threads (still resumed) stopped. GDB would then proceed to call target_stop for all the other threads. Since resumed threads are not committed, this doesn't do any back and forth with the GPU. To simplify the implementation of targets, this patch makes it so that when calling certain target methods, the contract between the core and the targets guarantees that commit_resumed_state is false. This way, the target doesn't need two paths, one for commit_resumed_state == true and one for commit_resumed_state == false. It can just assert that commit_resumed_state is false and work with that assumption. This also helps catch places where we forgot to disable commit_resumed_state before calling the method, which represents a probable optimization opportunity. The commit adds assertions in the target method wrappers (target_resume and friends) to have some confidence that this contract between the core and the targets is respected. The scoped_disable_commit_resumed type is used to disable the commit resumed state of all process targets on construction, and selectively re-enable it on destruction (see below for criteria). Note that it only sets the process_stratum_target::commit_resumed_state flag. A subsequent call to maybe_call_commit_resumed_all_targets is necessary to call the commit_resumed method on all target stacks with process targets that got their commit_resumed_state flag turned back on. This separation is because we don't want to call the commit_resumed methods in scoped_disable_commit_resumed's destructor, as they may throw. On destruction, commit-resumed is not re-enabled for a given target if: 1. this target has no threads resumed, or 2. this target has at least one resumed thread with a pending status known to the core (saved in thread_info::suspend::waitstatus). The first point is not technically necessary, because a proper commit_resumed implementation would be a no-op if the target has no resumed threads. But since we have a flag do to a quick check, it shouldn't hurt. The second point is more important: together with the scoped_disable_commit_resumed instance added in fetch_inferior_event, it makes it so the "Resuming with pending events" described above is handled efficiently. Here's what happens in that case: 1. The user types "continue". 2. Upon destruction, the scoped_disable_commit_resumed in the `proceed` function does not enable commit-resumed, as it sees some threads have pending statuses. 3. fetch_inferior_event is called to handle another event, the breakpoint hit evaluates to false, and that thread is resumed. Because there are still more threads with pending statuses, the destructor of scoped_disable_commit_resumed in fetch_inferior_event still doesn't enable commit-resumed. 4. Rinse and repeat step 3, until the last pending status is handled by fetch_inferior_event. In that case, scoped_disable_commit_resumed's destructor sees there are no more threads with pending statues, so it asks the target to commit resumed threads. This allows us to avoid all unnecessary back and forths, there is a single commit_resumed call once all pending statuses are processed. This change required remote_target::remote_stop_ns to learn how to handle stopping threads that were resumed but pending vCont. The simplest example where that happens is when using the remote target in all-stop, but with "maint set target-non-stop on", to force it to operate in non-stop mode under the hood. If two threads hit a breakpoint at the same time, GDB will receive two stop replies. It will present the stop for one thread and save the other one in thread_info::suspend::waitstatus. Before this patch, when doing "continue", GDB first resumes the thread without a pending status: Sending packet: $vCont;c:p172651.172676#f3 It then consumes the pending status in the next fetch_inferior_event call: [infrun] do_target_wait_1: Using pending wait status status->kind = stopped, signal = GDB_SIGNAL_TRAP for Thread 1517137.1517137. [infrun] target_wait (-1.0.0, status) = [infrun] 1517137.1517137.0 [Thread 1517137.1517137], [infrun] status->kind = stopped, signal = GDB_SIGNAL_TRAP It then realizes it needs to stop all threads to present the stop, so stops the thread it just resumed: [infrun] stop_all_threads: Thread 1517137.1517137 not executing [infrun] stop_all_threads: Thread 1517137.1517174 executing, need stop remote_stop called Sending packet: $vCont;t:p172651.172676#04 This is an unnecessary resume/stop. With this patch, we don't commit resumed threads after proceeding, because of the pending status: [infrun] maybe_commit_resumed_all_process_targets: not requesting commit-resumed for target extended-remote, a thread has a pending waitstatus When GDB handles the pending status and stop_all_threads runs, we stop a resumed but pending vCont thread: remote_stop_ns: Enqueueing phony stop reply for thread pending vCont-resume (1520940, 1520976, 0) That thread was never actually resumed on the remote stub / gdbserver, so we shouldn't send a packet to the remote side asking to stop the thread. Note that there are paths that resume the target and then do a synchronous blocking wait, in sort of nested event loop, via wait_sync_command_done. For example, inferior function calls, or any run control command issued from a breakpoint command list. We handle that making wait_sync_command_one a "sync" point -- force forward progress, or IOW, force-enable commit-resumed state. gdb/ChangeLog: yyyy-mm-dd Simon Marchi <simon.marchi@efficios.com> Pedro Alves <pedro@palves.net> * infcmd.c (run_command_1, attach_command, detach_command) (interrupt_target_1): Use scoped_disable_commit_resumed. * infrun.c (do_target_resume): Remove target_commit_resume call. (commit_resume_all_targets): Remove. (maybe_set_commit_resumed_all_targets): New. (maybe_call_commit_resumed_all_targets): New. (enable_commit_resumed): New. (scoped_disable_commit_resumed::scoped_disable_commit_resumed) (scoped_disable_commit_resumed::~scoped_disable_commit_resumed) (scoped_disable_commit_resumed::reset) (scoped_disable_commit_resumed::reset_and_commit) (scoped_enable_commit_resumed::scoped_enable_commit_resumed) (scoped_enable_commit_resumed::~scoped_enable_commit_resumed): New. (proceed): Use scoped_disable_commit_resumed and maybe_call_commit_resumed_all_targets. (fetch_inferior_event): Use scoped_disable_commit_resumed. * infrun.h (struct scoped_disable_commit_resumed): New. (maybe_call_commit_resumed_all_process_targets): New. (struct scoped_enable_commit_resumed): New. * mi/mi-main.c (exec_continue): Use scoped_disable_commit_resumed. * process-stratum-target.h (class process_stratum_target): <commit_resumed_state>: New. * record-full.c (record_full_wait_1): Change commit_resumed_state around calling commit_resumed. * remote.c (class remote_target) <commit_resume>: Rename to... <commit_resumed>: ... this. (struct stop_reply): Move up. (remote_target::commit_resume): Rename to... (remote_target::commit_resumed): ... this. Check if there is any thread pending vCont resume. (remote_target::remote_stop_ns): Generate stop replies for resumed but pending vCont threads. (remote_target::wait_ns): Add gdb_assert. * target-delegates.c: Regenerate. * target.c (target_wait, target_resume): Assert that the current process_stratum target isn't in commit-resumed state. (defer_target_commit_resume): Remove. (target_commit_resume): Remove. (target_commit_resumed): New. (make_scoped_defer_target_commit_resume): Remove. (target_stop): Assert that the current process_stratum target isn't in commit-resumed state. * target.h (struct target_ops) <commit_resume>: Rename to ... <commit_resumed>: ... this. (target_commit_resume): Remove. (target_commit_resumed): New. (make_scoped_defer_target_commit_resume): Remove. * top.c (wait_sync_command_done): Use scoped_enable_commit_resumed. [1] https://github.com/ROCm-Developer-Tools/ROCgdb/ [2] https://github.com/ROCm-Developer-Tools/ROCdbgapi Change-Id: I836135531a29214b21695736deb0a81acf8cf566
2021-03-24New target methods for memory tagging supportLuis Machado1-0/+95
This patch starts adding some of the generic pieces to accomodate memory tagging. We have three new target methods: - supports_memory_tagging: Checks if the target supports memory tagging. This defaults to false for targets that don't support memory tagging. - fetch_memtags: Fetches the allocation tags associated with a particular memory range [address, address + length). The default is to return 0 without returning any tags. This should only be called if memory tagging is supported. - store_memtags: Stores a set of allocation tags for a particular memory range [address, address + length). The default is to return 0. This should only be called if memory tagging is supported. gdb/ChangeLog: 2021-03-24 Luis Machado <luis.machado@linaro.org> * remote.c (remote_target) <supports_memory_tagging>: New method override. <fetch_memtags>: New method override. <store_memtags>: New method override. (remote_target::supports_memory_tagging): New method. (remote_target::fetch_memtags): New method. (remote_target::store_memtags): New method. * target-delegates.c: Regenerate. * target.h (struct target_ops) <supports_memory_tagging>: New virtual method. <fetch_memtags>: New virtual method. <store_memtags>: New virtual method. (target_supports_memory_tagging): Define. (target_fetch_memtags): Define. (target_store_memtags): Define. * target-debug.h (target_debug_print_size_t) (target_debug_print_const_gdb_byte_vector_r) (target_debug_print_gdb_byte_vector_r): New functions.
2021-02-24gdb: move get_section_table from exec_target to dummy_targetAndrew Burgess1-1/+1
The only target that implements target_ops::get_section_table in a meaningful way is exec_target. This target calls back into the program space to return the current global section_table. The global section table is populated whenever the user provides GDB with an executable, or when a symbol file is loaded, e.g. when a dynamic library is loaded, or when the user does add-symbol-file. I recently ran into a situation where a user, debugging a remote target, was not supplying GDB with a main executable at all. Instead the user attached to the target then did add-symbol-file, and then proceeded to debug the target. This works fine, but it was noticed that even when trust-readonly-sections was on GDB was still accessing the target to get the contents of readonly sections. The problem is that by not providing an executable there was no exec_target in the target stack, and so when GDB calls the target_ops::get_section_table function GDB ends up in dummy_target::get_section_table, which just returns NULL. What I want is that even when GDB doesn't have an exec_target in the target stack, a call to target_ops::get_section_table will still return the section_table from the current program space. When considering how to achieve this my first though was, why is the request for the section table going via the target stack at all? The set of sections loaded is a property of the program space, not the target. This is, after all, why the data is being stored in the program space. So I initially tried changing target_get_section_table so that, instead of calling into the target it just returns current_program_space->target_sections (). This would be fine except for one issue, target_bfd (from bfd-target.c). This code is used from solib-svr4.c to create a temporary target_ops structure that implements two functions target_bfd::xfer_partial and target_bfd::get_section_table. The purpose behind the code is to enable two targets, ppc64 and frv to decode function descriptors from the dynamic linker, based on the non-relocated addresses from within the dynamic linker bfd object. Both of the implemented functions in target_bfd rely on the target_bfd object holding a section table, and the ppc64 target requires that the target_bfd implement ::get_section_table. The frv target doesn't require ::get_section_table, instead it requires the ::xfer_partial. We could in theory change the ppc64 target to use the same approach as frv, however, this would be a bad idea. I believe that the frv target approach is broken. I'll explain: The frv target calls get_target_memory_unsigned to read the function descriptor. The address being read is the non-relocated address read from the dynamic linker in solib-srv4.c:enable_break. Calling get_target_memory_unsigned eventually ends up in target_xfer_partial with an object type of TARGET_OBJECT_RAW_MEMORY. This will then call memory_xfer_check_region. I believe that it is quite possible that a the non-relocated addresses pulled from the dynamic linker could be in a memory region that is not readable, while the relocated addresses are in a readable memory region. If this was ever the case for the frv target then GDB would reject the attempt to read the non-relocated function pointer. In contrast the ppc64 target calls target_section_by_addr, which calls target_get_section_table, which then calls the ::get_section_table function on the target. Thus, when reflecting on target_bfd we see two functions, ::xfer_partial and ::get_section_table. The former is required by the frv target, but that target is (I think) potentially broken. While the latter is required by the ppc64 target, but this forces ::get_section_table to exist as a target_ops member function. So my original plan, have target_get_section_table NOT call a target_ops member function appears to be flawed. My next idea was to remove exec_target::get_section_table, and instead move the implementation into dummy_target::get_section_table. Currently the dummy_target implementation always returns NULL indicating no section table, but plenty of other dummy_target member functions do more than just return null values. So now, dummy_target::get_section_table returns the section table from the current program space. This allows target_bfd to remain unchanged, so ppc64 and frv should not be affected. Making this change removes the requirement for the user to provide an executable, GDB can now always access the section_table, as the dummy_target always exists in the target stack. Finally, there's a test that the target_section table is not empty in the case where the user does add-symbol-file without providing an executable. gdb/ChangeLog: * exec.c (exec_target::get_section_table): Delete member function. (section_table_read_available_memory): Use current_top_target, not just the exec_ops target. * target-delegates.c: Regenerate. * target.c (default_get_section_table): New function. * target.h (target_ops::get_section_table): Change default behaviour to call default_get_section_table. (default_get_section_table): Declare.
2021-02-24gdb: spread a little 'const' through the target_section_table codeAndrew Burgess1-7/+7
The code to access the target section table can be made more const, so lets do that. There should be no user visible changes after this commit. gdb/ChangeLog: * gdb/bfd-target.c (class target_bfd) <get_section_table>: Make return type const. * gdb/exec.c (struct exec_target) <get_section_table>: Likewise. (section_table_read_available_memory): Make local const. (exec_target::xfer_partial): Make local const. (print_section_info): Make parameter const. * gdb/exec.h (print_section_info): Likewise. * gdb/ppc64-tdep.c (ppc64_convert_from_func_ptr_addr): Make local const. * gdb/record-btrace.c (record_btrace_target::xfer_partial): Likewise. * gdb/remote.c (remote_target::remote_xfer_live_readonly_partial): Likewise. * gdb/s390-tdep.c (s390_load): Likewise. * gdb/solib-dsbt.c (scan_dyntag): Likewise. * gdb/solib-svr4.c (scan_dyntag): Likewise. * gdb/target-debug.h (target_debug_print_target_section_table_p): Rename to... (target_debug_print_const_target_section_table_p): ...this. * gdb/target-delegates.c: Regenerate. * gdb/target.c (target_get_section_table): Make return type const. (target_section_by_addr): Likewise. Also make some locals const. (memory_xfer_partial_1): Make some locals const. * gdb/target.h (struct target_ops) <get_section_table>: Make return type const. (target_section_by_addr): Likewise. (target_get_section_table): Likewise.
2020-10-22gdb: make target_ops::make_corefile_notes return a unique ptrSimon Marchi1-7/+7
Since we converted gdbarch_make_corefile_notes to returning a gdb::unique_xmalloc_ptr, I figured it would make sense to converted target_ops::make_corefile_notes as well. The only implementation of that is in procfs.c, and it should ideally be re-written as a gdbarch method (see comment in write_gcore_file_1), but in the mean time I guess it doesn't hurt to throw some unique pointer at it. I tested that it builds on Solaris 11 (gcc compile farm machine gcc211), but I am not able to test it, because I can't get GDB to start a process (I'll look at that separately). gdb/ChangeLog: * target.h (struct target_ops) <make_corefile_notes>: Change return type to unique pointer. * target.c (dummy_make_corefile_notes): Likewise. * exec.c (struct exec_target) <make_corefile_notes>: Likewise. (exec_target::make_corefile_notes): Likewise. * procfs.c (class procfs_target) <make_corefile_notes>: Likewise. (procfs_do_thread_registers): Adjust to unique pointer. (struct procfs_corefile_thread_data): Add constructor. <note_data>: Change type to unique pointer. (procfs_corefile_thread_callback): Adjust to unique pointer. (procfs_target::make_corefile_notes): Change return type to unique pointer. * target-delegates.c: Re-generate. * gcore.c (write_gcore_file_1): Adjust. * target-debug.h (target_debug_print_gdb_unique_xmalloc_ptr_char): New. Change-Id: I768fb17ac0f7adc67d2fe95e952c784fe0ac37ab
2020-10-12Change target_section_table to std::vector aliasTom Tromey1-7/+7
Because target_section_table only holds a vector, and because it is used in an "open" way, this patch makes it just be an alias for the std::vector specialization. This makes the code less wordy. If we do ever want to add more specialized behavior to this type, it's simple enough to convert it back to a struct with the few needed methods implied by this change. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_ops) <get_section_table>: Update. (target_get_section_table): Update. * target.c (target_get_section_table, target_section_by_addr) (memory_xfer_partial_1): Update. * target-section.h (target_section_table): Now an alias. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_section_table_p): Rename from target_debug_print_struct_target_section_table_p. * symfile.c (build_section_addr_info_from_section_table): Update. * solib.c (solib_map_sections, solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_target::xfer_partial): Update. * progspace.h (struct program_space) <target_sections>: Update. * exec.h (print_section_info): Update. * exec.c (exec_target::close, build_section_table) (add_target_sections, add_target_sections_of_objfile) (remove_target_sections, exec_on_vfork) (section_table_available_memory) (section_table_xfer_memory_partial) (exec_target::get_section_table, exec_target::xfer_partial) (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (core_target::build_file_mappings) (core_target::xfer_partial, core_target::info_proc_mappings) (core_target::info_proc_mappings): Update. * bfd-target.c (class target_bfd): Update
2020-09-18Make target_wait options use enum flagsTom Tromey1-6/+6
This changes TARGET_WNOHANG to be a member of an enum, rather than a define, and also adds a DEF_ENUM_FLAGS_TYPE for this type. Then, it changes target_wait and the various target wait methods to use this type rather than "int". This didn't catch any bugs, but it seems like a decent cleanup nevertheless. I did not change deprecated_target_wait_hook, since that's only used out-of-tree (by Insight), and there didn't seem to be a need. I can't build some of these targets, so I modified them on a best-effort basis. I don't think this patch should go in before the release branch is made. gdb/ChangeLog 2020-09-18 Tom Tromey <tromey@adacore.com> * windows-nat.c (struct windows_nat_target) <wait>: Update. (windows_nat_target::wait): Update. * target/wait.h (enum target_wait_flag): New. Use DEF_ENUM_FLAGS_TYPE. * target/target.h (target_wait): Change type of options. * target.h (target_options_to_string, default_target_wait): Update. (struct target_ops) <wait>: Change type of options. * target.c (target_wait, default_target_wait, do_option): Change type of "options". (target_options_to_string): Likewise. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_wait_flags): Rename from target_debug_print_options. * sol-thread.c (class sol_thread_target) <wait>: Update. (sol_thread_target::wait): Update. * rs6000-nat.c (class rs6000_nat_target) <wait>: Update. (rs6000_nat_target::wait): Update. * remote.c (class remote_target) <wait, wait_ns, wait_as>: Update. (remote_target::wait_ns, remote_target::wait_as): Change type of "options". (remote_target::wait): Update. * remote-sim.c (struct gdbsim_target) <wait>: Update. (gdbsim_target::wait): Update. * record-full.c (class record_full_base_target) <wait>: Update. (record_full_wait_1): Change type of "options". (record_full_base_target::wait): Update. * record-btrace.c (class record_btrace_target) <wait>: Update. (record_btrace_target::wait): Update. * ravenscar-thread.c (struct ravenscar_thread_target) <wait>: Update. (ravenscar_thread_target::wait): Update. * procfs.c (class procfs_target) <wait>: Update. (procfs_target::wait): Update. * obsd-nat.h (class obsd_nat_target) <wait>: Update. * obsd-nat.c (obsd_nat_target::wait): Update. * nto-procfs.c (struct nto_procfs_target) <wait>: Update. (nto_procfs_target::wait): Update. * nbsd-nat.h (struct nbsd_nat_target) <wait>: Update. * nbsd-nat.c (nbsd_wait): Change type of "options". (nbsd_nat_target::wait): Update. * linux-thread-db.c (class thread_db_target) <wait>: Update. (thread_db_target::wait): Update. * linux-nat.h (class linux_nat_target) <wait>: Update. * linux-nat.c (linux_nat_target::wait): Update. (linux_nat_wait_1): Update. * infrun.c (do_target_wait_1, do_target_wait): Change type of "options". * inf-ptrace.h (struct inf_ptrace_target) <wait>: Update. * inf-ptrace.c (inf_ptrace_target::wait): Update. * go32-nat.c (struct go32_nat_target) <wait>: Update. (go32_nat_target::wait): Update. * gnu-nat.h (struct gnu_nat_target) <wait>: Update. * gnu-nat.c (gnu_nat_target::wait): Update. * fbsd-nat.h (class fbsd_nat_target) <wait>: Update. * fbsd-nat.c (fbsd_nat_target::wait): Update. * darwin-nat.h (class darwin_nat_target) <wait>: Update. * darwin-nat.c (darwin_nat_target::wait): Update. * bsd-uthread.c (struct bsd_uthread_target) <wait>: Update. (bsd_uthread_target::wait): Update. * aix-thread.c (class aix_thread_target) <wait>: Update. (aix_thread_target::wait): Update. gdbserver/ChangeLog 2020-09-18 Tom Tromey <tromey@adacore.com> * netbsd-low.h (class netbsd_process_target) <wait>: Update. * netbsd-low.cc (netbsd_waitpid, netbsd_wait) (netbsd_process_target::wait): Change type of target_options. * win32-low.h (class win32_process_target) <wait>: Update. * win32-low.cc (win32_process_target::wait): Update. * target.h (class process_stratum_target) <wait>: Update. (mywait): Update. * target.cc (mywait, target_wait): Change type of "options". * linux-low.h (class linux_process_target) <wait, wait_1>: Update. * linux-low.cc (linux_process_target::wait) (linux_process_target::wait_1): Update.
2020-08-14gdb: Implement native dumpcore functionKamil Rytarowski1-0/+50
Add new API for systems with native kernel support for dumping a process on demand. Wire it into the gdb's gcore functionality. gdb/ChangeLog: * target.h (supports_dumpcore, dumpcore): New function declarations. * target.c (supports_dumpcore, dumpcore): New functions. * target-delegates.c: Rebuild. * gcore.c (gcore_command): Use target_supports_dumpcore () and target_dumpcore ().
2020-03-24gdb: bool-ify follow_forkSimon Marchi1-12/+12
Change parameters and return value of the various follow_fork functions/methods from int to bool. gdb/ChangeLog: * fbsd-nat.c (fbsd_nat_target::follow_fork): Change bool to int. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise. * inf-ptrace.c (inf_ptrace_target::follow_fork): Likewise. * inf-ptrace.h (struct inf_ptrace_target) <follow_fork>: Likewise. * infrun.c (follow_fork): Likewise. (follow_fork_inferior): Likewise. * linux-nat.c (linux_nat_target::follow_fork): Likewise. * linux-nat.h (class linux_nat_target): Likewise. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise. * target-delegates.c: Re-generate. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * target.h (struct target_ops) <follow_fork>: Likewise. (target_follow_fork): Likewise.
2020-01-10Multi-target supportPedro Alves1-0/+27
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target.
2019-05-22Constify target_ops::follow_execTom Tromey1-6/+6
I noticed that target_ops::follow_exec took a "char *" parameter, where "const char *" would be more correct. This patch changes this (and related functions) to be constified. Tested by rebuilding. gdb/ChangeLog 2019-05-22 Tom Tromey <tromey@adacore.com> * target.c (target_follow_exec): Constify parameter. * target-delegates.c: Rebuild. * remote.c (remote_target::follow_exec): Constify parameter. * infrun.c (follow_exec): Constify parameter. * target.h (struct target_ops) <follow_exec>: Constify parameter. (target_follow_exec): Likewise.
2019-04-08Introduce target_ops method thread_info_to_thread_handleKevin Buettner1-0/+28
This patch adds a thread_info_to_thread_handle method to the target_ops struct. It also implements this functionality for remote targets and linux native threads. gdb/ChangeLog: * gdbthread.h (thread_to_thread_handle): Declare. * thread.c (gdbtypes.h): Include. (thread_to_thread_handle): New function. * target.h (struct target_ops): Add thread_info_to_thread_handle. (target_thread_info_to_thread_handle): Declare. * target.c (target_thread_info_to_thread_handle): New function. * target-debug.h (target_debug_print_gdb_byte_vector): Define. * target-delegates.c: Regenerate. * linux-thread-db.c (class thread_db_target): Add method thread_info_to_thread_handle. (thread_db_target::thread_info_to_thread_handle): Define. * remote.c (class remote_target): Add new method thread_info_to_thread_handle. (remote_target::thread_info_to_thread_handle): Define.
2019-03-13Change pid_to_str to return std::stringTom Tromey1-7/+7
Currently the target pid_to_str method returns a const char *, so many implementations have a static buffer that they update. This patch changes these methods to return a std::string instead. I think this is cleaner and avoids possible gotchas when calling pid_to_str on different ptids in a single statement. (Though no such calls exist currently.) This also updates various helper functions, and the gdbarch pid_to_str methods. I also made a best effort to fix all the callers, but I can't build some of the *-nat.c files. Tested by the buildbot. gdb/ChangeLog 2019-03-13 Tom Tromey <tromey@adacore.com> * i386-gnu-nat.c (i386_gnu_nat_target::fetch_registers) (i386_gnu_nat_target::store_registers): Update. * target-debug.h (target_debug_print_std_string): New macro. * x86-linux-nat.c (x86_linux_nat_target::enable_btrace): Update. * windows-tdep.c (display_one_tib): Update. * tui/tui-stack.c (tui_make_status_line): Update. * top.c (print_inferior_quit_action): Update. * thread.c (thr_try_catch_cmd): Update. (add_thread_with_info): Update. (thread_target_id_str): Update. (thr_try_catch_cmd): Update. (thread_command): Update. (thread_find_command): Update. * record-btrace.c (record_btrace_target::info_record) (record_btrace_resume_thread, record_btrace_target::resume) (record_btrace_cancel_resume, record_btrace_step_thread) (record_btrace_target::wait, record_btrace_target::wait) (record_btrace_target::wait, record_btrace_target::stop): Update. * progspace.c (print_program_space): Update. * process-stratum-target.c (process_stratum_target::thread_address_space): Update. * linux-fork.c (linux_fork_mourn_inferior) (detach_checkpoint_command, info_checkpoints_command) (linux_fork_context): Update. (linux_fork_detach): Update. (class scoped_switch_fork_info): Update. (delete_checkpoint_command): Update. * infrun.c (follow_fork_inferior): Update. (follow_fork_inferior): Update. (proceed_after_vfork_done): Update. (handle_vfork_child_exec_or_exit): Update. (follow_exec): Update. (displaced_step_prepare_throw): Update. (displaced_step_restore): Update. (start_step_over): Update. (resume_1): Update. (clear_proceed_status_thread): Update. (proceed): Update. (print_target_wait_results): Update. (do_target_wait): Update. (context_switch): Update. (stop_all_threads): Update. (restart_threads): Update. (finish_step_over): Update. (handle_signal_stop): Update. (switch_back_to_stepped_thread): Update. (keep_going_pass_signal): Update. (print_exited_reason): Update. (normal_stop): Update. * inferior.c (inferior_pid_to_str): Change return type. (print_selected_inferior): Update. (add_inferior): Update. (detach_inferior): Update. * dummy-frame.c (fprint_dummy_frames): Update. * dcache.c (dcache_info_1): Update. * btrace.c (btrace_enable, btrace_disable, btrace_teardown) (btrace_fetch, btrace_clear): Update. * linux-tdep.c (linux_core_pid_to_str): Change return type. * i386-cygwin-tdep.c (i386_windows_core_pid_to_str): Change return type. * fbsd-tdep.c (fbsd_core_pid_to_str): Change return type. * sol2-tdep.h (sol2_core_pid_to_str): Change return type. * sol2-tdep.c (sol2_core_pid_to_str): Change return type. * gdbarch.c, gdbarch.h: Rebuild. * gdbarch.sh (core_pid_to_str): Change return type. * windows-nat.c (struct windows_nat_target) <pid_to_str>: Change return type. (windows_nat_target::pid_to_str): Change return type. (windows_delete_thread): Update. (windows_nat_target::attach): Update. (windows_nat_target::files_info): Update. * target-delegates.c: Rebuild. * sol-thread.c (class sol_thread_target) <pid_to_str>: Change return type. (sol_thread_target::pid_to_str): Change return type. * remote.c (class remote_target) <pid_to_str>: Change return type. (remote_target::pid_to_str): Change return type. (extended_remote_target::attach, remote_target::remote_stop_ns) (remote_target::remote_notif_remove_queued_reply) (remote_target::push_stop_reply, remote_target::disable_btrace): Update. (extended_remote_target::attach): Update. * remote-sim.c (struct gdbsim_target) <pid_to_str>: Change return type. (gdbsim_target::pid_to_str): Change return type. * ravenscar-thread.c (struct ravenscar_thread_target) <pid_to_str>: Change return type. (ravenscar_thread_target::pid_to_str): Change return type. * procfs.c (class procfs_target) <pid_to_str>: Change return type. (procfs_target::pid_to_str): Change return type. (procfs_target::attach): Update. (procfs_target::detach): Update. (procfs_target::fetch_registers): Update. (procfs_target::store_registers): Update. (procfs_target::wait): Update. (procfs_target::files_info): Update. * obsd-nat.c (obsd_nat_target::pid_to_str): Change return type. * nto-procfs.c (struct nto_procfs_target) <pid_to_str>: Change return type. (nto_procfs_target::pid_to_str): Change return type. (nto_procfs_target::files_info, nto_procfs_target::attach): Update. * linux-thread-db.c (class thread_db_target) <pid_to_str>: Change return type. * linux-nat.c (linux_nat_target::pid_to_str): Change return type. (exit_lwp): Update. (attach_proc_task_lwp_callback, get_detach_signal) (detach_one_lwp, resume_lwp, linux_nat_target::resume) (linux_nat_target::resume, wait_lwp, stop_callback) (maybe_clear_ignore_sigint, stop_wait_callback, status_callback) (save_stop_reason, select_event_lwp, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps) (linux_nat_target::wait, linux_nat_stop_lwp): Update. * inf-ptrace.c (inf_ptrace_target::pid_to_str): Change return type. (inf_ptrace_target::attach): Update. (inf_ptrace_target::files_info): Update. * go32-nat.c (struct go32_nat_target) <pid_to_str>: Change return type. (go32_nat_target::pid_to_str): Change return type. * gnu-nat.c (gnu_nat_target::pid_to_str): Change return type. (gnu_nat_target::wait): Update. (gnu_nat_target::wait): Update. (gnu_nat_target::resume): Update. * fbsd-nat.c (fbsd_nat_target::pid_to_str): Change return type. (fbsd_nat_target::wait): Update. * darwin-nat.c (darwin_nat_target::pid_to_str): Change return type. (darwin_nat_target::attach): Update. * corelow.c (class core_target) <pid_to_str>: Change return type. (core_target::pid_to_str): Change return type. * target.c (normal_pid_to_str): Change return type. (default_pid_to_str): Likewise. (target_pid_to_str): Change return type. (target_translate_tls_address): Update. (target_announce_detach): Update. * bsd-uthread.c (struct bsd_uthread_target) <pid_to_str>: Change return type. (bsd_uthread_target::pid_to_str): Change return type. * bsd-kvm.c (class bsd_kvm_target) <pid_to_str>: Change return type. (bsd_kvm_target::pid_to_str): Change return type. * aix-thread.c (class aix_thread_target) <pid_to_str>: Change return type. (aix_thread_target::pid_to_str): Change return type. * target.h (struct target_ops) <pid_to_str>: Change return type. (target_pid_to_str, normal_pid_to_str): Likewise. * obsd-nat.h (class obsd_nat_target) <pid_to_str>: Change return type. * linux-nat.h (class linux_nat_target) <pid_to_str>: Change return type. * inf-ptrace.h (struct inf_ptrace_target) <pid_to_str>: Change return type. * gnu-nat.h (struct gnu_nat_target) <pid_to_str>: Change return type. * fbsd-nat.h (class fbsd_nat_target) <pid_to_str>: Change return type. * darwin-nat.h (class darwin_nat_target) <pid_to_str>: Change return type.
2019-01-24target_pass_signals/target_program_signals: Use gdb::array_viewPedro Alves1-20/+16
This replaces the pointer and length parameters of target_pass_signals and target_program_signals with a gdb::array_view parameter, and fixes the fallout. In infrun.c, the signal_stop, signal_print, signal_program, signal_catch, signal_pass globals are currently pointers to heap-allocated memory. I see no point in that, so I converted them to arrays. This allows simplifying the calls to target_pass_signals/target_program_signals, since we can pass the array directly, which can implicitly convert to gdb::array_view. gdb/ChangeLog: 2019-01-24 Pedro Alves <palves@redhat.com> * infrun.c (signal_stop, signal_print, signal_program) (signal_catch, signal_pass): Now arrays instead of pointers. (update_signals_program_target, do_target_resume) (signal_catch_update, handle_command, _initialize_infrun): Adjust. * linux-nat.c (linux_nat_target::pass_signals) (linux_nat_target::create_inferior, linux_nat_target::attach): Adjust. * linux-nat.h (linux_nat_target::pass_signals): Adjust. * nto-procfs.c (nto_procfs_target::pass_signals): Adjust. * procfs.c (procfs_target::pass_signals): Adjust. * record-full.c (record_full_target::resume): Adjust. * remote.c (remote_target::pass_signals) (remote_target::program_signals): Adjust. * target-debug.h (target_debug_print_signals): Now takes a gdb::array_view as parameter. Adjust. * target.h (target_ops) <pass_signals, program_signals>: Replace pointer and length parameters with gdb::array_view. (target_pass_signals, target_program_signals): Likewise. * target-delegates.c: Regenerate.
2019-01-14Constify target_pass_signals and target_program_signalsTom Tromey1-10/+10
This constifies the final parameter to target_pass_signals and target_program_signals and updates the rest of gdb. Note that I have no way to test the nto-procfs.c change. gdb/ChangeLog 2019-01-14 Tom Tromey <tom@tromey.com> * target-debug.h (target_debug_print_signals): Constify. * nto-procfs.c (nto_procfs_target::pass_signals): Update. * procfs.c (procfs_target::pass_signals): Update. * linux-nat.c (linux_nat_target::pass_signals): Update. * linux-nat.h (class linux_nat_target) <pass_signals>: Update. * target-delegates.c: Rebuild. * remote.c (remote_target::program_signals): Update. (remote_target::pass_signals): Update. * target.c (target_pass_signals): Constify argument. (target_program_signals): Likewise. * target.h (struct target_ops) <pass_signals, program_signals>: Constify argument. (target_pass_signals, target_program_signals): Constify argument.
2018-11-30target_ops::to_stratum -> target_ops::stratum() virtual methodPedro Alves1-4/+4
Given that a target's stratum is a property of the type, and not of an instance of the type, get rid of to_stratum data field and replace it with a virtual method. I.e., when we have e.g., 10 target remote instances active, there's no need for each of the instances to have their own to_stratum copy. gdb/ChangeLog: 2018-11-30 Pedro Alves <palves@redhat.com> * aix-thread.c (aix_thread_target) <aix_thread_target>: Delete. <stratum>: New override. * bfd-target.c (aix_thread_target) <aix_thread_target>: Delete. <stratum>: New override. * bsd-uthread.c (bsd_uthread_target) <bsd_uthread_target>: Delete. <stratum>: New override. * exec.c (exec_target) <exec_target>: Delete. <stratum>: New override. * gdbarch-selftests.c (register_to_value_test): Adjust to use the stratum method instead of the to_stratum field. * linux-thread-db.c (thread_db_target) <thread_db_target>: Delete. <stratum>: New override. (thread_db_target::thread_db_target): Delete. * make-target-delegates (print_class): Don't print a ctor declaration. Print a stratum method override declaration. * process-stratum-target.h (process_stratum_target) <process_stratum_target>: Delete. <stratum>: New override. * ravenscar-thread.c (ravenscar_thread_target) <ravenscar_thread_target>: Delete. <stratum>: New override. * record-btrace.c (record_btrace_target) <record_btrace_target>: Delete. <stratum>: New override. * record-full.c (record_full_base_target) <record_full_base_target>: Delete. <stratum>: New override. * record.c (record_disconnect, record_detach) (record_mourn_inferior, record_kill): Adjust to use the stratum method instead of the to_stratum field. * regcache.c (cooked_read_test, cooked_write_test): Likewise. * sol-thread.c (sol_thread_target) <sol_thread_target>: Delete. <stratum>: New override. * spu-multiarch.c (spu_multiarch_target) <spu_multiarch_target>: Delete. <stratum>: New override. * target-delegates.c: Regenerate. * target.c (target_stack::push, target_stack::unpush) (pop_all_targets_above, pop_all_targets_at_and_above) (info_target_command, target_require_runnable) (target_stack::find_beneath): Adjust to use the stratum method instead of the to_stratum field. (dummy_target::dummy_target): Delete. (dummy_target::stratum): New. (debug_target::debug_target): Delete. (debug_target::stratum): New. (maintenance_print_target_stack): Adjust to use the stratum method instead of the to_stratum field. * target.h (struct target_ops) <stratum>: New method. <to_stratum>: Delete. <is_pushed>: Adjust to use the stratum method instead of the to_stratum field.
2018-11-30Introduce process_stratum_targetPedro Alves1-2/+2
This adds a base class that all process_stratum targets inherit from. default_thread_address_space/default_thread_architecture only make sense for process_stratum targets, so they are transformed to process_stratum_target methods/overrides. gdb/ChangeLog: 2018-11-30 Pedro Alves <palves@redhat.com> * Makefile.in (COMMON_SFILES): Add process-stratum-target.c. * bsd-kvm.c: Include "process-stratum-target.h". (bsd_kvm_target): Now inherits from process_stratum_target. (bsd_kvm_target::bsd_kvm_target): Default it. * corelow.c: Include "process-stratum-target.h". (core_target): Now inherits from process_stratum_target. (core_target::core_target): Don't set to_stratum here. * inf-child.c (inf_child_target::inf_child_target): Delete. * inf-child.h: Include "process-stratum-target.h". (inf_child_target): Inherit from process_stratum_target. (inf_child_target) <inf_child_target>: Default it. <can_async_p, supports_non_stop, supports_disable_randomization>: Delete overrides. * process-stratum-target.c: New file. * process-stratum-target.h: New file. * remote-sim.c: Include "process-stratum-target.h". (gdbsim_target): Inherit from process_stratum_target. <gdbsim_target>: Default it. * remote.c: Include "process-stratum-target.h". (remote_target): Inherit from process_stratum_target. <remote_target>: Default it. * target.c (default_thread_address_space) (default_thread_architecture): Delete. * target.h (target_ops) <thread_architecture>: Now returns NULL by default. <thread_address_space>: Ditto. * test-target.h: Include "process-stratum-target.h" instead of "target.h". (test_target_ops): Inherit from process_stratum_target. <test_target_ops>: Default it. * tracefile.c (tracefile_target::tracefile_target): Delete. * tracefile.h: Include "process-stratum-target.h". (tracefile_target): Inherit from process_stratum_target. <tracefile_target>: Default it. * target-delegates.c: Regenerate.
2018-11-18Fix ia64-linux-nat.cTom Tromey1-7/+7
PR build/23814 points out that ia64-linux-nat.c will not compile any more. This patch fixes the problem. Thanks to Andreas Schwab for trying the patch. gdb/ChangeLog 2018-11-18 Tom Tromey <tom@tromey.com> PR build/23814: * target-delegates.c: Rebuild. * ia64-linux-nat.c (class ia64_linux_nat_target) <have_steppable_watchpoint>: Use override. Return true, not 1. (ia64_linux_nat_target::can_use_hw_breakpoint): Rename. Remove "self" argument. (ia64_linux_nat_target::low_new_thread): Rename. (class ia64_linux_nat_target) <read_description>: Don't declare. * target.h (struct target_ops) <have_steppable_watchpoint>: Return bool.
2018-08-31Eliminate target_have_continuable_watchpointPedro Alves1-27/+0
target_have_continuable_watchpoint isn't used anywhere so remove it. The property isn't necessary because checking for "continuable" is the same as checking for "!steppable && !non-steppable". gdb/ChangeLog: 2018-08-31 Pedro Alves <palves@redhat.com> * nto-procfs.c (nto_procfs_target::have_continuable_watchpoint): Delete. * s390-linux-nat.c (s390_linux_nat_target::have_continuable_watchpoint): Delete. * target.h (target_ops::have_continuable_watchpoint): Delete. (target_have_continuable_watchpoint): Delete. * x86-nat.h (x86_nat_target::have_continuable_watchpoint): Delete. * target-delegates.c: Regenerate.
2018-06-07target_ops::beneath -> target_ops::beneath()Pedro Alves1-640/+640
This changes target_ops::beneath from a pointer to a method, and adjusts all references throughout. The idea here is to make it easier to change the target stack representation from an intrusive singly linked list to something else without leaking implementation details throughout. The commit does not change the representation yet, that will be done in a following patch. That is why a new target_ops::m_beneath field appears here. That new field isn't really documented properly or made private, simply because it will be removed shortly. Note that target_ops::beneath() is essentially the same as the current find_target_beneath routine. The following patch will eliminate the latter. gdb/ChangeLog: 2018-06-07 Pedro Alves <palves@redhat.com> * target.h (target_ops) <beneath>: Now a method. All references updated. (target_ops) <m_beneath>: New. * target.c (target_ops::beneath): New. * corelow.c: Adjust all references to target_ops::beneath. * linux-thread-db.c: Likewise. * make-target-delegates: Likewise. * record-btrace.c: Likewise. * record-full.c: Likewise. * remote.c: Likewise. * target.c: Likewise. * target-delegates.c: Regenerate.
2018-05-03target factories, target open and multiple instances of targetsPedro Alves1-6/+2
Currently, to open a target, with "target TARGET_NAME", GDB finds the target_ops instance with "TARGET_NAME" as short name, and then calls its target_ops::open virtual method. In reality, there's no actual target/name lookup, a pointer to the target_ops object was associated with the "target TARGET_NAME" command at add_target time (when GDB is initialized), as the command's context. This creates a chicken and egg situation. Consider the case of wanting to open multiple remote connections. We want to be able to have one remote target_ops instance per connection, but, if we're not connected yet, so we don't yet have an instance to call target->open() on... This patch fixes this by separating out common info about a target_ops to a separate structure (shortname, longname, doc), and changing the add_target routine to take a reference to such an object instead of a pointer to a target_ops, and a pointer to a factory function that is responsible to open an instance of the corresponding target when the user types "target TARGET_NAME". -extern void add_target (struct target_ops *); +extern void add_target (const target_info &info, target_open_ftype *func); I.e. this factory function replaces the target_ops::open virtual method. For static/singleton targets, nothing changes, the target_open_ftype function pushes the global target_ops instance on the target stack. At target_close time, the connection is tor down, but the global target_ops object remains live. However, targets that support being open multiple times will make their target_open_ftype routine allocate a new target_ops instance on the heap [e.g., new remote_target()], and push that on the stack. At target_close time, the new object is destroyed (by the target_ops::close virtual method). Both the core target and the remote targets will support being open multiple times (others could/should too, but those were my stopping point), but not in this patch yet. We need to get rid of more globals first before that'd be useful. Native targets are somewhat special, given find_default_run_target & friends. Those routines also expect to return a target_ops pointer, even before we've open the target. However, we'll never need more than one instance of the native target, so we can assume/require that native targets are global/simpletons, and have the backends register a pointer to the native target_ops. Since all native targets inherit inf_child_target, we can centralize that registration. See add_inf_child_target, get_native_target/set_native_target and find_default_run_target. gdb/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> * aarch64-fbsd-nat.c (_initialize_aarch64_fbsd_nat): Use add_inf_child_target. * aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Use add_inf_child_target. * aix-thread.c (aix_thread_target_info): New. (aix_thread_target) <shortname, longname, doc>: Delete. <info>: New. * alpha-bsd-nat.c (_initialize_alphabsd_nat): Use add_inf_child_target. * alpha-linux-nat.c (_initialize_alpha_linux_nat): Use add_inf_child_target. * amd64-fbsd-nat.c (_initialize_amd64fbsd_nat): Use add_inf_child_target. * amd64-linux-nat.c (_initialize_amd64_linux_nat): Use add_inf_child_target. * amd64-nbsd-nat.c (_initialize_amd64nbsd_nat): Use add_inf_child_target. * amd64-obsd-nat.c (_initialize_amd64obsd_nat): Use add_inf_child_target. * arm-fbsd-nat.c (_initialize_arm_fbsd_nat): Use add_inf_child_target. * arm-linux-nat.c (_initialize_arm_linux_nat): Use add_inf_child_target. * arm-nbsd-nat.c (_initialize_arm_netbsd_nat): Use add_inf_child_target. * bfd-target.c (target_bfd_target_info): New. (target_bfd) <shortname, longname, doc>: Delete. <info>: New. * bsd-kvm.c (bsd_kvm_target_info): New. (bsd_kvm_target) <shortname, longname, doc>: Delete. <info>: New. (bsd_kvm_target::open): Rename to ... (bsd_kvm_target_open): ... this. Adjust. * bsd-uthread.c (bsd_uthread_target_info): New. (bsd_uthread_target) <shortname, longname, doc>: Delete. <info>: New. * corefile.c (core_file_command): Adjust. * corelow.c (core_target_info): New. (core_target) <shortname, longname, doc>: Delete. <info>: New. (core_target::open): Rename to ... (core_target_open): ... this. Adjust. * ctf.c (ctf_target_info): New. (ctf_target) <shortname, longname, doc>: Delete. <info>: New. (ctf_target::open): Rename to ... (ctf_target_open): ... this. (_initialize_ctf): Adjust. * exec.c (exec_target_info): New. (exec_target) <shortname, longname, doc>: Delete. <info>: New. (exec_target::open): Rename to ... (exec_target_open): ... this. * gdbcore.h (core_target_open): Declare. * go32-nat.c (_initialize_go32_nat): Use add_inf_child_target. * hppa-linux-nat.c (_initialize_hppa_linux_nat): Use add_inf_child_target. * hppa-nbsd-nat.c (_initialize_hppanbsd_nat): Use add_inf_child_target. * hppa-obsd-nat.c (_initialize_hppaobsd_nat): Use add_inf_child_target. * i386-darwin-nat.c (_initialize_i386_darwin_nat): Use add_inf_child_target. * i386-fbsd-nat.c (_initialize_i386fbsd_nat): Use add_inf_child_target. * i386-gnu-nat.c (_initialize_i386gnu_nat): Use add_inf_child_target. * i386-linux-nat.c (_initialize_i386_linux_nat): Use add_inf_child_target. * i386-nbsd-nat.c (_initialize_i386nbsd_nat): Use add_inf_child_target. * i386-obsd-nat.c (_initialize_i386obsd_nat): Use add_inf_child_target. * ia64-linux-nat.c (_initialize_ia64_linux_nat): Use add_inf_child_target. * inf-child.c (inf_child_target_info): New. (inf_child_target::info): New. (inf_child_open_target): Remove 'target' parameter. Use get_native_target instead. (inf_child_target::open): Delete. (add_inf_child_target): New. * inf-child.h (inf_child_target) <shortname, longname, doc, open>: Delete. <info>: New. (add_inf_child_target): Declare. (inf_child_open_target): Declare. * linux-thread-db.c (thread_db_target_info): New. (thread_db_target) <shortname, longname, doc>: Delete. <info>: New. * m32r-linux-nat.c (_initialize_m32r_linux_nat): Use add_inf_child_target. * m68k-bsd-nat.c (_initialize_m68kbsd_nat): Use add_inf_child_target. * m68k-linux-nat.c (_initialize_m68k_linux_nat): Use add_inf_child_target. * m88k-bsd-nat.c (_initialize_m88kbsd_nat): Use add_inf_child_target. * make-target-delegates (print_class): Adjust. * mips-fbsd-nat.c (_initialize_mips_fbsd_nat): Use add_inf_child_target. * mips-linux-nat.c (_initialize_mips_linux_nat): Use add_inf_child_target. * mips-nbsd-nat.c (_initialize_mipsnbsd_nat): Use add_inf_child_target. * mips64-obsd-nat.c (_initialize_mips64obsd_nat): Use add_inf_child_target. * nto-procfs.c (nto_native_target_info): New. (nto_procfs_target_native) <shortname, longname, doc>: Delete. <info>: New. (nto_procfs_target_info): New. (nto_procfs_target_procfs) <shortname, longname, doc>: Delete. <info>: New. (init_procfs_targets): Adjust. * ppc-fbsd-nat.c (_initialize_ppcfbsd_nat): Use add_inf_child_target. * ppc-linux-nat.c (_initialize_ppc_linux_nat): Use add_inf_child_target. * ppc-nbsd-nat.c (_initialize_ppcnbsd_nat): Use add_inf_child_target. * ppc-obsd-nat.c (_initialize_ppcobsd_nat): Use add_inf_child_target. * ravenscar-thread.c (ravenscar_target_info): New. (ravenscar_thread_target) <shortname, longname, doc>: Delete. <info>: New. * record-btrace.c (record_btrace_target_info): (record_btrace_target) <shortname, longname, doc>: Delete. <info>: New. (record_btrace_target::open): Rename to ... (record_btrace_target_open): ... this. Adjust. * record-full.c (record_longname, record_doc): New. (record_full_base_target) <shortname, longname, doc>: Delete. <info>: New. (record_full_target_info): New. (record_full_target): <shortname>: Delete. <info>: New. (record_full_core_open_1, record_full_open_1): Update comments. (record_full_base_target::open): Rename to ... (record_full_open): ... this. (cmd_record_full_restore): Update. (_initialize_record_full): Update. * remote-sim.c (remote_sim_target_info): New. (gdbsim_target) <shortname, longname, doc>: Delete. <info>: New. (gdbsim_target::open): Rename to ... (gdbsim_target_open): ... this. (_initialize_remote_sim): Adjust. * remote.c (remote_doc): New. (remote_target_info): New. (remote_target) <shortname, longname, doc>: Delete. <info>: New. (extended_remote_target_info): New. (extended_remote_target) <shortname, longname, doc>: Delete. <info>: New. (remote_target::open_1): Make static. Adjust. * rs6000-nat.c (_initialize_rs6000_nat): Use add_inf_child_target. * s390-linux-nat.c (_initialize_s390_nat): Use add_inf_child_target. * sh-nbsd-nat.c (_initialize_shnbsd_nat): Use add_inf_child_target. * sol-thread.c (thread_db_target_info): New. (sol_thread_target) <shortname, longname, doc>: Delete. <info>: New. * sparc-linux-nat.c (_initialize_sparc_linux_nat): Use add_inf_child_target. * sparc-nbsd-nat.c (_initialize_sparcnbsd_nat): Use add_inf_child_target. * sparc64-fbsd-nat.c (_initialize_sparc64fbsd_nat): Use add_inf_child_target. * sparc64-linux-nat.c (_initialize_sparc64_linux_nat): Use add_inf_child_target. * sparc64-nbsd-nat.c (_initialize_sparc64nbsd_nat): Use add_inf_child_target. * sparc64-obsd-nat.c (_initialize_sparc64obsd_nat): Use add_inf_child_target. * spu-linux-nat.c (_initialize_spu_nat): Use add_inf_child_target. * spu-multiarch.c (spu_multiarch_target_info): New. (spu_multiarch_target) <shortname, longname, doc>: Delete. <info>: New. * target-delegates.c: Regenerate. * target.c: Include <unordered_map>. (target_ops_p): Delete. (DEF_VEC_P(target_ops_p)): Delete. (target_factories): New. (test_target_info): New. (test_target_ops::info): New. (open_target): Adjust to use target_factories. (add_target_with_completer): Rename to ... (add_target): ... this. Change prototype. Register target_info and open callback in target_factories. Register target_info in command context instead of target_ops. (add_target): Delete old implementation. (add_deprecated_target_alias): Change prototype. Adjust. (the_native_target): New. (set_native_target, get_native_target): New. (find_default_run_target): Use the_native_target. (find_attach_target, find_run_target): Simplify. (target_ops::open): Delete. (dummy_target_info): New. (dummy_target::shortname, dummy_target::longname) (dummy_target::doc): Delete. (dummy_target::info): New. (debug_target::shortname, debug_target::longname) (debug_target::doc): Delete. (debug_target::info): New. * target.h (struct target_info): New. (target_ops::~target_ops): Add comment. (target_ops::info): New. (target_ops::shortname, target_ops::longname, target_ops::doc): No longer virtual. Implement in terms of target_info. (set_native_target, get_native_target): Declare. (target_open_ftype): New. (add_target, add_target_with_completer) (add_deprecated_target_alias): Change prototype. (test_target) <shortname, longname, doc>: Delete. <info>: New. * tilegx-linux-nat.c (_initialize_tile_linux_nat): Use add_inf_child_target. * tracefile-tfile.c (tfile_target_info): New. (tfile_target) <shortname, longname, doc>: Delete. <info>: New. (tfile_target::open): Rename to ... (tfile_target_open): ... this. (_initialize_tracefile_tfile): Adjust. * vax-bsd-nat.c (_initialize_vaxbsd_nat): Use add_inf_child_target. * windows-nat.c (_initialize_windows_nat): Use add_inf_child_target. * xtensa-linux-nat.c (_initialize_xtensa_linux_nat): Use add_inf_child_target.
2018-05-03target_ops: Use bool throughoutPedro Alves1-243/+243
After the previous target_ops/C++ patches are all squashed and merged, this one can go in separately. This patch adjusts all the target methods to return bool instead of int when they're returning a boolean. gdb/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> * target.h (target_ops) <stopped_by_sw_breakpoint, supports_stopped_by_sw_breakpoint, stopped_by_hw_breakpoint, supports_stopped_by_hw_breakpoint, stopped_by_watchpoint, have_continuable_watchpoint, stopped_data_address, watchpoint_addr_within_range, can_accel_watchpoint_condition, can_run, thread_alive, has_all_memory, has_memory, has_stack, has_registers, has_execution, can_async_p, is_async_p, supports_non_stop, always_non_stop_p, can_execute_reverse, supports_multi_process, supports_enable_disable_tracepoint, supports_disable_randomization, supports_string_tracing, supports_evaluation_of_breakpoint_conditions, can_run_breakpoint_commands, filesystem_is_local, can_download_tracepoint, get_trace_state_variable_value, set_trace_notes, get_tib_address, use_agent, can_use_agent, record_is_replaying, record_will_replay, augmented_libraries_svr4_read>: Adjust to return bool. * aarch64-linux-nat.c: All implementations adjusted. * aix-thread.c: All implementations adjusted. * arm-linux-nat.c: All implementations adjusted. * breakpoint.c: All implementations adjusted. * bsd-kvm.c: All implementations adjusted. * bsd-uthread.c: All implementations adjusted. * corelow.c: All implementations adjusted. * ctf.c: All implementations adjusted. * darwin-nat.c: All implementations adjusted. * darwin-nat.h: All implementations adjusted. * exec.c: All implementations adjusted. * fbsd-nat.c: All implementations adjusted. * fbsd-nat.h: All implementations adjusted. * gnu-nat.c: All implementations adjusted. * gnu-nat.h: All implementations adjusted. * go32-nat.c: All implementations adjusted. * ia64-linux-nat.c: All implementations adjusted. * inf-child.c: All implementations adjusted. * inf-child.h: All implementations adjusted. * inf-ptrace.c: All implementations adjusted. * inf-ptrace.h: All implementations adjusted. * linux-nat.c: All implementations adjusted. * linux-nat.h: All implementations adjusted. * mips-linux-nat.c: All implementations adjusted. * nto-procfs.c: All implementations adjusted. * ppc-linux-nat.c: All implementations adjusted. * procfs.c: All implementations adjusted. * ravenscar-thread.c: All implementations adjusted. * record-btrace.c: All implementations adjusted. * record-full.c: All implementations adjusted. * remote-sim.c: All implementations adjusted. * remote.c: All implementations adjusted. * s390-linux-nat.c: All implementations adjusted. * sol-thread.c: All implementations adjusted. * spu-multiarch.c: All implementations adjusted. * target-delegates.c: All implementations adjusted. * target.c: All implementations adjusted. * target.h: All implementations adjusted. * tracefile-tfile.c: All implementations adjusted. * tracefile.c: All implementations adjusted. * tracefile.h: All implementations adjusted. * windows-nat.c: All implementations adjusted. * x86-linux-nat.h: All implementations adjusted. * x86-nat.h: All implementations adjusted.
2018-05-03Convert struct target_ops to C++Pedro Alves1-2730/+2306
I.e., use C++ virtual methods and inheritance instead of tables of function pointers. Unfortunately, there's no way to do a smooth transition. ALL native targets in the tree must be converted at the same time. I've tested all I could with cross compilers and with help from GCC compile farm, but naturally I haven't been able to test many of the ports. Still, I made a best effort to port everything over, and while I expect some build problems due to typos and such, which should be trivial to fix, I don't expect any design problems. * Implementation notes: - The flattened current_target is gone. References to current_target or current_target.beneath are replaced with references to target_stack (the top of the stack) directly. - To keep "set debug target" working, this adds a new debug_stratum layer that sits on top of the stack, prints the debug, and delegates to the target beneath. In addition, this makes the shortname and longname properties of target_ops be virtual methods instead of data fields, and makes the debug target defer those to the target beneath. This is so that debug code sprinkled around that does "if (debugtarget) ..." can transparently print the name of the target beneath. A patch later in the series actually splits out the shortname/longname methods to a separate structure, but I preferred to keep that chance separate as it is associated with changing a bit the design of how targets are registered and open. - Since you can't check whether a C++ virtual method is overridden, the old method of checking whether a target_ops implements a method by comparing the function pointer must be replaced with something else. Some cases are fixed by adding a parallel "can_do_foo" target_ops methods. E.g.,: + for (t = target_stack; t != NULL; t = t->beneath) { - if (t->to_create_inferior != NULL) + if (t->can_create_inferior ()) break; } Others are fixed by changing void return type to bool or int return type, and have the default implementation return false or -1, to indicate lack of support. - make-target-delegates was adjusted to generate C++ classes and methods. It needed tweaks to grok "virtual" in front of the target method name, and for the fact that methods are no longer function pointers. (In particular, the current code parsing the return type was simple because it could simply parse up until the '(' in '(*to_foo)'. It now generates a couple C++ classes that inherit target_ops: dummy_target and debug_target. Since we need to generate the class declarations as well, i.e., we need to emit methods twice, we now generate the code in two passes. - The core_target global is renamed to avoid conflict with the "core_target" class. - ctf/tfile targets init_tracefile_ops is replaced by a base class that is inherited by both ctf and tfile. - bsd-uthread The bsd_uthread_ops_hack hack is gone. It's not needed because nothing was extending a target created by bsd_uthread_target. - remote/extended-remote targets This is a first pass, just enough to C++ify target_ops. A later pass will convert more free functions to methods, and make remote_state be truly per remote instance, allowing multiple simultaneous instances of remote targets. - inf-child/"native" is converted to an actual base class (inf_child_target), that is inherited by all native targets. - GNU/Linux The old weird double-target linux_ops mechanism in linux-nat.c, is gone, replaced by adding a few virtual methods to linux-nat.h's target_ops, called low_XXX, that the concrete linux-nat implementations override. Sort of like gdbserver's linux_target_ops, but simpler, for requiring only one target_ops-like hierarchy, which spares implementing the same method twice when we need to forward the method to a low implementation. The low target simply reimplements the target_ops method directly in that case. There are a few remaining linux-nat.c hooks that would be better converted to low_ methods like above too. E.g.: linux_nat_set_new_thread (t, x86_linux_new_thread); linux_nat_set_new_fork (t, x86_linux_new_fork); linux_nat_set_forget_process That'll be done in a follow up patch. - We can no longer use functions like x86_use_watchpoints to install custom methods on an arbitrary base target. The patch replaces instances of such a pattern with template mixins. For example memory_breakpoint_target defined in target.h, or x86_nat_target in x86-nat.h. - linux_trad_target, MIPS and Alpha GNU/Linux The code in the new linux-nat-trad.h/c files which was split off of inf-ptrace.h/c recently, is converted to a C++ base class, and used by the MIPS and Alpha GNU/Linux ports. - BSD targets The $architecture x NetBSD/OpenBSD/FreeBSD support matrix complicates things a bit. There's common BSD target code, and there's common architecture-specific code shared between the different BSDs. Currently, all that is stiched together to form a final target, via the i386bsd_target, x86bsd_target, fbsd_nat_add_target functions etc. This introduces new fbsd_nat_target, obsd_nat_target and nbsd_nat_target classes that serve as base/prototype target for the corresponding BSD variant. And introduces generic i386/AMD64 BSD targets, to be used as template mixin to build a final target. Similarly, a generic SPARC target is added, used by both BSD and Linux ports. - bsd_kvm_add_target, BSD libkvm target I considered making bsd_kvm_supply_pcb a virtual method, and then have each port inherit bsd_kvm_target and override that method, but that was resulting in lots of unjustified churn, so I left the function pointer mechanism alone. gdb/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> John Baldwin <jhb@freebsd.org> * target.h (enum strata) <debug_stratum>: New. (struct target_ops) <all delegation methods>: Replace by C++ virtual methods, and drop "to_" prefix. All references updated throughout. <to_shortname, to_longname, to_doc, to_data, to_have_steppable_watchpoint, to_have_continuable_watchpoint, to_has_thread_control, to_attach_no_wait>: Delete, replaced by virtual methods. All references updated throughout. <can_attach, supports_terminal_ours, can_create_inferior, get_thread_control_capabilities, attach_no_wait>: New virtual methods. <insert_breakpoint, remove_breakpoint>: Now TARGET_DEFAULT_NORETURN methods. <info_proc>: Now returns bool. <to_magic>: Delete. (OPS_MAGIC): Delete. (current_target): Delete. All references replaced by references to ... (target_stack): ... this. New. (target_shortname, target_longname): Adjust. (target_can_run): Now a function declaration. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (memory_breakpoint_target): New template class. (test_target_ops): Refactor as a C++ class with virtual methods. * make-target-delegates (NAME_PART): Tighten. (POINTER_PART, CP_SYMBOL): New. (SIMPLE_RETURN_PART): Reimplement. (VEC_RETURN_PART): Expect less. (RETURN_PART, VIRTUAL_PART): New. (METHOD): Adjust to C++ virtual methods. (scan_target_h): Remove reference to C99. (dname): Output "target_ops::" prefix. (write_function_header): Adjust to output a C++ class method. (write_declaration): New. (write_delegator): Adjust to output a C++ class method. (tdname): Output "dummy_target::" prefix. (write_tdefault, write_debugmethod): Adjust to output a C++ class method. (tdefault_names, debug_names): Delete. (return_types, tdefaults, styles, argtypes_array): New. (top level): All methods are delegators. (print_class): New. (top level): Print dummy_target and debug_target classes. * target-delegates.c: Regenerate. * target-debug.h (target_debug_print_enum_info_proc_what) (target_debug_print_thread_control_capabilities) (target_debug_print_thread_info_p): New. * target.c (dummy_target): Delete. (the_dummy_target, the_debug_target): New. (target_stack): Now extern. (set_targetdebug): Push/unpush debug target. (default_child_has_all_memory, default_child_has_memory) (default_child_has_stack, default_child_has_registers) (default_child_has_execution): Remove target_ops parameter. (complete_target_initialization): Delete. (add_target_with_completer): No longer call complete_target_initialization. (target_supports_terminal_ours): Use regular delegation. (update_current_target): Delete. (push_target): No longer check magic number. Don't call update_current_target. (unpush_target): Don't call update_current_target. (target_is_pushed): No longer check magic number. (target_require_runnable): Skip for all stratums over process_stratum. (target_ops::info_proc): New. (target_info_proc): Use find_target_at and find_default_run_target. (target_supports_disable_randomization): Use regular delegation. (target_get_osdata): Use find_target_at. (target_ops::open, target_ops::close, target_ops::can_attach) (target_ops::attach, target_ops::can_create_inferior) (target_ops::create_inferior, target_ops::can_run) (target_can_run): New. (default_fileio_target): Use regular delegation. (target_ops::fileio_open, target_ops::fileio_pwrite) (target_ops::fileio_pread, target_ops::fileio_fstat) (target_ops::fileio_close, target_ops::fileio_unlink) (target_ops::fileio_readlink): New. (target_fileio_open_1, target_fileio_unlink) (target_fileio_readlink): Always call the target method. Handle FILEIO_ENOSYS. (return_zero, return_zero_has_execution): Delete. (init_dummy_target): Delete. (dummy_target::dummy_target, dummy_target::shortname) (dummy_target::longname, dummy_target::doc) (debug_target::debug_target, debug_target::shortname) (debug_target::longname, debug_target::doc): New. (target_supports_delete_record): Use regular delegation. (setup_target_debug): Delete. (maintenance_print_target_stack): Skip debug_stratum. (initialize_targets): Instantiate the_dummy_target and the_debug_target. * auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to use target_stack. (target_auxv_search, fprint_target_auxv): Adjust. (info_auxv_command): Adjust to use target_stack. * auxv.h (target_auxv_parse): Remove 'ops' parameter. * exceptions.c (print_flush): Handle a NULL target_stack. * regcache.c (target_ops_no_register): Refactor as class with virtual methods. * exec.c (exec_target): New class. (exec_ops): Now an exec_target. (exec_open, exec_close_1, exec_get_section_table) (exec_xfer_partial, exec_files_info, exec_has_memory) (exec_make_note_section): Refactor as exec_target methods. (exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops): Delete. (exec_target::find_memory_regions): New. (_initialize_exec): Don't call init_exec_ops. * gdbcore.h (exec_file_clear): Delete. * corefile.c (core_target): Delete. (core_file_command): Adjust. * corelow.c (core_target): New class. (the_core_target): New. (core_close): Remove target_ops parameter. (core_close_cleanup): Adjust. (core_target::close): New. (core_open, core_detach, get_core_registers, core_files_info) (core_xfer_partial, core_thread_alive, core_read_description) (core_pid_to_str, core_thread_name, core_has_memory) (core_has_stack, core_has_registers, core_info_proc): Rework as core_target methods. (ignore, core_remove_breakpoint, init_core_ops): Delete. (_initialize_corelow): Initialize the_core_target. * gdbcore.h (core_target): Delete. (the_core_target): New. * ctf.c: (ctf_target): New class. (ctf_ops): Now a ctf_target. (ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers) (ctf_xfer_partial, ctf_get_trace_state_variable_value) (ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target methods. (init_ctf_ops): Delete. (_initialize_ctf): Don't call it. * tracefile-tfile.c (tfile_target): New class. (tfile_ops): Now a tfile_target. (tfile_open, tfile_close, tfile_files_info) (tfile_get_tracepoint_status, tfile_trace_find) (tfile_fetch_registers, tfile_xfer_partial) (tfile_get_trace_state_variable_value, tfile_traceframe_info): Refactor as tfile_target methods. (tfile_xfer_partial_features): Remove target_ops parameter. (init_tfile_ops): Delete. (_initialize_tracefile_tfile): Don't call it. * tracefile.c (tracefile_has_all_memory, tracefile_has_memory) (tracefile_has_stack, tracefile_has_registers) (tracefile_thread_alive, tracefile_get_trace_status): Refactor as tracefile_target methods. (init_tracefile_ops): Delete. (tracefile_target::tracefile_target): New. * tracefile.h: Include "target.h". (tracefile_target): New class. (init_tracefile_ops): Delete. * spu-multiarch.c (spu_multiarch_target): New class. (spu_ops): Now a spu_multiarch_target. (spu_thread_architecture, spu_region_ok_for_hw_watchpoint) (spu_fetch_registers, spu_store_registers, spu_xfer_partial) (spu_search_memory, spu_mourn_inferior): Refactor as spu_multiarch_target methods. (init_spu_ops): Delete. (_initialize_spu_multiarch): Remove references to init_spu_ops, complete_target_initialization. * ravenscar-thread.c (ravenscar_thread_target): New class. (ravenscar_ops): Now a ravenscar_thread_target. (ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list) (ravenscar_thread_alive, ravenscar_pid_to_str) (ravenscar_fetch_registers, ravenscar_store_registers) (ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint) (ravenscar_stopped_by_hw_breakpoint) (ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address) (ravenscar_mourn_inferior, ravenscar_core_of_thread) (ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target methods. (init_ravenscar_thread_ops): Delete. (_initialize_ravenscar): Remove references to init_ravenscar_thread_ops and complete_target_initialization. * bsd-uthread.c (bsd_uthread_ops_hack): Delete. (bsd_uthread_target): New class. (bsd_uthread_ops): Now a bsd_uthread_target. (bsd_uthread_activate): Adjust to refer to bsd_uthread_ops. (bsd_uthread_close, bsd_uthread_mourn_inferior) (bsd_uthread_fetch_registers, bsd_uthread_store_registers) (bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive) (bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info) (bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods. (bsd_uthread_target): Delete function. (_initialize_bsd_uthread): Remove reference to complete_target_initialization. * bfd-target.c (target_bfd_data): Delete. Fields folded into ... (target_bfd): ... this new class. (target_bfd_xfer_partial, target_bfd_get_section_table) (target_bfd_close): Refactor as target_bfd methods. (target_bfd::~target_bfd): New. (target_bfd_reopen): Adjust. (target_bfd::close): New. * record-btrace.c (record_btrace_target): New class. (record_btrace_ops): Now a record_btrace_target. (record_btrace_open, record_btrace_stop_recording) (record_btrace_disconnect, record_btrace_close) (record_btrace_async, record_btrace_info) (record_btrace_insn_history, record_btrace_insn_history_range) (record_btrace_insn_history_from, record_btrace_call_history) (record_btrace_call_history_range) (record_btrace_call_history_from, record_btrace_record_method) (record_btrace_is_replaying, record_btrace_will_replay) (record_btrace_xfer_partial, record_btrace_insert_breakpoint) (record_btrace_remove_breakpoint, record_btrace_fetch_registers) (record_btrace_store_registers, record_btrace_prepare_to_store) (record_btrace_to_get_unwinder) (record_btrace_to_get_tailcall_unwinder, record_btrace_resume) (record_btrace_commit_resume, record_btrace_wait) (record_btrace_stop, record_btrace_can_execute_reverse) (record_btrace_stopped_by_sw_breakpoint) (record_btrace_supports_stopped_by_sw_breakpoint) (record_btrace_stopped_by_hw_breakpoint) (record_btrace_supports_stopped_by_hw_breakpoint) (record_btrace_update_thread_list, record_btrace_thread_alive) (record_btrace_goto_begin, record_btrace_goto_end) (record_btrace_goto, record_btrace_stop_replaying_all) (record_btrace_execution_direction) (record_btrace_prepare_to_generate_core) (record_btrace_done_generating_core): Refactor as record_btrace_target methods. (init_record_btrace_ops): Delete. (_initialize_record_btrace): Remove reference to init_record_btrace_ops. * record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to the execution_direction global. (record_full_base_target, record_full_target) (record_full_core_target): New classes. (record_full_ops): Now a record_full_target. (record_full_core_ops): Now a record_full_core_target. (record_full_target::detach, record_full_target::disconnect) (record_full_core_target::disconnect) (record_full_target::mourn_inferior, record_full_target::kill): New. (record_full_open, record_full_close, record_full_async): Refactor as methods of the record_full_base_target class. (record_full_resume, record_full_commit_resume): Refactor as methods of the record_full_target class. (record_full_wait, record_full_stopped_by_watchpoint) (record_full_stopped_data_address) (record_full_stopped_by_sw_breakpoint) (record_full_supports_stopped_by_sw_breakpoint) (record_full_stopped_by_hw_breakpoint) (record_full_supports_stopped_by_hw_breakpoint): Refactor as methods of the record_full_base_target class. (record_full_store_registers, record_full_xfer_partial) (record_full_insert_breakpoint, record_full_remove_breakpoint): Refactor as methods of the record_full_target class. (record_full_can_execute_reverse, record_full_get_bookmark) (record_full_goto_bookmark, record_full_execution_direction) (record_full_record_method, record_full_info, record_full_delete) (record_full_is_replaying, record_full_will_replay) (record_full_goto_begin, record_full_goto_end, record_full_goto) (record_full_stop_replaying): Refactor as methods of the record_full_base_target class. (record_full_core_resume, record_full_core_kill) (record_full_core_fetch_registers) (record_full_core_prepare_to_store) (record_full_core_store_registers, record_full_core_xfer_partial) (record_full_core_insert_breakpoint) (record_full_core_remove_breakpoint) (record_full_core_has_execution): Refactor as methods of the record_full_core_target class. (record_full_base_target::supports_delete_record): New. (init_record_full_ops): Delete. (init_record_full_core_ops): Delete. (record_full_save): Refactor as method of the record_full_base_target class. (_initialize_record_full): Remove references to init_record_full_ops and init_record_full_core_ops. * remote.c (remote_target, extended_remote_target): New classes. (remote_ops): Now a remote_target. (extended_remote_ops): Now an extended_remote_target. (remote_insert_fork_catchpoint, remote_remove_fork_catchpoint) (remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint) (remote_insert_exec_catchpoint, remote_remove_exec_catchpoint) (remote_pass_signals, remote_set_syscall_catchpoint) (remote_program_signals, ) (remote_thread_always_alive): Remove target_ops parameter. (remote_thread_alive, remote_thread_name) (remote_update_thread_list, remote_threads_extra_info) (remote_static_tracepoint_marker_at) (remote_static_tracepoint_markers_by_strid) (remote_get_ada_task_ptid, remote_close, remote_start_remote) (remote_open): Refactor as methods of remote_target. (extended_remote_open, extended_remote_detach) (extended_remote_attach, extended_remote_post_attach): (extended_remote_supports_disable_randomization) (extended_remote_create_inferior): : Refactor as method of extended_remote_target. (remote_set_permissions, remote_open_1, remote_detach) (remote_follow_fork, remote_follow_exec, remote_disconnect) (remote_resume, remote_commit_resume, remote_stop) (remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior) (remote_terminal_ours, remote_wait, remote_fetch_registers) (remote_prepare_to_store, remote_store_registers) (remote_flash_erase, remote_flash_done, remote_files_info) (remote_kill, remote_mourn, remote_insert_breakpoint) (remote_remove_breakpoint, remote_insert_watchpoint) (remote_watchpoint_addr_within_range) (remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint) (remote_check_watch_resources, remote_stopped_by_sw_breakpoint) (remote_supports_stopped_by_sw_breakpoint) (remote_stopped_by_hw_breakpoint) (remote_supports_stopped_by_hw_breakpoint) (remote_stopped_by_watchpoint, remote_stopped_data_address) (remote_insert_hw_breakpoint, remote_remove_hw_breakpoint) (remote_verify_memory): Refactor as methods of remote_target. (remote_write_qxfer, remote_read_qxfer): Remove target_ops parameter. (remote_xfer_partial, remote_get_memory_xfer_limit) (remote_search_memory, remote_rcmd, remote_memory_map) (remote_pid_to_str, remote_get_thread_local_address) (remote_get_tib_address, remote_read_description): Refactor as methods of remote_target. (remote_target::fileio_open, remote_target::fileio_pwrite) (remote_target::fileio_pread, remote_target::fileio_close): New. (remote_hostio_readlink, remote_hostio_fstat) (remote_filesystem_is_local, remote_can_execute_reverse) (remote_supports_non_stop, remote_supports_disable_randomization) (remote_supports_multi_process, remote_supports_cond_breakpoints) (remote_supports_enable_disable_tracepoint) (remote_supports_string_tracing) (remote_can_run_breakpoint_commands, remote_trace_init) (remote_download_tracepoint, remote_can_download_tracepoint) (remote_download_trace_state_variable, remote_enable_tracepoint) (remote_disable_tracepoint, remote_trace_set_readonly_regions) (remote_trace_start, remote_get_trace_status) (remote_get_tracepoint_status, remote_trace_stop) (remote_trace_find, remote_get_trace_state_variable_value) (remote_save_trace_data, remote_get_raw_trace_data) (remote_set_disconnected_tracing, remote_core_of_thread) (remote_set_circular_trace_buffer, remote_traceframe_info) (remote_get_min_fast_tracepoint_insn_len) (remote_set_trace_buffer_size, remote_set_trace_notes) (remote_use_agent, remote_can_use_agent, remote_enable_btrace) (remote_disable_btrace, remote_teardown_btrace) (remote_read_btrace, remote_btrace_conf) (remote_augmented_libraries_svr4_read, remote_load) (remote_pid_to_exec_file, remote_can_do_single_step) (remote_execution_direction, remote_thread_handle_to_thread_info): Refactor as methods of remote_target. (init_remote_ops, init_extended_remote_ops): Delete. (remote_can_async_p, remote_is_async_p, remote_async) (remote_thread_events, remote_upload_tracepoints) (remote_upload_trace_state_variables): Refactor as methods of remote_target. (_initialize_remote): Remove references to init_remote_ops and init_extended_remote_ops. * remote-sim.c (gdbsim_target): New class. (gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill) (gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close) (gdbsim_detach, gdbsim_resume, gdbsim_interrupt) (gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial) (gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive) (gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory): Refactor as methods of gdbsim_target. (gdbsim_ops): Now a gdbsim_target. (init_gdbsim_ops): Delete. (gdbsim_cntrl_c): Adjust. (_initialize_remote_sim): Remove reference to init_gdbsim_ops. * amd64-linux-nat.c (amd64_linux_nat_target): New class. (the_amd64_linux_nat_target): New. (amd64_linux_fetch_inferior_registers) (amd64_linux_store_inferior_registers): Refactor as methods of amd64_linux_nat_target. (_initialize_amd64_linux_nat): Adjust. Set linux_target. * i386-linux-nat.c: Don't include "linux-nat.h". (i386_linux_nat_target): New class. (the_i386_linux_nat_target): New. (i386_linux_fetch_inferior_registers) (i386_linux_store_inferior_registers, i386_linux_resume): Refactor as methods of i386_linux_nat_target. (_initialize_i386_linux_nat): Adjust. Set linux_target. * inf-child.c (inf_child_ops): Delete. (inf_child_fetch_inferior_registers) (inf_child_store_inferior_registers): Delete. (inf_child_post_attach, inf_child_prepare_to_store): Refactor as methods of inf_child_target. (inf_child_target::supports_terminal_ours) (inf_child_target::terminal_init) (inf_child_target::terminal_inferior) (inf_child_target::terminal_ours_for_output) (inf_child_target::terminal_ours, inf_child_target::interrupt) (inf_child_target::pass_ctrlc, inf_child_target::terminal_info): New. (inf_child_open, inf_child_disconnect, inf_child_close) (inf_child_mourn_inferior, inf_child_maybe_unpush_target) (inf_child_post_startup_inferior, inf_child_can_run) (inf_child_pid_to_exec_file): Refactor as methods of inf_child_target. (inf_child_follow_fork): Delete. (inf_child_target::can_create_inferior) (inf_child_target::can_attach): New. (inf_child_target::has_all_memory, inf_child_target::has_memory) (inf_child_target::has_stack, inf_child_target::has_registers) (inf_child_target::has_execution): New. (inf_child_fileio_open, inf_child_fileio_pwrite) (inf_child_fileio_pread, inf_child_fileio_fstat) (inf_child_fileio_close, inf_child_fileio_unlink) (inf_child_fileio_readlink, inf_child_use_agent) (inf_child_can_use_agent): Refactor as methods of inf_child_target. (return_zero, inf_child_target): Delete. (inf_child_target::inf_child_target): New. * inf-child.h: Include "target.h". (inf_child_target): Delete function prototype. (inf_child_target): New class. (inf_child_open_target, inf_child_mourn_inferior) (inf_child_maybe_unpush_target): Delete. * inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New. (inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint) (inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior) (inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior) (inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach) (inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume) (inf_ptrace_wait, inf_ptrace_xfer_partial) (inf_ptrace_thread_alive, inf_ptrace_files_info) (inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as methods of inf_ptrace_target. (inf_ptrace_target): Delete function. * inf-ptrace.h: Include "inf-child.h". (inf_ptrace_target): Delete function declaration. (inf_ptrace_target): New class. (inf_ptrace_trad_target, inf_ptrace_detach_success): Delete. * linux-nat.c (linux_target): New. (linux_ops, linux_ops_saved, super_xfer_partial): Delete. (linux_nat_target::~linux_nat_target): New. (linux_child_post_attach, linux_child_post_startup_inferior) (linux_child_follow_fork, linux_child_insert_fork_catchpoint) (linux_child_remove_fork_catchpoint) (linux_child_insert_vfork_catchpoint) (linux_child_remove_vfork_catchpoint) (linux_child_insert_exec_catchpoint) (linux_child_remove_exec_catchpoint) (linux_child_set_syscall_catchpoint, linux_nat_pass_signals) (linux_nat_create_inferior, linux_nat_attach, linux_nat_detach) (linux_nat_resume, linux_nat_stopped_by_watchpoint) (linux_nat_stopped_data_address) (linux_nat_stopped_by_sw_breakpoint) (linux_nat_supports_stopped_by_sw_breakpoint) (linux_nat_stopped_by_hw_breakpoint) (linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait) (linux_nat_kill, linux_nat_mourn_inferior) (linux_nat_xfer_partial, linux_nat_thread_alive) (linux_nat_update_thread_list, linux_nat_pid_to_str) (linux_nat_thread_name, linux_child_pid_to_exec_file) (linux_child_static_tracepoint_markers_by_strid) (linux_nat_is_async_p, linux_nat_can_async_p) (linux_nat_supports_non_stop, linux_nat_always_non_stop_p) (linux_nat_supports_multi_process) (linux_nat_supports_disable_randomization, linux_nat_async) (linux_nat_stop, linux_nat_close, linux_nat_thread_address_space) (linux_nat_core_of_thread, linux_nat_filesystem_is_local) (linux_nat_fileio_open, linux_nat_fileio_readlink) (linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as methods of linux_nat_target. (linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial) (linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops parameter. (check_stopped_by_watchpoint): Adjust. (linux_xfer_partial): Delete. (linux_target_install_ops, linux_target, linux_nat_add_target): Delete. (linux_nat_target::linux_nat_target): New. * linux-nat.h: Include "inf-ptrace.h". (linux_nat_target): New. (linux_target, linux_target_install_ops, linux_nat_add_target): Delete function declarations. (linux_target): Declare global. * linux-thread-db.c (thread_db_target): New. (thread_db_target::thread_db_target): New. (thread_db_ops): Delete. (the_thread_db_target): New. (thread_db_detach, thread_db_wait, thread_db_mourn_inferior) (thread_db_update_thread_list, thread_db_pid_to_str) (thread_db_extra_thread_info) (thread_db_thread_handle_to_thread_info) (thread_db_get_thread_local_address, thread_db_get_ada_task_ptid) (thread_db_resume): Refactor as methods of thread_db_target. (init_thread_db_ops): Delete. (_initialize_thread_db): Remove reference to init_thread_db_ops. * x86-linux-nat.c: Don't include "linux-nat.h". (super_post_startup_inferior): Delete. (x86_linux_nat_target::~x86_linux_nat_target): New. (x86_linux_child_post_startup_inferior) (x86_linux_read_description, x86_linux_enable_btrace) (x86_linux_disable_btrace, x86_linux_teardown_btrace) (x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as methods of x86_linux_nat_target. (x86_linux_create_target): Delete. Bits folded ... (x86_linux_add_target): ... here. Now takes a linux_nat_target pointer. * x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h". (x86_linux_nat_target): New class. (x86_linux_create_target): Delete. (x86_linux_add_target): Now takes a linux_nat_target pointer. * x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint) (x86_region_ok_for_watchpoint, x86_stopped_data_address) (x86_stopped_by_watchpoint, x86_insert_hw_breakpoint) (x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint) (x86_stopped_by_hw_breakpoint): Remove target_ops parameter and make extern. (x86_use_watchpoints): Delete. * x86-nat.h: Include "breakpoint.h" and "target.h". (x86_use_watchpoints): Delete. (x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint) (x86_stopped_by_watchpoint, x86_stopped_data_address) (x86_insert_watchpoint, x86_remove_watchpoint) (x86_insert_hw_breakpoint, x86_remove_hw_breakpoint) (x86_stopped_by_hw_breakpoint): New declarations. (x86_nat_target): New template class. * ppc-linux-nat.c (ppc_linux_nat_target): New class. (the_ppc_linux_nat_target): New. (ppc_linux_fetch_inferior_registers) (ppc_linux_can_use_hw_breakpoint) (ppc_linux_region_ok_for_hw_watchpoint) (ppc_linux_ranged_break_num_registers) (ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint) (ppc_linux_insert_mask_watchpoint) (ppc_linux_remove_mask_watchpoint) (ppc_linux_can_accel_watchpoint_condition) (ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint) (ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint) (ppc_linux_watchpoint_addr_within_range) (ppc_linux_masked_watch_num_registers) (ppc_linux_store_inferior_registers, ppc_linux_auxv_parse) (ppc_linux_read_description): Refactor as methods of ppc_linux_nat_target. (_initialize_ppc_linux_nat): Adjust. Set linux_target. * procfs.c (procfs_xfer_partial): Delete forward declaration. (procfs_target): New class. (the_procfs_target): New. (procfs_target): Delete function. (procfs_auxv_parse, procfs_attach, procfs_detach) (procfs_fetch_registers, procfs_store_registers, procfs_wait) (procfs_xfer_partial, procfs_resume, procfs_pass_signals) (procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior) (procfs_create_inferior, procfs_update_thread_list) (procfs_thread_alive, procfs_pid_to_str) (procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint) (procfs_stopped_data_address, procfs_insert_watchpoint) (procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint) (proc_find_memory_regions, procfs_info_proc) (procfs_make_note_section): Refactor as methods of procfs_target. (_initialize_procfs): Adjust. * sol-thread.c (sol_thread_target): New class. (sol_thread_ops): Now a sol_thread_target. (sol_thread_detach, sol_thread_resume, sol_thread_wait) (sol_thread_fetch_registers, sol_thread_store_registers) (sol_thread_xfer_partial, sol_thread_mourn_inferior) (sol_thread_alive, solaris_pid_to_str, sol_update_thread_list) (sol_get_ada_task_ptid): Refactor as methods of sol_thread_target. (init_sol_thread_ops): Delete. (_initialize_sol_thread): Adjust. Remove references to init_sol_thread_ops and complete_target_initialization. * windows-nat.c (windows_nat_target): New class. (windows_fetch_inferior_registers) (windows_store_inferior_registers, windows_resume, windows_wait) (windows_attach, windows_detach, windows_pid_to_exec_file) (windows_files_info, windows_create_inferior) (windows_mourn_inferior, windows_interrupt, windows_kill_inferior) (windows_close, windows_pid_to_str, windows_xfer_partial) (windows_get_tib_address, windows_get_ada_task_ptid) (windows_thread_name, windows_thread_alive): Refactor as windows_nat_target methods. (do_initial_windows_stuff): Adjust. (windows_target): Delete function. (_initialize_windows_nat): Adjust. * darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt) (darwin_mourn_inferior, darwin_kill_inferior) (darwin_create_inferior, darwin_attach, darwin_detach) (darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial) (darwin_pid_to_exec_file, darwin_get_ada_task_ptid) (darwin_supports_multi_process): Refactor as darwin_nat_target methods. (darwin_resume_to, darwin_files_info): Delete. (_initialize_darwin_inferior): Rename to ... (_initialize_darwin_nat): ... this. Adjust to C++ification. * darwin-nat.h: Include "inf-child.h". (darwin_nat_target): New class. (darwin_complete_target): Delete. * i386-darwin-nat.c (i386_darwin_nat_target): New class. (darwin_target): New. (i386_darwin_fetch_inferior_registers) (i386_darwin_store_inferior_registers): Refactor as methods of darwin_nat_target. (darwin_complete_target): Delete, with ... (_initialize_i386_darwin_nat): ... bits factored out here. * alpha-linux-nat.c (alpha_linux_nat_target): New class. (the_alpha_linux_nat_target): New. (alpha_linux_register_u_offset): Refactor as alpha_linux_nat_target method. (_initialize_alpha_linux_nat): Adjust. * linux-nat-trad.c (inf_ptrace_register_u_offset): Delete. (inf_ptrace_fetch_register, inf_ptrace_fetch_registers) (inf_ptrace_store_register, inf_ptrace_store_registers): Refact as methods of linux_nat_trad_target. (linux_trad_target): Delete. * linux-nat-trad.h (linux_trad_target): Delete function. (linux_nat_trad_target): New class. * mips-linux-nat.c (mips_linux_nat_target): New class. (super_fetch_registers, super_store_registers, super_close): Delete. (the_mips_linux_nat_target): New. (mips64_linux_regsets_fetch_registers) (mips64_linux_regsets_store_registers) (mips64_linux_fetch_registers, mips64_linux_store_registers) (mips_linux_register_u_offset, mips_linux_read_description) (mips_linux_can_use_hw_breakpoint) (mips_linux_stopped_by_watchpoint) (mips_linux_stopped_data_address) (mips_linux_region_ok_for_hw_watchpoint) (mips_linux_insert_watchpoint, mips_linux_remove_watchpoint) (mips_linux_close): Refactor as methods of mips_linux_nat. (_initialize_mips_linux_nat): Adjust to C++ification. * aix-thread.c (aix_thread_target): New class. (aix_thread_ops): Now an aix_thread_target. (aix_thread_detach, aix_thread_resume, aix_thread_wait) (aix_thread_fetch_registers, aix_thread_store_registers) (aix_thread_xfer_partial, aix_thread_mourn_inferior) (aix_thread_thread_alive, aix_thread_pid_to_str) (aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid): Refactor as methods of aix_thread_target. (init_aix_thread_ops): Delete. (_initialize_aix_thread): Remove references to init_aix_thread_ops and complete_target_initialization. * rs6000-nat.c (rs6000_xfer_shared_libraries): Delete. (rs6000_nat_target): New class. (the_rs6000_nat_target): New. (rs6000_fetch_inferior_registers, rs6000_store_inferior_registers) (rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior) (rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods. (super_create_inferior): Delete. (_initialize_rs6000_nat): Adjust to C++ification. * arm-linux-nat.c (arm_linux_nat_target): New class. (the_arm_linux_nat_target): New. (arm_linux_fetch_inferior_registers) (arm_linux_store_inferior_registers, arm_linux_read_description) (arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint) (arm_linux_remove_hw_breakpoint) (arm_linux_region_ok_for_hw_watchpoint) (arm_linux_insert_watchpoint, arm_linux_remove_watchpoint) (arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint) (arm_linux_watchpoint_addr_within_range): Refactor as methods of arm_linux_nat_target. (_initialize_arm_linux_nat): Adjust to C++ification. * aarch64-linux-nat.c (aarch64_linux_nat_target): New class. (the_aarch64_linux_nat_target): New. (aarch64_linux_fetch_inferior_registers) (aarch64_linux_store_inferior_registers) (aarch64_linux_child_post_startup_inferior) (aarch64_linux_read_description) (aarch64_linux_can_use_hw_breakpoint) (aarch64_linux_insert_hw_breakpoint) (aarch64_linux_remove_hw_breakpoint) (aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint) (aarch64_linux_region_ok_for_hw_watchpoint) (aarch64_linux_stopped_data_address) (aarch64_linux_stopped_by_watchpoint) (aarch64_linux_watchpoint_addr_within_range) (aarch64_linux_can_do_single_step): Refactor as methods of aarch64_linux_nat_target. (super_post_startup_inferior): Delete. (_initialize_aarch64_linux_nat): Adjust to C++ification. * hppa-linux-nat.c (hppa_linux_nat_target): New class. (the_hppa_linux_nat_target): New. (hppa_linux_fetch_inferior_registers) (hppa_linux_store_inferior_registers): Refactor as methods of hppa_linux_nat_target. (_initialize_hppa_linux_nat): Adjust to C++ification. * ia64-linux-nat.c (ia64_linux_nat_target): New class. (the_ia64_linux_nat_target): New. (ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint) (ia64_linux_stopped_data_address) (ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers) (ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as ia64_linux_nat_target methods. (super_xfer_partial): Delete. (_initialize_ia64_linux_nat): Adjust to C++ification. * m32r-linux-nat.c (m32r_linux_nat_target): New class. (the_m32r_linux_nat_target): New. (m32r_linux_fetch_inferior_registers) (m32r_linux_store_inferior_registers): Refactor as m32r_linux_nat_target methods. (_initialize_m32r_linux_nat): Adjust to C++ification. * m68k-linux-nat.c (m68k_linux_nat_target): New class. (the_m68k_linux_nat_target): New. (m68k_linux_fetch_inferior_registers) (m68k_linux_store_inferior_registers): Refactor as m68k_linux_nat_target methods. (_initialize_m68k_linux_nat): Adjust to C++ification. * s390-linux-nat.c (s390_linux_nat_target): New class. (the_s390_linux_nat_target): New. (s390_linux_fetch_inferior_registers) (s390_linux_store_inferior_registers, s390_stopped_by_watchpoint) (s390_insert_watchpoint, s390_remove_watchpoint) (s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint) (s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint) (s390_auxv_parse, s390_read_description): Refactor as methods of s390_linux_nat_target. (_initialize_s390_nat): Adjust to C++ification. * sparc-linux-nat.c (sparc_linux_nat_target): New class. (the_sparc_linux_nat_target): New. (_initialize_sparc_linux_nat): Adjust to C++ification. * sparc-nat.c (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers): Remove target_ops parameter. * sparc64-linux-nat.c (sparc64_linux_nat_target): New class. (the_sparc64_linux_nat_target): New. (_initialize_sparc64_linux_nat): Adjust to C++ification. * spu-linux-nat.c (spu_linux_nat_target): New class. (the_spu_linux_nat_target): New. (spu_child_post_startup_inferior, spu_child_post_attach) (spu_child_wait, spu_fetch_inferior_registers) (spu_store_inferior_registers, spu_xfer_partial) (spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target methods. (_initialize_spu_nat): Adjust to C++ification. * tilegx-linux-nat.c (tilegx_linux_nat_target): New class. (the_tilegx_linux_nat_target): New. (fetch_inferior_registers, store_inferior_registers): Refactor as methods. (_initialize_tile_linux_nat): Adjust to C++ification. * xtensa-linux-nat.c (xtensa_linux_nat_target): New class. (the_xtensa_linux_nat_target): New. (xtensa_linux_fetch_inferior_registers) (xtensa_linux_store_inferior_registers): Refactor as xtensa_linux_nat_target methods. (_initialize_xtensa_linux_nat): Adjust to C++ification. * fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete. (fbsd_pid_to_exec_file, fbsd_find_memory_regions) (fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial) (fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name) (fbsd_update_thread_list, fbsd_resume, fbsd_wait) (fbsd_stopped_by_sw_breakpoint) (fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork) (fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint) (fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint) (fbsd_post_startup_inferior, fbsd_post_attach) (fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint) (fbsd_set_syscall_catchpoint) (super_xfer_partial, super_resume, super_wait) (fbsd_supports_stopped_by_hw_breakpoint): Delete. (fbsd_handle_debug_trap): Remove target_ops parameter. (fbsd_nat_add_target): Delete. * fbsd-nat.h: Include "inf-ptrace.h". (fbsd_nat_add_target): Delete. (USE_SIGTRAP_SIGINFO): Define. (fbsd_nat_target): New class. * amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers) (amd64bsd_store_inferior_registers): Remove target_ops parameter. (amd64bsd_target): Delete. * amd64-bsd-nat.h: New file. * amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of "x86-bsd-nat.h". (amd64_fbsd_nat_target): New class. (the_amd64_fbsd_nat_target): New. (amd64fbsd_read_description): Refactor as method of amd64_fbsd_nat_target. (amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_amd64fbsd_nat): Adjust to C++ification. * amd64-nat.h (amd64bsd_target): Delete function declaration. * i386-bsd-nat.c (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Remove target_ops parameter. (i386bsd_target): Delete. * i386-bsd-nat.h (i386bsd_target): Delete function declaration. (i386bsd_fetch_inferior_registers) (i386bsd_store_inferior_registers): Declare. (i386_bsd_nat_target): New class. * i386-fbsd-nat.c (i386_fbsd_nat_target): New class. (the_i386_fbsd_nat_target): New. (i386fbsd_resume, i386fbsd_read_description): Refactor as i386_fbsd_nat_target methods. (i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New. (_initialize_i386fbsd_nat): Adjust to C++ification. * x86-bsd-nat.c (super_mourn_inferior): Delete. (x86bsd_mourn_inferior, x86bsd_target): Delete. (_initialize_x86_bsd_nat): Adjust to C++ification. * x86-bsd-nat.h: Include "x86-nat.h". (x86bsd_target): Delete declaration. (x86bsd_nat_target): New class. * aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class. (the_aarch64_fbsd_nat_target): New. (aarch64_fbsd_fetch_inferior_registers) (aarch64_fbsd_store_inferior_registers): Refactor as methods of aarch64_fbsd_nat_target. (_initialize_aarch64_fbsd_nat): Adjust to C++ification. * alpha-bsd-nat.c (alpha_bsd_nat_target): New class. (the_alpha_bsd_nat_target): New. (alphabsd_fetch_inferior_registers) (alphabsd_store_inferior_registers): Refactor as alpha_bsd_nat_target methods. (_initialize_alphabsd_nat): Refactor as methods of alpha_bsd_nat_target. * amd64-nbsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_nbsd_nat_target): New. (_initialize_amd64nbsd_nat): Adjust to C++ification. * amd64-obsd-nat.c: Include "amd64-bsd-nat.h". (the_amd64_obsd_nat_target): New. (_initialize_amd64obsd_nat): Adjust to C++ification. * arm-fbsd-nat.c (arm_fbsd_nat_target): New. (the_arm_fbsd_nat_target): New. (arm_fbsd_fetch_inferior_registers) (arm_fbsd_store_inferior_registers, arm_fbsd_read_description): (_initialize_arm_fbsd_nat): Refactor as methods of arm_fbsd_nat_target. (_initialize_arm_fbsd_nat): Adjust to C++ification. * arm-nbsd-nat.c (arm_netbsd_nat_target): New class. (the_arm_netbsd_nat_target): New. (armnbsd_fetch_registers, armnbsd_store_registers): Refactor as arm_netbsd_nat_target. (_initialize_arm_netbsd_nat): Adjust to C++ification. * hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class. (the_hppa_nbsd_nat_target): New. (hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as hppa_nbsd_nat_target methods. (_initialize_hppanbsd_nat): Adjust to C++ification. * hppa-obsd-nat.c (hppa_obsd_nat_target): New class. (the_hppa_obsd_nat_target): New. (hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as methods of hppa_obsd_nat_target. (_initialize_hppaobsd_nat): Adjust to C++ification. Use add_target. * i386-nbsd-nat.c (the_i386_nbsd_nat_target): New. (_initialize_i386nbsd_nat): Adjust to C++ification. Use add_target. * i386-obsd-nat.c (the_i386_obsd_nat_target): New. (_initialize_i386obsd_nat): Use add_target. * m68k-bsd-nat.c (m68k_bsd_nat_target): New class. (the_m68k_bsd_nat_target): New. (m68kbsd_fetch_inferior_registers) (m68kbsd_store_inferior_registers): Refactor as methods of m68k_bsd_nat_target. (_initialize_m68kbsd_nat): Adjust to C++ification. * mips-fbsd-nat.c (mips_fbsd_nat_target): New class. (the_mips_fbsd_nat_target): New. (mips_fbsd_fetch_inferior_registers) (mips_fbsd_store_inferior_registers): Refactor as methods of mips_fbsd_nat_target. (_initialize_mips_fbsd_nat): Adjust to C++ification. Use add_target. * mips-nbsd-nat.c (mips_nbsd_nat_target): New class. (the_mips_nbsd_nat_target): New. (mipsnbsd_fetch_inferior_registers) (mipsnbsd_store_inferior_registers): Refactor as methods of mips_nbsd_nat_target. (_initialize_mipsnbsd_nat): Adjust to C++ification. * mips64-obsd-nat.c (mips64_obsd_nat_target): New class. (the_mips64_obsd_nat_target): New. (mips64obsd_fetch_inferior_registers) (mips64obsd_store_inferior_registers): Refactor as methods of mips64_obsd_nat_target. (_initialize_mips64obsd_nat): Adjust to C++ification. Use add_target. * nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of nbsd_nat_target. * nbsd-nat.h: Include "inf-ptrace.h". (nbsd_nat_target): New class. * obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list) (obsd_wait): Refactor as methods of obsd_nat_target. (obsd_add_target): Delete. * obsd-nat.h: Include "inf-ptrace.h". (obsd_nat_target): New class. * ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class. (the_ppc_fbsd_nat_target): New. (ppcfbsd_fetch_inferior_registers) (ppcfbsd_store_inferior_registers): Refactor as methods of ppc_fbsd_nat_target. (_initialize_ppcfbsd_nat): Adjust to C++ification. Use add_target. * ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class. (the_ppc_nbsd_nat_target): New. (ppcnbsd_fetch_inferior_registers) (ppcnbsd_store_inferior_registers): Refactor as methods of ppc_nbsd_nat_target. (_initialize_ppcnbsd_nat): Adjust to C++ification. * ppc-obsd-nat.c (ppc_obsd_nat_target): New class. (the_ppc_obsd_nat_target): New. (ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as methods of ppc_obsd_nat_target. (_initialize_ppcobsd_nat): Adjust to C++ification. Use add_target. * sh-nbsd-nat.c (sh_nbsd_nat_target): New class. (the_sh_nbsd_nat_target): New. (shnbsd_fetch_inferior_registers) (shnbsd_store_inferior_registers): Refactor as methods of sh_nbsd_nat_target. (_initialize_shnbsd_nat): Adjust to C++ification. * sparc-nat.c (sparc_xfer_wcookie): Make extern. (inf_ptrace_xfer_partial): Delete. (sparc_xfer_partial, sparc_target): Delete. * sparc-nat.h (sparc_fetch_inferior_registers) (sparc_store_inferior_registers, sparc_xfer_wcookie): Declare. (sparc_target): Delete function declaration. (sparc_target): New template class. * sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New. (_initialize_sparcnbsd_nat): Adjust to C++ification. * sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New. (_initialize_sparc64fbsd_nat): Adjust to C++ification. Use add_target. * sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New. (_initialize_sparc64nbsd_nat): Adjust to C++ification. * sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New. (_initialize_sparc64obsd_nat): Adjust to C++ification. Use add_target. * vax-bsd-nat.c (vax_bsd_nat_target): New class. (the_vax_bsd_nat_target): New. (vaxbsd_fetch_inferior_registers) (vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target methods. (_initialize_vaxbsd_nat): Adjust to C++ification. * bsd-kvm.c (bsd_kvm_target): New class. (bsd_kvm_ops): Now a bsd_kvm_target. (bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial) (bsd_kvm_files_info, bsd_kvm_fetch_registers) (bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of bsd_kvm_target. (bsd_kvm_return_one): Delete. (bsd_kvm_add_target): Adjust to C++ification. * nto-procfs.c (nto_procfs_target, nto_procfs_target_native) (nto_procfs_target_procfs): New classes. (procfs_open_1, procfs_thread_alive, procfs_update_thread_list) (procfs_files_info, procfs_pid_to_exec_file, procfs_attach) (procfs_post_attach, procfs_wait, procfs_fetch_registers) (procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint) (procfs_remove_breakpoint, procfs_insert_hw_breakpoint) (procfs_remove_hw_breakpoint, procfs_resume) (procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt) (procfs_kill_inferior, procfs_store_registers) (procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor as methods of nto_procfs_target. (nto_procfs_ops): Now an nto_procfs_target_procfs. (nto_native_ops): Delete. (procfs_open, procfs_native_open): Delete. (nto_native_ops): Now an nto_procfs_target_native. (init_procfs_targets): Adjust to C++ification. (procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint) (procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint): Refactor as methods of nto_procfs_target. * go32-nat.c (go32_nat_target): New class. (the_go32_nat_target): New. (go32_attach, go32_resume, go32_wait, go32_fetch_registers) (go32_store_registers, go32_xfer_partial, go32_files_info) (go32_kill_inferior, go32_create_inferior, go32_mourn_inferior) (go32_terminal_init, go32_terminal_info, go32_terminal_inferior) (go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive) (go32_pid_to_str): Refactor as methods of go32_nat_target. (go32_target): Delete. (_initialize_go32_nat): Adjust to C++ification. * gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior) (gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach) (gnu_stop, gnu_thread_alive, gnu_xfer_partial) (gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of gnu_nat_target. (gnu_target): Delete. * gnu-nat.h (gnu_target): Delete. (gnu_nat_target): New class. * i386-gnu-nat.c (gnu_base_target): New. (i386_gnu_nat_target): New class. (the_i386_gnu_nat_target): New. (_initialize_i386gnu_nat): Adjust to C++ification. gdb/testsuite/ChangeLog: 2018-05-02 Pedro Alves <palves@redhat.com> * gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and to_log_command renames. * gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
2018-04-12Eliminate target_has_exitedPedro Alves1-37/+0
Nothing uses this. gdb/ChangeLog: 2018-04-12 Pedro Alves <palves@redhat.com> * target.h (target_ops::to_has_exited): Delete. (target_has_exited): Delete. * target-delegates.c: Regenerate.
2018-04-09Remove VEC(tsv_s), use std::vector insteadSimon Marchi1-4/+4
This patch removes VEC(tsv_s), using an std::vector instead. I C++ified trace_state_variable a bit in the process, using std::string for the name. I also thought it would be nicer to pass a const reference to target_download_trace_state_variable, since we know it will never be NULL. This highlighted that the make-target-delegates script didn't handle references well, so I adjusted this as well. It will surely be useful in the future. gdb/ChangeLog: * tracepoint.h (struct trace_state_variable): Add constructor. <name>: Change type to std::string. * tracepoint.c (tsv_s): Remove. (DEF_VEC_O(tsv_s)): Remove. (tvariables): Change to std::vector. (create_trace_state_variable): Adjust to std::vector. (find_trace_state_variable): Likewise. (find_trace_state_variable_by_number): Likewise. (delete_trace_state_variable): Likewise. (trace_variable_command): Adjust to std::string. (delete_trace_variable_command): Likewise. (tvariables_info_1): Adjust to std::vector. (save_trace_state_variables): Likewise. (start_tracing): Likewise. (merge_uploaded_trace_state_variables): Adjust to std::vector and std::string. * target.h (struct target_ops) <to_download_trace_state_variable>: Pass reference to trace_state_variable. * target-debug.h (target_debug_print_const_trace_state_variable_r): New. * target-delegates.c: Re-generate. * mi/mi-interp.c (mi_tsv_created): Adjust to std::string. (mi_tsv_deleted): Likewise. * mi/mi-main.c (mi_cmd_trace_frame_collected): Likewise. * remote.c (remote_download_trace_state_variable): Change pointer to reference and adjust. * make-target-delegates (parse_argtypes): Handle references. (write_function_header): Likewise. (munge_type): Likewise.
2018-03-22Get rid of VEC(static_tracepoint_marker_p)Simon Marchi1-15/+15
This patch replaces VEC(static_tracepoint_marker_p) with std::vector, and does some c++ification around that. I thought a new overload of hex2str was useful, so I added it as well as corresponding unit tests. I also added an overload of ui_out::field_string that takes an std::string directly. gdb/ChangeLog: * tracepoint.h (struct static_tracepoint_marker): Initialize fields, define default constructor, move constructor and move assignment, disable the rest. <str_id, extra>: Make std::string. (release_static_tracepoint_marker): Remove. (free_current_marker): Remove. * tracepoint.c (free_current_marker): Remove. (parse_static_tracepoint_marker_definition): Adjust to std::string, use new hex2str overload. (release_static_tracepoint_marker): Remove. (print_one_static_tracepoint_marker): Get marker by reference and adjust to std::string. (info_static_tracepoint_markers_command): Adjust to std::vector changes * target.h (static_tracepoint_marker_p): Remove typedef. (DEF_VEC_P(static_tracepoint_marker_p)): Remove. (struct target_ops) <to_static_tracepoint_marker_at>: Return bool. <to_static_tracepoint_markers_by_strid>: Return std::vector. * target-debug.h (target_debug_print_VEC_static_tracepoint_marker_p_p): Remove. (target_debug_print_std_vector_static_tracepoint_marker): New. (target_debug_print_struct_static_tracepoint_marker_p): Rename to... (target_debug_print_static_tracepoint_marker_p): ... this. * target-delegates.c: Re-generate. * breakpoint.h (struct tracepoint) <static_trace_marker_id>: Make std::string. * breakpoint.c (init_breakpoint_sal): Adjust to std::string. (decode_static_tracepoint_spec): Adjust to std::vector. (tracepoint_print_one_detail): Adjust to std::string. (strace_marker_decode_location): Adjust to std::string. (update_static_tracepoint): Adjust to std::string, remove call to release_static_tracepoint_marker. * linux-nat.c (linux_child_static_tracepoint_markers_by_strid): Adjust to std::vector. * remote.c (remote_static_tracepoint_marker_at): Return bool. (remote_static_tracepoint_markers_by_strid): Adjust to std::vector. * common/rsp-low.h (hex2str): New overload with explicit count of bytes. * common/rsp-low.c (hex2str): New overload with explicit count of bytes. * unittests/rsp-low-selftests.c (test_hex2str): New function. (_initialize_rsp_low_selftests): Add test_hex2str test. * unittests/tracepoint-selftests.c (test_parse_static_tracepoint_marker_definition): Adjust to std::string.
2018-03-01Propagate record_print_flagsSimon Marchi1-12/+12
These flags are returned as an int by get_call_history_modifiers, and get cast back to record_print_flags in the btrace code. Instead, we can make the arguments of that type from start to end. gdb/ChangeLog: * record.c (get_call_history_modifiers): Return a record_print_flags. (cmd_record_call_history): Adjust. * record-btrace.c (record_btrace_call_history): Adjust. (record_btrace_call_history_range): Adjust. (record_btrace_call_history_from): Adjust. * target-debug.h (target_debug_print_record_print_flags): New. * target-delegates.c: Re-generate. * target.c (target_call_history): Change flags type. (target_call_history_from): Likewise. (target_call_history_range): Likewise. * target.h (struct target_ops) <target_call_history>: Likewise. (target_call_history_from): Likewise. (target_call_history_range): Likewise.
2018-02-09btrace, gdbserver: remove the to_supports_btrace target methodMarkus Metzger1-33/+0
Remove the to_supports_btrace target method and instead rely on detecting errors when trying to enable recording. This will also provide a suitable error message explaining why recording is not possible. For remote debugging, gdbserver will now always advertise branch tracing related packets. When talking to an older GDB, this will cause GDB to try to enable branch tracing and gdbserver to report a suitable error message every time. An older gdbserver will not advertise branch tracing related packets if the one-time check failed, so a newer GDB with this patch will fail to enable branch tracing at remote_enable_btrace() rather than at btrace_enable(). The error message is the same in both cases so there should be no user-visible change. gdb/ * btrace.c (btrace_enable): Remove target_supports_btrace call. * nat/linux-btrace.c (perf_event_pt_event_type): Move. (kernel_supports_bts, kernel_supports_pt, linux_supports_bts) (linux_supports_pt, linux_supports_btrace): Remove. (linux_enable_bts): Call cpu_supports_bts. * nat/linux-btrace.h (linux_supports_btrace): Remove. * remote.c (remote_supports_btrace): Remove. (init_remote_ops): Remove remote_supports_btrace. * target-delegates.c: Regenerated. * target.c (target_supports_btrace): Remove. * target.h (target_ops) <to_supports_btrace>: Remove (target_supports_btrace): Remove. * x86-linux-nat.c (x86_linux_create_target): Remove linux_supports_btrace. gdbserver/ * linux-low.c (linux_target_ops): Remove linux_supports_btrace. * nto-low.c (nto_target_ops): Remove NULL for supports_btrace. * spu-low.c (spu_target_ops): Likewise. * win32-low.c (win32_target_ops): Likewise. * server.c (supported_btrace_packets): Report packets unconditionally. * target.h (target_ops) <supports_btrace>: Remove. (target_supports_btrace): Remove.
2018-01-30Per-inferior target_terminal state, fix PR gdb/13211, morePedro Alves1-7/+31
In my multi-target branch I ran into problems with GDB's terminal handling that exist in master as well, with multi-inferior debugging. This patch adds a testcase for said problems (gdb.multi/multi-term-settings.exp), fixes the problems, fixes PR gdb/13211 as well (and adds a testcase for that too, gdb.base/interrupt-daemon.exp). The basis of the problem I ran into is the following. Consider a scenario where you have: - inferior 1 - started with "attach", process is running on some other terminal. - inferior 2 - started with "run", process is sharing gdb's terminal. In this scenario, when you stop/resume both inferiors, you want GDB to save/restore the terminal settings of inferior 2, the one that is sharing GDB's terminal. I.e., you want inferior 2 to "own" the terminal (in target_terminal::is_ours/target_terminal::is_inferior sense). Unfortunately, that's not what you get currently. Because GDB doesn't know whether an attached inferior is actually sharing GDB's terminal, it tries to save/restore its settings anyway, ignoring errors. In this case, this is pointless, because inferior 1 is running on a different terminal, but GDB doesn't know better. And then, because it is only possible to have the terminal settings of a single inferior be in effect at a time, or make one inferior/pgrp be the terminal's foreground pgrp (aka, only one inferior can "own" the terminal, ignoring fork children here), if GDB happens to try to restore the terminal settings of inferior 1 first, then GDB never restores the terminal settings of inferior 2. This patch fixes that and a few things more along the way: - Moves enum target_terminal::terminal_state out of the target_terminal class (it's currently private) and makes it a scoped enum so that it can be easily used elsewhere. - Replaces the inflow.c:terminal_is_ours boolean with a target_terminal_state variable. This allows distinguishing is_ours and is_ours_for_output states. This allows finally making child_terminal_ours_1 do something with its "output_only" parameter. - Makes each inferior have its own copy of the is_ours/is_ours_for_output/is_inferior state. - Adds a way for GDB to tell whether the inferior is sharing GDB's terminal. Works best on Linux and Solaris; the fallback works just as well as currently. - With that, we can remove the inf->attach_flag tests from child_terminal_inferior/child_terminal_ours. - Currently target_ops.to_ours is responsible for both saving the current inferior's terminal state, and restoring gdb's state. Because each inferior has its own terminal state (possibly handled by different targets in a multi-target world, even), we need to split the inferior-saving part from the gdb-restoring part. The patch adds a new target_ops.to_save_inferior target method for that. - Adds a new target_terminal::save_inferior() function, so that sequences like: scoped_restore_terminal_state save_state; target_terminal::ours_for_output (); ... restore back inferiors that were target_terminal_state::is_inferior before back to is_inferior, and leaves inferiors that were is_ours alone. - Along the way, this adds a default implementation of target_pass_ctrlc to inflow.c (for inf-child.c), that handles passing the Ctrl-C to a process running on GDB's terminal or to some other process otherwise. - Similarly, adds a new target default implementation of target_interrupt, for the "interrupt" command. The current implementation of this hook in inf-ptrace.c kills the whole process group, but that's incorrect/undesirable because we may not be attached to all processes in the process group. And also, it's incorrect because inferior_process_group() doesn't really return the inferior's real process group id if the inferior is not a process group leader... This is the cause of PR gdb/13211 [1], which this patch fixes. While at it, that target method's "ptid" parameter is eliminated, because it's not really used. - A new test is included that exercises and fixes PR gdb/13211, and also fixes a GDB issue reported on stackoverflow that I ran into while working on this [2]. The problem is similar to PR gdb/13211, except that it also triggers with Ctrl-C. When debugging a daemon (i.e., a process that disconnects from the controlling terminal and is not a process group leader, then Ctrl-C doesn't work, you just can't interrupt the inferior at all, resulting in a hung debug session. The problem is that since the inferior is no longer associated with gdb's session / controlling terminal, then trying to put the inferior in the foreground fails. And so Ctrl-C never reaches the inferior directly. pass_signal is only used when the inferior is attached, but that is not the case here. This is fixed by the new child_pass_ctrlc. Without the fix, the new interrupt-daemon.exp testcase fails with timeout waiting for a SIGINT that never arrives. [1] PR gdb/13211 - Async / Process group and interrupt not working https://sourceware.org/bugzilla/show_bug.cgi?id=13211 [2] GDB not reacting Ctrl-C when after fork() and setsid() https://stackoverflow.com/questions/46101292/gdb-not-reacting-ctrl-c-when-after-fork-and-setsid Note this patch does _not_ fix: - PR gdb/14559 - The 'interrupt' command does not work if sigwait is in use https://sourceware.org/bugzilla/show_bug.cgi?id=14559 - PR gdb/9425 - When using "sigwait" GDB doesn't trap SIGINT. Ctrl+C terminates program when should break gdb. https://sourceware.org/bugzilla/show_bug.cgi?id=9425 The only way to fix that that I know of (without changing the kernel) is to make GDB put inferiors in a separate session (create a pseudo-tty master/slave pair, make the inferior run with the slave as its terminal, and have gdb pump output/input on the master end). gdb/ChangeLog: 2018-01-30 Pedro Alves <palves@redhat.com> PR gdb/13211 * config.in, configure: Regenerate. * configure.ac: Check for getpgid. * go32-nat.c (go32_pass_ctrlc): New. (go32_target): Install it. * inf-child.c (inf_child_target): Install child_terminal_save_inferior, child_pass_ctrlc and child_interrupt. * inf-ptrace.c (inf_ptrace_interrupt): Delete. (inf_ptrace_target): No longer install it. * infcmd.c (interrupt_target_1): Adjust. * inferior.h (child_terminal_save_inferior, child_pass_ctrlc) (child_interrupt): Declare. (inferior::terminal_state): New. * inflow.c (struct terminal_info): Update comments. (inferior_process_group): Delete. (terminal_is_ours): Delete. (gdb_tty_state): New. (child_terminal_init): Adjust. (is_gdb_terminal, sharing_input_terminal_1) (sharing_input_terminal): New functions. (child_terminal_inferior): Adjust. Use sharing_input_terminal. Set the process's actual process group in the foreground if possible. Handle is_ours_for_output/is_ours distinction. Don't mark terminal as the inferior's if not sharing GDB's terminal. Don't check attach_flag. (child_terminal_ours_for_output, child_terminal_ours): Adjust to pass down a target_terminal_state. (child_terminal_save_inferior): New, factored out from ... (child_terminal_ours_1): ... this. Handle target_terminal_state::is_ours_for_output. (child_interrupt, child_pass_ctrlc): New. (inflow_inferior_exit): Clear the inferior's terminal_state. (copy_terminal_info): Copy the inferior's terminal state. (_initialize_inflow): Remove reference to terminal_is_ours. * inflow.h (inferior_process_group): Delete. * nto-procfs.c (nto_handle_sigint, procfs_interrupt): Adjust. * procfs.c (procfs_target): Don't install procfs_interrupt. (procfs_interrupt): Delete. * remote.c (remote_serial_quit_handler): Adjust. (remote_interrupt): Remove ptid parameter. Adjust. * target-delegates.c: Regenerate. * target.c: Include "terminal.h". (target_terminal::terminal_state): Rename to ... (target_terminal::m_terminal_state): ... this. (target_terminal::init): Adjust. (target_terminal::inferior): Adjust to per-inferior terminal_state. (target_terminal::restore_inferior, target_terminal_is_ours_kind): New. (target_terminal::ours, target_terminal::ours_for_output): Use target_terminal_is_ours_kind. (target_interrupt): Remove ptid parameter. Adjust. (default_target_pass_ctrlc): Adjust. * target.h (target_ops::to_terminal_save_inferior): New field. (target_ops::to_interrupt): Remove ptid_t parameter. (target_interrupt): Remove ptid_t parameter. Update comment. (target_pass_ctrlc): Update comment. * target/target.h (target_terminal_state): New scoped enum, factored out of ... (target_terminal::terminal_state): ... here. (target_terminal::inferior): Update comments. (target_terminal::restore_inferior): New. (target_terminal::is_inferior, target_terminal::is_ours) (target_terminal::is_ours_for_output): Adjust. (target_terminal::scoped_restore_terminal_state): Adjust to rename, and call restore_inferior() instead of inferior(). (target_terminal::scoped_restore_terminal_state::m_state): Change type. (target_terminal::terminal_state): Rename to ... (target_terminal::m_terminal_state): ... this and change type. gdb/gdbserver/ChangeLog: 2018-01-30 Pedro Alves <palves@redhat.com> PR gdb/13211 * target.c (target_terminal::terminal_state): Rename to ... (target_terminal::m_terminal_state): ... this. gdb/testsuite/ChangeLog: 2018-01-30 Pedro Alves <palves@redhat.com> PR gdb/13211 * gdb.base/interrupt-daemon.c: New. * gdb.base/interrupt-daemon.exp: New. * gdb.multi/multi-term-settings.c: New. * gdb.multi/multi-term-settings.exp: New.
2018-01-19Pass inferior down to target_detach and to_detachSimon Marchi1-6/+8
The to_detach target_ops method implementations are currently expected to work on current_inferior/inferior_ptid. In order to make things more explicit, and remove some "shadow" parameter passing through globals, this patch adds an "inferior" parameter to to_detach. Implementations will be expected to use this instead of relying on the global. However, to keep things simple, this patch only does the minimum that is necessary to add the parameter. The following patch gives an example of how one such implementation would be adapted. If the approach is deemed good, we can then look into adapting more implementations. Until then, they'll continue to work as they do currently. gdb/ChangeLog: * target.h (struct target_ops) <to_detach>: Add inferior parameter. (target_detach): Likewise. * target.c (dispose_inferior): Pass inferior down. (target_detach): Pass inferior down. Assert that it is equal to the current inferior. * aix-thread.c (aix_thread_detach): Pass inferior down. * corefile.c (core_file_command): Pass current_inferior() down. * corelow.c (core_detach): Add inferior parameter. * darwin-nat.c (darwin_detach): Likewise. * gnu-nat.c (gnu_detach): Likewise. * inf-ptrace.c (inf_ptrace_detach): Likewise. * infcmd.c (detach_command): Pass current_inferior() down to target_detach. * infrun.c (follow_fork_inferior): Pass parent_inf to target_detach. (handle_vfork_child_exec_or_exit): Pass inf->vfork_parent to target_detach. * linux-nat.c (linux_nat_detach): Add inferior parameter. * linux-thread-db.c (thread_db_detach): Likewise. * nto-procfs.c (procfs_detach): Likewise. * procfs.c (procfs_detach): Likewise. * record.c (record_detach): Likewise. * record.h (struct inferior): Forward-declare. (record_detach): Add inferior parameter. * remote-sim.c (gdbsim_detach): Likewise. * remote.c (remote_detach_1): Likewise. (remote_detach): Likewise. (extended_remote_detach): Likewise. * sol-thread.c (sol_thread_detach): Likewise. * target-debug.h (target_debug_print_inferior_p): New macro. * target-delegates.c: Re-generate. * top.c (kill_or_detach): Pass inferior down to target_detach. * windows-nat.c (windows_detach): Add inferior parameter.
2018-01-19Remove args from target detachSimon Marchi1-8/+6
I was looking into adding a parameter to target_detach, and was wondering what the args parameter was. It seems like in the distant past, it was possible to specify a signal number when detaching. That signal was injected in the process before it was detached. There is an example of code handling this in linux_nat_detach. With today's GDB, I can't get this to work. Doing "detach 15" (15 == SIGTERM) doesn't work, because detach is a prefix command and doesn't recognize the sub-command 15. Doing "detach inferiors 15" doesn't work because it expects a list of inferior id to detach. Therefore, I don't think there's a way of invoking detach_command with a non-NULL args. I also didn't find any documentation related to this feature. I assume that this feature stopped working when detach was made a prefix command, which is in f73adfeb8bae36885e6ea248d12223ab0d5eb9cb (sorry, there's no commit title) from 2006. Given that this feature was broken for such a long time and we haven't heard anything (AFAIK, I did not find any related bug), I think it's safe to remove it, as well as the args parameter to target_detach. If someone wants to re-introduce it, I would suggest rethinking the user interface, and in particular would suggest using signal name instead of numbers. I tried to fix all the impacted code, but I might have forgotten some spots. It shouldn't be hard to fix if that's the case. I also couldn't build-test everything I changed, especially the nto and solaris stuff. gdb/ChangeLog: * target.h (struct target_ops) <to_detach>: Remove args parameter. (target_detach): Likewise. * target.c (dispose_inferior): Adjust. (target_detach): Remove args parameter, adjust. * aix-thread.c (aix_thread_detach): Adjust. * corefile.c (core_file_command): Adjust. * corelow.c (core_detach): Adjust. * darwin-nat.c (darwin_detach): Adjust. * gnu-nat.c (gnu_detach): Adjust. * inf-ptrace.c (inf_ptrace_detach): Adjust. * infcmd.c (detach_command): Adjust * infrun.c (follow_fork_inferior): Adjust. (handle_vfork_child_exec_or_exit): Adjust. * linux-fork.c (linux_fork_detach): Remove args parameter. * linux-fork.h (linux_fork_detach): Likewise. * linux-nat.c (linux_nat_detach): Likewise, and adjust. * linux-thread-db.c (thread_db_detach): Likewise. * nto-procfs.c (procfs_detach): Likewise. * procfs.c (procfs_detach): Likewise. (do_detach): Remove signo parameter. * record.c (record_detach): Remove args parameter. * record.h (record_detach): Likewise. * remote-sim.c (gdbsim_detach): Likewise. * remote.c (remote_detach_1): Likewise. (remote_detach): Likewise. (extended_remote_detach): Likewise. * sol-thread.c (sol_thread_detach): Likewise. * target-delegates.c: Re-generate. * top.c (struct qt_args) <args>: Remove field. (kill_or_detach): Don't pass args. (quit_force): Don't set args. * windows-nat.c (windows_detach): Remove args parameter.
2017-12-06target_set_syscall_catchpoint, use gdb::array_view and boolPedro Alves1-9/+7
I noticed that we're passing down a data/size pair to target_ops::to_set_syscall_catchpoint. This commit makes use of gdb::array_view instead. While at it, use bool where appropriate as well. gdb/ChangeLog: * break-catch-syscall.c (insert_catch_syscall) (remove_catch_syscall): Adjust to pass reference to inf_data->syscalls_counts directly via gdb::array_view. * fbsd-nat.c (fbsd_set_syscall_catchpoint): Adjust to use bool and gdb::array_view. * linux-nat.c (linux_child_set_syscall_catchpoint): Likewise. * remote.c (remote_set_syscall_catchpoint): Likewise. * target-debug.h (target_debug_print_bool): New. (define target_debug_print_gdb_array_view_const_int): New. * target-delegates.c: Regenerate. * target.h (target_ops) <to_set_syscall_catchpoint>: Use gdb::array_view and bool. (target_set_syscall_catchpoint): Likewise.
2017-12-03Remove mem_region_vector typedefSimon Marchi1-5/+5
Now that make-target-delegates understands namespaces and templates, this typedef is no longer useful. gdb/ChangeLog: * target.h (mem_region_vector): Remove. (struct target_ops) <to_memory_map>: Change return type to std::vector<mem_region>. * target-debug.h (target_debug_print_mem_region_vector): Rename to ... (target_debug_print_std_vector_mem_region): ... this. * target-delegates.c: Re-generate.
2017-12-03Make make-target-delegates grok namespace scope op and template paramsPedro Alves1-1/+1
The next patch will want to use gdb::array_view<int> as parameter type of a target_ops method. However, that runs into a make-target-delegates limitation: target_debug_foo calls in target-delegates.c for parameters/return types with namespace scope operators ("::") or template parameters, end up looking like: @@ -1313,9 +1313,7 @@ debug_set_syscall_catchpoint (struct target_ops *self, int arg1, int arg2, int a fputs_unfiltered (", ", gdb_stdlog); target_debug_print_int (arg3); fputs_unfiltered (", ", gdb_stdlog); - target_debug_print_int (arg4); - fputs_unfiltered (", ", gdb_stdlog); - target_debug_print_int_p (arg5); + target_debug_print_gdb::array_view<const_int> (arg4); which obviously isn't something that compiles. The problem is that make-target-delegates wasn't ever taught that '::', '<', and '>' can appear in parameter/return types. You could work around it by hidding the unsupported characters behind a typedef in the target method declaration, or by using an explicit TARGET_DEBUG_PRINTER, but it's better to just remove the limitation. While at it, also fix an "abuse" of reserved identifiers. gdb/ChangeLog: * make-target-delegates (munge_type): Also munge '<', '>', and ':'. Avoid double underscores in identifiers, and trailing underscores. * target-debug.h (target_debug_print_VEC_static_tracepoint_marker_p__p): Rename to ... (target_debug_print_VEC_static_tracepoint_marker_p_p): ... this. * target-delegates.c: Regenerate.
2017-10-21Get rid of VEC (mem_region)Simon Marchi1-6/+6
This patch removes VEC (mem_region). Doing so requires touching a lot of little things here and there. The fields in mem_attrib are now initialized during construction. The values match those that were in default_mem_attrib (now removed). unknown_mem_attrib is also removed, and replaced with a static method (mem_attrib::unknown) that returns the equivalent. mem_region is initialized in a way similar to mem_region_init (now removed) did. I found the organization of mem_region_list and target_mem_region_list a bit confusing. Sometimes mem_region_list points to the same vector as target_mem_region_list (and therefore does not own it), and sometimes (when the user manually edits the mem regions) points to another vector, and in this case owns it. To avoid this ambiguity, I think it is simpler to have two vectors, one for target-defined regions and one for user-defined regions, and have mem_region_list point to one or the other. There are now no vector objects dynamically allocated, both are static. The make-target-delegates script does not generate valid code when a target method returns a type with a parameter list. For this reason, I created a typedef (mem_region_vector) that's only used in the target_ops structure. If you speak perl, you are welcome to improve the script! Regtested on the buildbot. gdb/ChangeLog: * memattr.h: Don't include vec.h. (struct mem_attrib): Initialize fields. <unknown>: New static method. (struct mem_region): Add constructors, operator<, initialize fields. * memattr.c: Include algorithm. (default_mem_attrib, unknown_mem_attrib): Remove. (user_mem_region_list): New global. (target_mem_region_list, mem_region_list): Change type to std::vector<mem_region>. (mem_use_target): Now a function. (target_mem_regions_valid): Change type to bool. (mem_region_lessthan, mem_region_cmp, mem_region_init): Remove. (require_user_regions): Adjust. (require_target_regions): Adjust. (create_mem_region): Adjust. (lookup_mem_region): Adjust. (invalidate_target_mem_regions): Adjust. (mem_clear): Rename to... (user_mem_clear): ... this, and adjust. (mem_command): Adjust. (info_mem_command): Adjust. (mem_enable, enable_mem_command, mem_disable, disable_mem_command): Adjust. (mem_delete): Adjust. (delete_mem_command): Adjust. * memory-map.h (parse_memory_map): Return an std::vector. * memory-map.c (parse_memory_map): Likewise. (struct memory_map_parsing_data): Add constructor. <memory_map>: Point to std::vector. (memory_map_start_memory): Adjust. (memory_map_end_memory): Adjust. (memory_map_end_property): Adjust. (clear_result): Remove. * remote.c (remote_memory_map): Return an std::vector. * target-debug.h (target_debug_print_VEC_mem_region_s__p): Remove. (target_debug_print_mem_region_vector): New. * target-delegates.c: Regenerate. * target.h (mem_region_vector): New typedef. (to_memory_map): Return mem_region_vector. (target_memory_map): Return an std::vector. * target.c (target_memory_map): Return an std::vector. (flash_erase_command): Adjust.