Age | Commit message (Collapse) | Author | Files | Lines |
|
Convert the 7 global, pre-defined, register groups const, and fix the
fall out (a minor tweak required in riscv-tdep.c).
There should be no user visible changes after this commit.
|
|
Convert the reggroup_new and reggroup_gdbarch_new functions to return
a 'const regggroup *', and fix up all the fallout.
There should be no user visible changes after this commit.
|
|
There's a set of 7 default register groups. If we don't add any
gdbarch specific register groups during gdbarch initialisation, then
when we iterate over the register groups using reggroup_next and
reggroup_prev we will make use of these 7 default groups. See the use
of default_groups in gdb/reggroups.c for details on this.
However, if the gdbarch adds its own groups during gdbarch
initialisation, then these groups will be used in preference to the
default groups.
A problem arises though if the particular architecture makes use of
the target description mechanism. If the default target
description(s) (i.e. those internal to GDB that are used when the user
doesn't provide their own) don't mention any additional register
groups then the default register groups will be used.
But if the target description does mention additional groups then the
default groups are not used, and instead, the groups from the target
description are used.
The problem with this is that what usually happens is that the target
description will mention additional groups, e.g. groups for special
registers. Most architectures that use target descriptions work
around this by adding all (or most) of the default register groups in
all cases. See i386_add_reggroups, aarch64_add_reggroups,
riscv_add_reggroups, xtensa_add_reggroups, and others.
In this patch, my suggestion is that we should just add the default
register groups for every architecture, always. This change is in
gdb/reggroups.c.
All the remaining changes are me updating the various architectures to
not add the default groups themselves.
So, where will this change be visible to the user? I think the
following commands will possibly change:
* info registers / info all-registers:
The user can provide a register group to these commands. For example,
on csky, we previously never added the 'vector' group. Now, as a
default group, this will be available, but (presumably) will not
contain any registers. I don't think this is necessarily a bad
thing, there's something to be said for having some consistent
defaults available. There are other architectures that didn't add
all 7 of the defaults, which will now have gained additional groups.
* maint print reggroups
This prints the set of all available groups. As a maintenance
command I'm less concerned with the output changing here.
Obviously, for the architectures that didn't previously add all the
defaults, this list just got bigger.
* maint print register-groups
This prints all the registers, and the groups they are in. If the
defaults were not previously being added then a register (obviously)
can't appear in one of the default groups. Now the groups are
available then registers might be in more groups than previously.
However, this is again a maintenance command, so I'm less concerned
about this changing.
|
|
Change gdbarch_register_reggroup_p to take a 'const struct reggroup *'
argument. This requires a change to the gdb/gdbarch-components.py
script, regeneration of gdbarch.{c,h}, and then updates to all the
architectures that implement this method.
There should be no user visible changes after this commit.
|
|
It is better to rename floatformats_ia64_quad to floatformats_ieee_quad
to reflect the reality, and then we can clean up the related code.
As Tom Tromey said [1]:
These files are maintained in gcc and then imported into the
binutils-gdb repository, so any changes to them will have to
be proposed there first.
the related changes have been merged into gcc master now [2], it is time
to do it for gdb.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186569.html
[2] https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=b2dff6b2d9d6
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
print_spaces_filtered is now misnamed, because whether filtering
happens is up to the stream. So, rename it.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
|
|
Internally, AdaCore has a test that is equivalent to (really a direct
translation of) gdb.base/gnu_vector.exp. On 32-bit RISC-V, the
"return" part of this test fails.
Joel tracked this down to riscv_return_value returning
RETURN_VALUE_ABI_RETURNS_ADDRESS. Using
RETURN_VALUE_ABI_PRESERVES_ADDRESS is more correct here, and fixes the
bug.
I tested this for both 32- and 64-bit RISC-V using the AdaCore
internal test suite, and Andrew Burgess tested it using
gnu_vector.exp.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
This commit adds support for TYPE_CODE_FIXED_POINT types for
"finish" and "return" commands.
Consider the following Ada code...
type FP1_Type is delta 0.1 range -1.0 .. +1.0; -- Ordinary
function Call_FP1 (F : FP1_Type) return FP1_Type is
begin
FP1_Arg := F;
return FP1_Arg;
end Call_FP1;
... used as follow:
F1 : FP1_Type := 1.0;
F1 := Call_FP1 (F1);
"finish" currently behaves as follow:
| (gdb) finish
| [...]
| Value returned is $1 = 0
We expect the returned value to be "1".
Similarly, "return" makes the function return the wrong value:
| (gdb) return 1.0
| Make pck.call_fp1 return now? (y or n) y
| [...]
| 9 F1 := Call_FP1 (F1);
| (gdb) next
| (gdb) print f1
| $1 = 0.0625
(we expect it to print "1" instead).
This problem comes from the handling of integral return values
when the return value is actually fixed point type. Our type
here is actually a range of a fixed point type, but the same
principles should also apply to pure fixed-point types. For
the record, here is what the debugging info looks like:
<1><238>: Abbrev Number: 2 (DW_TAG_subrange_type)
<239> DW_AT_lower_bound : -16
<23a> DW_AT_upper_bound : 16
<23b> DW_AT_name : pck__fp1_type
<23f> DW_AT_type : <0x248>
<1><248>: Abbrev Number: 4 (DW_TAG_base_type)
<249> DW_AT_byte_size : 1
<24a> DW_AT_encoding : 13 (signed_fixed)
<24b> DW_AT_binary_scale: -4
<24c> DW_AT_name : pck__Tfp1_typeB
<250> DW_AT_artificial : 1
... where the scaling factor is 1/16.
Looking at the "finish" command, what happens is that riscv_arg_location
determines that our return value should be returned by parameter using
an integral convention (via builtin type long). And then,
riscv_return_value uses a cast to that builtin type long to
store the value of into a buffer with the right register size.
This doesn't work in our case, because the underlying value
returned by the function is unscaled, which means it is 16,
and thus the cast is like doing:
arg_val = (FP1_Type) 16
... In other words, it is trying to create an FP1_Type enty whose
value is 16. Applying the scaling factor, that's 256, and because
the size of FP1_Type is 1 byte, we overflow and thus it ends up
being zero.
The same happen with the "return" function, but the other way around.
The fix consists in handling fixed-point types separately from
integral types.
|
|
This commit adds support for RISC-V disassembler options to GDB. This
commit is based on this patch which was never committed:
https://sourceware.org/pipermail/binutils/2021-January/114944.html
All of the binutils refactoring has been moved to a separate, earlier,
commit, so this commit is pretty straight forward, just registering
the required gdbarch hooks.
Co-authored-by: Simon Cook <simon.cook@embecosm.com>
|
|
Change gdb_assert_not_reached to accept a format string plus
corresponding arguments. This allows giving more precise messages.
Because the format string passed by the caller is prepended with a "%s:"
to add the function name, the callers can no longer pass a translated
string (`_(...)`). Make the gdb_assert_not_reached include the _(),
just like the gdb_assert_fail macro just above.
Change-Id: Id0cfda5a57979df6cdaacaba0d55dd91ae9efee7
|
|
The motivation is to reduce the number of places where unmanaged
pointers are returned from allocation type routines. All of the
callers are updated.
There should be no user visible changes after this commit.
|
|
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
|
|
Remove TYPE_FIELD_BITPOS, replace its uses with type::field +
field::loc_bitpos.
Change-Id: Iccd8d5a77e5352843a837babaa6bd284162e0320
|
|
Remove TYPE_FIELD_LOC_KIND, replace its uses with type::field +
field::loc_kind.
Change-Id: Ib124a26365df82ac1d23df7962d954192913bd90
|
|
There's a common pattern to call add_basic_prefix_cmd and
add_show_prefix_cmd to add matching set and show commands. Add the
add_setshow_prefix_cmd function to factor that out and use it at a few
places.
Change-Id: I6e9e90a30e9efb7b255bf839cac27b85d7069cfd
|
|
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
|
|
I found an inaccurate comment in riscv_scan_prologue. This commit fixes
it.
|
|
While working on other problems, I encountered situations where GDB
fails to properly unwind the stack because some functions use the C.MV
instruction in the prologue. The prologue scanner stops when it hits
this instruction assuming its job is done at this point. Unfortunately
the prologue is not necessarily finished yet, preventing GDB to properly
unwind.
This commit adds support for handling such instruction in
riscv_scan_prologue.
Note that C.MV is part of the compressed instruction set. The MV
counterpart from the base ISA is a pseudo instruction that expands to
'ADDI RD,RS1,0' which is already supported.
Tested on riscv64-linux-gnu.
All feedback are welcome.
|
|
While working on the testsuite, I ended up noticing that GDB fails to
produce a full backtrace from a thread waiting in pthread_join. When
selecting the waiting thread and using the 'bt' command, the following
result can be observed:
(gdb) bt
#0 0x0000003ff7fccd20 in __futex_abstimed_wait_common64 () from /lib/riscv64-linux-gnu/libpthread.so.0
#1 0x0000003ff7fc43da in __pthread_clockjoin_ex () from /lib/riscv64-linux-gnu/libpthread.so.0
Backtrace stopped: frame did not save the PC
On my platform, I do not have debug symbols for glibc, so I need to rely
on prologue analysis in order to unwind stack.
Here is what the function prologue looks like:
(gdb) disassemble __pthread_clockjoin_ex
Dump of assembler code for function __pthread_clockjoin_ex:
0x0000003ff7fc42de <+0>: addi sp,sp,-144
0x0000003ff7fc42e0 <+2>: sd s5,88(sp)
0x0000003ff7fc42e2 <+4>: auipc s5,0xd
0x0000003ff7fc42e6 <+8>: ld s5,-2(s5) # 0x3ff7fd12e0
0x0000003ff7fc42ea <+12>: ld a5,0(s5)
0x0000003ff7fc42ee <+16>: sd ra,136(sp)
0x0000003ff7fc42f0 <+18>: sd s0,128(sp)
0x0000003ff7fc42f2 <+20>: sd s1,120(sp)
0x0000003ff7fc42f4 <+22>: sd s2,112(sp)
0x0000003ff7fc42f6 <+24>: sd s3,104(sp)
0x0000003ff7fc42f8 <+26>: sd s4,96(sp)
0x0000003ff7fc42fa <+28>: sd s6,80(sp)
0x0000003ff7fc42fc <+30>: sd s7,72(sp)
0x0000003ff7fc42fe <+32>: sd s8,64(sp)
0x0000003ff7fc4300 <+34>: sd s9,56(sp)
0x0000003ff7fc4302 <+36>: sd a5,40(sp)
As far as prologue analysis is concerned, the most interesting part is
done at address 0x0000003ff7fc42ee (<+16>): 'sd ra,136(sp)'. This stores
the RA (return address) register on the stack, which is the information
we are looking for in order to identify the caller.
In the current implementation of the prologue scanner, GDB stops when
hitting 0x0000003ff7fc42e6 (<+8>) because it does not know what to do
with the 'ld' instruction. GDB thinks it reached the end of the
prologue but have not yet reached the important part, which explain
GDB's inability to unwind past this point.
The section of the prologue starting at <+4> until <+12> is used to load
the stack canary[1], which will then be placed on the stack at <+36> at
the end of the prologue.
In order to have the prologue properly handled, this commit proposes to
add support for the ld instruction in the RISC-V prologue scanner.
I guess riscv32 would use lw in such situation so this patch also adds
support for this instruction.
With this patch applied, gdb is now able to unwind past pthread_join:
(gdb) bt
#0 0x0000003ff7fccd20 in __futex_abstimed_wait_common64 () from /lib/riscv64-linux-gnu/libpthread.so.0
#1 0x0000003ff7fc43da in __pthread_clockjoin_ex () from /lib/riscv64-linux-gnu/libpthread.so.0
#2 0x0000002aaaaaa88e in bar() ()
#3 0x0000002aaaaaa8c4 in foo() ()
#4 0x0000002aaaaaa8da in main ()
I have had a look to see if I could reproduce this easily, but in my
simple testcases using '-fstack-protector-all', the canary is loaded
after the RA register is saved. I do not have a reliable way of
generating a prologue similar to the problematic one so I forged one
instead.
The testsuite have been run on riscv64 ubuntu 21.01 with no regression
observed.
[1] https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
|
|
Currently, gdb cannot step outside of a signal handler on RISC-V
platforms. This causes multiple failures in gdb.base/sigstep.exp:
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: stepi from handleri: leave signal trampoline
FAIL: gdb.base/sigstep.exp: nexti from handleri: leave signal trampoline
=== gdb Summary ===
# of expected passes 587
# of unexpected failures 6
This patch adds support for stepping outside of a signal handler on
riscv*-*-linux*.
Implementation is heavily inspired from mips_linux_syscall_next_pc and
surroundings as advised by Pedro Alves.
After this patch, all tests in gdb.base/sigstep.exp pass.
Build and tested on riscv64-linux-gnu.
|
|
I wrote this while debugging a problem where the expected unwinder for a
frame wasn't used. It adds messages to show which unwinders are
considered for a frame, why they are not selected (if an exception is
thrown), and finally which unwinder is selected in the end.
To be able to show a meaningful, human-readable name for the unwinders,
add a "name" field to struct frame_unwind, and update all instances to
include a name.
Here's an example of the output:
[frame] frame_unwind_find_by_frame: this_frame=0
[frame] frame_unwind_try_unwinder: trying unwinder "dummy"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "dwarf2 tailcall"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "inline"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "jit"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "python"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "amd64 epilogue"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "i386 epilogue"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "dwarf2"
[frame] frame_unwind_try_unwinder: yes
gdb/ChangeLog:
* frame-unwind.h (struct frame_unwind) <name>: New. Update
instances everywhere to include this field.
* frame-unwind.c (frame_unwind_try_unwinder,
frame_unwind_find_by_frame): Add debug messages.
Change-Id: I813f17777422425f0d08b22499817b23922e8ddb
|
|
This commit adds support to RISC-V GDB for vector registers in the
incoming target description.
The vector registers should be described in a feature called
"org.gnu.gdb.riscv.vector", and should contain the register v0 to
v31. There's no restriction on the size or type of these registers,
so the target description can set these up as it requires.
However, if the target feature is present then all of the registers
must be present, and they must all be the same size, these
requirements are, I believe, inline with the RISC-V vector extension.
The DWARF register numbers for the vector registers have been added,
and the code to map between GDB's internal numbering and the DWARF
numbering has been updated.
I have not yet added a feature/riscv/*.xml file for the vector
extension, the consequence of this is that we can't, right now, detect
vector registers on a native target, this patch is all about
supporting vectors on a remote target.
It is worth noting that I don't actually have access to a RISC-V
target with vectors, so the only testing that this patch has had has
been done using 'set tdesc filename ....' to load a target description
to which I have manually added the vector feature. This has shown
that the vector register feature can be successfully parsed, and that
the registers show up in the expected register groups.
Additionally, the RISC-V vector extension is currently at v0.10, which
is also the v1.0 draft release. However, this extension is not yet
finalised. It is possible (but unlikely I think) that the register
set could change between now and the final release of the vector
extension. If this were to happen then we would potentially end up
changing the requirements for the new org.gnu.gdb.riscv.vector
feature. I really don't think it is likely that the register set will
change this late in the process, and even if it did, changing the
feature requirements will not be a problem as far as I am
concerned (when the alternative is GDB just continues without this
feature for now).
gdb/ChangeLog:
* NEWS: Mention new target feature name.
* arch/riscv.c (riscv_create_target_description): GDB doesn't
currently create target descriptions containing vector registers.
* arch/riscv.h (struct riscv_gdbarch_features) <vlen>: New member
variable.
<operator==>: Also compare vlen.
<hash>: Also include vlen.
* riscv-tdep.c (riscv_feature_name_vector): New static global.
(struct riscv_vector_feature): New struct.
(riscv_vector_feature): New static global.
(riscv_register_reggroup_p): Ensure vector registers are part of
the 'all' group, and part of the 'vector' group.
(riscv_dwarf_reg_to_regnum): Handle vector registers.
(riscv_gdbarch_init): Check vector register feature.
* riscv-tdep.h: Add vector registers to GDB's internal register
numbers, and to the DWARF register numbers.
gdb/doc/ChangeLog:
* gdb.texinfo (RISC-V Features): Mention vector register feature.
|
|
Previously, the prefixname field of struct cmd_list_element was manually
set for prefix commands. This seems verbose and error prone as it
required every single call to functions adding prefix commands to
specify the prefix name while the same information can be easily
generated.
Historically, this was not possible as the prefix field was null for
many commands, but this was fixed in commit
3f4d92ebdf7f848b5ccc9e8d8e8514c64fde1183 by Philippe Waroquiers, so
we can rely on the prefix field being set when generating the prefix
name.
This commit also fixes a use after free in this scenario:
* A command gets created via Python (using the gdb.Command class).
The prefix name member is dynamically allocated.
* An alias to the new command is created. The alias's prefixname is set
to point to the prefixname for the original command with a direct
assignment.
* A new command with the same name as the Python command is created.
* The object for the original Python command gets freed and its
prefixname gets freed as well.
* The alias is updated to point to the new command, but its prefixname
is not updated so it keeps pointing to the freed one.
gdb/ChangeLog:
* command.h (add_prefix_cmd): Remove the prefixname argument as
it can now be generated automatically. Update all callers.
(add_basic_prefix_cmd): Ditto.
(add_show_prefix_cmd): Ditto.
(add_prefix_cmd_suppress_notification): Ditto.
(add_abbrev_prefix_cmd): Ditto.
* cli/cli-decode.c (add_prefix_cmd): Ditto.
(add_basic_prefix_cmd): Ditto.
(add_show_prefix_cmd): Ditto.
(add_prefix_cmd_suppress_notification): Ditto.
(add_prefix_cmd_suppress_notification): Ditto.
(add_abbrev_prefix_cmd): Ditto.
* cli/cli-decode.h (struct cmd_list_element): Replace the
prefixname member variable with a method which generates the
prefix name at runtime. Update all code reading the prefix
name to use the method, and remove all code setting it.
* python/py-cmd.c (cmdpy_destroyer): Remove code to free the
prefixname member as it's now a method.
(cmdpy_function): Determine if the command is a prefix by
looking at prefixlist, not prefixname.
|
|
To allow breakpoints to be created at invalid addresses,
target_read_code is used instead of read_code. This was fixed in
commit:
commit c01660c625766e848195285cc20581b9ed7ecfe2
Date: Wed Apr 17 00:31:43 2019 +0100
gdb/riscv: Allow breakpoints to be created at invalid addresses
Unfortunately, the call to read_code was left in by mistake. The
result is that GDB will fail when trying to create the breakpoint,
rather than when trying to install the breakpoint (as is the case with
other targets).
This commit fixes this mistake and removes the offending call to
read_code.
gdb/ChangeLog:
* riscv-tdep.c (riscv_breakpoint_kind_from_pc): Remove call to
read_code.
|
|
A later commit will need the names of the RISC-V target description
features in files other than riscv-tdep.c. This commit just makes the
names global strings that can be accessed from other riscv-*.c files.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* riscv-tdep.c (riscv_feature_name_csr): Define.
(riscv_feature_name_cpu): Define.
(riscv_feature_name_fpu): Define.
(riscv_feature_name_virtual): Define.
(riscv_xreg_feature): Use riscv_feature_name_cpu.
(riscv_freg_feature): Use riscv_feature_name_fpu.
(riscv_virtual_feature): Use riscv_feature_name_virtual.
(riscv_csr_feature): Use riscv_feature_name_csr.
* riscv-tdep.h (riscv_feature_name_csr): Declare.
|
|
GDB for RISC-V always uses target descriptions. When the target
doesn't provide a target description then a default is selected.
Usually this default is selected based on the properties of the
executable being debugged. However, when there is no executable being
debugged we currently fallback to the riscv:rv64 target description as
the default. This leads to strange behaviour like this:
$ gdb
(gdb) set architecture riscv:rv32
(gdb) p sizeof ($pc)
$1 = 8
Despite the users specifically setting the architecture to riscv:rv32
GDB still thinks that the target has riscv:rv64 register sizes.
The above is a bit of a contrived situation. I actually ran into this
situation while trying to connect to a running riscv:rv32 target
without supplying an executable (the target didn't provide a target
description). When I tried to set a register on the target I ran into
errors because GDB was passing 8 bytes to the target rather than the
expected 4. Even when I manually specified the architecture (as
above) I couldn't convince GDB to only send 4 bytes.
This patch fixes this issue. Now, when we selected a default target
description we will make use of the user selected architecture to
guide our choice. In the above example we now get:
$ gdb
(gdb) set architecture riscv:rv32
(gdb) p sizeof ($pc)
$1 = 4
And my real world example of connecting to a remote without an
executable works fine.
I've used the fact that we can ask GDB about $pc even when no
executable is loaded as the basis for a test to cover this situation.
gdb/ChangeLog:
* riscv-tdep.c (riscv_features_from_gdbarch_info): Rename to...
(riscv_features_from_bfd): ...this. Change parameter type to
'bfd*', and update as required.
(riscv_find_default_target_description): Update call to
riscv_features_from_bfd. Select a default xlen based on
info.bfd_arch_info.
(riscv_gdbarch_init): Update call to riscv_features_from_bfd.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-default-tdesc.exp: New file.
|
|
* Renamed obsolete UJ/SB types and RVC types, also added CSS/CL(CS) types,
[VALID/EXTRACT/ENCODE macros]
BTYPE_IMM: Renamed from SBTYPE_IMM.
JTYPE_IMM: Renamed from UJTYPE_IMM.
CITYPE_IMM: Renamed from RVC_IMM.
CITYPE_LUI_IMM: Renamed from RVC_LUI_IMM.
CITYPE_ADDI16SP_IMM: Renamed from RVC_ADDI16SP_IMM.
CITYPE_LWSP_IMM: Renamed from RVC_LWSP_IMM.
CITYPE_LDSP_IMM: Renamed from RVC_LDSP_IMM.
CIWTYPE_IMM: Renamed from RVC_UIMM8.
CIWTYPE_ADDI4SPN_IMM: Renamed from RVC_ADDI4SPN_IMM.
CSSTYPE_IMM: Added for .insn without special encoding.
CSSTYPE_SWSP_IMM: Renamed from RVC_SWSP_IMM.
CSSTYPE_SDSP_IMM: Renamed from RVC_SDSP_IMM.
CLTYPE_IMM: Added for .insn without special encoding.
CLTYPE_LW_IMM: Renamed from RVC_LW_IMM.
CLTYPE_LD_IMM: Renamed from RVC_LD_IMM.
RVC_SIMM3: Unused and removed.
CBTYPE_IMM: Renamed from RVC_B_IMM.
CJTYPE_IMM: Renamed from RVC_J_IMM.
* Added new operands and removed the unused ones,
C5: Unsigned CL(CS) immediate, added for .insn directive.
C6: Unsigned CSS immediate, added for .insn directive.
Ci: Unused and removed.
C<: Unused and removed.
bfd/
PR 27158
* elfnn-riscv.c (perform_relocation): Updated encoding macros.
(_bfd_riscv_relax_call): Likewise.
(_bfd_riscv_relax_lui): Likewise.
* elfxx-riscv.c (howto_table): Likewise.
gas/
PR 27158
* config/tc-riscv.c (riscv_ip): Updated encoding macros.
(md_apply_fix): Likewise.
(md_convert_frag_branch): Likewise.
(validate_riscv_insn): Likewise. Also arranged operands, including
added C5 and C6 operands, and removed unused Ci and C< operands.
* doc/c-riscv.texi: Updated and added CSS/CL/CS types.
* testsuite/gas/riscv/insn.d: Added CSS/CL/CS instructions.
* testsuite/gas/riscv/insn.s: Likewise.
gdb/
PR 27158
* riscv-tdep.c (decode_ci_type_insn): Updated encoding macros.
(decode_j_type_insn): Likewise.
(decode_cj_type_insn): Likewise.
(decode_b_type_insn): Likewise.
(decode): Likewise.
include/
PR 27158
* opcode/riscv.h: Updated encoding macros.
opcodes/
PR 27158
* riscv-dis.c (print_insn_args): Updated encoding macros.
* riscv-opc.c (MASK_RVC_IMM): defined to ENCODE_CITYPE_IMM.
(match_c_addi16sp): Updated encoding macros.
(match_c_lui): Likewise.
(match_c_lui_with_hint): Likewise.
(match_c_addi4spn): Likewise.
(match_c_slli): Likewise.
(match_slli_as_c_slli): Likewise.
(match_c_slli64): Likewise.
(match_srxi_as_c_srxi): Likewise.
(riscv_insn_types): Added .insn css/cl/cs.
sim/
PR 27158
* riscv/sim-main.c (execute_i): Updated encoding macros.
|
|
With the new member functions for struct trad_frame_saved_reg, there is no
need to invoke some of the set/get functions anymore. This patch removes
those and adjusts all callers.
Even though the most natural initial state of a saved register value is
UNKNOWN, there are target backends relying on the previous initial state
of REALREG set to a register's own number. I noticed this in at least a
couple targets: aarch64 and riscv.
Because of that, I decided to keep the reset function that sets the set of
register values to REALREG. I can't exercise all the targets to make sure
the initial state change won't break things, hence why it is risky to change
the default.
Validated with --enable-targets=all on aarch64-linux Ubuntu 18.04/20.04.
gdb/ChangeLog
2021-01-19 Luis Machado <luis.machado@linaro.org>
* trad-frame.h (trad_frame_saved_reg) <set_value_bytes>: Allocate
memory and save data.
(trad_frame_set_value, trad_frame_set_realreg, trad_frame_set_addr)
(trad_frame_set_unknown, trad_frame_set_value_bytes)
(trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p)
(trad_frame_value_bytes_p): Remove.
(trad_frame_reset_saved_regs): Adjust documentation.
* trad-frame.c (trad_frame_alloc_saved_regs): Initialize via a
constructor and reset the state of the registers.
(trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p)
(trad_frame_value_bytes_p, trad_frame_set_value)
(trad_frame_set_realreg, trad_frame_set_addr)
(trad_frame_set_unknown, trad_frame_set_value_bytes): Remove.
(trad_frame_set_reg_realreg): Update to call member function.
(trad_frame_set_reg_addr, trad_frame_set_reg_value_bytes): Likewise.
(trad_frame_get_prev_register): Likewise.
* aarch64-tdep.c (aarch64_analyze_prologue)
(aarch64_analyze_prologue_test, aarch64_make_prologue_cache_1)
(aarch64_prologue_prev_register): Update to use member functions.
* alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind_cache): Likewise.
* alpha-tdep.c (alpha_heuristic_frame_unwind_cache): Likewise.
* arc-tdep.c (arc_print_frame_cache, arc_make_frame_cache): Likewise.
* arm-tdep.c (arm_make_prologue_cache, arm_exidx_fill_cache)
(arm_make_epilogue_frame_cache): Likewise.
* avr-tdep.c (avr_frame_unwind_cache)
(avr_frame_prev_register): Likewise.
* cris-tdep.c (cris_scan_prologue): Likewise.
* csky-tdep.c (csky_frame_unwind_cache): Likewise.
* frv-tdep.c (frv_analyze_prologue): Likewise.
* hppa-tdep.c (hppa_frame_cache, hppa_fallback_frame_cache): Likewise.
* lm32-tdep.c (lm32_frame_cache): Likewise.
* m32r-tdep.c (m32r_frame_unwind_cache): Likewise.
* m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise.
* mips-tdep.c (set_reg_offset, mips_insn16_frame_cache)
(mips_micro_frame_cache, mips_insn32_frame_cache): Likewise.
(reset_saved_regs): Adjust to set realreg.
* riscv-tdep.c (riscv_scan_prologue, riscv_frame_cache): Adjust to
call member functions.
* rs6000-tdep.c (rs6000_frame_cache, rs6000_epilogue_frame_cache)
* s390-tdep.c (s390_prologue_frame_unwind_cache)
(s390_backchain_frame_unwind_cache): Likewise.
* score-tdep.c (score7_analyze_prologue)
(score3_analyze_prologue, score_make_prologue_cache): Likewise.
* sparc-netbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise.
* sparc-sol2-tdep.c (sparc32_sol2_sigtramp_frame_cache): Likewise.
* sparc64-netbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise.
* sparc64-sol2-tdep.c (sparc64_sol2_sigtramp_frame_cache): Likewise.
* tilegx-tdep.c (tilegx_analyze_prologue)
(tilegx_frame_cache): Likewise.
* v850-tdep.c (v850_frame_cache): Likewise.
* vax-tdep.c (vax_frame_cache): Likewise.
|
|
The RISC-V x0 register is hard-coded to zero. As such neither Linux
or FreeBSD supply the value of the register x0 in their core dump
files.
For FreeBSD we take care of this by manually supplying the value of x0
in riscv_fbsd_supply_gregset, however we don't do this for Linux. As
a result after loading a core file on Linux we see this behaviour:
(gdb) p $x0
$1 = <unavailable>
In this commit I make riscv_fbsd_supply_gregset a common function that
can be shared between RISC-V for FreeBSD and Linux, this resolves the
above issue.
There is a similar problem for the two registers `fflags` and `frm`.
These two floating point related CSRs are a little weird. They are
separate CSRs in the RISC-V specification, but are actually sub-fields
of the `fcsr` CSR.
As a result neither Linux or FreeBSD supply the `fflags` or `frm`
registers as separate fields in their core dumps, and so, after
restoring a core dump these register are similarly unavailable.
In this commit I supply `fflags` and `frm` by first asking for the
value of `fcsr`, extracting the two fields, and using these to supply
the values for `fflags` and `frm`.
gdb/ChangeLog:
* riscv-fbsd-tdep.c (riscv_fbsd_supply_gregset): Delete.
(riscv_fbsd_gregset): Use riscv_supply_regset.
(riscv_fbsd_fpregset): Likewise.
* riscv-linux-tdep.c (riscv_linux_gregset): Likewise.
(riscv_linux_fregset): Likewise.
* riscv-tdep.c (riscv_supply_regset): Define new function.
* riscv-tdep.h (riscv_supply_regset): Declare new function.
|
|
The following patch drops the overloading going on with the trad_frame_saved_reg
struct and defines a new struct with a KIND enum and a union of different
fields.
The new struct looks like this:
struct trad_frame_saved_reg
{
setters/getters
...
private:
trad_frame_saved_reg_kind m_kind;
union {
LONGEST value;
int realreg;
LONGEST addr;
const gdb_byte *value_bytes;
} m_reg;
};
And the enums look like this:
/* Describes the kind of encoding a stored register has. */
enum class trad_frame_saved_reg_kind
{
/* Register value is unknown. */
UNKNOWN = 0,
/* Register value is a constant. */
VALUE,
/* Register value is in another register. */
REALREG,
/* Register value is at an address. */
ADDR,
/* Register value is a sequence of bytes. */
VALUE_BYTES
};
The patch also adds setters/getters and updates all the users of the old
struct.
It is worth mentioning that due to the previous overloaded nature of the
fields, some tdep files like to store negative offsets and indexes in the ADDR
field, so I kept the ADDR as LONGEST instead of CORE_ADDR. Those cases may
be better supported by a new enum entry.
I have not addressed those cases in this patch to prevent unwanted breakage,
given I have no way to test some of the targets. But it would be nice to
clean those up eventually.
The change to frame-unwind.* is to constify the parameter being passed to the
unwinding functions, given we now accept a "const gdb_byte *" for value bytes.
Tested on aarch64-linux/Ubuntu 20.04/18.04 and by building GDB with
--enable-targets=all.
gdb/ChangeLog:
2021-01-04 Luis Machado <luis.machado@linaro.org>
Update all users of trad_frame_saved_reg to use the new member
functions.
Remote all struct keywords from declarations of trad_frame_saved_reg
types, except on forward declarations.
* aarch64-tdep.c: Update.
* alpha-mdebug-tdep.c: Update.
* alpha-tdep.c: Update.
* arc-tdep.c: Update.
* arm-tdep.c: Update.
* avr-tdep.c: Update.
* cris-tdep.c: Update.
* csky-tdep.c: Update.
* frv-tdep.c: Update.
* hppa-linux-tdep.c: Update.
* hppa-tdep.c: Update.
* hppa-tdep.h: Update.
* lm32-tdep.c: Update.
* m32r-linux-tdep.c: Update.
* m32r-tdep.c: Update.
* m68hc11-tdep.c: Update.
* mips-tdep.c: Update.
* moxie-tdep.c: Update.
* riscv-tdep.c: Update.
* rs6000-tdep.c: Update.
* s390-linux-tdep.c: Update.
* s390-tdep.c: Update.
* score-tdep.c: Update.
* sparc-netbsd-tdep.c: Update.
* sparc-sol2-tdep.c: Update.
* sparc64-fbsd-tdep.c: Update.
* sparc64-netbsd-tdep.c: Update.
* sparc64-obsd-tdep.c: Update.
* sparc64-sol2-tdep.c: Update.
* tilegx-tdep.c: Update.
* v850-tdep.c: Update.
* vax-tdep.c: Update.
* frame-unwind.c (frame_unwind_got_bytes): Make parameter const.
* frame-unwind.h (frame_unwind_got_bytes): Likewise.
* trad-frame.c: Update.
Remove TF_REG_* enum.
(trad_frame_alloc_saved_regs): Add a static assertion to check for
a trivially-constructible struct.
(trad_frame_reset_saved_regs): Adjust to use member function.
(trad_frame_value_p): Likewise.
(trad_frame_addr_p): Likewise.
(trad_frame_realreg_p): Likewise.
(trad_frame_value_bytes_p): Likewise.
(trad_frame_set_value): Likewise.
(trad_frame_set_realreg): Likewise.
(trad_frame_set_addr): Likewise.
(trad_frame_set_unknown): Likewise.
(trad_frame_set_value_bytes): Likewise.
(trad_frame_get_prev_register): Likewise.
* trad-frame.h: Update.
(trad_frame_saved_reg_kind): New enum.
(struct trad_frame_saved_reg) <addr, realreg, data>: Remove.
<m_kind, m_reg>: New member fields.
<set_value, set_realreg, set_addr, set_unknown, set_value_bytes>
<kind, value, realreg, addr, value_bytes, is_value, is_realreg>
<is_addr, is_unknown, is_value_bytes>: New member functions.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
This commit started as adding rv32e support to gdb. The rv32e
architecture is a cut-down rv32i, it only has 16 x-registers compared
to the usual 32, and an rv32e target should not have any floating
point registers.
In order to add this I needed to adjust the target description
validation checks that are performed from riscv_gdbarch_init, and I
finally got fed up with the current scheme of doing these checks and
rewrote this code.
Unfortunately the rv32e changes are currently mixed in with the
rewrite of the validation scheme. I could split these apart if anyone
is really interested in seeing these two ideas as separate patches.
The main idea behind this change is that where previously I tried to
have a purely data driven approach, a set of tables one for each
expected feature, and then a single generic function that would
validate a feature given a table, I have created a new class for each
feature. Each class has its own check member function which allows
the logic for how to check each feature to be different. I think the
new scheme is much easier to follow.
There are some other changes that I made to the validation code as
part of this commit.
I've relaxed some of the checks related to the floating point CSRs.
Previously the 3 CSRs fflags, frm, and fcsr all had to be present in
either the fpu feature or the csr feature. This requirement is now
relaxed, if the CSRs are not present then gdb will not reject the
target description. My thinking here is that there's no gdb
functionality that specifically requires these registers, and so, if a
target offers a description without these registers nothing else in
gdb should stop working.
And as part of the rv32e support targets now only have to provide the
first 16 x-registers and $pc. The second half of the x-registers (x16
-> x31) are now optional.
gdb/ChangeLog:
* arch/riscv.c: Include 'rv32e-xregs.c'.
(riscv_create_target_description): Update to handle rv32e.
* arch/riscv.h (struct riscv_gdbarch_features) <embedded>: New
member variable.
<operator==>: Update to account for new field.
<hash>: Likewise.
* features/Makefile (FEATURE_XMLFILES): Add riscv/rv32e-xregs.xml.
* features/riscv/rv32e-xregs.c: Generated.
* features/riscv/rv32e-xregs.xml: New file.
* riscv-tdep.c (riscv_debug_breakpoints): Move from later in the
file.
(riscv_debug_infcall): Likewise.
(riscv_debug_unwinder): Likewise.
(riscv_debug_gdbarch): Likewise.
(enum riscv_register_required_status): Delete.
(struct riscv_register_feature): Add constructor, delete default
constructor, copy, and assign constructors.
(struct riscv_register_feature::register_info) <required>: Delete.
<check>: Update comment and arguments.
(struct riscv_register_feature) <name>: Change to member function.
<prefer_first_name>: Delete.
<tdesc_feature>: New member function.
<registers>: Rename to...
<m_registers>: ...this.
<m_feature_name>: New member variable.
(riscv_register_feature::register_info::check): Update arguments.
(riscv_xreg_feature): Rewrite as class, create a single static
instance of the class.
(riscv_freg_feature): Likewise.
(riscv_virtual_feature): Likewise.
(riscv_csr_feature): Likewise.
(riscv_create_csr_aliases): Has become a member function inside
riscv_csr_feature class.
(riscv_abi_embedded): New function definition.
(riscv_register_name): Adjust to use new feature objects.
(struct riscv_call_info) <riscv_call_info>: Check for rv32e abi,
and adjust available argument registers.
(riscv_features_from_gdbarch_info): Check for EF_RISCV_RVE flag.
(riscv_check_tdesc_feature): Delete.
(riscv_tdesc_unknown_reg): Adjust to use new feature objects.
(riscv_gdbarch_init): Delete target description checking code, and
instead call to the new feature objects to perform the checks.
Reorder handling of no abi information case, allows small code
simplification.
(_initialize_riscv_tdep): Remove call, this is now done in the
riscv_csr_feature constructor.
* riscv-tdep.h (riscv_abi_embedded): Declare.
|
|
In this commit:
commit 767a879e31ce31179e6135c2f991f670a35709fa
Date: Tue Jun 9 17:38:30 2020 +0100
gdb/riscv: Improved register alias name creation
RISC-V GDB was changed to make use of the DECLARE_CSR_ALIAS macro to
define register aliases for some CSRs. Actually, only one alias was
created 'dscratch' as an alias for 'dscratch0'. All of the other
DECLARE_CSR_ALIAS lines (from include/opcode/riscv-opc.h) were
filtered out.
In this commit:
commit 08ccfccf0ed825be9be2972594d4be4a2207ef13
Date: Mon Jun 8 10:54:53 2020 +0800
RISC-V: Support debug and float CSR as the unprivileged ones.
Changes were made to include/opcode/riscv-opc.h so that GDB no longer
created even the dscratch alias.
This caused a test failure in gdb.arch/riscv-tdesc-regs.exp.
In looking at how to address this failure I think that the best
strategy is, for now at least, to just remove the code that tries to
create aliases with DECLARE_CSR_ALIAS.
My thoughts are that:
1. At least some of the aliases are for CSRs where the register now
has a completely different use. Being able to reference the CSR
using a completely inappropriate name just seems confusing. This
was solved by the filtering added in the first commit referenced
above. But we certainly don't want to blindly add all aliases.
2. Names presented in a target description are always honoured, so
if a user has a legacy target then they should just start sending a
target description with their legacy register names in, this problem
is then solved.
3. It's easy enough to figure out which CSRs a target has with the
info registers command, so missing an alias shouldn't be a big
issue.
4. Allowing users to use names for registers that differ from the
names the target announces doesn't feel like a critical feature. If
in the future targets want multiple names for a register then maybe
we could/should extend target descriptions to allow the target to
send aliases as well as the primary name.... but that can wait for
another day.
So in this commit I remove the use of DECLARE_CSR_ALIAS, and remove
the test that was failing.
gdb/ChangeLog:
* riscv-tdep.c (riscv_create_csr_aliases): Remove use of
DECLARE_CSR_ALIAS.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp: Remove unwanted test.
|
|
Unknown riscv CSRs should not be in the 'general' group, but should be
in the system and csr register groups.
To see this in action connect to QEMU, this target advertises two
registers dscratch and mucounteren which are unknown to GDB (these are
legacy CSRs). Before this commit these registers would show up in the
output of:
(gdb) info registers
....
dscratch Could not fetch register "dscratch"; remote failure reply 'E14'
mucounteren Could not fetch register "mucounteren"; remote failure reply 'E14'
Ignore the errors, this is just a QEMU annoyance, it advertises these
CSRs, but doesn't actually let GDB read them. These registers don't
show up in the output of either:
(gdb) info registers csr
(gdb) info registers system
After this commit this situation is reveresed, which makes more sense
to me.
gdb/ChangeLog:
* riscv-tdep.c (riscv_is_unknown_csr): New function,
implementation moved from riscv_register_reggroup_p.
(riscv_register_reggroup_p): Update group handling for unknown
CSRs.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp (get_expected_result): New proc,
update test to use this.
|
|
Extends riscv_dwarf_reg_to_regnum to add the ability to convert the
DWARF register numbers for CSRs into GDB's internal numbers.
gdb/ChangeLog:
* riscv-tdep.c (riscv_dwarf_reg_to_regnum): Decode DWARF CSR
numbers.
* riscv-tdep.h (RISCV_DWARF_FIRST_CSR, RISCV_DWARF_LAST_CSR): New
enum values.
|
|
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c). I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it? What if the lines around it are also
wrong, do I fix them too? I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.
So I propose to fix as much as possible once and for all (hopefully).
One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines. My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for. So you
already need a somewhat efficient way to do this.
Using some interactive tool, rather than plain git-blame, makes this
trivial. For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too. My point is that it won't
really make archeology more difficult.
The other typical counter argument is that it will cause conflicts with
existing patches. That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve. I have also tried "git
rebase --ignore-whitespace", it seems to work well. Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).
gdb/ChangeLog:
* aarch64-linux-tdep.c: Fix indentation.
* aarch64-ravenscar-thread.c: Fix indentation.
* aarch64-tdep.c: Fix indentation.
* aarch64-tdep.h: Fix indentation.
* ada-lang.c: Fix indentation.
* ada-lang.h: Fix indentation.
* ada-tasks.c: Fix indentation.
* ada-typeprint.c: Fix indentation.
* ada-valprint.c: Fix indentation.
* ada-varobj.c: Fix indentation.
* addrmap.c: Fix indentation.
* addrmap.h: Fix indentation.
* agent.c: Fix indentation.
* aix-thread.c: Fix indentation.
* alpha-bsd-nat.c: Fix indentation.
* alpha-linux-tdep.c: Fix indentation.
* alpha-mdebug-tdep.c: Fix indentation.
* alpha-nbsd-tdep.c: Fix indentation.
* alpha-obsd-tdep.c: Fix indentation.
* alpha-tdep.c: Fix indentation.
* amd64-bsd-nat.c: Fix indentation.
* amd64-darwin-tdep.c: Fix indentation.
* amd64-linux-nat.c: Fix indentation.
* amd64-linux-tdep.c: Fix indentation.
* amd64-nat.c: Fix indentation.
* amd64-obsd-tdep.c: Fix indentation.
* amd64-tdep.c: Fix indentation.
* amd64-windows-tdep.c: Fix indentation.
* annotate.c: Fix indentation.
* arc-tdep.c: Fix indentation.
* arch-utils.c: Fix indentation.
* arch/arm-get-next-pcs.c: Fix indentation.
* arch/arm.c: Fix indentation.
* arm-linux-nat.c: Fix indentation.
* arm-linux-tdep.c: Fix indentation.
* arm-nbsd-tdep.c: Fix indentation.
* arm-pikeos-tdep.c: Fix indentation.
* arm-tdep.c: Fix indentation.
* arm-tdep.h: Fix indentation.
* arm-wince-tdep.c: Fix indentation.
* auto-load.c: Fix indentation.
* auxv.c: Fix indentation.
* avr-tdep.c: Fix indentation.
* ax-gdb.c: Fix indentation.
* ax-general.c: Fix indentation.
* bfin-linux-tdep.c: Fix indentation.
* block.c: Fix indentation.
* block.h: Fix indentation.
* blockframe.c: Fix indentation.
* bpf-tdep.c: Fix indentation.
* break-catch-sig.c: Fix indentation.
* break-catch-syscall.c: Fix indentation.
* break-catch-throw.c: Fix indentation.
* breakpoint.c: Fix indentation.
* breakpoint.h: Fix indentation.
* bsd-uthread.c: Fix indentation.
* btrace.c: Fix indentation.
* build-id.c: Fix indentation.
* buildsym-legacy.h: Fix indentation.
* buildsym.c: Fix indentation.
* c-typeprint.c: Fix indentation.
* c-valprint.c: Fix indentation.
* c-varobj.c: Fix indentation.
* charset.c: Fix indentation.
* cli/cli-cmds.c: Fix indentation.
* cli/cli-decode.c: Fix indentation.
* cli/cli-decode.h: Fix indentation.
* cli/cli-script.c: Fix indentation.
* cli/cli-setshow.c: Fix indentation.
* coff-pe-read.c: Fix indentation.
* coffread.c: Fix indentation.
* compile/compile-cplus-types.c: Fix indentation.
* compile/compile-object-load.c: Fix indentation.
* compile/compile-object-run.c: Fix indentation.
* completer.c: Fix indentation.
* corefile.c: Fix indentation.
* corelow.c: Fix indentation.
* cp-abi.h: Fix indentation.
* cp-namespace.c: Fix indentation.
* cp-support.c: Fix indentation.
* cp-valprint.c: Fix indentation.
* cris-linux-tdep.c: Fix indentation.
* cris-tdep.c: Fix indentation.
* darwin-nat-info.c: Fix indentation.
* darwin-nat.c: Fix indentation.
* darwin-nat.h: Fix indentation.
* dbxread.c: Fix indentation.
* dcache.c: Fix indentation.
* disasm.c: Fix indentation.
* dtrace-probe.c: Fix indentation.
* dwarf2/abbrev.c: Fix indentation.
* dwarf2/attribute.c: Fix indentation.
* dwarf2/expr.c: Fix indentation.
* dwarf2/frame.c: Fix indentation.
* dwarf2/index-cache.c: Fix indentation.
* dwarf2/index-write.c: Fix indentation.
* dwarf2/line-header.c: Fix indentation.
* dwarf2/loc.c: Fix indentation.
* dwarf2/macro.c: Fix indentation.
* dwarf2/read.c: Fix indentation.
* dwarf2/read.h: Fix indentation.
* elfread.c: Fix indentation.
* eval.c: Fix indentation.
* event-top.c: Fix indentation.
* exec.c: Fix indentation.
* exec.h: Fix indentation.
* expprint.c: Fix indentation.
* f-lang.c: Fix indentation.
* f-typeprint.c: Fix indentation.
* f-valprint.c: Fix indentation.
* fbsd-nat.c: Fix indentation.
* fbsd-tdep.c: Fix indentation.
* findvar.c: Fix indentation.
* fork-child.c: Fix indentation.
* frame-unwind.c: Fix indentation.
* frame-unwind.h: Fix indentation.
* frame.c: Fix indentation.
* frv-linux-tdep.c: Fix indentation.
* frv-tdep.c: Fix indentation.
* frv-tdep.h: Fix indentation.
* ft32-tdep.c: Fix indentation.
* gcore.c: Fix indentation.
* gdb_bfd.c: Fix indentation.
* gdbarch.sh: Fix indentation.
* gdbarch.c: Re-generate
* gdbarch.h: Re-generate.
* gdbcore.h: Fix indentation.
* gdbthread.h: Fix indentation.
* gdbtypes.c: Fix indentation.
* gdbtypes.h: Fix indentation.
* glibc-tdep.c: Fix indentation.
* gnu-nat.c: Fix indentation.
* gnu-nat.h: Fix indentation.
* gnu-v2-abi.c: Fix indentation.
* gnu-v3-abi.c: Fix indentation.
* go32-nat.c: Fix indentation.
* guile/guile-internal.h: Fix indentation.
* guile/scm-cmd.c: Fix indentation.
* guile/scm-frame.c: Fix indentation.
* guile/scm-iterator.c: Fix indentation.
* guile/scm-math.c: Fix indentation.
* guile/scm-ports.c: Fix indentation.
* guile/scm-pretty-print.c: Fix indentation.
* guile/scm-value.c: Fix indentation.
* h8300-tdep.c: Fix indentation.
* hppa-linux-nat.c: Fix indentation.
* hppa-linux-tdep.c: Fix indentation.
* hppa-nbsd-nat.c: Fix indentation.
* hppa-nbsd-tdep.c: Fix indentation.
* hppa-obsd-nat.c: Fix indentation.
* hppa-tdep.c: Fix indentation.
* hppa-tdep.h: Fix indentation.
* i386-bsd-nat.c: Fix indentation.
* i386-darwin-nat.c: Fix indentation.
* i386-darwin-tdep.c: Fix indentation.
* i386-dicos-tdep.c: Fix indentation.
* i386-gnu-nat.c: Fix indentation.
* i386-linux-nat.c: Fix indentation.
* i386-linux-tdep.c: Fix indentation.
* i386-nto-tdep.c: Fix indentation.
* i386-obsd-tdep.c: Fix indentation.
* i386-sol2-nat.c: Fix indentation.
* i386-tdep.c: Fix indentation.
* i386-tdep.h: Fix indentation.
* i386-windows-tdep.c: Fix indentation.
* i387-tdep.c: Fix indentation.
* i387-tdep.h: Fix indentation.
* ia64-libunwind-tdep.c: Fix indentation.
* ia64-libunwind-tdep.h: Fix indentation.
* ia64-linux-nat.c: Fix indentation.
* ia64-linux-tdep.c: Fix indentation.
* ia64-tdep.c: Fix indentation.
* ia64-tdep.h: Fix indentation.
* ia64-vms-tdep.c: Fix indentation.
* infcall.c: Fix indentation.
* infcmd.c: Fix indentation.
* inferior.c: Fix indentation.
* infrun.c: Fix indentation.
* iq2000-tdep.c: Fix indentation.
* language.c: Fix indentation.
* linespec.c: Fix indentation.
* linux-fork.c: Fix indentation.
* linux-nat.c: Fix indentation.
* linux-tdep.c: Fix indentation.
* linux-thread-db.c: Fix indentation.
* lm32-tdep.c: Fix indentation.
* m2-lang.c: Fix indentation.
* m2-typeprint.c: Fix indentation.
* m2-valprint.c: Fix indentation.
* m32c-tdep.c: Fix indentation.
* m32r-linux-tdep.c: Fix indentation.
* m32r-tdep.c: Fix indentation.
* m68hc11-tdep.c: Fix indentation.
* m68k-bsd-nat.c: Fix indentation.
* m68k-linux-nat.c: Fix indentation.
* m68k-linux-tdep.c: Fix indentation.
* m68k-tdep.c: Fix indentation.
* machoread.c: Fix indentation.
* macrocmd.c: Fix indentation.
* macroexp.c: Fix indentation.
* macroscope.c: Fix indentation.
* macrotab.c: Fix indentation.
* macrotab.h: Fix indentation.
* main.c: Fix indentation.
* mdebugread.c: Fix indentation.
* mep-tdep.c: Fix indentation.
* mi/mi-cmd-catch.c: Fix indentation.
* mi/mi-cmd-disas.c: Fix indentation.
* mi/mi-cmd-env.c: Fix indentation.
* mi/mi-cmd-stack.c: Fix indentation.
* mi/mi-cmd-var.c: Fix indentation.
* mi/mi-cmds.c: Fix indentation.
* mi/mi-main.c: Fix indentation.
* mi/mi-parse.c: Fix indentation.
* microblaze-tdep.c: Fix indentation.
* minidebug.c: Fix indentation.
* minsyms.c: Fix indentation.
* mips-linux-nat.c: Fix indentation.
* mips-linux-tdep.c: Fix indentation.
* mips-nbsd-tdep.c: Fix indentation.
* mips-tdep.c: Fix indentation.
* mn10300-linux-tdep.c: Fix indentation.
* mn10300-tdep.c: Fix indentation.
* moxie-tdep.c: Fix indentation.
* msp430-tdep.c: Fix indentation.
* namespace.h: Fix indentation.
* nat/fork-inferior.c: Fix indentation.
* nat/gdb_ptrace.h: Fix indentation.
* nat/linux-namespaces.c: Fix indentation.
* nat/linux-osdata.c: Fix indentation.
* nat/netbsd-nat.c: Fix indentation.
* nat/x86-dregs.c: Fix indentation.
* nbsd-nat.c: Fix indentation.
* nbsd-tdep.c: Fix indentation.
* nios2-linux-tdep.c: Fix indentation.
* nios2-tdep.c: Fix indentation.
* nto-procfs.c: Fix indentation.
* nto-tdep.c: Fix indentation.
* objfiles.c: Fix indentation.
* objfiles.h: Fix indentation.
* opencl-lang.c: Fix indentation.
* or1k-tdep.c: Fix indentation.
* osabi.c: Fix indentation.
* osabi.h: Fix indentation.
* osdata.c: Fix indentation.
* p-lang.c: Fix indentation.
* p-typeprint.c: Fix indentation.
* p-valprint.c: Fix indentation.
* parse.c: Fix indentation.
* ppc-linux-nat.c: Fix indentation.
* ppc-linux-tdep.c: Fix indentation.
* ppc-nbsd-nat.c: Fix indentation.
* ppc-nbsd-tdep.c: Fix indentation.
* ppc-obsd-nat.c: Fix indentation.
* ppc-ravenscar-thread.c: Fix indentation.
* ppc-sysv-tdep.c: Fix indentation.
* ppc64-tdep.c: Fix indentation.
* printcmd.c: Fix indentation.
* proc-api.c: Fix indentation.
* producer.c: Fix indentation.
* producer.h: Fix indentation.
* prologue-value.c: Fix indentation.
* prologue-value.h: Fix indentation.
* psymtab.c: Fix indentation.
* python/py-arch.c: Fix indentation.
* python/py-bpevent.c: Fix indentation.
* python/py-event.c: Fix indentation.
* python/py-event.h: Fix indentation.
* python/py-finishbreakpoint.c: Fix indentation.
* python/py-frame.c: Fix indentation.
* python/py-framefilter.c: Fix indentation.
* python/py-inferior.c: Fix indentation.
* python/py-infthread.c: Fix indentation.
* python/py-objfile.c: Fix indentation.
* python/py-prettyprint.c: Fix indentation.
* python/py-registers.c: Fix indentation.
* python/py-signalevent.c: Fix indentation.
* python/py-stopevent.c: Fix indentation.
* python/py-stopevent.h: Fix indentation.
* python/py-threadevent.c: Fix indentation.
* python/py-tui.c: Fix indentation.
* python/py-unwind.c: Fix indentation.
* python/py-value.c: Fix indentation.
* python/py-xmethods.c: Fix indentation.
* python/python-internal.h: Fix indentation.
* python/python.c: Fix indentation.
* ravenscar-thread.c: Fix indentation.
* record-btrace.c: Fix indentation.
* record-full.c: Fix indentation.
* record.c: Fix indentation.
* reggroups.c: Fix indentation.
* regset.h: Fix indentation.
* remote-fileio.c: Fix indentation.
* remote.c: Fix indentation.
* reverse.c: Fix indentation.
* riscv-linux-tdep.c: Fix indentation.
* riscv-ravenscar-thread.c: Fix indentation.
* riscv-tdep.c: Fix indentation.
* rl78-tdep.c: Fix indentation.
* rs6000-aix-tdep.c: Fix indentation.
* rs6000-lynx178-tdep.c: Fix indentation.
* rs6000-nat.c: Fix indentation.
* rs6000-tdep.c: Fix indentation.
* rust-lang.c: Fix indentation.
* rx-tdep.c: Fix indentation.
* s12z-tdep.c: Fix indentation.
* s390-linux-tdep.c: Fix indentation.
* score-tdep.c: Fix indentation.
* ser-base.c: Fix indentation.
* ser-mingw.c: Fix indentation.
* ser-uds.c: Fix indentation.
* ser-unix.c: Fix indentation.
* serial.c: Fix indentation.
* sh-linux-tdep.c: Fix indentation.
* sh-nbsd-tdep.c: Fix indentation.
* sh-tdep.c: Fix indentation.
* skip.c: Fix indentation.
* sol-thread.c: Fix indentation.
* solib-aix.c: Fix indentation.
* solib-darwin.c: Fix indentation.
* solib-frv.c: Fix indentation.
* solib-svr4.c: Fix indentation.
* solib.c: Fix indentation.
* source.c: Fix indentation.
* sparc-linux-tdep.c: Fix indentation.
* sparc-nbsd-tdep.c: Fix indentation.
* sparc-obsd-tdep.c: Fix indentation.
* sparc-ravenscar-thread.c: Fix indentation.
* sparc-tdep.c: Fix indentation.
* sparc64-linux-tdep.c: Fix indentation.
* sparc64-nbsd-tdep.c: Fix indentation.
* sparc64-obsd-tdep.c: Fix indentation.
* sparc64-tdep.c: Fix indentation.
* stabsread.c: Fix indentation.
* stack.c: Fix indentation.
* stap-probe.c: Fix indentation.
* stubs/ia64vms-stub.c: Fix indentation.
* stubs/m32r-stub.c: Fix indentation.
* stubs/m68k-stub.c: Fix indentation.
* stubs/sh-stub.c: Fix indentation.
* stubs/sparc-stub.c: Fix indentation.
* symfile-mem.c: Fix indentation.
* symfile.c: Fix indentation.
* symfile.h: Fix indentation.
* symmisc.c: Fix indentation.
* symtab.c: Fix indentation.
* symtab.h: Fix indentation.
* target-float.c: Fix indentation.
* target.c: Fix indentation.
* target.h: Fix indentation.
* tic6x-tdep.c: Fix indentation.
* tilegx-linux-tdep.c: Fix indentation.
* tilegx-tdep.c: Fix indentation.
* top.c: Fix indentation.
* tracefile-tfile.c: Fix indentation.
* tracepoint.c: Fix indentation.
* tui/tui-disasm.c: Fix indentation.
* tui/tui-io.c: Fix indentation.
* tui/tui-regs.c: Fix indentation.
* tui/tui-stack.c: Fix indentation.
* tui/tui-win.c: Fix indentation.
* tui/tui-winsource.c: Fix indentation.
* tui/tui.c: Fix indentation.
* typeprint.c: Fix indentation.
* ui-out.h: Fix indentation.
* unittests/copy_bitwise-selftests.c: Fix indentation.
* unittests/memory-map-selftests.c: Fix indentation.
* utils.c: Fix indentation.
* v850-tdep.c: Fix indentation.
* valarith.c: Fix indentation.
* valops.c: Fix indentation.
* valprint.c: Fix indentation.
* valprint.h: Fix indentation.
* value.c: Fix indentation.
* value.h: Fix indentation.
* varobj.c: Fix indentation.
* vax-tdep.c: Fix indentation.
* windows-nat.c: Fix indentation.
* windows-tdep.c: Fix indentation.
* xcoffread.c: Fix indentation.
* xml-syscall.c: Fix indentation.
* xml-tdesc.c: Fix indentation.
* xstormy16-tdep.c: Fix indentation.
* xtensa-config.c: Fix indentation.
* xtensa-linux-nat.c: Fix indentation.
* xtensa-linux-tdep.c: Fix indentation.
* xtensa-tdep.c: Fix indentation.
gdbserver/ChangeLog:
* ax.cc: Fix indentation.
* dll.cc: Fix indentation.
* inferiors.h: Fix indentation.
* linux-low.cc: Fix indentation.
* linux-nios2-low.cc: Fix indentation.
* linux-ppc-ipa.cc: Fix indentation.
* linux-ppc-low.cc: Fix indentation.
* linux-x86-low.cc: Fix indentation.
* linux-xtensa-low.cc: Fix indentation.
* regcache.cc: Fix indentation.
* server.cc: Fix indentation.
* tracepoint.cc: Fix indentation.
gdbsupport/ChangeLog:
* common-exceptions.h: Fix indentation.
* event-loop.cc: Fix indentation.
* fileio.cc: Fix indentation.
* filestuff.cc: Fix indentation.
* gdb-dlfcn.cc: Fix indentation.
* gdb_string_view.h: Fix indentation.
* job-control.cc: Fix indentation.
* signals.cc: Fix indentation.
Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
|
|
I noticed an issue with the RISC-V prologue scanning stack unwinder.
We currently read the frame base register (either $sp or $fp) as a
signed value. This means that the frame_id's stack_addr field will be
a signed value.
In other contexts though these registers are data pointers, and so are
unsigned.
There's not many places where this mismatch actually shows though, but
I did find one place. Consider this GDB session:
(gdb) maintenance set dwarf unwinders off
(gdb) set backtrace past-main on
...
(gdb) b main
Breakpoint 1 at 0x20400344: file main.c, line 86.
(gdb) run
...
(gdb) bt
#0 main () at main.c:86
#1 0x2040005c in _start () at start.S:59
Backtrace stopped: frame did not save the PC
(gdb) info frame 1
Stack frame at 0x80000a1c:
pc = 0x2040005c in _start (start.S:59); saved pc = <not saved>
Outermost frame: frame did not save the PC
caller of frame at 0x80000a1c
source language asm.
Arglist at 0x80000a1c, args:
Locals at 0x80000a1c, Previous frame's sp is 0x80000a1c
(gdb) frame address 0x80000a1c
No frame at address 0x80000a1c.
(gdb) frame address 0xffffffff80000a1c
#1 0x2040005c in _start () at start.S:59
59 call main
Notice that the 'info frame 1' reports that the frame is at
'0x80000a1c', this is the unsigned frame base value, but when I try
to select a frame using this address I can't.
The reason is that the frame_id for frame #1 actually has the
unsigned (and hence sign-extended) stack_addr value. When I use the
sign extended address I can correctly select the frame.
I propose changing the prologue scanning unwinder to read the frame
base as unsigned. After this in the above case I can now do this:
(gdb) frame address 0x80000a1c
#1 0x2040005c in _start () at start.S:59
59 call main
(gdb) frame address 0xffffffff80000a1c
No frame at address 0xffffffff80000a1c.
Which I think makes more sense.
This issue causes failures in gdb.base/frame-selection.exp if you
compile for RV32 with a linker script that places the stack in the
correct location, which are resolved by this patch.
gdb/ChangeLog:
* riscv-tdep.c (riscv_frame_cache): Read the frame base register
as an unsigned value.
|
|
While working on something else, I noticed that tdesc_data_cleanup
took a void* parameter. Looking more into this, I found that
tdesc_use_registers expected a transfer of ownership.
I think it's better to express this sort of thing via the type system,
when possible. This patch changes tdesc_data_alloc to return a unique
pointer, changes tdesc_use_registers to accept an rvalue reference,
and then adapts all the users.
Note that a deleter structure is introduced to avoid having to move
tdesc_arch_data to the header file.
2020-09-17 Tom Tromey <tromey@adacore.com>
* tic6x-tdep.c (tic6x_gdbarch_init): Update.
* target-descriptions.h (struct tdesc_arch_data_deleter): New.
(tdesc_arch_data_up): New typedef.
(tdesc_use_registers, tdesc_data_alloc): Update.
(tdesc_data_cleanup): Don't declare.
* target-descriptions.c (tdesc_data_alloc): Return a
tdesc_arch_data_up.
(tdesc_arch_data_deleter::operator()): Rename from
tdesc_data_cleanup. Change argument type.
(tdesc_use_registers): Change early_data to an rvalue reference.
(tdesc_use_registers): Don't use delete.
* sparc-tdep.c (sparc32_gdbarch_init): Update.
* s390-tdep.c (s390_gdbarch_init): Update.
* rx-tdep.c (rx_gdbarch_init): Update.
* rs6000-tdep.c (rs6000_gdbarch_init): Update.
* riscv-tdep.c (riscv_gdbarch_init): Update.
* or1k-tdep.c (or1k_gdbarch_init): Update.
* nios2-tdep.c (nios2_gdbarch_init): Update.
* nds32-tdep.c (nds32_gdbarch_init): Update.
* mips-tdep.c (mips_gdbarch_init): Update.
* microblaze-tdep.c (microblaze_gdbarch_init): Update.
* m68k-tdep.c (m68k_gdbarch_init): Update.
* i386-tdep.c (i386_gdbarch_init): Update.
* arm-tdep.c (arm_gdbarch_init): Update.
* arc-tdep.c (arc_tdesc_init): Update.
(arc_gdbarch_init): Update.
* aarch64-tdep.c (aarch64_gdbarch_init): Update.
|
|
The decode of c.sdsp was incorrectly claiming to be a 4-byte store
instead of an 8-byte store.
gdb/ChangeLog:
* riscv-tdep.c (riscv-insn::decode): Fix recorded insn type.
|
|
gdb/ChangeLog:
* gdbtypes.h (TYPE_VECTOR): Remove, replace all
uses with type::is_vector.
Change-Id: I1ac28755af44b1585c190553f9961288c8fb9137
|
|
Add the `is_vector` and `set_is_vector` methods on `struct type`, in
order to remove the `TYPE_VECTOR` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_vector, set_is_vector>: New methods.
(TYPE_VECTOR): Use type::is_vector, change all write call sites to
use type::set_is_vector.
Change-Id: I415e8d169f058662e0750329bfa4017bea3ca0cb
|
|
gdb/ChangeLog:
* gdbtypes.h (TYPE_VARARGS): Remove, replace all
uses with type::has_varargs.
Change-Id: Ieea4a64b4bfa4b8be643e68cb403081881133740
|
|
Currently the 'info all-registers' command only loops over those
registers that are known to GDB. Any registers that are unknown, that
is, are mentioned in the target description, but are not something GDB
otherwise knows, will not be displayed.
This feels wrong, so this commit fixes this mistake. The output of
'info all-registers' now matches 'info registers all'.
gdb/ChangeLog:
* riscv-tdep.c (riscv_print_registers_info): Loop over all
registers, not just the known core set of registers.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp: New test cases.
|
|
Making use of the previous commit, record information about unknown
registers in the target description, and use this to resolve two
issues.
1. Some targets (QEMU) are reporting three register fflags, frm, and
fcsr, twice, once in the FPU feature, and once in the CSR feature.
GDB does create two registers with identical names, but this
is (sort of) fine, we only ever use the first one, and as both
registers access the same target state things basically work OK.
The only real problem is that the register names show up twice in
'info registers all' output.
In this commit we spot the duplicates of these registers and then
return NULL when asked for the name of these registers. This
causes GDB to hide these registers from the user, fixing this
problem.
2. Some targets (QEMU) advertise CSRs that GDB then can't read. The
problem is these targets also say these CSRs are part of the
save/restore register groups.
This means that before an inferior call GDB tries to save all of
these CSRs, and a failure to read one causes the inferior call to
be abandoned.
We already work around this issue to some degree, known CSRs are
removed from the save/restore groups, despite what the target might
say. However, any unknown CSRs are (currently) not removed in this
way.
After this commit we keep a log of the register numbers for all
unknown CSRs, then when asked about the register groups, we
override the group information for unknown CSRs, removing them from
the save and restore groups.
gdb/ChangeLog:
* riscv-tdep.c (riscv_register_name): Return NULL for duplicate
fflags, frm, and fcsr registers.
(riscv_register_reggroup_p): Remove unknown CSRs from save and
restore groups.
(riscv_tdesc_unknown_reg): New function.
(riscv_gdbarch_init): Pass riscv_tdesc_unknown_reg to
tdesc_use_registers.
* riscv-tdep.h (struct gdbarch_tdep): Add
unknown_csrs_first_regnum, unknown_csrs_count,
duplicate_fflags_regnum, duplicate_frm_regnum, and
duplicate_fcsr_regnum fields.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp: Extend test case.
|
|
For the RISC-V target it is desirable if the three floating pointer
status CSRs fflags, frm, and fcsr can be placed into either the FPU
feature or the CSR feature. This allows different targets to build
the features in a way that better reflects their target.
The change to support this within GDB is fairly simple, so this is
done in this commit, and some tests added to check this new
functionality.
gdb/ChangeLog:
* riscv-tdep.c (value_of_riscv_user_reg): Moved to here from later
in the file.
(class riscv_pending_register_alias): Likewise.
(riscv_register_feature::register_info): Change 'required_p' field
to 'required', and change its type. Add 'check' member function.
(riscv_register_feature::register_info::check): Define new member
function.
(riscv_xreg_feature): Change initialisation of 'required' field.
(riscv_freg_feature): Likewise.
(riscv_virtual_feature): Likewise.
(riscv_csr_feature): Likewise.
(riscv_check_tdesc_feature): Take extra parameter, the csr
tdesc_feature, rewrite the function to use the new
riscv_register_feature::register_info::check function.
(riscv_gdbarch_init): Pass the csr tdesc_feature where needed.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-loading-01.xml: New file.
* gdb.arch/riscv-tdesc-loading-02.xml: New file.
* gdb.arch/riscv-tdesc-loading-03.xml: New file.
* gdb.arch/riscv-tdesc-loading-04.xml: New file.
* gdb.arch/riscv-tdesc-loading.exp: New file.
|
|
First, consider the RISC-V register $x1. This register has an alias
$ra. When GDB processes an incoming target description we allow the
target to use either register name to describe the target.
However, within GDB's UI we want to use the $ra alias in preference to
the $x1 architecture name.
To achieve this GDB overrides the tdesc_register_name callback with
riscv_register_name. In riscv_register_name we ensure that we always
return the preferred name, so in this case "ra".
To ensure the user can still access the register as $x1 if they want
to, when in riscv_check_tdesc_feature we spot that the target has
supplied the register, we add aliases for every name except the
preferred one, so in this case we add the alias "x1".
This scheme seems to work quite well, the targets have the flexibility
to be architecture focused if they wish (using x0 - x31) while GDB is
still using the ABI names ra, sp, gp, etc.
When this code was originally added there was an attempt made to
include the CSRs in the same scheme. At the time the CSRs only had
two names, one pulled from riscv-opc.h, and one generated in GDB that
had the pattern csr%d.
The idea was that if the remote targets description described the CSRs
as csr%d then GDB would rename these back to the real CSR name. This
code was only included because if followed the same pattern as the
x-regs and f-regs, not because I was actually aware of any target that
did this.
However, recent changes to add additional CSR aliases has made me
rethink the position here.
Lets consider the CSR $dscratch0. This register has an alias
'csr1970' (1970 is 0x7b2, which is the offset of the CSR register into
the CSR address space). However, this register was originally called
just 'dscratch', and so, after recent commits, this register also has
the alias 'dscratch'.
As the riscv-opc.h file calls this register 'dscratch0' GDB's
preferred name for this register is 'dscratch0'.
So, if the remote target description includes the register
'dscratch0', then GDB will add the aliases 'dscratch', and 'csr1970'.
In the UI GDB will describe the register as 'dscratch0', and all it
good.
The problem I see in this case is where the target describes the
register as 'dscratch'. In this case GDB will still spot the register
and add the aliases 'dscratch', and 'csr1970', GDB will then give the
register the preferred name 'dscratch0'.
I don't like this. For the CSRs I think that we should stick with the
naming scheme offered by the remote target description. As the RISC-V
specification evolves and CSR register names evolve, insisting on
referring to registers by the most up to date name makes it harder for
a target to provide a consistent target description for an older
version of the RISC-V architecture spec.
In this precise case the target offers 'dscratch', which is from an
older version of the RISC-V specification, the newer version of the
spec has two registers 'dscratch0' and 'dscratch1'. If we insist on
using 'dscratch0' it is then a little "weird" (or seems so to me) when
'dscratch1' is missing.
This patch makes a distinction between the x and f registers and the
other register sets. For x and f we still make use of the renaming
scheme, forcing GDB to prefer the ABI name. But after this patch the
CSR register group, and also the virtual register group, will always
prefer to use the name given in the target description, adding other
names as aliases, but not making any other name the preferred name.
gdb/ChangeLog:
* riscv-tdep.c (struct riscv_register_feature::register_info): Fix
whitespace error for declaration of names member variable.
(struct riscv_register_feature): Add new prefer_first_name member
variable, and fix whitespace error in declaration of registers.
(riscv_xreg_feature): Initialize prefer_first_name field.
(riscv_freg_feature): Likewise.
(riscv_virtual_feature): Likewise.
(riscv_csr_feature): Likewise.
(riscv_register_name): Expand on comments. Remove register name
modifications for CSR and virtual registers.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp: Extend test case.
|
|
Should be 'std::vector<type>' not 'std::vector <type>'.
gdb/ChangeLog:
* riscv-tdep.c (struct riscv_register_feature): Fix whitespace
errors.
|