Age | Commit message (Collapse) | Author | Files | Lines |
|
In the context of ROCm-gdb [1], the ROCm target sits on top of the
linux-nat target. when a process forks, it needs to carry over some
data from the forking inferior to the fork child inferior. Ideally, the
ROCm target would implement the follow_fork target_ops method, but there
are some small problems. This patch fixes these, which helps the ROCm
target, but also makes things more consistent and a bit nicer in
general, I believe.
The main problem is: when follow-fork-mode is "parent",
target_follow_fork is called with the parent as the current inferior.
When it's "child", target_follow_fork is called with the child as the
current inferior. This means that target_follow_fork is sometimes
called on the parent's target stack and sometimes on the child's target
stack.
The parent's target stack may contain targets above the process target,
such as the ROCm target. So if follow-fork-child is "parent", the ROCm
target would get notified of the fork and do whatever is needed. But
the child's target stack, at that moment, only contains the exec and
process target copied over from the parent. The child's target stack is
set up by follow_fork_inferior, before calling target_follow_fork. In
that case, the ROCm target wouldn't get notified of the fork.
For consistency, I think it would be good to always call
target_follow_fork on the parent inferior's target stack. I think it
makes sense as a way to indicate "this inferior has called fork, do
whatever is needed". The desired outcome of the fork (whether an
inferior is created for the child, do we need to detach from the child)
can be indicated by passed parameter.
I therefore propose these changes:
- make follow_fork_inferior always call target_follow_fork with the
parent as the current inferior. That lets all targets present on the
parent's target stack do some fork-related handling and push
themselves on the fork child's target stack if needed.
For this purpose, pass the child inferior down to target_follow_fork
and follow_fork implementations. This is nullptr if no inferior is
created for the child, because we want to detach from it.
- as a result, in follow_fork_inferior, detach from the parent inferior
(if needed) only after the target_follow_fork call. This is needed
because we want to call target_follow_fork before the parent's
target stack is torn down.
- hand over to the targets in the parent's target stack (including the
process target) the responsibility to push themselves, if needed, to
the child's target stack. Also hand over the responsibility to the
process target, at the same time, to create the child's initial
thread (just like we do for follow_exec).
- pass the child inferior to exec_on_vfork, so we don't need to swap
the current inferior between parent and child. Nothing in
exec_on_vfork depends on the current inferior, after this change.
Although this could perhaps be replaced with just having the exec
target implement follow_fork and push itself in the child's target
stack, like the process target does... We would just need to make
sure the process target calls beneath()->follow_fork(...). I'm not
sure about this one.
gdb/ChangeLog:
* target.h (struct target_ops) <follow_fork>: Add inferior*
parameter.
(target_follow_fork): Likewise.
* target.c (default_follow_fork): Likewise.
(target_follow_fork): Likewise.
* fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise.
(fbsd_nat_target::follow_fork): Likewise, and call
inf_ptrace_target::follow_fork.
* linux-nat.h (class linux_nat_target) <follow_fork>: Likewise.
* linux-nat.c (linux_nat_target::follow_fork): Likewise, and
call inf_ptrace_target::follow_fork.
* obsd-nat.h (obsd_nat_target) <follow_fork>: Likewise.
* obsd-nat.c (obsd_nat_target::follow_fork): Likewise, and call
inf_ptrace_target::follow_fork.
* remote.c (class remote_target) <follow_fork>: Likewise.
(remote_target::follow_fork): Likewise, and call
process_stratum_target::follow_fork.
* process-stratum-target.h (class process_stratum_target)
<follow_fork>: New.
* process-stratum-target.c
(process_stratum_target::follow_fork): New.
* target-delegates.c: Re-generate.
[1] https://github.com/ROCm-Developer-Tools/ROCgdb
Change-Id: I460bd0af850f0485e8aed4b24c6d8262a4c69929
|
|
This is a small cleanup I think would be nice, that I spotted while
doing the following patch.
gdb/ChangeLog:
* target.h (struct target_ops) <follow_fork>: Add ptid and
target_waitkind parameters.
(target_follow_fork): Likewise.
* target.c (default_follow_fork): Likewise.
(target_follow_fork): Likewise.
* fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise.
* fbsd-nat.c (fbsd_nat_target::follow_fork): Likewise.
* linux-nat.h (class linux_nat_target) <follow_fork>: Likewise.
* linux-nat.c (linux_nat_target::follow_fork): Likewise.
* obsd-nat.h (class obsd_nat_target) <follow_fork>: Likewise.
* obsd-nat.c (obsd_nat_target::follow_fork): Likewise.
* remote.c (class remote_target) <follow_fork>: Likewise.
* target-debug.h (target_debug_print_target_waitkind): New.
* target-delegates.c: Re-generate.
Change-Id: I5421a542f2e19100a22b74cc333d2b235d0de3c8
|
|
GDB doesn't handle well the case of an inferior using the JIT interface
to register JIT-ed objfiles and forking. If an inferior registers a
code object using the JIT interface and then forks, the child process
conceptually has the same code object loaded, so GDB should look it up
and learn about it (it currently doesn't).
To achieve this, I think it would make sense to have the
inferior_created observable called when an inferior is created due to a
fork in follow_fork_inferior. The inferior_created observable is
currently called both after starting a new inferior and after attaching
to an inferior, allowing various sub-components to learn about that new
executing inferior. We can see handling a fork child just like
attaching to it, so any work done when attaching should also be done in
the case of a fork child.
Instead of just calling the inferior_created observable, this patch
makes follow_fork_inferior call the whole post_create_inferior function.
This way, the attach and follow-fork code code paths are more alike.
Given that post_create_inferior calls solib_create_inferior_hook,
follow_fork_inferior doesn't need to do it itself, so those calls to
solib_create_inferior_hook are removed.
One question you may have: why not just call post_create_inferior at the
places where solib_create_inferior_hook is currently called, instead of
after target_follow_fork?
- there's something fishy for the second solib_create_inferior_hook
call site: at this point we have switched the current program space
to the child's, but not the current inferior nor the current thread.
So solib_create_inferior_hook (and everything under, including
check_for_thread_db, for example) is called with inferior 1 as the
current inferior and inferior 2's program space as the current
program space. I think that's wrong, because at this point we are
setting up inferior 2, and all that code relies on the current
inferior. We could just add a switch_to_thread call before it to
make inferior 2 the current one, but there are other problems (see
below).
- solib_create_inferior_hook is currently not called on the
`follow_child && detach_fork` path. I think we need to call it,
because we still get a new inferior in that case (even though we
detach the parent). If we only call post_create_inferior where
solib_create_inferior_hook used to be called, then the JIT
subcomponent doesn't get informed about the new inferior, and that
introduces a failure in the new gdb.base/jit-elf-fork.exp test.
- if we try to put the post_create_inferior just after the
switch_to_thread that was originally at line 662, or just before the
call to target_follow_fork, we introduce a subtle failure in
gdb.threads/fork-thread-pending.exp. What happens then is that
libthread_db gets loaded (somewhere under post_create_inferior)
before the linux-nat target learns about the LWPs (which happens in
linux_nat_target::follow_fork). As a result, the ALL_LWPS loop in
try_thread_db_load_1 doesn't see the child LWP, and the thread-db
target doesn't have the chance to fill in thread_info::priv. A bit
later, when the test does "info threads", and
thread_db_target::pid_to_str is called, the thread-db target doesn't
recognize the thread as one of its own, and delegates the request to
the target below. Because the pid_to_str output is not the expected
one, the test fails.
This tells me that we need to call the process target's follow_fork
first, to make the process target create the necessary LWP and thread
structures. Then, we can call post_create_inferior to let the other
components of GDB do their thing.
But then you may ask: check_for_thread_db is already called today,
somewhere under solib_create_inferior_hook, and that is before
target_follow_fork, why don't we see this ordering problem!? Well,
because of the first bullet point: when check_for_thread_db /
thread_db_load are called, the current inferior is (erroneously)
inferior 1, the parent. Because libthread_db is already loaded for
the parent, thread_db_load early returns. check_for_thread_db later
gets called by linux_nat_target::follow_fork. At this point, the
current inferior is the correct one and the child's LWP exists, so
all is well.
Since we now call post_create_inferior after target_follow_fork, which
calls the inferior_created observable, which calls check_for_thread_db,
I don't think linux_nat_target needs to explicitly call
check_for_thread_db itself, so that is removed.
In terms of testing, this patch adds a new gdb.base/jit-elf-fork.exp
test. It makes an inferior register a JIT code object and then fork.
It then verifies that whatever the detach-on-fork and follow-fork-child
parameters are, GDB knows about the JIT code object in all the inferiors
that survive the fork. It verifies that the inferiors can unload that
code object.
There isn't currently a way to get visibility into GDB's idea of the JIT
code objects for each inferior. For the purpose of this test, add the
"maintenance info jit" command. There isn't much we can print about the
JIT code objects except their load address. So the output looks a bit
bare, but it's good enough for the test.
gdb/ChangeLog:
* NEWS: Mention "maint info jit" command.
* infrun.c (follow_fork_inferior): Don't call
solib_create_inferior_hook, call post_create_inferior if a new
inferior was created.
* jit.c (maint_info_jit_cmd): New.
(_initialize_jit): Register new command.
* linux-nat.c (linux_nat_target::follow_fork): Don't call
check_for_thread_db.
* linux-nat.h (check_for_thread_db): Remove declaration.
* linux-thread-db.c (check_thread_signals): Make static.
gdb/doc/ChangeLog:
* gdb.texinfo (Maintenance Commands): Mention "maint info jit".
gdb/testsuite/ChangeLog:
* gdb.base/jit-elf-fork-main.c: New test.
* gdb.base/jit-elf-fork-solib.c: New test.
* gdb.base/jit-elf-fork.exp: New test.
Change-Id: I9a192e55b8a451c00e88100669283fc9ca60de5c
|
|
I noticed that all implementations return false, so
target_ops::follow_fork doesn't really need to return a value. Change
it to return void.
gdb/ChangeLog:
* target.h (struct target_ops) <follow_fork>: Return void.
(target_follow_fork): Likewise.
* target.c (default_follow_fork): Likewise.
(target_follow_fork): Likewise.
* infrun.c (follow_fork_inferior): Adjust.
* fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Return void.
* fbsd-nat.c (fbsd_nat_target:::follow_fork): Likewise.
* linux-nat.h (class linux_nat_target) <follow_fork>: Likewise.
* linux-nat.c (linux_nat_target::follow_fork): Return void.
* obsd-nat.h (class obsd_nat_target) <follow_fork>: Return void.
* obsd-nat.c (obsd_nat_target::follow_fork): Likewise.
* remote.c (class remote_target) <follow_fork>: Likewise.
(remote_target::follow_fork): Likewise.
* target-delegates.c: Re-generate.
Change-Id: If908c2f68b29fa275be2b0b9deb41e4c6a1b7879
|
|
When running test-case gdb.threads/create-fail.exp on openSUSE Factory
(with glibc version 2.32) I run into:
...
(gdb) continue
Continuing.
[New Thread 0x7ffff7c83700 (LWP 626354)]
[New Thread 0x7ffff7482700 (LWP 626355)]
[Thread 0x7ffff7c83700 (LWP 626354) exited]
[New Thread 0x7ffff6c81700 (LWP 626356)]
[Thread 0x7ffff7482700 (LWP 626355) exited]
[New Thread 0x7ffff6480700 (LWP 626357)]
[Thread 0x7ffff6c81700 (LWP 626356) exited]
[New Thread 0x7ffff5c7f700 (LWP 626358)]
[Thread 0x7ffff6480700 (LWP 626357) exited]
pthread_create: 22: Invalid argument
Thread 6 "create-fail" received signal SIG32, Real-time event 32.
[Switching to Thread 0x7ffff5c7f700 (LWP 626358)]
0x00007ffff7d87695 in clone () from /lib64/libc.so.6
(gdb) FAIL: gdb.threads/create-fail.exp: iteration 1: run till end
...
The problem is that glibc-internal signal SIGCANCEL is not recognized by gdb.
There's code in check_thread_signals that is supposed to take care of that,
but it's not working because this code in lin_thread_get_thread_signals has
stopped working:
...
/* NPTL reserves the first two RT signals, but does not provide any
way for the debugger to query the signal numbers - fortunately
they don't change. */
sigaddset (set, __SIGRTMIN);
sigaddset (set, __SIGRTMIN + 1);
...
Since glibc commit d2dc5467c6 "Filter out NPTL internal signals (BZ #22391)"
(first released as part of glibc 2.28), a sigaddset with a glibc-internal
signal has no other effect than setting errno to EINVALID.
Fix this by eliminating the usage of sigset_t in check_thread_signals and
lin_thread_get_thread_signals.
The same problem was observed on Ubuntu 20.04.
Tested on x86_64-linux, openSUSE Factory.
Tested on aarch64-linux, Ubuntu 20.04 and Ubuntu 18.04.
gdb/ChangeLog:
2021-02-12 Tom de Vries <tdevries@suse.de>
PR threads/26228
* linux-nat.c (lin_thread_get_thread_signals): Remove.
(lin_thread_signals): New static var.
(lin_thread_get_thread_signal_num, lin_thread_get_thread_signal):
New function.
* linux-nat.h (lin_thread_get_thread_signals): Remove.
(lin_thread_get_thread_signal_num, lin_thread_get_thread_signal):
Declare.
* linux-thread-db.c (check_thread_signals): Use
lin_thread_get_thread_signal_num and lin_thread_get_thread_signal.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
This changes TARGET_WNOHANG to be a member of an enum, rather than a
define, and also adds a DEF_ENUM_FLAGS_TYPE for this type. Then, it
changes target_wait and the various target wait methods to use this
type rather than "int".
This didn't catch any bugs, but it seems like a decent cleanup
nevertheless.
I did not change deprecated_target_wait_hook, since that's only used
out-of-tree (by Insight), and there didn't seem to be a need.
I can't build some of these targets, so I modified them on a
best-effort basis. I don't think this patch should go in before the
release branch is made.
gdb/ChangeLog
2020-09-18 Tom Tromey <tromey@adacore.com>
* windows-nat.c (struct windows_nat_target) <wait>: Update.
(windows_nat_target::wait): Update.
* target/wait.h (enum target_wait_flag): New. Use
DEF_ENUM_FLAGS_TYPE.
* target/target.h (target_wait): Change type of options.
* target.h (target_options_to_string, default_target_wait):
Update.
(struct target_ops) <wait>: Change type of options.
* target.c (target_wait, default_target_wait, do_option): Change
type of "options".
(target_options_to_string): Likewise.
* target-delegates.c: Rebuild.
* target-debug.h (target_debug_print_target_wait_flags): Rename
from target_debug_print_options.
* sol-thread.c (class sol_thread_target) <wait>: Update.
(sol_thread_target::wait): Update.
* rs6000-nat.c (class rs6000_nat_target) <wait>: Update.
(rs6000_nat_target::wait): Update.
* remote.c (class remote_target) <wait, wait_ns, wait_as>:
Update.
(remote_target::wait_ns, remote_target::wait_as): Change type of
"options".
(remote_target::wait): Update.
* remote-sim.c (struct gdbsim_target) <wait>: Update.
(gdbsim_target::wait): Update.
* record-full.c (class record_full_base_target) <wait>: Update.
(record_full_wait_1): Change type of "options".
(record_full_base_target::wait): Update.
* record-btrace.c (class record_btrace_target) <wait>: Update.
(record_btrace_target::wait): Update.
* ravenscar-thread.c (struct ravenscar_thread_target) <wait>:
Update.
(ravenscar_thread_target::wait): Update.
* procfs.c (class procfs_target) <wait>: Update.
(procfs_target::wait): Update.
* obsd-nat.h (class obsd_nat_target) <wait>: Update.
* obsd-nat.c (obsd_nat_target::wait): Update.
* nto-procfs.c (struct nto_procfs_target) <wait>: Update.
(nto_procfs_target::wait): Update.
* nbsd-nat.h (struct nbsd_nat_target) <wait>: Update.
* nbsd-nat.c (nbsd_wait): Change type of "options".
(nbsd_nat_target::wait): Update.
* linux-thread-db.c (class thread_db_target) <wait>: Update.
(thread_db_target::wait): Update.
* linux-nat.h (class linux_nat_target) <wait>: Update.
* linux-nat.c (linux_nat_target::wait): Update.
(linux_nat_wait_1): Update.
* infrun.c (do_target_wait_1, do_target_wait): Change type of
"options".
* inf-ptrace.h (struct inf_ptrace_target) <wait>: Update.
* inf-ptrace.c (inf_ptrace_target::wait): Update.
* go32-nat.c (struct go32_nat_target) <wait>: Update.
(go32_nat_target::wait): Update.
* gnu-nat.h (struct gnu_nat_target) <wait>: Update.
* gnu-nat.c (gnu_nat_target::wait): Update.
* fbsd-nat.h (class fbsd_nat_target) <wait>: Update.
* fbsd-nat.c (fbsd_nat_target::wait): Update.
* darwin-nat.h (class darwin_nat_target) <wait>: Update.
* darwin-nat.c (darwin_nat_target::wait): Update.
* bsd-uthread.c (struct bsd_uthread_target) <wait>: Update.
(bsd_uthread_target::wait): Update.
* aix-thread.c (class aix_thread_target) <wait>: Update.
(aix_thread_target::wait): Update.
gdbserver/ChangeLog
2020-09-18 Tom Tromey <tromey@adacore.com>
* netbsd-low.h (class netbsd_process_target) <wait>: Update.
* netbsd-low.cc (netbsd_waitpid, netbsd_wait)
(netbsd_process_target::wait): Change type of target_options.
* win32-low.h (class win32_process_target) <wait>: Update.
* win32-low.cc (win32_process_target::wait): Update.
* target.h (class process_stratum_target) <wait>: Update.
(mywait): Update.
* target.cc (mywait, target_wait): Change type of "options".
* linux-low.h (class linux_process_target) <wait, wait_1>:
Update.
* linux-low.cc (linux_process_target::wait)
(linux_process_target::wait_1): Update.
|
|
This patch adds a low_new_clone method to linux_nat_target, called after
a PTRACE_EVENT_CLONE is detected, similar to how low_new_fork is called
after PTRACE_EVENT_(V)FORK.
This is useful for targets that need to copy state associated with a
thread that is inherited across clones.
gdb/ChangeLog:
2020-03-30 Pedro Franco de Carvalho <pedromfc@linux.ibm.com>
* linux-nat.h (low_new_clone): New method.
* linux-nat.c (linux_handle_extended_wait): Call low_new_clone.
|
|
Change parameters and return value of the various follow_fork
functions/methods from int to bool.
gdb/ChangeLog:
* fbsd-nat.c (fbsd_nat_target::follow_fork): Change bool to int.
* fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise.
* inf-ptrace.c (inf_ptrace_target::follow_fork): Likewise.
* inf-ptrace.h (struct inf_ptrace_target) <follow_fork>: Likewise.
* infrun.c (follow_fork): Likewise.
(follow_fork_inferior): Likewise.
* linux-nat.c (linux_nat_target::follow_fork): Likewise.
* linux-nat.h (class linux_nat_target): Likewise.
* remote.c (class remote_target) <follow_fork>: Likewise.
(remote_target::follow_fork): Likewise.
* target-delegates.c: Re-generate.
* target.c (default_follow_fork): Likewise.
(target_follow_fork): Likewise.
* target.h (struct target_ops) <follow_fork>: Likewise.
(target_follow_fork): Likewise.
|
|
While doing some investigation of mine, i noticed a few typos,
inaccuracies and missing information.
I went ahead and updated/improved those.
gdb/ChangeLog:
2020-01-14 Luis Machado <luis.machado@linaro.org>
* inf-ptrace.c (inf_ptrace_target::resume): Update comments.
* infrun.c (resume_1): Likewise.
(handle_inferior_event): Remove stale comment.
* linux-nat.c (linux_nat_target::resume): Update comments.
(save_stop_reason): Likewise.
(linux_nat_filter_event): Likewise.
* linux-nat.h (struct lwp_info) <stop_pc>, <stop_reason>: Likewise.
|
|
This commit adds multi-target support to GDB. What this means is that
with this commit, GDB can now be connected to different targets at the
same time. E.g., you can debug a live native process and a core dump
at the same time, connect to multiple gdbservers, etc.
Actually, the word "target" is overloaded in gdb. We already have a
target stack, with pushes several target_ops instances on top of one
another. We also have "info target" already, which means something
completely different to what this patch does.
So from here on, I'll be using the "target connections" term, to mean
an open process_stratum target, pushed on a target stack. This patch
makes gdb have multiple target stacks, and multiple process_stratum
targets open simultaneously. The user-visible changes / commands will
also use this terminology, but of course it's all open to debate.
User-interface-wise, not that much changes. The main difference is
that each inferior may have its own target connection.
A target connection (e.g., a target extended-remote connection) may
support debugging multiple processes, just as before.
Say you're debugging against gdbserver in extended-remote mode, and
you do "add-inferior" to prepare to spawn a new process, like:
(gdb) target extended-remote :9999
...
(gdb) start
...
(gdb) add-inferior
Added inferior 2
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) file a.out
...
(gdb) start
...
At this point, you have two inferiors connected to the same gdbserver.
With this commit, GDB will maintain a target stack per inferior,
instead of a global target stack.
To preserve the behavior above, by default, "add-inferior" makes the
new inferior inherit a copy of the target stack of the current
inferior. Same across a fork - the child inherits a copy of the
target stack of the parent. While the target stacks are copied, the
targets themselves are not. Instead, target_ops is made a
refcounted_object, which means that target_ops instances are
refcounted, which each inferior counting for a reference.
What if you want to create an inferior and connect it to some _other_
target? For that, this commit introduces a new "add-inferior
-no-connection" option that makes the new inferior not share the
current inferior's target. So you could do:
(gdb) target extended-remote :9999
Remote debugging using :9999
...
(gdb) add-inferior -no-connection
[New inferior 2]
Added inferior 2
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) info inferiors
Num Description Executable
1 process 18401 target:/home/pedro/tmp/main
* 2 <null>
(gdb) tar extended-remote :10000
Remote debugging using :10000
...
(gdb) info inferiors
Num Description Executable
1 process 18401 target:/home/pedro/tmp/main
* 2 process 18450 target:/home/pedro/tmp/main
(gdb)
A following patch will extended "info inferiors" to include a column
indicating which connection an inferior is bound to, along with a
couple other UI tweaks.
Other than that, debugging is the same as before. Users interact with
inferiors and threads as before. The only difference is that
inferiors may be bound to processes running in different machines.
That's pretty much all there is to it in terms of noticeable UI
changes.
On to implementation.
Since we can be connected to different systems at the same time, a
ptid_t is no longer a unique identifier. Instead a thread can be
identified by a pair of ptid_t and 'process_stratum_target *', the
later being the instance of the process_stratum target that owns the
process/thread. Note that process_stratum_target inherits from
target_ops, and all process_stratum targets inherit from
process_stratum_target. In earlier patches, many places in gdb were
converted to refer to threads by thread_info pointer instead of
ptid_t, but there are still places in gdb where we start with a
pid/tid and need to find the corresponding inferior or thread_info
objects. So you'll see in the patch many places adding a
process_stratum_target parameter to functions that used to take only a
ptid_t.
Since each inferior has its own target stack now, we can always find
the process_stratum target for an inferior. That is done via a
inf->process_target() convenience method.
Since each inferior has its own target stack, we need to handle the
"beneath" calls when servicing target calls. The solution I settled
with is just to make sure to switch the current inferior to the
inferior you want before making a target call. Not relying on global
context is just not feasible in current GDB. Fortunately, there
aren't that many places that need to do that, because generally most
code that calls target methods already has the current context
pointing to the right inferior/thread. Note, to emphasize -- there's
no method to "switch to this target stack". Instead, you switch the
current inferior, and that implicitly switches the target stack.
In some spots, we need to iterate over all inferiors so that we reach
all target stacks.
Native targets are still singletons. There's always only a single
instance of such targets.
Remote targets however, we'll have one instance per remote connection.
The exec target is still a singleton. There's only one instance. I
did not see the point of instanciating more than one exec_target
object.
After vfork, we need to make sure to push the exec target on the new
inferior. See exec_on_vfork.
For type safety, functions that need a {target, ptid} pair to identify
a thread, take a process_stratum_target pointer for target parameter
instead of target_ops *. Some shared code in gdb/nat/ also need to
gain a target pointer parameter. This poses an issue, since gdbserver
doesn't have process_stratum_target, only target_ops. To fix this,
this commit renames gdbserver's target_ops to process_stratum_target.
I think this makes sense. There's no concept of target stack in
gdbserver, and gdbserver's target_ops really implements a
process_stratum-like target.
The thread and inferior iterator functions also gain
process_stratum_target parameters. These are used to be able to
iterate over threads and inferiors of a given target. Following usual
conventions, if the target pointer is null, then we iterate over
threads and inferiors of all targets.
I tried converting "add-inferior" to the gdb::option framework, as a
preparatory patch, but that stumbled on the fact that gdb::option does
not support file options yet, for "add-inferior -exec". I have a WIP
patchset that adds that, but it's not a trivial patch, mainly due to
need to integrate readline's filename completion, so I deferred that
to some other time.
In infrun.c/infcmd.c, the main change is that we need to poll events
out of all targets. See do_target_wait. Right after collecting an
event, we switch the current inferior to an inferior bound to the
target that reported the event, so that target methods can be used
while handling the event. This makes most of the code transparent to
multi-targets. See fetch_inferior_event.
infrun.c:stop_all_threads is interesting -- in this function we need
to stop all threads of all targets. What the function does is send an
asynchronous stop request to all threads, and then synchronously waits
for events, with target_wait, rinse repeat, until all it finds are
stopped threads. Now that we have multiple targets, it's not
efficient to synchronously block in target_wait waiting for events out
of one target. Instead, we implement a mini event loop, with
interruptible_select, select'ing on one file descriptor per target.
For this to work, we need to be able to ask the target for a waitable
file descriptor. Such file descriptors already exist, they are the
descriptors registered in the main event loop with add_file_handler,
inside the target_async implementations. This commit adds a new
target_async_wait_fd target method that just returns the file
descriptor in question. See wait_one / stop_all_threads in infrun.c.
The 'threads_executing' global is made a per-target variable. Since
it is only relevant to process_stratum_target targets, this is where
it is put, instead of in target_ops.
You'll notice that remote.c includes some FIXME notes. These refer to
the fact that the global arrays that hold data for the remote packets
supported are still globals. For example, if we connect to two
different servers/stubs, then each might support different remote
protocol features. They might even be different architectures, like
e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a
host/controller scenario as a single program. That isn't going to
work correctly today, because of said globals. I'm leaving fixing
that for another pass, since it does not appear to be trivial, and I'd
rather land the base work first. It's already useful to be able to
debug multiple instances of the same server (e.g., a distributed
cluster, where you have full control over the servers installed), so I
think as is it's already reasonable incremental progress.
Current limitations:
- You can only resume more that one target at the same time if all
targets support asynchronous debugging, and support non-stop mode.
It should be possible to support mixed all-stop + non-stop
backends, but that is left for another time. This means that
currently in order to do multi-target with gdbserver you need to
issue "maint set target-non-stop on". I would like to make that
mode be the default, but we're not there yet. Note that I'm
talking about how the target backend works, only. User-visible
all-stop mode works just fine.
- As explained above, connecting to different remote servers at the
same time is likely to produce bad results if they don't support the
exact set of RSP features.
FreeBSD updates courtesy of John Baldwin.
gdb/ChangeLog:
2020-01-10 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@FreeBSD.org>
* aarch64-linux-nat.c
(aarch64_linux_nat_target::thread_architecture): Adjust.
* ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call.
(task_command_1): Likewise.
* aix-thread.c (sync_threadlists, aix_thread_target::resume)
(aix_thread_target::wait, aix_thread_target::fetch_registers)
(aix_thread_target::store_registers)
(aix_thread_target::thread_alive): Adjust.
* amd64-fbsd-tdep.c: Include "inferior.h".
(amd64fbsd_get_thread_local_address): Pass down target.
* amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle
thread's gdbarch instead of target_gdbarch.
* break-catch-sig.c (signal_catchpoint_print_it): Adjust call to
get_last_target_status.
* break-catch-syscall.c (print_it_catch_syscall): Likewise.
* breakpoint.c (breakpoints_should_be_inserted_now): Consider all
inferiors.
(update_inserted_breakpoint_locations): Skip if inferiors with no
execution.
(update_global_location_list): When handling moribund locations,
find representative inferior for location's pspace, and use thread
count of its process_stratum target.
* bsd-kvm.c (bsd_kvm_target_open): Pass target down.
* bsd-uthread.c (bsd_uthread_target::wait): Use
as_process_stratum_target and adjust thread_change_ptid and
add_thread calls.
(bsd_uthread_target::update_thread_list): Use
as_process_stratum_target and adjust find_thread_ptid,
thread_change_ptid and add_thread calls.
* btrace.c (maint_btrace_packet_history_cmd): Adjust
find_thread_ptid call.
* corelow.c (add_to_thread_list): Adjust add_thread call.
(core_target_open): Adjust add_thread_silent and thread_count
calls.
(core_target::pid_to_str): Adjust find_inferior_ptid call.
* ctf.c (ctf_target_open): Adjust add_thread_silent call.
* event-top.c (async_disconnect): Pop targets from all inferiors.
* exec.c (add_target_sections): Push exec target on all inferiors
sharing the program space.
(remove_target_sections): Remove the exec target from all
inferiors sharing the program space.
(exec_on_vfork): New.
* exec.h (exec_on_vfork): Declare.
* fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter.
Pass it down.
(fbsd_nat_target::update_thread_list): Adjust.
(fbsd_nat_target::resume): Adjust.
(fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it
down.
(fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust.
* fbsd-tdep.c (fbsd_corefile_thread): Adjust
get_thread_arch_regcache call.
* fork-child.c (gdb_startup_inferior): Pass target down to
startup_inferior and set_executing.
* gdbthread.h (struct process_stratum_target): Forward declare.
(add_thread, add_thread_silent, add_thread_with_info)
(in_thread_list): Add process_stratum_target parameter.
(find_thread_ptid(inferior*, ptid_t)): New overload.
(find_thread_ptid, thread_change_ptid): Add process_stratum_target
parameter.
(all_threads()): Delete overload.
(all_threads, all_non_exited_threads): Add process_stratum_target
parameter.
(all_threads_safe): Use brace initialization.
(thread_count): Add process_stratum_target parameter.
(set_resumed, set_running, set_stop_requested, set_executing)
(threads_are_executing, finish_thread_state): Add
process_stratum_target parameter.
(switch_to_thread): Use is_current_thread.
* i386-fbsd-tdep.c: Include "inferior.h".
(i386fbsd_get_thread_local_address): Pass down target.
* i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust.
* inf-child.c (inf_child_target::maybe_unpush_target): Remove
have_inferiors check.
* inf-ptrace.c (inf_ptrace_target::create_inferior)
(inf_ptrace_target::attach): Adjust.
* infcall.c (run_inferior_call): Adjust.
* infcmd.c (run_command_1): Pass target to
scoped_finish_thread_state.
(proceed_thread_callback): Skip inferiors with no execution.
(continue_command): Rename 'all_threads' local to avoid hiding
'all_threads' function. Adjust get_last_target_status call.
(prepare_one_step): Adjust set_running call.
(signal_command): Use user_visible_resume_target. Compare thread
pointers instead of inferior_ptid.
(info_program_command): Adjust to pass down target.
(attach_command): Mark target's 'thread_executing' flag.
(stop_current_target_threads_ns): New, factored out from ...
(interrupt_target_1): ... this. Switch inferior before making
target calls.
* inferior-iter.h
(struct all_inferiors_iterator, struct all_inferiors_range)
(struct all_inferiors_safe_range)
(struct all_non_exited_inferiors_range): Filter on
process_stratum_target too. Remove explicit.
* inferior.c (inferior::inferior): Push dummy target on target
stack.
(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors):
Add process_stratum_target parameter, and pass it down.
(have_live_inferiors): Adjust.
(switch_to_inferior_and_push_target): New.
(add_inferior_command, clone_inferior_command): Handle
"-no-connection" parameter. Use
switch_to_inferior_and_push_target.
(_initialize_inferior): Mention "-no-connection" option in
the help of "add-inferior" and "clone-inferior" commands.
* inferior.h: Include "process-stratum-target.h".
(interrupt_target_1): Use bool.
(struct inferior) <push_target, unpush_target, target_is_pushed,
find_target_beneath, top_target, process_target, target_at,
m_stack>: New.
(discard_all_inferiors): Delete.
(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors)
(all_inferiors, all_non_exited_inferiors): Add
process_stratum_target parameter.
* infrun.c: Include "gdb_select.h" and <unordered_map>.
(target_last_proc_target): New global.
(follow_fork_inferior): Push target on new inferior. Pass target
to add_thread_silent. Call exec_on_vfork. Handle target's
reference count.
(follow_fork): Adjust get_last_target_status call. Also consider
target.
(follow_exec): Push target on new inferior.
(struct execution_control_state) <target>: New field.
(user_visible_resume_target): New.
(do_target_resume): Call target_async.
(resume_1): Set target's threads_executing flag. Consider resume
target.
(commit_resume_all_targets): New.
(proceed): Also consider resume target. Skip threads of inferiors
with no execution. Commit resumtion in all targets.
(start_remote): Pass current inferior to wait_for_inferior.
(infrun_thread_stop_requested): Consider target as well. Pass
thread_info pointer to clear_inline_frame_state instead of ptid.
(infrun_thread_thread_exit): Consider target as well.
(random_pending_event_thread): New inferior parameter. Use it.
(do_target_wait): Rename to ...
(do_target_wait_1): ... this. Add inferior parameter, and pass it
down.
(threads_are_resumed_pending_p, do_target_wait): New.
(prepare_for_detach): Adjust calls.
(wait_for_inferior): New inferior parameter. Handle it. Use
do_target_wait_1 instead of do_target_wait.
(fetch_inferior_event): Adjust. Switch to representative
inferior. Pass target down.
(set_last_target_status): Add process_stratum_target parameter.
Save target in global.
(get_last_target_status): Add process_stratum_target parameter and
handle it.
(nullify_last_target_wait_ptid): Clear 'target_last_proc_target'.
(context_switch): Check inferior_ptid == null_ptid before calling
inferior_thread().
(get_inferior_stop_soon): Pass down target.
(wait_one): Rename to ...
(poll_one_curr_target): ... this.
(struct wait_one_event): New.
(wait_one): New.
(stop_all_threads): Adjust.
(handle_no_resumed, handle_inferior_event): Adjust to consider the
event's target.
(switch_back_to_stepped_thread): Also consider target.
(print_stop_event): Update.
(normal_stop): Update. Also consider the resume target.
* infrun.h (wait_for_inferior): Remove declaration.
(user_visible_resume_target): New declaration.
(get_last_target_status, set_last_target_status): New
process_stratum_target parameter.
* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
process_stratum_target parameter, and use it.
(clear_inline_frame_state (thread_info*)): New.
* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
process_stratum_target parameter.
(clear_inline_frame_state (thread_info*)): Declare.
* linux-fork.c (delete_checkpoint_command): Pass target down to
find_thread_ptid.
(checkpoint_command): Adjust.
* linux-nat.c (linux_nat_target::follow_fork): Switch to thread
instead of just tweaking inferior_ptid.
(linux_nat_switch_fork): Pass target down to thread_change_ptid.
(exit_lwp): Pass target down to find_thread_ptid.
(attach_proc_task_lwp_callback): Pass target down to
add_thread/set_running/set_executing.
(linux_nat_target::attach): Pass target down to
thread_change_ptid.
(get_detach_signal): Pass target down to find_thread_ptid.
Consider last target status's target.
(linux_resume_one_lwp_throw, resume_lwp)
(linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp)
(stop_wait_callback, save_stop_reason, linux_nat_filter_event)
(linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down.
(linux_nat_target::async_wait_fd): New.
(linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass
target down.
* linux-nat.h (linux_nat_target::async_wait_fd): Declare.
* linux-tdep.c (get_thread_arch_regcache): Pass target down.
* linux-thread-db.c (struct thread_db_info::process_target): New
field.
(add_thread_db_info): Save target.
(get_thread_db_info): New process_stratum_target parameter. Also
match target.
(delete_thread_db_info): New process_stratum_target parameter.
Also match target.
(thread_from_lwp): Adjust to pass down target.
(thread_db_notice_clone): Pass down target.
(check_thread_db_callback): Pass down target.
(try_thread_db_load_1): Always push the thread_db target.
(try_thread_db_load, record_thread): Pass target down.
(thread_db_target::detach): Pass target down. Always unpush the
thread_db target.
(thread_db_target::wait, thread_db_target::mourn_inferior): Pass
target down. Always unpush the thread_db target.
(find_new_threads_callback, thread_db_find_new_threads_2)
(thread_db_target::update_thread_list): Pass target down.
(thread_db_target::pid_to_str): Pass current inferior down.
(thread_db_target::get_thread_local_address): Pass target down.
(thread_db_target::resume, maintenance_check_libthread_db): Pass
target down.
* nto-procfs.c (nto_procfs_target::update_thread_list): Adjust.
* procfs.c (procfs_target::procfs_init_inferior): Declare.
(proc_set_current_signal, do_attach, procfs_target::wait): Adjust.
(procfs_init_inferior): Rename to ...
(procfs_target::procfs_init_inferior): ... this and adjust.
(procfs_target::create_inferior, procfs_notice_thread)
(procfs_do_thread_registers): Adjust.
* ppc-fbsd-tdep.c: Include "inferior.h".
(ppcfbsd_get_thread_local_address): Pass down target.
* proc-service.c (ps_xfer_memory): Switch current inferior and
program space as well.
(get_ps_regcache): Pass target down.
* process-stratum-target.c
(process_stratum_target::thread_address_space)
(process_stratum_target::thread_architecture): Pass target down.
* process-stratum-target.h
(process_stratum_target::threads_executing): New field.
(as_process_stratum_target): New.
* ravenscar-thread.c
(ravenscar_thread_target::update_inferior_ptid): Pass target down.
(ravenscar_thread_target::wait, ravenscar_add_thread): Pass target
down.
* record-btrace.c (record_btrace_target::info_record): Adjust.
(record_btrace_target::record_method)
(record_btrace_target::record_is_replaying)
(record_btrace_target::fetch_registers)
(get_thread_current_frame_id, record_btrace_target::resume)
(record_btrace_target::wait, record_btrace_target::stop): Pass
target down.
* record-full.c (record_full_wait_1): Switch to event thread.
Pass target down.
* regcache.c (regcache::regcache)
(get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add
process_stratum_target parameter and handle it.
(current_thread_target): New global.
(get_thread_regcache): Add process_stratum_target parameter and
handle it. Switch inferior before calling target method.
(get_thread_regcache): Pass target down.
(get_thread_regcache_for_ptid): Pass target down.
(registers_changed_ptid): Add process_stratum_target parameter and
handle it.
(registers_changed_thread, registers_changed): Pass target down.
(test_get_thread_arch_aspace_regcache): New.
(current_regcache_test): Define a couple local test_target_ops
instances and use them for testing.
(readwrite_regcache): Pass process_stratum_target parameter.
(cooked_read_test, cooked_write_test): Pass mock_target down.
* regcache.h (get_thread_regcache, get_thread_arch_regcache)
(get_thread_arch_aspace_regcache): Add process_stratum_target
parameter.
(regcache::target): New method.
(regcache::regcache, regcache::get_thread_arch_aspace_regcache)
(regcache::registers_changed_ptid): Add process_stratum_target
parameter.
(regcache::m_target): New field.
(registers_changed_ptid): Add process_stratum_target parameter.
* remote.c (remote_state::supports_vCont_probed): New field.
(remote_target::async_wait_fd): New method.
(remote_unpush_and_throw): Add remote_target parameter.
(get_current_remote_target): Adjust.
(remote_target::remote_add_inferior): Push target.
(remote_target::remote_add_thread)
(remote_target::remote_notice_new_inferior)
(get_remote_thread_info): Pass target down.
(remote_target::update_thread_list): Skip threads of inferiors
bound to other targets. (remote_target::close): Don't discard
inferiors. (remote_target::add_current_inferior_and_thread)
(remote_target::process_initial_stop_replies)
(remote_target::start_remote)
(remote_target::remote_serial_quit_handler): Pass down target.
(remote_target::remote_unpush_target): New remote_target
parameter. Unpush the target from all inferiors.
(remote_target::remote_unpush_and_throw): New remote_target
parameter. Pass it down.
(remote_target::open_1): Check whether the current inferior has
execution instead of checking whether any inferior is live. Pass
target down.
(remote_target::remote_detach_1): Pass down target. Use
remote_unpush_target.
(extended_remote_target::attach): Pass down target.
(remote_target::remote_vcont_probe): Set supports_vCont_probed.
(remote_target::append_resumption): Pass down target.
(remote_target::append_pending_thread_resumptions)
(remote_target::remote_resume_with_hc, remote_target::resume)
(remote_target::commit_resume): Pass down target.
(remote_target::remote_stop_ns): Check supports_vCont_probed.
(remote_target::interrupt_query)
(remote_target::remove_new_fork_children)
(remote_target::check_pending_events_prevent_wildcard_vcont)
(remote_target::remote_parse_stop_reply)
(remote_target::process_stop_reply): Pass down target.
(first_remote_resumed_thread): New remote_target parameter. Pass
it down.
(remote_target::wait_as): Pass down target.
(unpush_and_perror): New remote_target parameter. Pass it down.
(remote_target::readchar, remote_target::remote_serial_write)
(remote_target::getpkt_or_notif_sane_1)
(remote_target::kill_new_fork_children, remote_target::kill): Pass
down target.
(remote_target::mourn_inferior): Pass down target. Use
remote_unpush_target.
(remote_target::core_of_thread)
(remote_target::remote_btrace_maybe_reopen): Pass down target.
(remote_target::pid_to_exec_file)
(remote_target::thread_handle_to_thread_info): Pass down target.
(remote_target::async_wait_fd): New.
* riscv-fbsd-tdep.c: Include "inferior.h".
(riscv_fbsd_get_thread_local_address): Pass down target.
* sol2-tdep.c (sol2_core_pid_to_str): Pass down target.
* sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs)
(ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback):
Adjust.
* solib-spu.c (spu_skip_standalone_loader): Pass down target.
* solib-svr4.c (enable_break): Pass down target.
* spu-multiarch.c (parse_spufs_run): Pass down target.
* spu-tdep.c (spu2ppu_sniffer): Pass down target.
* target-delegates.c: Regenerate.
* target.c (g_target_stack): Delete.
(current_top_target): Return the current inferior's top target.
(target_has_execution_1): Refer to the passed-in inferior's top
target.
(target_supports_terminal_ours): Check whether the initial
inferior was already created.
(decref_target): New.
(target_stack::push): Incref/decref the target.
(push_target, push_target, unpush_target): Adjust.
(target_stack::unpush): Defref target.
(target_is_pushed): Return bool. Adjust to refer to the current
inferior's target stack.
(dispose_inferior): Delete, and inline parts ...
(target_preopen): ... here. Only dispose of the current inferior.
(target_detach): Hold strong target reference while detaching.
Pass target down.
(target_thread_name): Add assertion.
(target_resume): Pass down target.
(target_ops::beneath, find_target_at): Adjust to refer to the
current inferior's target stack.
(get_dummy_target): New.
(target_pass_ctrlc): Pass the Ctrl-C to the first inferior that
has a thread running.
(initialize_targets): Rename to ...
(_initialize_target): ... this.
* target.h: Include "gdbsupport/refcounted-object.h".
(struct target_ops): Inherit refcounted_object.
(target_ops::shortname, target_ops::longname): Make const.
(target_ops::async_wait_fd): New method.
(decref_target): Declare.
(struct target_ops_ref_policy): New.
(target_ops_ref): New typedef.
(get_dummy_target): Declare function.
(target_is_pushed): Return bool.
* thread-iter.c (all_matching_threads_iterator::m_inf_matches)
(all_matching_threads_iterator::all_matching_threads_iterator):
Handle filter target.
* thread-iter.h (struct all_matching_threads_iterator, struct
all_matching_threads_range, class all_non_exited_threads_range):
Filter by target too. Remove explicit.
* thread.c (threads_executing): Delete.
(inferior_thread): Pass down current inferior.
(clear_thread_inferior_resources): Pass down thread pointer
instead of ptid_t.
(add_thread_silent, add_thread_with_info, add_thread): Add
process_stratum_target parameter. Use it for thread and inferior
searches.
(is_current_thread): New.
(thread_info::deletable): Use it.
(find_thread_ptid, thread_count, in_thread_list)
(thread_change_ptid, set_resumed, set_running): New
process_stratum_target parameter. Pass it down.
(set_executing): New process_stratum_target parameter. Pass it
down. Adjust reference to 'threads_executing'.
(threads_are_executing): New process_stratum_target parameter.
Adjust reference to 'threads_executing'.
(set_stop_requested, finish_thread_state): New
process_stratum_target parameter. Pass it down.
(switch_to_thread): Also match inferior.
(switch_to_thread): New process_stratum_target parameter. Pass it
down.
(update_threads_executing): Reimplement.
* top.c (quit_force): Pop targets from all inferior.
(gdb_init): Don't call initialize_targets.
* windows-nat.c (windows_nat_target) <get_windows_debug_event>:
Declare.
(windows_add_thread, windows_delete_thread): Adjust.
(get_windows_debug_event): Rename to ...
(windows_nat_target::get_windows_debug_event): ... this. Adjust.
* tracefile-tfile.c (tfile_target_open): Pass down target.
* gdbsupport/common-gdbthread.h (struct process_stratum_target):
Forward declare.
(switch_to_thread): Add process_stratum_target parameter.
* mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target
parameter. Use it.
(mi_on_resume): Pass target down.
* nat/fork-inferior.c (startup_inferior): Add
process_stratum_target parameter. Pass it down.
* nat/fork-inferior.h (startup_inferior): Add
process_stratum_target parameter.
* python/py-threadevent.c (py_get_event_thread): Pass target down.
gdb/gdbserver/ChangeLog:
2020-01-10 Pedro Alves <palves@redhat.com>
* fork-child.c (post_fork_inferior): Pass target down to
startup_inferior.
* inferiors.c (switch_to_thread): Add process_stratum_target
parameter.
* lynx-low.c (lynx_target_ops): Now a process_stratum_target.
* nto-low.c (nto_target_ops): Now a process_stratum_target.
* linux-low.c (linux_target_ops): Now a process_stratum_target.
* remote-utils.c (prepare_resume_reply): Pass the target to
switch_to_thread.
* target.c (the_target): Now a process_stratum_target.
(done_accessing_memory): Pass the target to switch_to_thread.
(set_target_ops): Ajust to use process_stratum_target.
* target.h (struct target_ops): Rename to ...
(struct process_stratum_target): ... this.
(the_target, set_target_ops): Adjust.
(prepare_to_access_memory): Adjust comment.
* win32-low.c (child_xfer_memory): Adjust to use
process_stratum_target.
(win32_target_ops): Now a process_stratum_target.
|
|
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
Currently the target pid_to_str method returns a const char *, so many
implementations have a static buffer that they update. This patch
changes these methods to return a std::string instead. I think this
is cleaner and avoids possible gotchas when calling pid_to_str on
different ptids in a single statement. (Though no such calls exist
currently.)
This also updates various helper functions, and the gdbarch pid_to_str
methods.
I also made a best effort to fix all the callers, but I can't build
some of the *-nat.c files.
Tested by the buildbot.
gdb/ChangeLog
2019-03-13 Tom Tromey <tromey@adacore.com>
* i386-gnu-nat.c (i386_gnu_nat_target::fetch_registers)
(i386_gnu_nat_target::store_registers): Update.
* target-debug.h (target_debug_print_std_string): New macro.
* x86-linux-nat.c (x86_linux_nat_target::enable_btrace): Update.
* windows-tdep.c (display_one_tib): Update.
* tui/tui-stack.c (tui_make_status_line): Update.
* top.c (print_inferior_quit_action): Update.
* thread.c (thr_try_catch_cmd): Update.
(add_thread_with_info): Update.
(thread_target_id_str): Update.
(thr_try_catch_cmd): Update.
(thread_command): Update.
(thread_find_command): Update.
* record-btrace.c (record_btrace_target::info_record)
(record_btrace_resume_thread, record_btrace_target::resume)
(record_btrace_cancel_resume, record_btrace_step_thread)
(record_btrace_target::wait, record_btrace_target::wait)
(record_btrace_target::wait, record_btrace_target::stop): Update.
* progspace.c (print_program_space): Update.
* process-stratum-target.c
(process_stratum_target::thread_address_space): Update.
* linux-fork.c (linux_fork_mourn_inferior)
(detach_checkpoint_command, info_checkpoints_command)
(linux_fork_context): Update.
(linux_fork_detach): Update.
(class scoped_switch_fork_info): Update.
(delete_checkpoint_command): Update.
* infrun.c (follow_fork_inferior): Update.
(follow_fork_inferior): Update.
(proceed_after_vfork_done): Update.
(handle_vfork_child_exec_or_exit): Update.
(follow_exec): Update.
(displaced_step_prepare_throw): Update.
(displaced_step_restore): Update.
(start_step_over): Update.
(resume_1): Update.
(clear_proceed_status_thread): Update.
(proceed): Update.
(print_target_wait_results): Update.
(do_target_wait): Update.
(context_switch): Update.
(stop_all_threads): Update.
(restart_threads): Update.
(finish_step_over): Update.
(handle_signal_stop): Update.
(switch_back_to_stepped_thread): Update.
(keep_going_pass_signal): Update.
(print_exited_reason): Update.
(normal_stop): Update.
* inferior.c (inferior_pid_to_str): Change return type.
(print_selected_inferior): Update.
(add_inferior): Update.
(detach_inferior): Update.
* dummy-frame.c (fprint_dummy_frames): Update.
* dcache.c (dcache_info_1): Update.
* btrace.c (btrace_enable, btrace_disable, btrace_teardown)
(btrace_fetch, btrace_clear): Update.
* linux-tdep.c (linux_core_pid_to_str): Change return type.
* i386-cygwin-tdep.c (i386_windows_core_pid_to_str): Change return
type.
* fbsd-tdep.c (fbsd_core_pid_to_str): Change return type.
* sol2-tdep.h (sol2_core_pid_to_str): Change return type.
* sol2-tdep.c (sol2_core_pid_to_str): Change return type.
* gdbarch.c, gdbarch.h: Rebuild.
* gdbarch.sh (core_pid_to_str): Change return type.
* windows-nat.c (struct windows_nat_target) <pid_to_str>: Change
return type.
(windows_nat_target::pid_to_str): Change return type.
(windows_delete_thread): Update.
(windows_nat_target::attach): Update.
(windows_nat_target::files_info): Update.
* target-delegates.c: Rebuild.
* sol-thread.c (class sol_thread_target) <pid_to_str>: Change
return type.
(sol_thread_target::pid_to_str): Change return type.
* remote.c (class remote_target) <pid_to_str>: Change return
type.
(remote_target::pid_to_str): Change return type.
(extended_remote_target::attach, remote_target::remote_stop_ns)
(remote_target::remote_notif_remove_queued_reply)
(remote_target::push_stop_reply, remote_target::disable_btrace):
Update.
(extended_remote_target::attach): Update.
* remote-sim.c (struct gdbsim_target) <pid_to_str>: Change return
type.
(gdbsim_target::pid_to_str): Change return type.
* ravenscar-thread.c (struct ravenscar_thread_target)
<pid_to_str>: Change return type.
(ravenscar_thread_target::pid_to_str): Change return type.
* procfs.c (class procfs_target) <pid_to_str>: Change return
type.
(procfs_target::pid_to_str): Change return type.
(procfs_target::attach): Update.
(procfs_target::detach): Update.
(procfs_target::fetch_registers): Update.
(procfs_target::store_registers): Update.
(procfs_target::wait): Update.
(procfs_target::files_info): Update.
* obsd-nat.c (obsd_nat_target::pid_to_str): Change return type.
* nto-procfs.c (struct nto_procfs_target) <pid_to_str>: Change
return type.
(nto_procfs_target::pid_to_str): Change return type.
(nto_procfs_target::files_info, nto_procfs_target::attach): Update.
* linux-thread-db.c (class thread_db_target) <pid_to_str>: Change
return type.
* linux-nat.c (linux_nat_target::pid_to_str): Change return type.
(exit_lwp): Update.
(attach_proc_task_lwp_callback, get_detach_signal)
(detach_one_lwp, resume_lwp, linux_nat_target::resume)
(linux_nat_target::resume, wait_lwp, stop_callback)
(maybe_clear_ignore_sigint, stop_wait_callback, status_callback)
(save_stop_reason, select_event_lwp, linux_nat_filter_event)
(linux_nat_wait_1, resume_stopped_resumed_lwps)
(linux_nat_target::wait, linux_nat_stop_lwp): Update.
* inf-ptrace.c (inf_ptrace_target::pid_to_str): Change return
type.
(inf_ptrace_target::attach): Update.
(inf_ptrace_target::files_info): Update.
* go32-nat.c (struct go32_nat_target) <pid_to_str>: Change return
type.
(go32_nat_target::pid_to_str): Change return type.
* gnu-nat.c (gnu_nat_target::pid_to_str): Change return type.
(gnu_nat_target::wait): Update.
(gnu_nat_target::wait): Update.
(gnu_nat_target::resume): Update.
* fbsd-nat.c (fbsd_nat_target::pid_to_str): Change return type.
(fbsd_nat_target::wait): Update.
* darwin-nat.c (darwin_nat_target::pid_to_str): Change return
type.
(darwin_nat_target::attach): Update.
* corelow.c (class core_target) <pid_to_str>: Change return type.
(core_target::pid_to_str): Change return type.
* target.c (normal_pid_to_str): Change return type.
(default_pid_to_str): Likewise.
(target_pid_to_str): Change return type.
(target_translate_tls_address): Update.
(target_announce_detach): Update.
* bsd-uthread.c (struct bsd_uthread_target) <pid_to_str>: Change
return type.
(bsd_uthread_target::pid_to_str): Change return type.
* bsd-kvm.c (class bsd_kvm_target) <pid_to_str>: Change return
type.
(bsd_kvm_target::pid_to_str): Change return type.
* aix-thread.c (class aix_thread_target) <pid_to_str>: Change
return type.
(aix_thread_target::pid_to_str): Change return type.
* target.h (struct target_ops) <pid_to_str>: Change return type.
(target_pid_to_str, normal_pid_to_str): Likewise.
* obsd-nat.h (class obsd_nat_target) <pid_to_str>: Change return
type.
* linux-nat.h (class linux_nat_target) <pid_to_str>: Change return
type.
* inf-ptrace.h (struct inf_ptrace_target) <pid_to_str>: Change
return type.
* gnu-nat.h (struct gnu_nat_target) <pid_to_str>: Change return
type.
* fbsd-nat.h (class fbsd_nat_target) <pid_to_str>: Change return
type.
* darwin-nat.h (class darwin_nat_target) <pid_to_str>: Change
return type.
|
|
While working on my other scripts to deal with gdb headers, I noticed
that some files were missing include guards. I wrote a script to add
the missing ones, but found that using the obvious names for the
guards ran into clashes -- for example, gdb/nat/linux-nat.h used
"LINUX_NAT_H", but this was also the script's choice for
gdb/linux-nat.h.
So, I changed the script to normalize all include guards in gdb. This
patch is the result.
As usual the script is available here:
https://github.com/tromey/gdb-refactoring-scripts
Tested by rebuilding; I also ran it through "Fedora-x86_64-m64" on the
buildbot.
gdb/ChangeLog
2019-02-07 Tom Tromey <tom@tromey.com>
* yy-remap.h: Add include guard.
* xtensa-tdep.h: Add include guard.
* xcoffread.h: Rename include guard.
* varobj-iter.h: Add include guard.
* tui/tui.h: Rename include guard.
* tui/tui-winsource.h: Rename include guard.
* tui/tui-wingeneral.h: Rename include guard.
* tui/tui-windata.h: Rename include guard.
* tui/tui-win.h: Rename include guard.
* tui/tui-stack.h: Rename include guard.
* tui/tui-source.h: Rename include guard.
* tui/tui-regs.h: Rename include guard.
* tui/tui-out.h: Rename include guard.
* tui/tui-layout.h: Rename include guard.
* tui/tui-io.h: Rename include guard.
* tui/tui-hooks.h: Rename include guard.
* tui/tui-file.h: Rename include guard.
* tui/tui-disasm.h: Rename include guard.
* tui/tui-data.h: Rename include guard.
* tui/tui-command.h: Rename include guard.
* tic6x-tdep.h: Add include guard.
* target/waitstatus.h: Rename include guard.
* target/wait.h: Rename include guard.
* target/target.h: Rename include guard.
* target/resume.h: Rename include guard.
* target-float.h: Rename include guard.
* stabsread.h: Add include guard.
* rs6000-tdep.h: Add include guard.
* riscv-fbsd-tdep.h: Add include guard.
* regformats/regdef.h: Rename include guard.
* record.h: Rename include guard.
* python/python.h: Rename include guard.
* python/python-internal.h: Rename include guard.
* python/py-stopevent.h: Rename include guard.
* python/py-ref.h: Rename include guard.
* python/py-record.h: Rename include guard.
* python/py-record-full.h: Rename include guard.
* python/py-record-btrace.h: Rename include guard.
* python/py-instruction.h: Rename include guard.
* python/py-events.h: Rename include guard.
* python/py-event.h: Rename include guard.
* procfs.h: Add include guard.
* proc-utils.h: Add include guard.
* p-lang.h: Add include guard.
* or1k-tdep.h: Rename include guard.
* observable.h: Rename include guard.
* nto-tdep.h: Rename include guard.
* nat/x86-linux.h: Rename include guard.
* nat/x86-linux-dregs.h: Rename include guard.
* nat/x86-gcc-cpuid.h: Add include guard.
* nat/x86-dregs.h: Rename include guard.
* nat/x86-cpuid.h: Rename include guard.
* nat/ppc-linux.h: Rename include guard.
* nat/mips-linux-watch.h: Rename include guard.
* nat/linux-waitpid.h: Rename include guard.
* nat/linux-ptrace.h: Rename include guard.
* nat/linux-procfs.h: Rename include guard.
* nat/linux-osdata.h: Rename include guard.
* nat/linux-nat.h: Rename include guard.
* nat/linux-namespaces.h: Rename include guard.
* nat/linux-btrace.h: Rename include guard.
* nat/glibc_thread_db.h: Rename include guard.
* nat/gdb_thread_db.h: Rename include guard.
* nat/gdb_ptrace.h: Rename include guard.
* nat/fork-inferior.h: Rename include guard.
* nat/amd64-linux-siginfo.h: Rename include guard.
* nat/aarch64-sve-linux-sigcontext.h: Rename include guard.
* nat/aarch64-sve-linux-ptrace.h: Rename include guard.
* nat/aarch64-linux.h: Rename include guard.
* nat/aarch64-linux-hw-point.h: Rename include guard.
* mn10300-tdep.h: Add include guard.
* mips-linux-tdep.h: Add include guard.
* mi/mi-parse.h: Rename include guard.
* mi/mi-out.h: Rename include guard.
* mi/mi-main.h: Rename include guard.
* mi/mi-interp.h: Rename include guard.
* mi/mi-getopt.h: Rename include guard.
* mi/mi-console.h: Rename include guard.
* mi/mi-common.h: Rename include guard.
* mi/mi-cmds.h: Rename include guard.
* mi/mi-cmd-break.h: Rename include guard.
* m2-lang.h: Add include guard.
* location.h: Rename include guard.
* linux-record.h: Rename include guard.
* linux-nat.h: Add include guard.
* linux-fork.h: Add include guard.
* i386-darwin-tdep.h: Rename include guard.
* hppa-linux-offsets.h: Add include guard.
* guile/guile.h: Rename include guard.
* guile/guile-internal.h: Rename include guard.
* gnu-nat.h: Rename include guard.
* gdb-stabs.h: Rename include guard.
* frv-tdep.h: Add include guard.
* f-lang.h: Add include guard.
* event-loop.h: Add include guard.
* darwin-nat.h: Rename include guard.
* cp-abi.h: Rename include guard.
* config/sparc/nm-sol2.h: Rename include guard.
* config/nm-nto.h: Rename include guard.
* config/nm-linux.h: Add include guard.
* config/i386/nm-i386gnu.h: Rename include guard.
* config/djgpp/nl_types.h: Rename include guard.
* config/djgpp/langinfo.h: Rename include guard.
* compile/gcc-cp-plugin.h: Add include guard.
* compile/gcc-c-plugin.h: Add include guard.
* compile/compile.h: Rename include guard.
* compile/compile-object-run.h: Rename include guard.
* compile/compile-object-load.h: Rename include guard.
* compile/compile-internal.h: Rename include guard.
* compile/compile-cplus.h: Rename include guard.
* compile/compile-c.h: Rename include guard.
* common/xml-utils.h: Rename include guard.
* common/x86-xstate.h: Rename include guard.
* common/version.h: Rename include guard.
* common/vec.h: Rename include guard.
* common/tdesc.h: Rename include guard.
* common/selftest.h: Rename include guard.
* common/scoped_restore.h: Rename include guard.
* common/scoped_mmap.h: Rename include guard.
* common/scoped_fd.h: Rename include guard.
* common/safe-iterator.h: Rename include guard.
* common/run-time-clock.h: Rename include guard.
* common/refcounted-object.h: Rename include guard.
* common/queue.h: Rename include guard.
* common/ptid.h: Rename include guard.
* common/print-utils.h: Rename include guard.
* common/preprocessor.h: Rename include guard.
* common/pathstuff.h: Rename include guard.
* common/observable.h: Rename include guard.
* common/netstuff.h: Rename include guard.
* common/job-control.h: Rename include guard.
* common/host-defs.h: Rename include guard.
* common/gdb_wait.h: Rename include guard.
* common/gdb_vecs.h: Rename include guard.
* common/gdb_unlinker.h: Rename include guard.
* common/gdb_unique_ptr.h: Rename include guard.
* common/gdb_tilde_expand.h: Rename include guard.
* common/gdb_sys_time.h: Rename include guard.
* common/gdb_string_view.h: Rename include guard.
* common/gdb_splay_tree.h: Rename include guard.
* common/gdb_setjmp.h: Rename include guard.
* common/gdb_ref_ptr.h: Rename include guard.
* common/gdb_optional.h: Rename include guard.
* common/gdb_locale.h: Rename include guard.
* common/gdb_assert.h: Rename include guard.
* common/filtered-iterator.h: Rename include guard.
* common/filestuff.h: Rename include guard.
* common/fileio.h: Rename include guard.
* common/environ.h: Rename include guard.
* common/common-utils.h: Rename include guard.
* common/common-types.h: Rename include guard.
* common/common-regcache.h: Rename include guard.
* common/common-inferior.h: Rename include guard.
* common/common-gdbthread.h: Rename include guard.
* common/common-exceptions.h: Rename include guard.
* common/common-defs.h: Rename include guard.
* common/common-debug.h: Rename include guard.
* common/cleanups.h: Rename include guard.
* common/buffer.h: Rename include guard.
* common/btrace-common.h: Rename include guard.
* common/break-common.h: Rename include guard.
* cli/cli-utils.h: Rename include guard.
* cli/cli-style.h: Rename include guard.
* cli/cli-setshow.h: Rename include guard.
* cli/cli-script.h: Rename include guard.
* cli/cli-interp.h: Rename include guard.
* cli/cli-decode.h: Rename include guard.
* cli/cli-cmds.h: Rename include guard.
* charset-list.h: Add include guard.
* buildsym-legacy.h: Rename include guard.
* bfin-tdep.h: Add include guard.
* ax.h: Rename include guard.
* arm-linux-tdep.h: Add include guard.
* arm-fbsd-tdep.h: Add include guard.
* arch/xtensa.h: Rename include guard.
* arch/tic6x.h: Add include guard.
* arch/i386.h: Add include guard.
* arch/arm.h: Rename include guard.
* arch/arm-linux.h: Rename include guard.
* arch/arm-get-next-pcs.h: Rename include guard.
* arch/amd64.h: Add include guard.
* arch/aarch64-insn.h: Rename include guard.
* arch-utils.h: Rename include guard.
* annotate.h: Add include guard.
* amd64-darwin-tdep.h: Rename include guard.
* aarch64-linux-tdep.h: Add include guard.
* aarch64-fbsd-tdep.h: Add include guard.
* aarch32-linux-nat.h: Add include guard.
gdb/gdbserver/ChangeLog
2019-02-07 Tom Tromey <tom@tromey.com>
* x86-tdesc.h: Rename include guard.
* x86-low.h: Add include guard.
* wincecompat.h: Rename include guard.
* win32-low.h: Add include guard.
* utils.h: Rename include guard.
* tracepoint.h: Rename include guard.
* tdesc.h: Rename include guard.
* target.h: Rename include guard.
* server.h: Rename include guard.
* remote-utils.h: Rename include guard.
* regcache.h: Rename include guard.
* nto-low.h: Rename include guard.
* notif.h: Add include guard.
* mem-break.h: Rename include guard.
* lynx-low.h: Add include guard.
* linux-x86-tdesc.h: Add include guard.
* linux-s390-tdesc.h: Add include guard.
* linux-ppc-tdesc-init.h: Add include guard.
* linux-low.h: Add include guard.
* linux-aarch64-tdesc.h: Add include guard.
* linux-aarch32-low.h: Add include guard.
* inferiors.h: Rename include guard.
* i387-fp.h: Rename include guard.
* hostio.h: Rename include guard.
* gdbthread.h: Rename include guard.
* gdb_proc_service.h: Rename include guard.
* event-loop.h: Rename include guard.
* dll.h: Rename include guard.
* debug.h: Rename include guard.
* ax.h: Rename include guard.
|
|
This replaces the pointer and length parameters of target_pass_signals
and target_program_signals with a gdb::array_view parameter, and fixes
the fallout.
In infrun.c, the signal_stop, signal_print, signal_program,
signal_catch, signal_pass globals are currently pointers to
heap-allocated memory. I see no point in that, so I converted them to
arrays. This allows simplifying the calls to
target_pass_signals/target_program_signals, since we can pass the
array directly, which can implicitly convert to gdb::array_view.
gdb/ChangeLog:
2019-01-24 Pedro Alves <palves@redhat.com>
* infrun.c (signal_stop, signal_print, signal_program)
(signal_catch, signal_pass): Now arrays instead of pointers.
(update_signals_program_target, do_target_resume)
(signal_catch_update, handle_command, _initialize_infrun): Adjust.
* linux-nat.c (linux_nat_target::pass_signals)
(linux_nat_target::create_inferior, linux_nat_target::attach):
Adjust.
* linux-nat.h (linux_nat_target::pass_signals): Adjust.
* nto-procfs.c (nto_procfs_target::pass_signals): Adjust.
* procfs.c (procfs_target::pass_signals): Adjust.
* record-full.c (record_full_target::resume): Adjust.
* remote.c (remote_target::pass_signals)
(remote_target::program_signals): Adjust.
* target-debug.h (target_debug_print_signals): Now takes a
gdb::array_view as parameter. Adjust.
* target.h (target_ops) <pass_signals, program_signals>: Replace
pointer and length parameters with gdb::array_view.
(target_pass_signals, target_program_signals): Likewise.
* target-delegates.c: Regenerate.
|
|
This constifies the final parameter to target_pass_signals and
target_program_signals and updates the rest of gdb.
Note that I have no way to test the nto-procfs.c change.
gdb/ChangeLog
2019-01-14 Tom Tromey <tom@tromey.com>
* target-debug.h (target_debug_print_signals): Constify.
* nto-procfs.c (nto_procfs_target::pass_signals): Update.
* procfs.c (procfs_target::pass_signals): Update.
* linux-nat.c (linux_nat_target::pass_signals): Update.
* linux-nat.h (class linux_nat_target) <pass_signals>: Update.
* target-delegates.c: Rebuild.
* remote.c (remote_target::program_signals): Update.
(remote_target::pass_signals): Update.
* target.c (target_pass_signals): Constify argument.
(target_program_signals): Likewise.
* target.h (struct target_ops) <pass_signals, program_signals>:
Constify argument.
(target_pass_signals, target_program_signals): Constify argument.
|
|
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
This converts the remaining linux-nat.c hooks low_ methods like had
been started in a previous patch. The linux_nat_set_foo routines are
all gone with this.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* linux-nat.h (linux_nat_target) <low_new_thread,
low_delete_thread, low_new_fork, low_forget_process,
low_prepare_to_resume, low_siginfo_fixup, low_status_is_event>:
New virtual methods.
(linux_nat_set_new_thread, linux_nat_set_delete_thread)
(linux_nat_new_fork_ftype, linux_nat_set_new_fork)
(linux_nat_forget_process_ftype, linux_nat_set_forget_process)
(linux_nat_forget_process, linux_nat_set_siginfo_fixup)
(linux_nat_set_prepare_to_resume, linux_nat_set_status_is_event):
Delete.
* linux-fork.c (delete_fork): Adjust to call low method.
* linux-nat.c (linux_nat_new_thread, linux_nat_delete_thread)
(linux_nat_new_fork, linux_nat_forget_process_hook)
(linux_nat_prepare_to_resume, linux_nat_siginfo_fixup)
(linux_nat_status_is_event):
(linux_nat_target::follow_fork, lwp_free, add_lwp, detach_one_lwp)
(linux_resume_one_lwp_throw, linux_handle_extended_wait): Adjust
to call low method.
(sigtrap_is_event): Rename to ...
(linux_nat_target::low_status_is_event): ... this.
(linux_nat_set_status_is_event): Delete.
(save_stop_reason, linux_nat_wait_1)
(linux_nat_target::mourn_inferior, siginfo_fixup): Adjust to call
low methods.
(linux_nat_set_new_thread, linux_nat_set_delete_thread)
(linux_nat_set_new_fork, linux_nat_set_forget_process)
(linux_nat_forget_process, linux_nat_set_siginfo_fixup)
(linux_nat_set_prepare_to_resume): Delete.
* aarch64-linux-nat.c: All linux_nat_set_* callbacks converted to
low virtual methods.
* amd64-linux-nat.c: Likewise.
* arm-linux-nat.c: Likewise.
* i386-linux-nat.c: Likewise.
* ia64-linux-nat.c: Likewise.
* mips-linux-nat.c: Likewise.
* ppc-linux-nat.c: Likewise.
* s390-linux-nat.c: Likewise.
* sparc64-linux-nat.c: Likewise.
* x86-linux-nat.c: Likewise.
* x86-linux-nat.h: Include "nat/x86-linux.h".
(x86_linux_nat_target) <low_new_fork, low_forget_process,
low_prepare_to_resume, low_new_thread, low_delete_thread>:
Override methods.
|
|
After the previous target_ops/C++ patches are all squashed and merged,
this one can go in separately.
This patch adjusts all the target methods to return bool instead of int
when they're returning a boolean.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* target.h (target_ops)
<stopped_by_sw_breakpoint, supports_stopped_by_sw_breakpoint,
stopped_by_hw_breakpoint, supports_stopped_by_hw_breakpoint,
stopped_by_watchpoint, have_continuable_watchpoint,
stopped_data_address, watchpoint_addr_within_range,
can_accel_watchpoint_condition, can_run, thread_alive,
has_all_memory, has_memory, has_stack, has_registers,
has_execution, can_async_p, is_async_p, supports_non_stop,
always_non_stop_p, can_execute_reverse, supports_multi_process,
supports_enable_disable_tracepoint,
supports_disable_randomization, supports_string_tracing,
supports_evaluation_of_breakpoint_conditions,
can_run_breakpoint_commands, filesystem_is_local,
can_download_tracepoint, get_trace_state_variable_value,
set_trace_notes, get_tib_address, use_agent, can_use_agent,
record_is_replaying, record_will_replay,
augmented_libraries_svr4_read>: Adjust to return bool.
* aarch64-linux-nat.c: All implementations adjusted.
* aix-thread.c: All implementations adjusted.
* arm-linux-nat.c: All implementations adjusted.
* breakpoint.c: All implementations adjusted.
* bsd-kvm.c: All implementations adjusted.
* bsd-uthread.c: All implementations adjusted.
* corelow.c: All implementations adjusted.
* ctf.c: All implementations adjusted.
* darwin-nat.c: All implementations adjusted.
* darwin-nat.h: All implementations adjusted.
* exec.c: All implementations adjusted.
* fbsd-nat.c: All implementations adjusted.
* fbsd-nat.h: All implementations adjusted.
* gnu-nat.c: All implementations adjusted.
* gnu-nat.h: All implementations adjusted.
* go32-nat.c: All implementations adjusted.
* ia64-linux-nat.c: All implementations adjusted.
* inf-child.c: All implementations adjusted.
* inf-child.h: All implementations adjusted.
* inf-ptrace.c: All implementations adjusted.
* inf-ptrace.h: All implementations adjusted.
* linux-nat.c: All implementations adjusted.
* linux-nat.h: All implementations adjusted.
* mips-linux-nat.c: All implementations adjusted.
* nto-procfs.c: All implementations adjusted.
* ppc-linux-nat.c: All implementations adjusted.
* procfs.c: All implementations adjusted.
* ravenscar-thread.c: All implementations adjusted.
* record-btrace.c: All implementations adjusted.
* record-full.c: All implementations adjusted.
* remote-sim.c: All implementations adjusted.
* remote.c: All implementations adjusted.
* s390-linux-nat.c: All implementations adjusted.
* sol-thread.c: All implementations adjusted.
* spu-multiarch.c: All implementations adjusted.
* target-delegates.c: All implementations adjusted.
* target.c: All implementations adjusted.
* target.h: All implementations adjusted.
* tracefile-tfile.c: All implementations adjusted.
* tracefile.c: All implementations adjusted.
* tracefile.h: All implementations adjusted.
* windows-nat.c: All implementations adjusted.
* x86-linux-nat.h: All implementations adjusted.
* x86-nat.h: All implementations adjusted.
|
|
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
|
|
There are only two inf_ptrace_trad_target users, MIPS GNU/Linux and
Alpha GNU/Linux. They both call it via linux_trad_target.
Move this code out of inf-ptrace.c to a GNU/Linux-specific new file.
Making this code be GNU/Linux-specific simplifies C++ification of
target_ops, because we can make the trad target inherit linux_nat
instead of inheriting inf_ptrace. That'll be visible in a later patch.
Note this makes linux_target_install_ops an extern function, but that
is temporary -- the function will disappear once target_ops is made a
C++ class with virtual methods, later in the series. Also, I did not
rename the functions in the new file for a similar reason. They'll be
renamed again anyway in a couple of patches.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* alpha-linux-nat.c: Include "linux-nat-trad.h" instead of
"linux-nat.h".
* configure.nat (alpha-linux, linux-mips): Add linux-nat-trad.o.
* inf-ptrace.c (inf_ptrace_register_u_offset)
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers)
(inf_ptrace_trad_target): Move to ...
* linux-nat-trad.c: ... this new file.
* linux-nat-trad.h: New file.
* linux-nat.c (linux_target_install_ops): Make extern.
(linux_trad_target): Delete.
* linux-nat.h (linux_trad_target): Delete declaration.
(linux_target_install_ops): Declare.
* mips-linux-nat.c: Include "linux-nat-trad.h" instead of
"linux-nat.h".
|
|
gdb/ChangeLog:
Update copyright year range in all GDB files
|
|
I have the goal of "poisoning" the XNEW/xfree-family of functions, so
that we catch their usages with non-POD types. A few things need to be
fixed in the mean time, this is one.
The common lwp code in linux-nat.c and gdbserver/linux-low.c xfrees the
private lwp data of type arch_lwp_info. However, that type is opaque
from its point of view, as its defined differently in each arch-specific
implementation. This trips on the std::is_pod<T> check, since the
compiler can't tell whether the type is POD or not if it doesn't know
about it.
My initial patch [1] made a class hierarchy with a virtual destructor.
However, as Pedro pointed out, we only have one native architecture at
the time built in gdb and gdbserver, so that's overkill. Instead, we
can move the responsibility of free'ing arch_lwp_info to the arch code
(which is also the one that allocated it in the first place). This is
what this patch does.
Also, I had the concern that if we wanted to use C++ features in these
structures, we would have a problem with the one-definition rule.
However, since a build will only have one version of arch_lwp_info,
that's not a problem.
There are changes in arch-specific files, I was only able to built-test
this patch with the following cross-compilers:
aarch64-linux-gnu
alpha-linux-gnu
arm-linux-gnueabihf
hppa-linux-gnu
m68k-linux-gnu
mips64el-linux-gnuabi64
powerpc64-linux-gnu
s390x-linux-gnu
sh4-linux-gnu
sparc64-linux-gnu
x86_64-linux-gnu
x86_64-w64-mingw32
A buildbot run didn't find any regression.
[1] https://sourceware.org/ml/gdb-patches/2017-08/msg00255.html
gdb/ChangeLog:
* linux-nat.h (linux_nat_set_delete_thread): New declaration.
* linux-nat.c (linux_nat_delete_thread): New variable.
(lwp_free): Invoke linux_nat_delete_thread if set.
(linux_nat_set_delete_thread): New function.
* aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Assign
thread delete callback.
* arm-linux-nat.c (arm_linux_delete_thread): New function.
(_initialize_arm_linux_nat): Assign thread delete callback.
* s390-linux-nat.c (s390_delete_thread): New function.
(_initialize_s390_nat): Assign thread delete callback.
* x86-linux-nat.c (x86_linux_add_target): Likewise.
* nat/aarch64-linux.c (aarch64_linux_delete_thread): New
function.
* nat/aarch64-linux.h (aarch64_linux_delete_thread): New
declaration.
* nat/x86-linux.c (x86_linux_delete_thread): New function.
* nat/x86-linux.h (x86_linux_delete_thread): New declaration.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (the_low_target): Add thread delete
callback.
* linux-arm-low.c (arm_delete_thread): New function.
(the_low_target): Add thread delete callback.
* linux-bfin-low.c (the_low_target): Likewise.
* linux-crisv32-low.c (the_low_target): Likewise.
* linux-low.c (delete_lwp): Invoke delete_thread callback if
set.
* linux-low.h (struct linux_target_ops) <delete_thread>: New
field.
* linux-m32r-low.c (the_low_target): Add thread delete callback.
* linux-mips-low.c (mips_linux_delete_thread): New function.
(the_low_target): Add thread delete callback.
* linux-ppc-low.c (the_low_target): Likewise.
* linux-s390-low.c (the_low_target): Likewise.
* linux-sh-low.c (the_low_target): Likewise.
* linux-tic6x-low.c (the_low_target): Likewise.
* linux-tile-low.c (the_low_target): Likewise.
* linux-x86-low.c (the_low_target): Likewise.
* linux-xtensa-low.c (the_low_target): Likewise.
|
|
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
Hacking the gdb.threads/attach-many-short-lived-threads.exp test to
spawn thousands of threads instead of dozens, and running gdb under
perf, I saw that GDB was spending most of the time in find_lwp_pid:
- captured_main
- 93.61% catch_command_errors
- 87.41% attach_command
- 87.40% linux_nat_attach
- 87.40% linux_proc_attach_tgid_threads
- 82.38% attach_proc_task_lwp_callback
- 81.01% find_lwp_pid
5.30% ptid_get_lwp
+ 0.10% ptid_lwp_p
+ 0.64% add_thread
+ 0.26% set_running
+ 0.24% set_executing
0.12% ptid_get_lwp
+ 0.01% ptrace
+ 0.01% add_lwp
attach_proc_task_lwp_callback is called once for each LWP that we
attach to, found by listing the /proc/PID/task/ directory. In turn,
attach_proc_task_lwp_callback calls find_lwp_pid to check whether the
LWP we're about to try to attach to is already known. Since
find_lwp_pid does a linear walk over the whole LWP list, this becomes
quadratic. We do the /proc/PID/task/ listing until we get two
iterations in a row where we found no new threads. So the second and
following times we walk the /proc/PID/task/ dir, we're going to take
an even worse find_lwp_pid hit.
Fix this by adding a hash table keyed by LWP PID, for fast lookup.
The linked list embedded in the LWP structure itself is kept, and made
a double-linked list, so that removals from that list are O(1). An
earlier version of this patch got rid of this list altogether, but
that revealed hidden dependencies / assumptions on how the list is
sorted. For example, killing a process and then waiting for all the
LWPs status using iterate_over_lwps only works as is because the
leader LWP is always last in the list. So I thought it better to take
an incremental approach and make this patch concern itself _only_ with
the PID lookup optimization.
gdb/ChangeLog:
2016-05-24 Pedro Alves <palves@redhat.com>
PR gdb/19828
* linux-nat.c (lwp_lwpid_htab): New htab.
(lwp_info_hash, lwp_lwpid_htab_eq, lwp_lwpid_htab_create)
(lwp_lwpid_htab_add_lwp): New functions.
(lwp_list): Tweak comment.
(lwp_list_add, lwp_list_remove, lwp_lwpid_htab_remove_pid): New
functions.
(purge_lwp_list): Rewrite, using htab_traverse_noresize.
(add_initial_lwp): Add lwp to htab too. Use lwp_list_add.
(delete_lwp): Use lwp_list_remove. Remove htab too.
(find_lwp_pid): Search in htab.
(_initialize_linux_nat): Call lwp_lwpid_htab_create.
* linux-nat.h (struct lwp_info) <prev>: New field.
|
|
This adds a new QCatchSyscalls packet to enable 'catch syscall', and new
stop reasons "syscall_entry" and "syscall_return" for those events. It
is currently only supported on Linux x86 and x86_64.
gdb/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* NEWS (Changes since GDB 7.10): Mention QCatchSyscalls and the
syscall_entry and syscall_return stop reasons. Mention GDB
support for remote catch syscall.
* remote.c (PACKET_QCatchSyscalls): New enum.
(remote_set_syscall_catchpoint): New function.
(remote_protocol_features): New element for QCatchSyscalls.
(remote_parse_stop_reply): Parse syscall_entry/return stops.
(init_remote_ops): Install remote_set_syscall_catchpoint.
(_initialize_remote): Config QCatchSyscalls.
* linux-nat.h (struct lwp_info) <syscall_state>: Comment typo.
gdb/doc/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.texinfo (Remote Configuration): List the QCatchSyscalls packet.
(Stop Reply Packets): List the syscall entry and return stop reasons.
(General Query Packets): Describe QCatchSyscalls, and add it to the
table and the detailed list of stub features.
gdb/gdbserver/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* inferiors.h: Include "gdb_vecs.h".
(struct process_info): Add syscalls_to_catch.
* inferiors.c (remove_process): Free syscalls_to_catch.
* remote-utils.c (prepare_resume_reply): Report syscall_entry and
syscall_return stops.
* server.h (UNKNOWN_SYSCALL, ANY_SYSCALL): Define.
* server.c (handle_general_set): Handle QCatchSyscalls.
(handle_query): Report support for QCatchSyscalls.
* target.h (struct target_ops): Add supports_catch_syscall.
(target_supports_catch_syscall): New macro.
* linux-low.h (struct linux_target_ops): Add get_syscall_trapinfo.
(struct lwp_info): Add syscall_state.
* linux-low.c (handle_extended_wait): Mark syscall_state as an entry.
Maintain syscall_state and syscalls_to_catch across exec.
(get_syscall_trapinfo): New function, proxy to the_low_target.
(linux_low_ptrace_options): Enable PTRACE_O_TRACESYSGOOD.
(linux_low_filter_event): Toggle syscall_state entry/return for
syscall traps, and set it ignored for all others.
(gdb_catching_syscalls_p): New function.
(gdb_catch_this_syscall_p): New function.
(linux_wait_1): Handle SYSCALL_SIGTRAP.
(linux_resume_one_lwp_throw): Add PTRACE_SYSCALL possibility.
(linux_supports_catch_syscall): New function.
(linux_target_ops): Install it.
* linux-x86-low.c (x86_get_syscall_trapinfo): New function.
(the_low_target): Install it.
gdb/testsuite/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.base/catch-syscall.c (do_execve): New variable.
(main): Conditionally trigger an execve.
* gdb.base/catch-syscall.exp: Enable testing for remote targets.
(test_catch_syscall_execve): New, check entry/return across execve.
(do_syscall_tests): Call test_catch_syscall_execve.
|
|
gdb/ChangeLog:
Update year range in copyright notice of all files.
|
|
Since we now rely on PTRACE_EVENT_CLONE being available (added in
Linux 2.5.46), we're relying on NPTL.
This commit removes the support for older LinuxThreads, as well as the
workarounds for vendor 2.4 kernels with NPTL backported.
- Rely on tkill being available.
- Assume gdb doesn't get cancel signals.
- Remove code that checks the LinuxThreads restart and cancel signals
in the inferior.
- Assume that __WALL is available.
- Assume that non-leader threads report WIFEXITED.
- Thus, no longer need to send signal 0 to check whether threads are
still alive.
- Update comments throughout.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
* configure.ac: Remove tkill checks.
* configure, config.in: Regenerate.
* linux-nat.c: Remove HAVE_TKILL_SYSCALL check. Update top level
comments.
(linux_nat_post_attach_wait): Remove 'cloned' parameter. Use
__WALL.
(attach_proc_task_lwp_callback): Don't set the cloned flag.
(linux_nat_attach): Adjust.
(kill_lwp): Remove HAVE_TKILL_SYSCALL check. No longer fall back
to 'kill'.
(linux_handle_extended_wait): Use __WALL. Don't set the cloned
flag.
(wait_lwp): Use __WALL. Update comments.
(running_callback, stop_and_resume_callback): Delete.
(linux_nat_filter_event): Don't stop and resume all lwps. Don't
check if the event LWP has previously exited.
(check_zombie_leaders): Update comments.
(linux_nat_wait_1): Use __WALL.
(kill_wait_callback): Don't handle clone processes separately.
Use __WALL instead.
(linux_thread_alive): Delete.
(linux_nat_thread_alive): Return true as long as the LWP is in the
LWP list.
(linux_nat_update_thread_list): Assume the kernel supports
PTRACE_EVENT_CLONE.
(get_signo): Delete.
(lin_thread_get_thread_signals): Remove LinuxThreads references.
No longer check __pthread_sig_restart / __pthread_sig_cancel in
the inferior.
* linux-nat.h (struct lwp_info) <cloned>: Delete field.
* linux-thread-db.c: Update comments.
(_initialize_thread_db): Remove LinuxThreads references.
* nat/linux-waitpid.c (my_waitpid): No longer emulate __WALL.
Pass down flags unmodified.
* linux-waitpid.h (my_waitpid): Update documentation.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_kill_one_lwp): Remove references to
LinuxThreads.
(kill_lwp): Remove HAVE_TKILL_SYSCALL check. No longer fall back
to 'kill'.
(linux_init_signals): Delete.
(initialize_low): Adjust.
* thread-db.c (thread_db_init): Remove LinuxThreads reference.
|
|
Before, on systems that did not support PTRACE_EVENT_CLONE, both GDB and
GDBServer coordinated with libthread_db.so to insert breakpoints at magic
locations in libpthread.so, in order to break at thread creation and
thread death.
Support for thread events was removed from GDBServer as patch:
https://sourceware.org/ml/gdb-patches/2015-11/msg00466.html
This patch removes support for thread events in GDB.
No regressions found on Ubuntu 14.04 x86_64.
gdb/ChangeLog:
* breakpoint.c (remove_thread_event_breakpoints): Remove.
* breakpoint.h (remove_thread_event_breakpoints): Remove
declaration.
* linux-nat.c (in_pid_list_p): Remove.
(lin_lwp_attach_lwp): Remove.
* linux-nat.h (lin_lwp_attach_lwp): Remove declaration.
* linux-thread-db.c (thread_db_use_events): Remove.
(struct thread_db_info) <td_create_bp_addr>: Remove.
<td_death_bp_addr>: Likewise.
<td_ta_event_addr_p>: Likewise.
<td_ta_set_event_p>: Likewise.
<td_ta_clear_event_p>: Likewise.
<td_ta_event_getmsg_p>: Likewise.
<td_thr_event_enable_p>: Likewise.
(attach_thread): Likewise.
(detach_thread): Likewise.
(have_threads_callback): Likewise.
(have_threads): Likewise.
(enable_thread_event): Likewise.
(enable_thread_event_reporting): Likewise.
(try_thread_db_load_1): Remove td_ta_event_addr, td_ta_set_event,
td_ta_clear_event, td_ta_event_getmsg, td_thr_event_enable
initializations.
(try_thread_db_load_1): Remove enable_thread_event_reporting call.
(disable_thread_event_reporting): Remove.
(record_thread): Adapt to thread_db_use_event removal.
(detach_thread): Remove.
(thread_db_detach): Adapt to thread_db_use_event removal.
(check_event): Remove.
(thread_db_wait): Adapt to thread events support removal.
(thread_db_mourn_inferior): Likewise.
(find_new_threads_callback): Likewise.
(find_new_threads_once): Likewise.
(thread_db_update_thread_list): Likewise.
|
|
Nowadays, GDB calls target_can_download_tracepoint at the entry of
download_tracepoint_locations, which is called by.
update_global_location_list. Sometimes, it is not needed to call
target_can_download_tracepoint at all because there is no tracepoint
created. In remote target, target_can_download_tracepoint send
qTStatus to the remote in order to know whether tracepoint can be
downloaded or not. This means some redundant qTStatus packets are
sent.
This patch is to teach GDB to call target_can_download_tracepoint
lazily, only on the moment there are tracepoint to download.
gdb.perf/single-step.exp (with a local patch to measure RSP packets)
shows the number of RSP packets is reduced because there is no
tracepoint at all, so GDB doesn't send qTStatus any more.
# of RSP packets
original patched
single-step rsp 1000 7000 6000
single-step rsp 2000 14000 12000
single-step rsp 3000 21000 18000
single-step rsp 4000 28000 24000
gdb:
2015-09-10 Yao Qi <yao.qi@linaro.org>
* breakpoint.c (download_tracepoint_locations): New local
can_download_tracepoint. Check the result of
target_can_download_tracepoint and save it in
can_download_tracepoint if there are tracepoints to download.
* linux-nat.h (enum tribool): Move it to ...
* common/common-types.h: ... here.
|
|
This is a patch I extracted from Pedro's C++ branch. It contains the
most trivial enum fixes, where an integer type/value was used instead
of the appropriate enum type/value. It fixes many C++ errors, since
in C++ you can't mix integers and enums implicitely.
Regardless of the C++ conversion, I think this is a good cleanup to make
use of the appropriate enum types.
Regression-tested on native x86_64.
gdb/ChangeLog:
* aarch64-linux-nat.c (aarch64_linux_can_use_hw_breakpoint): Use enum
type or value instead of integer.
(aarch64_linux_insert_watchpoint): Likewise.
(aarch64_linux_remove_watchpoint): Likewise.
* ada-lang.c (ada_op_print_tab): Likewise.
* amd64-linux-tdep.c (amd64_canonicalize_syscall): Likewise.
(amd64_linux_syscall_record_common): Likewise.
* arch-utils.c (target_byte_order_user): Likewise.
(default_byte_order): Likewise.
* arm-linux-nat.c (arm_linux_can_use_hw_breakpoint): Likewise.
(arm_linux_get_hwbp_type): Likewise.
(arm_linux_hw_watchpoint_initialize): Likewise.
(arm_linux_insert_watchpoint): Likewise.
* arm-linux-tdep.c (arm_canonicalize_syscall): Likewise.
(arm_linux_syscall_record): Likewise.
* breakpoint.c (update_watchpoint): Likewise.
(breakpoint_here_p): Likewise.
(bpstat_print): Likewise.
(enable_breakpoint_disp): Likewise.
* c-lang.c (c_op_print_tab): Likewise.
* cli/cli-decode.c (add_info_alias): Likewise.
* d-lang.c (d_op_print_tab): Likewise.
* eval.c (evaluate_subexp_standard): Likewise.
* f-exp.y (dot_ops): Likewise.
(f77_keywords): Likewise.
* f-lang.c (f_op_print_tab): Likewise.
* go-lang.c (go_op_print_tab): Likewise.
* guile/scm-breakpoint.c (gdbscm_make_breakpoint): Likewise.
* guile/scm-cmd.c (gdbscm_make_command): Likewise.
* guile/scm-param.c (gdbscm_make_parameter): Likewise.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Likewise.
* guile/scm-string.c (struct scm_to_stringn_data): Likewise.
(struct scm_from_stringn_data): Likewise.
* i386-linux-tdep.c (i386_canonicalize_syscall): Likewise.
* ia64-linux-nat.c (ia64_linux_insert_watchpoint): Likewise.
(ia64_linux_remove_watchpoint): Likewise.
(ia64_linux_can_use_hw_breakpoint): Likewise.
* infrun.c (print_stop_event): Likewise.
* jv-lang.c (java_op_print_tab): Likewise.
* linux-nat.c (linux_proc_xfer_partial): Likewise.
* linux-nat.h (struct lwp_info): Likewise.
* linux-thread-db.c (enable_thread_event): Likewise.
* m2-lang.c (m2_op_print_tab): Likewise.
* mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise.
(mi_cmd_stack_list_variables): Likewise.
* mi/mi-main.c (mi_cmd_trace_frame_collected): Likewise.
* mi/mi-out.c (mi_table_begin): Likewise.
(mi_table_header): Likewise.
* mips-linux-nat.c (mips_linux_can_use_hw_breakpoint): Likewise.
(mips_linux_insert_watchpoint): Likewise.
(mips_linux_remove_watchpoint): Likewise.
* nat/mips-linux-watch.c (mips_linux_watch_type_to_irw): Likewise.
* nat/mips-linux-watch.h (struct mips_watchpoint): Likewise.
(mips_linux_watch_type_to_irw): Likewise.
* nto-procfs.c (procfs_can_use_hw_breakpoint): Likewise.
(procfs_insert_hw_watchpoint): Likewise.
(procfs_remove_hw_watchpoint): Likewise.
(procfs_hw_watchpoint): Likewise.
(procfs_can_use_hw_breakpoint): Likewise.
(procfs_remove_hw_watchpoint): Likewise.
(procfs_insert_hw_watchpoint): Likewise.
* p-lang.c (pascal_op_print_tab): Likewise.
* ppc-linux-nat.c (ppc_linux_can_use_hw_breakpoint): Likewise.
* ppc-linux-tdep.c (ppu2spu_unwind_register): Likewise.
* ppc-sysv-tdep.c (get_decimal_float_return_value): Likewise.
* procfs.c (procfs_can_use_hw_breakpoint): Likewise.
(procfs_insert_watchpoint): Likewise.
(procfs_remove_watchpoint): Likewise.
* psymtab.c (recursively_search_psymtabs): Likewise.
* remote-m32r-sdi.c (m32r_can_use_hw_watchpoint): Likewise.
(m32r_insert_watchpoint): Likewise.
* remote-mips.c (mips_can_use_watchpoint): Likewise.
(mips_insert_watchpoint): Likewise.
(mips_remove_watchpoint): Likewise.
* remote.c (watchpoint_to_Z_packet): Likewise.
(remote_insert_watchpoint): Likewise.
(remote_remove_watchpoint): Likewise.
(remote_check_watch_resources): Likewise.
* s390-linux-nat.c (s390_insert_watchpoint): Likewise.
(s390_remove_watchpoint): Likewise.
(s390_can_use_hw_breakpoint): Likewise.
* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
* spu-linux-nat.c (spu_can_use_hw_breakpoint): Likewise.
* target.h (struct target_ops): Likewise.
* tilegx-tdep.c (tilegx_analyze_prologue): Likewise.
* ui-out.c (struct ui_out_hdr): Likewise.
(append_header_to_list): Likewise.
(get_next_header): Likewise.
(verify_field): Likewise.
(ui_out_begin): Likewise.
(ui_out_field_int): Likewise.
(ui_out_field_fmt_int): Likewise.
(ui_out_field_skip): Likewise.
(ui_out_field_string): Likewise.
(ui_out_field_fmt): Likewise.
* varobj.c (new_variable): Likewise.
* x86-nat.c (x86_insert_watchpoint): Likewise.
(x86_remove_watchpoint): Likewise.
(x86_can_use_hw_breakpoint): Likewise.
* xtensa-tdep.h (struct gdbarch_tdep): Likewise.
* inflow.c (enum gdb_has_a_terminal_flag_enum): Add name to
previously anonymous enumeration type..
* linux-record.h (enum gdb_syscall): Add gdb_sys_no_syscall
value.
* target-debug.h (target_debug_print_enum_target_hw_bp_type): New.
(target_debug_print_enum_bptype): New.
* target-delegates.c: Regenerate.
|
|
have_ptrace_getregset is a tri-state variable (-1, 0, 1), and we have
some conditions like "if (have_ptrace_getregset)", which is not correct.
I'll explain why it is not correct in the following example. This fix
to this problem to replace the test (have_ptrace_getregset) to test
(have_ptrace_getregset == 1) or (have_ptrace_getregset == -1) etc.
However Doug thinks it hinders readability
https://sourceware.org/ml/gdb-patches/2015-05/msg00692.html so I decide
to add a new enum tribool and change have_ptrace_getregset to it, in
order to make these tests more readable.
have_ptrace_getregset is initialised to -1, and is adjusted to 0 or 1 in
$ARCH_linux_read_description according to the capability of the kernel.
However, it is possible that have_ptrace_getregset is used before it is
set to 0 or 1, which means it is still -1. This is shown below.
(gdb) run
Starting program: gdb/testsuite/gdb.base/break
Breakpoint 2, amd64_linux_fetch_inferior_registers (ops=0xceaa80, regcache=0xe72000, regnum=16) at git/gdb/amd64-linux-nat.c:128
128 {
top?p have_ptrace_getregset
$1 = TRIBOOL_UNKNOWN
top?c
Continuing.
Breakpoint 2, amd64_linux_fetch_inferior_registers (ops=0xceaa80, regcache=0xe72000, regnum=16) at git/gdb/amd64-linux-nat.c:128
128 {
top?c
Continuing.
Breakpoint 1, x86_linux_read_description (ops=0xceaa80) at git/gdb/x86-linux-nat.c:117
117 {
PTRACE_GETREGSET command is used even GDB doesn't know whether
PTRACE_GETREGSET is supported or not. It is wrong, but works on x86.
However it doesn't work on arm-linux if the kernel doesn't support
PTRACE_GETREGSET at all. We'll get:
(gdb) run
Starting program: gdb/testsuite/gdb.base/break
warning: Unable to fetch general register.
PC register is not available
gdb:
2015-06-23 Yao Qi <yao.qi@linaro.org>
* amd64-linux-nat.c (amd64_linux_fetch_inferior_registers):
Check whether have_ptrace_getregset is TRIBOOL_TRUE explicitly.
(amd64_linux_store_inferior_registers): Likewise.
* arm-linux-nat.c (fetch_fpregister): Likewise.
(fetch_fpregs, store_fpregister): Likewise.
(store_fpregister, store_fpregs): Likewise.
(fetch_register, fetch_regs): Likewise.
(store_register, store_regs): Likewise.
(fetch_vfp_regs, store_vfp_regs): Likewise.
(arm_linux_read_description): Check have_ptrace_getregset is
TRIBOOL_UNKNOWN. Set have_ptrace_getregset to TRIBOOL_TRUE
or TRIBOOL_FALSE.
* i386-linux-nat.c (fetch_xstateregs): Check
have_ptrace_getregset is not TRIBOOL_TRUE.
(store_xstateregs): Likewise.
* linux-nat.c (have_ptrace_getregset): Change its type to
enum tribool.
* linux-nat.h (tribool): New enum.
* x86-linux-nat.c (x86_linux_read_description): Use enum tribool.
Check whether have_ptrace_getregset is TRIBOOL_TRUE.
|
|
I'll let arm-linux-nat.c to use PTRACE_GETREGSET if kernel supports,
so this patch is to move have_ptrace_getregset from x86-linux-nat.c
to linux-nat.c.
gdb:
2015-06-01 Yao Qi <yao.qi@linaro.org>
* x86-linux-nat.c (have_ptrace_getregset): Move it to ...
* linux-nat.c: ... here.
* x86-linux-nat.h (have_ptrace_getregset): Move the declaration
to ...
* linux-nat.h: ... here.
|
|
Both GDB and gdbserver had linux_stop_lwp functions with identical
declarations. This commit moves these to nat/linux-nat.h to allow
shared code to use the function.
gdb/ChangeLog:
* linux-nat.h (linux_stop_lwp): Move declaration to...
* nat/linux-nat.h (linux_stop_lwp): New declaration.
gdb/gdbserver/ChangeLog:
* linux-low.h (linux_stop_lwp): Remove declaration.
|
|
This commit introduces a new function, iterate_over_lwps, that
shared Linux code can use to call a function for each LWP that
matches certain criteria. This function already existed in GDB
and was in use by GDB's various low-level Linux x86 debug register
setters. An equivalent was written for gdbserver and gdbserver's
low-level Linux x86 debug register setters were modified to use
it.
gdb/ChangeLog:
* linux-nat.h: Include nat/linux-nat.h.
(iterate_over_lwps): Move declaration to nat/linux-nat.h.
* nat/linux-nat.h (struct lwp_info): New forward declaration.
(iterate_over_lwps_ftype): New typedef.
(iterate_over_lwps): New declaration.
* linux-nat.h (iterate_over_lwps): Update comment. Use
iterate_over_lwps_ftype. Update callback return value check.
gdb/gdbserver/ChangeLog:
* linux-low.h: Include nat/linux-nat.h.
* linux-low.c (iterate_over_lwps_args): New structure.
(iterate_over_lwps_filter): New function.
(iterate_over_lwps): Likewise.
* linux-x86-low.c (update_debug_registers_callback):
Update signature to what iterate_over_lwps expects.
Remove PID check that iterate_over_lwps now performs.
(x86_dr_low_set_addr): Use iterate_over_lwps.
(x86_dr_low_set_control): Likewise.
|
|
We're going to need the same enum as enum lwp_stop_reason in more
targets, so this promotes it to common code.
gdb/gdbserver/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
enum lwp_stop_reason -> enum target_stop_reason
* linux-low.c (check_stopped_by_breakpoint): Adjust.
(thread_still_has_status_pending_p, check_stopped_by_watchpoint)
(linux_wait_1, stuck_in_jump_pad_callback)
(move_out_of_jump_pad_callback, linux_resume_one_lwp)
(linux_stopped_by_watchpoint):
* linux-low.h (enum lwp_stop_reason): Delete.
(struct lwp_info) <stop_reason>: Now an enum target_stop_reason.
* linux-x86-low.c (x86_linux_prepare_to_resume): Adjust.
gdb/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
enum lwp_stop_reason -> enum target_stop_reason
* linux-nat.c (linux_resume_one_lwp, check_stopped_by_watchpoint)
(linux_nat_stopped_by_watchpoint, status_callback)
(linux_nat_wait_1): Adjust.
* linux-nat.h (enum lwp_stop_reason): Delete.
(struct lwp_info) <stop_reason>: Now an enum target_stop_reason.
* x86-linux-nat.c (x86_linux_prepare_to_resume): Adjust.
* target/waitstatus.h (enum target_stop_reason): New.
|
|
TL;DR - GDB can hang if something refreshes the thread list out of the
target while the target is running. GDB hangs inside td_ta_thr_iter.
The fix is to not use that libthread_db function anymore.
Long version:
Running the testsuite against my all-stop-on-top-of-non-stop series is
still exposing latent non-stop bugs.
I was originally seeing this with the multi-create.exp test, back when
we were still using libthread_db thread event breakpoints. The
all-stop-on-top-of-non-stop series forces a thread list refresh each
time GDB needs to start stepping over a breakpoint (to pause all
threads). That test hits the thread event breakpoint often, resulting
in a bunch of step-over operations, thus a bunch of thread list
refreshes while some threads in the target are running.
The commit adds a real non-stop mode test that triggers the issue,
based on multi-create.exp, that does an explicit "info threads" when a
breakpoint is hit. IOW, it does the same things the as-ns series was
doing when testing multi-create.exp.
The bug is a race, so it unfortunately takes several runs for the test
to trigger it. In fact, even when setting the test running in a loop,
it sometimes takes several minutes for it to trigger for me.
The race is related to libthread_db's td_ta_thr_iter. This is
libthread_db's entry point for walking the thread list of the
inferior.
Sometimes, when GDB refreshes the thread list from the target,
libthread_db's td_ta_thr_iter can somehow see glibc's thread list as a
cycle, and get stuck in an infinite loop.
The issue is that when a thread exits, its thread control structure in
glibc is moved from a "used" list to a "cache" list. These lists are
simply circular linked lists where the "next/prev" pointers are
embedded in the thread control structure itself. The "next" pointer
of the last element of the list points back to the list's sentinel
"head". There's only one set of "next/prev" pointers for both lists;
thus a thread can only be in one of the lists at a time, not in both
simultaneously.
So when thread C exits, simplifying, the following happens. A-C are
threads. stack_used and stack_cache are the list's heads.
Before:
stack_used -> A -> B -> C -> (&stack_used)
stack_cache -> (&stack_cache)
After:
stack_used -> A -> B -> (&stack_used)
stack_cache -> C -> (&stack_cache)
td_ta_thr_iter starts by iterating at the list's head's next, and
iterates until it sees a thread whose next pointer points to the
list's head again. Thus in the before case above, C's next points to
stack_used, indicating end of list. In the same case, the stack_cache
list is empty.
For each thread being iterated, td_ta_thr_iter reads the whole thread
object out of the inferior. This includes the thread's "next"
pointer.
In the scenario above, it may happen that td_ta_thr_iter is iterating
thread B and has already read B's thread structure just before thread
C exits and its control structure moves to the cached list.
Now, recall that td_ta_thr_iter is running in the context of GDB, and
there's no locking between GDB and the inferior. From it's local copy
of B, td_ta_thr_iter believes that the next thread after B is thread
C, so it happilly continues iterating to C, a thread that has already
exited, and is now in the stack cache list.
After iterating C, td_ta_thr_iter finds the stack_cache head, which
because it is not stack_used, td_ta_thr_iter assumes it's just another
thread. After this, unless the reverse race triggers, GDB gets stuck
in td_ta_thr_iter forever walking the stack_cache list, as no thread
in thatlist has a next pointer that points back to stack_used (the
terminating condition).
Before fully understanding the issue, I tried adding cycle detection
to GDB's td_ta_thr_iter callback. However, td_ta_thr_iter skips
calling the callback in some cases, which means that it's possible
that the callback isn't called at all, making it impossible for GDB to
break the loop. I did manage to get GDB stuck in that state more than
once.
Fortunately, we can avoid the issue altogether. We don't really need
td_ta_thr_iter for live debugging nowadays, given PTRACE_EVENT_CLONE.
We already know how to map and lwp id to a thread id without iterating
(thread_from_lwp), so use that more.
gdb/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_handle_extended_wait): Call
thread_db_notice_clone whenever a new clone LWP is detected.
(linux_stop_and_wait_all_lwps, linux_unstop_all_lwps): New
functions.
* linux-nat.h (thread_db_attach_lwp): Delete declaration.
(thread_db_notice_clone, linux_stop_and_wait_all_lwps)
(linux_unstop_all_lwps): Declare.
* linux-thread-db.c (struct thread_get_info_inout): Delete.
(thread_get_info_callback): Delete.
(thread_from_lwp): Use td_thr_get_info and record_thread.
(thread_db_attach_lwp): Delete.
(thread_db_notice_clone): New function.
(try_thread_db_load_1): If /proc is mounted and shows the
process'es task list, walk over all LWPs and call thread_from_lwp
instead of relying on td_ta_thr_iter.
(attach_thread): Don't call check_thread_signals here. Split the
tail part of the function (which adds the thread to the core GDB
thread list) to ...
(record_thread): ... this function. Call check_thread_signals
here.
(thread_db_wait): Don't call thread_db_find_new_threads_1. Always
call thread_from_lwp.
(thread_db_update_thread_list): Rename to ...
(thread_db_update_thread_list_org): ... this.
(thread_db_update_thread_list): New function.
(thread_db_find_thread_from_tid): Delete.
(thread_db_get_ada_task_ptid): Simplify.
* nat/linux-procfs.c: Include <sys/stat.h>.
(linux_proc_task_list_dir_exists): New function.
* nat/linux-procfs.h (linux_proc_task_list_dir_exists): Declare.
gdb/gdbserver/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* thread-db.c: Include "nat/linux-procfs.h".
(thread_db_init): Skip listing new threads if the kernel supports
PTRACE_EVENT_CLONE and /proc/PID/task/ is accessible.
gdb/testsuite/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* gdb.threads/multi-create-ns-info-thr.exp: New file.
|
|
Running the testsuite with a series that reimplements user-visible
all-stop behavior on top of a target running in non-stop mode revealed
problems related to event starvation avoidance.
For example, I see
gdb.threads/signal-while-stepping-over-bp-other-thread.exp failing.
What happens is that GDB core never gets to see the signal event. It
ends up processing the events for the same threads over an over,
because Linux's waitpid(-1, ...) returns that first task in the task
list that has an event, starving threads on the tail of the task list.
So I wrote a non-stop mode test originally inspired by
signal-while-stepping-over-bp-other-thread.exp, to stress this
independently of all-stop on top of non-stop. Fixing it required the
changes described below. The test will be added in a following
commit.
1) linux-nat.c has code in place that picks an event LWP at random out
of all that have had events. This is because on the kernel side,
"waitpid(-1, ...)" just walks the task list linearly looking for the
first that had an event. But, this code is currently only used in
all-stop mode. So with a multi-threaded program that has multiple
events triggering debug events in parallel, GDB ends up starving some
threads.
To make the event randomization work in non-stop mode too, the patch
makes us pull out all the already pending events on the kernel side,
with waitpid, before deciding which LWP to report to the core.
There's some code in linux_wait that takes care of leaving events
pending if they were for LWPs the caller is not interested in. The
patch moves that to linux_nat_filter_event, so that we only have one
place that leaves events pending. With that in place, conceptually,
the flow is simpler and more normalized:
#1 - walk the LWP list looking for an LWP with a pending event to report.
#2 - if no pending event, pull events out of the kernel, and store
them in the LWP structures as pending.
#3- goto #1.
2) Then, currently the event randomization code only considers SIGTRAP
(or trap-like) events. That means that if e.g., have have multiple
threads stepping in parallel that hit a breakpoint that needs stepping
over, and one gets a signal, the signal may end up never getting
processed, because GDB will always be giving priority to the SIGTRAPs.
The patch fixes this by making the randomization code consider all
kinds of pending events.
3) If multiple threads hit a breakpoint, we report one of those, and
"cancel" the others. Cancelling means decrementing the PC, and
discarding the event. If the next time the LWP is resumed the
breakpoint is still installed, the LWP should hit it again, and we'll
report the hit then. The problem I found is that this delays threads
from advancing too much, with the kernel potentially ending up
scheduling the same threads over and over, and others not advancing.
So the patch switches away from cancelling the breakpoints, and
instead remembering that the LWP had stopped for a breakpoint. If on
resume the breakpoint is still installed, we report it. If it's no
longer installed, we discard the pending event then. This is actually
how GDBserver used to handle this before d50171e4 (Teach linux
gdbserver to step-over-breakpoints), but with the difference that back
then we'd delay adjusting the PC until resuming, which made it so that
"info threads" could wrongly see threads with unadjusted PCs.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* breakpoint.c (hardware_breakpoint_inserted_here_p): New
function.
* breakpoint.h (hardware_breakpoint_inserted_here_p): New
declaration.
* linux-nat.c (linux_nat_status_is_event): Move higher up in file.
(linux_resume_one_lwp): Store the thread's PC. Adjust to clear
stop_reason.
(check_stopped_by_watchpoint): New function.
(save_sigtrap): Reimplement.
(linux_nat_stopped_by_watchpoint): Adjust.
(linux_nat_lp_status_is_event): Delete.
(stop_wait_callback): Only call save_sigtrap after storing the
pending status.
(status_callback): If the thread had been stopped for a breakpoint
that has since been removed, discard the event and resume the LWP.
(count_events_callback, select_event_lwp_callback): Use
lwp_status_pending_p instead of linux_nat_lp_status_is_event.
(cancel_breakpoint): Rename to ...
(check_stopped_by_breakpoint): ... this. Record whether the LWP
stopped for a software breakpoint or hardware breakpoint.
(select_event_lwp): Only give preference to the stepping LWP in
all-stop mode. Adjust comments.
(stop_and_resume_callback): Remove references to new_pending_p.
(linux_nat_filter_event): Likewise. Leave exit events of the
leader thread pending here. Handle signal short circuiting here.
Only call save_sigtrap after storing the pending waitstatus.
(linux_nat_wait_1): Remove 'retry' label. Remove references to
new_pending. Don't handle leaving events the caller is not
interested in pending here, nor handle signal short-circuiting
here. Also give equal priority to all LWPs that have had events
in non-stop mode. If reporting a software breakpoint event,
unadjust the LWP's PC.
* linux-nat.h (enum lwp_stop_reason): New.
(struct lwp_info) <stop_pc>: New field.
(struct lwp_info) <stopped_by_watchpoint>: Delete field.
(struct lwp_info) <stop_reason>: New field.
* x86-linux-nat.c (x86_linux_prepare_to_resume): Adjust.
|
|
... instead of relying on libthread_db.
I wrote a test that attaches to a program that constantly spawns
short-lived threads, which exposed several issues. This is one of
them.
On Linux, we need to attach to all threads of a process (thread group)
individually. We currently rely on libthread_db to list the threads,
but that is problematic, because libthread_db relies on reading data
structures out of the inferior (which may well be corrupted). If
threads are being created or exiting just while we try to attach, we
may trip on inconsistencies in the inferior's thread list. To work
around that, when we see a seemingly corrupt list, we currently retry
a few times:
static void
thread_db_find_new_threads_2 (ptid_t ptid, int until_no_new)
{
...
if (until_no_new)
{
/* Require 4 successive iterations which do not find any new threads.
The 4 is a heuristic: there is an inherent race here, and I have
seen that 2 iterations in a row are not always sufficient to
"capture" all threads. */
...
That heuristic may well fail, and when it does, we end up with threads
in the program that aren't under GDB's control. That's obviously bad
and results in quite mistifying failures, like e.g., the process dying
for seeminly no reason when a thread that wasn't attached trips on a
breakpoint.
There's really no reason to rely on libthread_db for this nowadays
when we have /proc mounted. In that case, which is the usual case, we
can list the LWPs from /proc/PID/task/. In fact, GDBserver is already
doing this. The patch factors out that code that knows to walk the
task/ directory out of GDBserver, and makes GDB use it too.
Like GDBserver, the patch makes GDB attach to LWPs and _not_ wait for
them to stop immediately. Instead, we just tag the LWP as having an
expected stop. Because we can only set the ptrace options when the
thread stops, we need a new flag in the lwp structure to keep track of
whether we've already set the ptrace options, just like in GDBserver.
Note that nothing issues any ptrace command to the threads between the
PTRACE_ATTACH and the stop, so this is safe (unlike one scenario
described in gdbserver's linux-low.c).
When we attach to a program that has threads exiting while we attach,
it's easy to race with a thread just exiting as we try to attach to
it, like:
#1 - get current list of threads
#2 - attach to each listed thread
#3 - ooops, attach failed, thread is already gone
As this is pretty normal, we shouldn't be issuing a scary warning in
step #3.
When #3 happens, PTRACE_ATTACH usually fails with ESRCH, but sometimes
we'll see EPERM as well. That happens when the kernel still has the
thread in its task list, but the thread is marked as dead.
Unfortunately, EPERM is ambiguous and we'll get it also on other
scenarios where the thread isn't dead, and in those cases, it's useful
to get a warning. To distiguish the cases, when we get an EPERM
failure, we open /proc/PID/status, and check the thread's state -- if
the /proc file no longer exists, or the state is "Z (Zombie)" or "X
(Dead)", we ignore the EPERM error silently; otherwise, we'll warn.
Unfortunately, there seems to be a kernel race here. Sometimes I get
EPERM, and then the /proc state still indicates "R (Running)"... If
we wait a bit and retry, we do end up seeing X or Z state, or get an
ESRCH. I thought of making GDB retry the attach a few times, but even
with a 500ms wait and 4 retries, I still see the warning sometimes. I
haven't been able to identify the kernel path that causes this yet,
but in any case, it looks like a kernel bug to me. As this just
results failure to suppress a warning that we've been printing since
about forever anyway, I'm just making the test cope with it, and issue
an XFAIL.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_attach_fail_reason_string): Move to
nat/linux-ptrace.c, and rename.
(linux_attach_lwp): Update comment.
(attach_proc_task_lwp_callback): New function.
(linux_attach): Adjust to rename and use
linux_proc_attach_tgid_threads.
(linux_attach_fail_reason_string): Delete declaration.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (attach_proc_task_lwp_callback): New function.
(linux_nat_attach): Use linux_proc_attach_tgid_threads.
(wait_lwp, linux_nat_filter_event): If not set yet, set the lwp's
ptrace option flags.
* linux-nat.h (struct lwp_info) <must_set_ptrace_flags>: New
field.
* nat/linux-procfs.c: Include <dirent.h>.
(linux_proc_get_int): New parameter "warn". Handle it.
(linux_proc_get_tgid): Adjust.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this.
(linux_proc_pid_get_state): New function, factored out from
(linux_proc_pid_has_state): ... this. Add new parameter "warn"
and handle it.
(linux_proc_pid_is_gone): New function.
(linux_proc_pid_is_stopped): Adjust.
(linux_proc_pid_is_zombie_maybe_warn)
(linux_proc_pid_is_zombie_nowarn): New functions.
(linux_proc_pid_is_zombie): Use
linux_proc_pid_is_zombie_maybe_warn.
(linux_proc_attach_tgid_threads): New function.
* nat/linux-procfs.h (linux_proc_get_tgid): Update comment.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this, and update comment.
(linux_proc_pid_is_gone): New declaration.
(linux_proc_pid_is_zombie): Update comment.
(linux_proc_pid_is_zombie_nowarn): New declaration.
(linux_proc_attach_lwp_func): New typedef.
(linux_proc_attach_tgid_threads): New declaration.
* nat/linux-ptrace.c (linux_ptrace_attach_fail_reason): Adjust to
use nowarn functions.
(linux_ptrace_attach_fail_reason_string): Move here from
gdbserver/linux-low.c and rename.
(ptrace_supports_feature): If the current ptrace options are not
known yet, check them now, instead of asserting.
* nat/linux-ptrace.h (linux_ptrace_attach_fail_reason_string):
Declare.
|
|
gdb/ChangeLog:
Update year range in copyright notice of all files.
|
|
|
|
Replace TIDGET with ptid_get_lwp.
Replace GET_LWP with ptid_get_lwp.
* aix-thread.c (BUILD_THREAD, BUILD_LWP): Remove.
Replace BUILD_THREAD with ptid_build.
Replace BUILD_LWP with ptid_build.
Replace PIDGET with ptid_get_pid.
Replace TIDGET with ptid_get_lwp.
* alphabsd-nat.c: Replace PIDGET with ptid_get_pid.
* amd64-linux-nat.c: Replace PIDGET with ptid_get_pid.
Replace TIDGET with ptid_get_lwp.
* amd64bsd-nat.c: Replace PIDGET with ptid_get_pid.
* arm-linux-nat.c: Replace PIDGET with ptid_get_pid.
Replace TIDGET with ptid_get_lwp.
Replace GET_LWP with ptid_get_lwp.
* armnbsd-nat.c: Replace PIDGET with ptid_get_pid.
* auxv.c: Likewise.
* breakpoint.c: Likewise.
* common/ptid.c (ptid_is_pid): Condense check for
null_ptid and minus_one_ptid.
(ptid_lwp_p): New function.
(ptid_tid_p): New function.
* common/ptid.h: Update comments for accessors.
(ptid_lwp_p): New prototype.
(ptid_tid_p): New prototype.
* defs.h (PIDGET, TIDGET, MERGEPID): Do not define.
* gcore.c: Replace PIDGET with ptid_get_pid.
* gdbthread.h: Likewise.
* gnu-nat.c: Likewise.
* hppa-linux-nat.c: Replace PIDGET with ptid_get_pid.
Replace TIDGET with ptid_get_lwp.
* hppabsd-nat.c: Replace PIDGET with ptid_get_pid.
* hppanbsd-nat.c: Likewise.
* i386-linux-nat.c: Replace PIDGET with ptid_get_pid.
Replace TIDGET with ptid_get_lwp.
* i386bsd-nat.c: Replace PIDGET with ptid_get_pid.
* ia64-linux-nat.c: Replace PIDGET with ptid_get_pid.
* infcmd.c: Likewise.
* inferior.h: Likewise.
* inflow.c: Likewise.
* infrun.c: Likewise.
* linux-fork.c: Likewise.
* linux-nat.c: Replace PIDGET with ptid_get_pid.
Replace GET_PID with ptid_get_pid.
Replace is_lwp with ptid_lwp_p.
Replace GET_LWP with ptid_get_lwp.
Replace BUILD_LWP with ptid_build.
|
|
gdbserver use it.
gdb/
* Makefile.in (HFILES_NO_SRCDIR): Add nat/linux-nat.h and
nat/linux-waitpid.h.
(linux-waitpid.o): New object file rule.
* common/linux-ptrace.c: Include nat/linux-waitpid.h.
(current_ptrace_options): Moved from linux-nat.c.
(linux_ptrace_test_ret_to_nx): Use type casts for ptrace
parameters.
(linux_fork_to_function): New function.
(linux_grandchild_function): Likewise.
(linux_child_function): Likewise.
(linux_check_ptrace_features): New function, heavily
based on linux-nat.c:linux_test_for_tracefork.
(linux_enable_event_reporting): New function.
(ptrace_supports_feature): Likewise.
(linux_supports_tracefork): Likewise.
(linux_supports_traceclone): Likewise.
(linux_supports_tracevforkdone): Likewise.
(linux_supports_tracesysgood): Likewise.
* common/linux-ptrace.h (HAS_NOMMU): Moved from
gdbserver/linux-low.c.
(linux_enable_event_reporting): New declaration.
(linux_supports_tracefork): Likewise.
(linux_supports_traceclone): Likewise.
(linux_supports_tracevforkdone): Likewise.
(linux_supports_tracesysgood): Likewise.
* config.in (PTRACE_TYPE_ARG4): Regenerate.
* config/aarch64/linux.mh (NATDEPFILES): Add linux-waitpid.o.
* config/alpha/alpha-linux.mh (NATDEPFILES): Likewise.
* config/arm/linux.mh (NATDEPFILES): Likewise.
* config/i386/linux.mh (NATDEPFILES): Likewise.
* config/i386/linux64.mh (NATDEPFILES): Likewise.
* config/ia64/linux.mh (NATDEPFILES): Likewise.
* config/m32r/linux.mh (NATDEPFILES): Likewise.
* config/m68k/linux.mh (NATDEPFILES): Likewise.
* config/mips/linux.mh (NATDEPFILES): Likewise.
* config/pa/linux.mh (NATDEPFILES): Likewise..
* config/powerpc/linux.mh (NATDEPFILES): Likewise..
* config/powerpc/ppc64-linux.mh (NATDEPFILES): Likewise.
* config/powerpc/spu-linux.mh (NATDEPFILES): Likewise.
* config/sparc/linux.mh (NATDEPFILES): Likewise.
* config/sparc/linux64.mh (NATDEPFILES): Likewise.
* config/tilegx/linux.mh (NATDEPFILES): Likewise.
* config/xtensa/linux.mh (NATDEPFILES): Likewise.
* configure.ac (AC_CACHE_CHECK): Add void * to the list of
ptrace's 4th argument's types.
Check the type of PTRACE_TYPE_ARG4.
* configure: Regenerate.
* linux-nat.c: Include nat/linux-nat.h and nat/linux-waitpid.h.
(SYSCALL_SIGTRAP): Moved to nat/linux-nat.h.
(linux_supports_tracefork_flag): Remove.
(linux_supports_tracesysgood_flag): Likewise.
(linux_supports_tracevforkdone_flag): Likewise.
(current_ptrace_options): Moved to
common/linux-ptrace.c.
(linux_tracefork_child): Remove.
(my_waitpid): Remove.
(linux_test_for_tracefork): Renamed to
linux_check_ptrace_features and moved to common/linux-ptrace.c.
(linux_test_for_tracesysgood): Remove.
(linux_supports_tracesysgood): Remove.
(linux_supports_tracefork): Remove.
(linux_supports_tracevforkdone): Remove.
(linux_enable_tracesysgood): Remove.
(linux_enable_event_reporting): Remove.
(linux_init_ptrace): New function.
(linux_child_post_attach): Call linux_init_ptrace.
(linux_child_post_startup_inferior): Call linux_init_ptrace.
(linux_child_follow_fork): Call linux_supports_tracefork
and linux_supports_tracevforkdone.
(linux_child_insert_fork_catchpoint): Call
linux_supports_tracefork.
(linux_child_insert_vfork_catchpoint): Likewise.
(linux_child_set_syscall_catchpoint): Call
linux_supports_tracesysgood.
(lin_lwp_attach_lwp): Call linux_supports_tracefork.
* nat/linux-nat.h: New file.
* nat/linux-waitpid.c: New file.
* nat/linux-waitpid.h: New file.
gdb/gdbserver/
* Makefile.in: Explain why ../target and ../nat are not
listed as include file search paths.
(linux-waitpid.o): New object file rule.
* configure.srv (srv_native_linux_obj): New variable.
Replace all occurrences of linux native object files with
$srv_native_linux_obj.
* linux-low.c: Include nat/linux-nat.h and nat/linux-waitpid.h.
(HAS_NOMMU): Move defining logic to common/linux-ptrace.c.
(linux_enable_event_reporting): Remove declaration.
(my_waitpid): Moved to common/linux-waitpid.c.
(linux_wait_for_event): Pass ptid when calling
linux_enable_event_reporting.
(linux_supports_tracefork_flag): Remove.
(linux_enable_event_reporting): Likewise.
(linux_tracefork_grandchild): Remove.
(STACK_SIZE): Moved to common/linux-ptrace.c.
(linux_tracefork_child): Remove.
(linux_test_for_tracefork): Remove.
(linux_look_up_symbols): Call linux_supports_traceclone.
(initialize_low): Remove call to linux_test_for_tracefork.
* linux-low.h (PTRACE_TYPE_ARG3): Move to
common/linux-ptrace.h.
(PTRACE_TYPE_ARG4): Likewise.
Include linux-ptrace.h.
|
|
* Makefile.in (SFILES): Add common/target-common.c.
Add common/target-common.h to headers.
(COMMON_OBS): Add target-common.o.
(target-common.o): New target.
* linux-nat.h (resume_kind): Move to common/target-common.h.
* target.c (target_waitstatus_to_string): Move to
common/target-common.c.
* target.h: Include target-common.h.
(target_waitkind): Move to common/target-common.h.
(target_waitstatus): Likewise.
(TARGET_WNOHANG): Likewise.
* common/target-common.c: New file.
* common/target-common.h: New file.
gdb/gdbserver/
* Makefile.in (SFILES): /common/target-common.c.
(OBS): Add target-common.o.
(server_h): Add $(srcdir)/../common/target-common.h.
(target-common.o): New target.
* server.c (queue_stop_reply_callback): Free
status string after use.
* target.c (target_waitstatus_to_string): Remove.
* target.h: Include target-common.h.
(resume_kind): Likewise.
(target_waitkind): Likewise.
(target_waitstatus): Likewise.
(TARGET_WNOHANG): Likewise.
|
|
process.
While reviewing the native AArch64 patch, I noticed a problem:
On 02/06/2013 08:46 PM, Pedro Alves wrote:
>
>> > +static void
>> > +aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
>> > +{
>> > + struct arch_lwp_info *info = lwp->arch_private;
>> > +
>> > + /* NULL means this is the main thread still going through the shell,
>> > + or, no watchpoint has been set yet. In that case, there's
>> > + nothing to do. */
>> > + if (info == NULL)
>> > + return;
>> > +
>> > + if (DR_HAS_CHANGED (info->dr_changed_bp)
>> > + || DR_HAS_CHANGED (info->dr_changed_wp))
>> > + {
>> > + int tid = GET_LWP (lwp->ptid);
>> > + struct aarch64_debug_reg_state *state = aarch64_get_debug_reg_state ();
> Hmm. This is always fetching the debug_reg_state of
> the current inferior, but may not be the inferior of lwp.
> I see the same bug on x86. Sorry about that. I'll fix it.
A natural fix would be to make xxx_get_debug_reg_state take an
inferior argument, but that doesn't work because of the case where we
detach breakpoints/watchpoints from the child fork, at a time there's
no inferior for the child fork at all. We do a nasty hack in
i386_inferior_data_get, but that relies on all callers pointing the
current inferior to the correct inferior, which isn't actually being
done by all callers, and I don't think we want to enforce that -- deep
in the bowls of linux-nat.c, there are many cases we resume lwps
behind the scenes, and it's be better to not have that code rely on
global state (as it doesn't today).
The fix is to decouple the watchpoints code from inferiors, making it
track target processes instead. This way, we can freely keep track of
the watchpoint mirrors for these processes behind the core's back.
Checkpoints also play dirty tricks with swapping the process behind
the inferior, so they get special treatment too in the patch (which
just amounts to calling a new hook). Instead of the old hack in
i386_inferior_data_get, where we returned a copy of the current
inferior's debug registers mirror, as soon as we detect a fork in the
target, we copy the debug register mirror from the parent to the child
process.
I don't have an old kernel handy to test, but I stepped through gdb doing
the watchpoint removal in the fork child in the watchpoint-fork test
seeing that the debug registers end up cleared in the child.
I didn't find the need for linux_nat_iterate_watchpoint_lwps. If
we use plain iterate_over_lwps instead, what happens is that
when removing watchpoints, that iterate_over_lwps doesn't actually
iterate over anything, since the fork child is not added to the
lwp list until later, at detach time, in linux_child_follow_fork.
And if we don't iterate over that lwp, we don't mark its debug
registers as needing update. But linux_child_follow_fork takes
care of doing that explicitly:
child_lp = add_lwp (inferior_ptid);
child_lp->stopped = 1;
child_lp->last_resume_kind = resume_stop;
make_cleanup (delete_lwp_cleanup, child_lp);
/* CHILD_LP has new PID, therefore linux_nat_new_thread is not called for it.
See i386_inferior_data_get for the Linux kernel specifics.
Ensure linux_nat_prepare_to_resume will reset the hardware debug
registers. It is done by the linux_nat_new_thread call, which is
being skipped in add_lwp above for the first lwp of a pid. */
gdb_assert (num_lwps (GET_PID (child_lp->ptid)) == 1);
if (linux_nat_new_thread != NULL)
linux_nat_new_thread (child_lp);
if (linux_nat_prepare_to_resume != NULL)
linux_nat_prepare_to_resume (child_lp);
ptrace (PTRACE_DETACH, child_pid, 0, 0);
so unless I'm missing something (quite possible) it ends up all
the same. But, the !detach-on-fork, and the "follow-fork child" paths
should also call linux_nat_new_thread, and they don't presently. It
seems to me in those cases we're not clearing debug regs correctly
when that's needed. Instead of copying that bit that works around
add_lwp bypassing the linux_nat_new_thread call, I thought it'd
be better to add an add_initial_lwp call to be used in the case we
really need to bypass linux_nat_new_thread, and make
add_lwp always call linux_nat_new_thread.
i386_cleanup_dregs is rewritten to forget about the current process
debug mirrors, which takes cares of other i386 ports. Only a couple
of extra tweaks here and there were needed, as some targets wheren't
actually calling i386_cleanup_dregs.
Tested on Fedora 17 x86_64 -m64/-m32.
GDBserver already fetches the i386_debug_reg_state from the right
process, and, it doesn't handle forks at all, so no fix is needed over
there.
gdb/
2013-02-13 Pedro Alves <palves@redhat.com>
* amd64-linux-nat.c (update_debug_registers_callback):
Update comment.
(amd64_linux_dr_set_control, amd64_linux_dr_set_addr): Use
iterate_over_lwps.
(amd64_linux_prepare_to_resume): Pass the lwp's pid to
i386_debug_reg_state.
(amd64_linux_new_fork): New function.
(_initialize_amd64_linux_nat): Install amd64_linux_new_fork as
linux_nat_new_fork hook, and i386_forget_process as
linux_nat_forget_process hook.
* i386-linux-nat.c (update_debug_registers_callback):
Update comment.
(amd64_linux_dr_set_control, amd64_linux_dr_set_addr): Use
iterate_over_lwps.
(i386_linux_prepare_to_resume): Pass the lwp's pid to
i386_debug_reg_state.
(i386_linux_new_fork): New function.
(_initialize_i386_linux_nat): Install i386_linux_new_fork as
linux_nat_new_fork hook, and i386_forget_process as
linux_nat_forget_process hook.
* i386-nat.c (i386_init_dregs): Delete.
(i386_inferior_data, struct i386_inferior_data):
Delete.
(struct i386_process_info): New.
(i386_process_list): New global.
(i386_find_process_pid, i386_add_process, i386_process_info_get):
New functions.
(i386_inferior_data_get): Delete.
(i386_process_info_get): New function.
(i386_debug_reg_state): New parameter 'pid'. Reimplement.
(i386_forget_process): New function.
(i386_cleanup_dregs): Rewrite.
(i386_update_inferior_debug_regs, i386_insert_watchpoint)
(i386_remove_watchpoint, i386_region_ok_for_watchpoint)
(i386_stopped_data_address, i386_insert_hw_breakpoint)
(i386_remove_hw_breakpoint): Adjust to pass the current process id
to i386_debug_reg_state.
(i386_use_watchpoints): Don't register inferior data.
* i386-nat.h (i386_debug_reg_state): Add new 'pid' parameter, and
adjust comment.
(i386_forget_process): Declare.
* linux-fork.c (delete_fork): Call linux_nat_forget_process.
* linux-nat.c (linux_nat_new_fork, linux_nat_forget_process_hook):
New static globals.
(linux_child_follow_fork): Don't call linux_nat_new_thread here.
(add_initial_lwp): New, factored out from ...
(add_lwp): ... this. Don't check the number of lwps before
calling linux_nat_new_thread.
(linux_nat_iterate_watchpoint_lwps): Delete.
(linux_nat_attach): Use add_initial_lwp instead of add_lwp.
(linux_handle_extended_wait): Call the linux_nat_new_fork hook on
forks and vforks.
(linux_nat_wait_1): Use add_initial_lwp instead of add_lwp for the
initial lwp.
(linux_nat_kill, linux_nat_mourn_inferior): Call
linux_nat_forget_process.
(linux_nat_set_new_fork, linux_nat_set_forget_process)
(linux_nat_forget_process): New functions.
* linux-nat.h (linux_nat_iterate_watchpoint_lwps_ftype): Delete
type.
(linux_nat_iterate_watchpoint_lwps): Delete declaration.
(linux_nat_new_fork_ftype, linux_nat_forget_process_ftype): New
types.
(linux_nat_set_new_fork, linux_nat_set_forget_process)
(linux_nat_forget_process): New declarations.
* amd64fbsd-nat.c (super_mourn_inferior): New global.
(amd64fbsd_mourn_inferior): New function.
(_initialize_amd64fbsd_nat): Override to_mourn_inferior.
* windows-nat.c (windows_detach): Call i386_cleanup_dregs.
|
|
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
|
|
* linux-nat.c (resume_lwp, linux_nat_resume): Remove LP->SIGINFO
clearing.
(save_siginfo): Remove.
(stop_wait_callback, linux_nat_filter_event): Remove the save_siginfo
call.
(resume_stopped_resumed_lwps): Remove LP->SIGINFO clearing.
(linux_nat_get_siginfo): Use PTRACE_GETSIGINFO.
* linux-nat.h (struct lwp_info): Remove field siginfo.
|
|
Code cleanup for the next patch.
* arm-linux-nat.c (arm_linux_stopped_data_address): Change variable
siginfo_p to siginfo, update its users incl. the linux_nat_get_siginfo
call for it.
* ia64-linux-nat.c (ia64_linux_stopped_data_address): Likewise.
(ia64_linux_stopped_data_address):
* linux-nat.c (linux_nat_get_siginfo): Add parameter siginfo, change
the return value.
* linux-nat.h (linux_nat_get_siginfo): Likewise.
* ppc-linux-nat.c (ppc_linux_stopped_data_address): Change variable
siginfo_p to siginfo, update its users incl. the linux_nat_get_siginfo
call for it.
|
|
gdb/
* amd64-linux-nat.c (amd64_linux_siginfo_fixup): Use siginfo_t instead
of struct siginfo.
* arm-linux-nat.c (arm_linux_stopped_data_address): Likewise.
* ia64-linux-nat.c (ia64_linux_stopped_data_address): Likewise.
* linux-nat.c (linux_nat_siginfo_fixup, siginfo_fixup)
(linux_xfer_siginfo, linux_nat_set_siginfo_fixup)
(linux_nat_get_siginfo): Likewise.
* linux-nat.h (struct lwp_info, linux_nat_set_siginfo_fixup)
(linux_nat_get_siginfo): Likewise.
* linux-tdep.c (linux_get_siginfo_type): Likewise.
* ppc-linux-nat.c (ppc_linux_stopped_data_address): Likewise.
* procfs.c (gdb_siginfo_t): Likewise.
gdbserver/
* linux-arm-low.c (arm_stopped_by_watchpoint): Use siginfo_t instead of
struct siginfo.
* linux-low.c (siginfo_fixup, linux_xfer_siginfo): Likewise.
* linux-x86-low.c (x86_siginfo_fixup): Likewise.
* linux-low.h: Include <signal.h>.
(struct siginfo): Remove forward declaration.
(struct linux_target_ops) <siginfo_fixup>: Use siginfo_t instead of
struct siginfo.
|
|
Code cleanup.
* common/linux-osdata.c (linux_common_core_of_thread): New function
comment.
* linux-nat.c (linux_nat_wait_1): Replace linux_nat_core_of_thread_1
call by linux_common_core_of_thread.
(linux_nat_core_of_thread_1): Remove.
* linux-nat.h (linux_nat_core_of_thread_1): Remove declaration.
* linux-thread-db.c: Include linux-osdata.h.
(update_thread_core): Replace linux_nat_core_of_thread_1 call by
linux_common_core_of_thread.
|