aboutsummaryrefslogtreecommitdiff
path: root/gdb/infrun.c
AgeCommit message (Collapse)AuthorFilesLines
2014-03-30 * infrun.c (set_last_target_status): New function.Doug Evans1-2/+10
(handle_inferior_event): Call it.
2014-03-21normal_stop: Extend and clarify comment.Pedro Alves1-6/+10
Explain better why we skip saying "Switching to ..." in non-stop mode. gdb/ 2014-03-21 Pedro Alves <palves@redhat.com> * infrun.c (normal_stop): Extend comment.
2014-03-20Handle multiple step-overs.Pedro Alves1-104/+165
This test fails with current mainline. If the program stopped for a breakpoint in thread 1, and then the user switches to thread 2, and resumes the program, GDB first switches back to thread 1 to step it over the breakpoint, in order to make progress. However, that logic only considers the last reported event, assuming only one thread needs that stepping over dance. That's actually not true when we play with scheduler-locking. The patch adds an example to the testsuite of multiple threads needing a step-over before the stepping thread can be resumed. With current mainline, the program re-traps the same breakpoint it had already trapped before. E.g.: Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99 99 wait_threads (); /* set wait-threads breakpoint here */ (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint info threads Id Target Id Frame 3 Thread 0x7ffff77c9700 (LWP 4310) "multiple-step-o" 0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43 2 Thread 0x7ffff7fca700 (LWP 4309) "multiple-step-o" 0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60 * 1 Thread 0x7ffff7fcb740 (LWP 4305) "multiple-step-o" main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: info threads shows all threads set scheduler-locking on (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking on break 44 Breakpoint 3 at 0x4007d3: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 44. (gdb) break 61 Breakpoint 4 at 0x40082d: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 61. (gdb) thread 3 [Switching to thread 3 (Thread 0x7ffff77c9700 (LWP 4310))] #0 0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43 43 (*myp) ++; (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 3 continue Continuing. Breakpoint 3, child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:44 44 callme (); /* set breakpoint thread 3 here */ (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 3 p *myp = 0 $1 = 0 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 3 thread 2 [Switching to thread 2 (Thread 0x7ffff7fca700 (LWP 4309))] #0 0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60 60 (*myp) ++; (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 2 continue Continuing. Breakpoint 4, child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:61 61 callme (); /* set breakpoint thread 2 here */ (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 2 p *myp = 0 $2 = 0 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 2 thread 1 [Switching to thread 1 (Thread 0x7ffff7fcb740 (LWP 4305))] #0 main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99 99 wait_threads (); /* set wait-threads breakpoint here */ (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 1 set scheduler-locking off (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking off At this point all thread are stopped for a breakpoint that needs stepping over. (gdb) step Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99 99 wait_threads (); /* set wait-threads breakpoint here */ (gdb) FAIL: gdb.threads/multiple-step-overs.exp: step But that "step" retriggers the same breakpoint instead of making progress. The patch teaches GDB to step over all breakpoints of all threads before resuming the stepping thread. Tested on x86_64 Fedora 17, against pristine mainline, and also my branch that implements software single-stepping on x86. gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (prepare_to_proceed): Delete. (thread_still_needs_step_over): New function. (find_thread_needs_step_over): New function. (proceed): If the current thread needs a step-over, set its steping_over_breakpoint flag. Adjust to use find_thread_needs_step_over instead of prepare_to_proceed. (process_event_stop_test): For BPSTAT_WHAT_STOP_NOISY and BPSTAT_WHAT_STOP_SILENT, assume the thread stopped for a breakpoint. (switch_back_to_stepped_thread): Step over breakpoints of all threads not the stepping thread, before switching back to the stepping thread. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/multiple-step-overs.c: New file. * gdb.threads/multiple-step-overs.exp: New file. * gdb.threads/signal-while-stepping-over-bp-other-thread.exp: Adjust expected infrun debug output.
2014-03-20Fix for even more missed events; eliminate thread-hop code.Pedro Alves1-197/+111
Even with deferred_step_ptid out of the way, GDB can still lose watchpoints. If a watchpoint triggers and the PC points to an address where a thread-specific breakpoint for another thread is set, the thread-hop code triggers, and we lose the watchpoint: if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) { int thread_hop_needed = 0; struct address_space *aspace = get_regcache_aspace (get_thread_regcache (ecs->ptid)); /* Check if a regular breakpoint has been hit before checking for a potential single step breakpoint. Otherwise, GDB will not see this breakpoint hit when stepping onto breakpoints. */ if (regular_breakpoint_inserted_here_p (aspace, stop_pc)) { if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid)) thread_hop_needed = 1; ^^^^^^^^^^^^^^^^^^^^^ } And on software single-step targets, even without a thread-specific breakpoint in the way, here in the thread-hop code: else if (singlestep_breakpoints_inserted_p) { ... if (!ptid_equal (singlestep_ptid, ecs->ptid) && in_thread_list (singlestep_ptid)) { /* If the PC of the thread we were trying to single-step has changed, discard this event (which we were going to ignore anyway), and pretend we saw that thread trap. This prevents us continuously moving the single-step breakpoint forward, one instruction at a time. If the PC has changed, then the thread we were trying to single-step has trapped or been signalled, but the event has not been reported to GDB yet. There might be some cases where this loses signal information, if a signal has arrived at exactly the same time that the PC changed, but this is the best we can do with the information available. Perhaps we should arrange to report all events for all threads when they stop, or to re-poll the remote looking for this particular thread (i.e. temporarily enable schedlock). */ CORE_ADDR new_singlestep_pc = regcache_read_pc (get_thread_regcache (singlestep_ptid)); if (new_singlestep_pc != singlestep_pc) { enum gdb_signal stop_signal; if (debug_infrun) fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread," " but expected thread advanced also\n"); /* The current context still belongs to singlestep_ptid. Don't swap here, since that's the context we want to use. Just fudge our state and continue. */ stop_signal = ecs->event_thread->suspend.stop_signal; ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; ecs->ptid = singlestep_ptid; ecs->event_thread = find_thread_ptid (ecs->ptid); ecs->event_thread->suspend.stop_signal = stop_signal; stop_pc = new_singlestep_pc; } else { if (debug_infrun) fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread\n"); thread_hop_needed = 1; stepping_past_singlestep_breakpoint = 1; saved_singlestep_ptid = singlestep_ptid; } } } we either end up with thread_hop_needed, ignoring the watchpoint SIGTRAP, or switch to the stepping thread, again ignoring that the SIGTRAP could be for some other event. The new test added by this patch exercises both paths. So the fix is similar to the deferred_step_ptid fix -- defer the thread hop to _after_ the SIGTRAP had a change of passing through the regular bpstat handling. If the wrong thread hits a breakpoint, we'll just end up with BPSTAT_WHAT_SINGLE, and if nothing causes a stop, keep_going starts a step-over. Most of the stepping_past_singlestep_breakpoint mechanism is really not necessary -- setting the thread to step over a breakpoint with thread->trap_expected is sufficient to keep all other threads locked. It's best to still keep the flag in some form though, because when we get to keep_going, the software single-step breakpoint we need to step over is already gone -- an optimization done by a follow up patch will check whether a step-over is still be necessary by looking to see whether the breakpoint is still there, and would find the thread no longer needs a step-over, while we still want it. Special care is still needed to handle the case of PC of the thread we were trying to single-step having changed, like in the old code. We can't just keep_going and re-step it, as in that case we can over-step the thread (if it was already done with the step, but hasn't reported it yet, we'd ask it to step even further). That's now handled in switch_back_to_stepped_thread. As bonus, we're now using a technique that doesn't lose signals, unlike the old code -- we now insert a breakpoint at PC, and resume, which either reports the breakpoint immediately, or any pending signal. Tested on x86_64 Fedora 17, against pristine mainline, and against a branch that implements software single-step on x86. gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * breakpoint.c (single_step_breakpoint_inserted_here_p): Make extern. * breakpoint.h (single_step_breakpoint_inserted_here_p): Declare. * infrun.c (saved_singlestep_ptid) (stepping_past_singlestep_breakpoint): Delete. (resume): Remove stepping_past_singlestep_breakpoint handling. (proceed): Store the prev_pc of the stepping thread too. (init_wait_for_inferior): Adjust. Clear singlestep_ptid and singlestep_pc. (enum infwait_states): Delete infwait_thread_hop_state. (struct execution_control_state) <hit_singlestep_breakpoint>: New field. (handle_inferior_event): Adjust. (handle_signal_stop): Delete stepping_past_singlestep_breakpoint handling and the thread-hop code. Before removing single-step breakpoints, check whether the thread hit a single-step breakpoint of another thread. If it did, the trap is not a random signal. (switch_back_to_stepped_thread): If the event thread hit a single-step breakpoint, unblock it before switching to the stepping thread. Handle the case of the stepped thread having advanced already. (keep_going): Handle the case of the current thread moving past a single-step breakpoint. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-trips-on-watchpoint.c: New file. * gdb.threads/step-over-trips-on-watchpoint.exp: New file.
2014-03-20PR breakpoints/7143 - Watchpoint does not trigger when first setPedro Alves1-74/+125
Say the program is stopped at a breakpoint, and the user sets a watchpoint. When the program is next resumed, GDB will first step over the breakpoint, as explained in the manual: @value {GDBN} normally ignores breakpoints when it resumes execution, until at least one instruction has been executed. If it it did not do this, you would be unable to proceed past a breakpoint without first disabling the breakpoint. This rule applies whether or not the breakpoint already existed when your program stopped. However, GDB currently also removes watchpoints, catchpoints, etc., and that means that the first instruction off the breakpoint does not trigger the watchpoint, catchpoint, etc. testsuite/gdb.base/watchpoint.exp has a kfail for this. The PR proposes installing watchpoints only when stepping over a breakpoint, but that misses catchpoints, etc. A better fix would instead work from the opposite direction -- remove only real breakpoints, leaving all other kinds of breakpoints inserted. But, going further, it's really a waste to constantly remove/insert all breakpoints when stepping over a single breakpoint (generating a pair of RSP z/Z packets for each breakpoint), so the fix goes a step further and makes GDB remove _only_ the breakpoint being stepped over, leaving all others installed. This then has the added benefit of reducing breakpoint-related RSP traffic substancialy when there are many breakpoints set. gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> PR breakpoints/7143 * breakpoint.c (should_be_inserted): Don't insert breakpoints that are being stepped over. (breakpoint_address_match): Make extern. * breakpoint.h (breakpoint_address_match): New declaration. * inferior.h (stepping_past_instruction_at): New declaration. * infrun.c (struct step_over_info): New type. (step_over_info): New global. (set_step_over_info, clear_step_over_info) (stepping_past_instruction_at): New functions. (handle_inferior_event): Clear the step-over info when trap_expected is cleared. (resume): Remove now stale comment. (clear_proceed_status): Clear step-over info. (proceed): Adjust step-over handling to set or clear the step-over info instead of removing all breakpoints. (handle_signal_stop): When setting up a thread-hop, don't remove breakpoints here. (stop_stepping): Clear step-over info. (keep_going): Adjust step-over handling to set or clear step-over info and then always inserting breakpoints, instead of removing all breakpoints when stepping over one. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> PR breakpoints/7143 * gdb.base/watchpoint.exp: Mention bugzilla bug number instead of old gnats gdb/38. Remove kfail. Adjust to use gdb_test instead of gdb_test_multiple. * gdb.cp/annota2.exp: Remove kfail for gdb/38. * gdb.cp/annota3.exp: Remove kfail for gdb/38.
2014-03-20Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid.Pedro Alves1-56/+3
Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-18PR gdb/13860: make "-exec-foo"'s MI output equal to "foo"'s MI output.Pedro Alves1-55/+63
Part of PR gdb/13860 is about the mi-solib.exp test's output being different in sync vs async modes. sync: >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi =thread-group-added,id="i1" ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..." ~"done.\n" (gdb) &"start\n" ~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n" =breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"} ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n" =thread-group-started,id="i1",pid="17724" =thread-created,id="1",group-id="i1" ^running *running,thread-id="all" (gdb) =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1" ~"Stopped due to shared library event (no libraries added or removed)\n" *stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3" (gdb) async: >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async on" -i=mi =thread-group-added,id="i1" ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..." ~"done.\n" (gdb) start &"start\n" ~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n" =breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"} ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n" =thread-group-started,id="i1",pid="17729" =thread-created,id="1",group-id="i1" ^running *running,thread-id="all" =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1" (gdb) *stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1" For now, let's focus only on the *stopped event. We see that the async output is missing frame info. And this causes a test failure in async mode, as "mi_expect_stop solib-event" wants to see the frame info. However, if we compare the event output when a real MI execution command is used, compared to a CLI command (e.g., run vs -exec-run, next vs -exec-next, etc.), we see: >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi =thread-group-added,id="i1" ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..." ~"done.\n" (gdb) r &"r\n" ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n" =thread-group-started,id="i1",pid="17751" =thread-created,id="1",group-id="i1" ^running *running,thread-id="all" (gdb) =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1" ~"Stopped due to shared library event (no libraries added or removed)\n" *stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3" (gdb) -exec-run =thread-exited,id="1",group-id="i1" =thread-group-exited,id="i1" =library-unloaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",thread-group="i1" =thread-group-started,id="i1",pid="17754" =thread-created,id="1",group-id="i1" ^running *running,thread-id="all" (gdb) =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1" *stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1" =thread-selected,id="1" (gdb) As seen above, with MI commands, the *stopped event _doesn't_ have frame info. This is because normal_stop, as commanded by the result of bpstat_print, skips printing frame info in this case (it's an "event", not a "breakpoint"), and when the interpreter is MI, mi_on_normal_stop skips calling print_stack_frame, as the normal_stop call was already done with the MI uiout. This explains why the async output is different even with a CLI command. Its because in async mode, the mi_on_normal_stop path is always taken; it is always reached with the MI uiout, because the stop is handled from the event loop, instead of from within `proceed -> wait_for_inferior -> normal_stop' with the interpreter overridden, as in sync mode. This patch fixes the issue by making all cases output the same *stopped event, by factoring out the print code from normal_stop, and using it from mi_on_normal_stop as well. I chose the *stopped output without a frame, mainly because that is what you already get if you use MI execution commands, the commands frontends are supposed to use (except when implementing a console). This patch makes it simpler to tweak the MI output differently if desired, as we only have to change the centralized print_stop_event (taking into account whether the uiout is MI-like), and all different modes will change accordingly. Tested on x86_64 Fedora 17, no regressions. The mi-solib.exp test no longer fails in async mode with this patch, so the patch removes the kfail. 2014-03-18 Pedro Alves <palves@redhat.com> PR gdb/13860 * inferior.h (print_stop_event): Declare. * infrun.c (print_stop_event): New, factored out from ... (normal_stop): ... this. * mi/mi-interp.c (mi_on_normal_stop): Use print_stop_event instead of bpstat_print/print_stack_frame. 2014-03-18 Pedro Alves <palves@redhat.com> PR gdb/13860 * gdb.mi/mi-solib.exp: Remove gdb/13860 kfail. * lib/mi-support.exp (mi_expect_stop): Add special handling for solib-event.
2014-03-03change probes to be program-space-independentTom Tromey1-4/+4
This changes the probes to be independent of the program space. After this, when a probe's address is needed, it is determined by applying offsets at the point of use. This introduces a bound_probe object, similar to bound minimal symbols. Objects of this type are used when it's necessary to pass a probe and its corresponding objfile. This removes the backlink from probe to objfile, which was primarily used to fetch the architecture to use. This adds a get_probe_address function which calls a probe method to compute the probe's relocated address. Similarly, it adds an objfile parameter to the semaphore methods so they can do the relocation properly as well. 2014-03-03 Tom Tromey <tromey@redhat.com> * break-catch-throw.c (fetch_probe_arguments): Use bound probes. * breakpoint.c (create_longjmp_master_breakpoint): Use get_probe_address. (add_location_to_breakpoint, bkpt_probe_insert_location) (bkpt_probe_remove_location): Update. * breakpoint.h (struct bp_location) <probe>: Now a bound_probe. * elfread.c (elf_symfile_relocate_probe): Remove. (elf_probe_fns): Update. (insert_exception_resume_breakpoint): Change type of "probe" parameter to bound_probe. (check_exception_resume): Update. * objfiles.c (objfile_relocate1): Don't relocate probes. * probe.c (bound_probe_s): New typedef. (parse_probes): Use get_probe_address. Set sal's objfile. (find_probe_by_pc): Return a bound_probe. (collect_probes): Return a VEC(bound_probe_s). (compare_probes): Update. (gen_ui_out_table_header_info): Change type of "probes" parameter. Update. (info_probes_for_ops): Update. (get_probe_address): New function. (probe_safe_evaluate_at_pc): Update. * probe.h (struct probe_ops) <get_probe_address>: New field. <set_semaphore, clear_semaphore>: Add objfile parameter. (struct probe) <objfile>: Remove field. <arch>: New field. <address>: Update comment. (struct bound_probe): New. (find_probe_by_pc): Return a bound_probe. (get_probe_address): Declare. * solib-svr4.c (struct probe_and_action) <address>: New field. (hash_probe_and_action, equal_probe_and_action): Update. (register_solib_event_probe): Add address parameter. (solib_event_probe_at): Update. (svr4_create_probe_breakpoints): Add objfile parameter. Use get_probe_address. * stap-probe.c (struct stap_probe) <sem_addr>: Update comment. (stap_get_probe_address): New function. (stap_can_evaluate_probe_arguments, compute_probe_arg) (compile_probe_arg): Update. (stap_set_semaphore, stap_clear_semaphore): Compute semaphore's address. (handle_stap_probe): Don't relocate the probe. (stap_relocate): Remove. (stap_gen_info_probes_table_values): Update. (stap_probe_ops): Remove stap_relocate. * symfile-debug.c (debug_sym_relocate_probe): Remove. (debug_sym_probe_fns): Update. * symfile.h (struct sym_probe_fns) <sym_relocate_probe>: Remove. * symtab.c (init_sal): Use memset. * symtab.h (struct symtab_and_line) <objfile>: New field. * tracepoint.c (start_tracing, stop_tracing): Update.
2014-03-02* infrun.c (handle_signal_stop): Replace test forDoug Evans1-16/+14
TARGET_WAITKIND_STOPPED with an assert.
2014-02-27Move ptid_match to common/ptid.c.Hui Zhu1-14/+0
So that gdbserver can use it too. gdb/ 2014-02-27 Hui Zhu <hui@codesourcery.com> PR 12702 * infrun.c (ptid_match): Move ... * common/ptid.c (ptid_match): ... here. * inferior.h (ptid_match): Move ... * common/ptid.h (ptid_match): ... here.
2014-02-07Make sure we don't resume the stepped thread by accident.Pedro Alves1-1/+5
Say: <stopped at a breakpoint in thread 2> (gdb) thread 3 (gdb) step The above triggers the prepare_to_proceed/deferred_step_ptid process, which switches back to thread 2, to step over its breakpoint before getting back to thread 3 and "step" it. If while stepping over the breakpoint in thread 2, a signal arrives, and it is set to pass/nostop, we'll set a step-resume breakpoint at the supposed signal-handler resume address, and call keep_going. The problem is that we were supposedly stepping thread 3, and that keep_going delivers a signal to thread 2, and due to scheduler-locking off, resumes everything else, _including_ thread 3, the thread we want stepping. This means that we lose control of thread 3 until the next event, when we stop everything. The end result for the user, is that GDB lost control of the "step". Here's the current infrun debug output of the above, with the testcase in the patch below: infrun: clear_proceed_status_thread (Thread 0x2aaaab8f5700 (LWP 11663)) infrun: clear_proceed_status_thread (Thread 0x2aaaab6f4700 (LWP 11662)) infrun: clear_proceed_status_thread (Thread 0x2aaaab4f2b20 (LWP 11659)) infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1) infrun: prepare_to_proceed (step=1), switched to [Thread 0x2aaaab6f4700 (LWP 11662)] infrun: resume (step=1, signal=0), trap_expected=1, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)], infrun: status->kind = stopped, signal = SIGUSR1 infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x40098f infrun: random signal 30 Program received signal SIGUSR1, User defined signal 1. infrun: signal arrived while stepping over breakpoint infrun: inserting step-resume breakpoint at 0x40098f infrun: resume (step=0, signal=30), trap_expected=0, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f ^^^ this is a wildcard resume. infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)], infrun: status->kind = stopped, signal = SIGTRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x40098f infrun: BPSTAT_WHAT_STEP_RESUME infrun: resume (step=1, signal=0), trap_expected=1, current thread [Thread 0x2aaaab6f4700 (LWP 11662)] at 0x40098f ^^^ step-resume hit, meaning the handler returned, so we go back to stepping thread 3. infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 11659 [Thread 0x2aaaab6f4700 (LWP 11662)], infrun: status->kind = stopped, signal = SIGTRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x40088b infrun: switching back to stepped thread infrun: Switching context from Thread 0x2aaaab6f4700 (LWP 11662) to Thread 0x2aaaab8f5700 (LWP 11663) infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x2aaaab8f5700 (LWP 11663)] at 0x400938 infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 11659 [Thread 0x2aaaab8f5700 (LWP 11663)], infrun: status->kind = stopped, signal = SIGTRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x40093a infrun: keep going infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x2aaaab8f5700 (LWP 11663)] at 0x40093a infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 11659 [Thread 0x2aaaab8f5700 (LWP 11663)], infrun: status->kind = stopped, signal = SIGTRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x40091e infrun: stepped to a different line infrun: stop_stepping [Switching to Thread 0x2aaaab8f5700 (LWP 11663)] 69 (*myp) ++; /* set breakpoint child_two here */ ^^^ we stopped at the wrong line. We still stepped a bit because the test is running in a loop, and when we got back to stepping thread 3, it happened to be in the stepping range. (The loop increments a counter, and the test makes sure it increments exactly once. Without the fix, the counter increments a bunch, since the user-stepped thread runs free without GDB noticing.) The fix is to switch to the stepping thread before continuing for the step-resume breakpoint. gdb/ 2014-02-07 Pedro Alves <palves@redhat.com> * infrun.c (handle_signal_stop) <signal arrives while stepping over a breakpoint>: Switch back to the stepping thread. gdb/testsuite/ 2014-02-07 Pedro Alves <pedro@codesourcery.com> Pedro Alves <palves@redhat.com> * gdb.threads/step-after-sr-lock.c: New file. * gdb.threads/step-after-sr-lock.exp: New file.
2014-02-04PowerPC64 ELFv2 ABI: skip global entry point codeUlrich Weigand1-0/+4
This patch handles another aspect of the ELFv2 ABI, which unfortunately requires common code changes. In ELFv2, functions may provide both a global and a local entry point. The global entry point (where the function symbol points to) is intended to be used for function-pointer or cross-module (PLT) calls, and requires r12 to be set up to the entry point address itself. The local entry point (which is found at a fixed offset after the global entry point, as defined by bits in the symbol table entries' st_other field), instead expects r2 to be set up to the current TOC. Now, when setting a breakpoint on a function by name, you really want that breakpoint to trigger either way, no matter whether the function is called via its local or global entry point. Since the global entry point will always fall through into the local entry point, the way to achieve that is to simply set the breakpoint at the local entry point. One way to do that would be to have prologue parsing skip the code sequence that makes up the global entry point. Unfortunately, this does not work reliably, since -for optimized code- GDB these days will not actuall invoke the prologue parsing code but instead just set the breakpoint at the symbol address and rely on DWARF being correct at any point throughout the function ... Unfortunately, I don't really see any way to express the notion of local entry points with the current set of gdbarch callbacks. Thus this patch adds a new callback, skip_entrypoint, that is somewhat analogous to skip_prologue, but is called every time GDB needs to determine a function start address, even in those cases where GDB decides to not call skip_prologue. As a side effect, the skip_entrypoint implementation on ppc64 does not need to perform any instruction parsing; it can simply rely on the local entry point flags in the symbol table entry. With this implemented, two test cases would still fail to set the breakpoint correctly, but that's because they use the construct: gdb_test "break *hello" Now, using "*hello" explicitly instructs GDB to set the breakpoint at the numerical value of "hello" treated as function pointer, so it will by definition only hit the global entry point. I think this behaviour is unavoidable, but acceptable -- most people do not use this construct, and if they do, they get what they asked for ... In one of those two test cases, use of this construct is really not appropriate. I think this was added way back when as a means to work around prologue skipping problems on some platforms. These days that shouldn't really be necessary any more ... For the other (step-bt), we really want to make sure backtracing works on the very first instruction of the routine. To enable that test also on powerpc64le-linux, we can modify the code to call the test function via function pointer (which makes it use the global entry point in the ELFv2 ABI). gdb/ChangeLog: * gdbarch.sh (skip_entrypoint): New callback. * gdbarch.c, gdbarch.h: Regenerate. * symtab.c (skip_prologue_sal): Call gdbarch_skip_entrypoint. * infrun.c (fill_in_stop_func): Likewise. * ppc-linux-tdep.c: Include "elf/ppc64.h". (ppc_elfv2_elf_make_msymbol_special): New function. (ppc_elfv2_skip_entrypoint): Likewise. (ppc_linux_init_abi): Install them for ELFv2. gdb/testsuite/ChangeLog: * gdb.base/sigbpt.exp: Do not use "*" when setting breakpoint on a function. * gdb.base/step-bt.c: Call hello via function pointer to make sure its first instruction is executed on powerpc64le-linux.
2014-01-16target: allow decr_pc_after_break to be defined by the targetMarkus Metzger1-4/+5
Allow the target to define which value to use in decr_pc_after_break. It defaults to gdbarch_decr_pc_after_break (GDBARCH). 2014-01-16 Markus Metzger <markus.t.metzger@intel.com> * target.h (struct target_ops) <to_decr_pc_after_break>: New. (forward_target_decr_pc_after_break) (target_decr_pc_after_break): New. * target.c (forward_target_decr_pc_after_break) (target_decr_pc_after_break): New. * aix-thread.c (aix_thread_wait): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break. * darwin-nat.c (cancel_breakpoint): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break. * infrun.c (adjust_pc_after_break): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break. * linux-nat.c (cancel_breakpoint): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break. * linux-thread-db.c (check_event): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break. * record-full.c (record_full_wait_1): Call target_decr_pc_after_break instead of gdbarch_decr_pc_after_break.
2014-01-14Fix "is a record target open" checks.Pedro Alves1-2/+2
RECORD_IS_USED and record_full_open look at current_target.to_stratum to determine whether a record target is in use. This is wrong because arch_stratum is greater than record_stratum, so if an arch_stratum target is pushed, RECORD_IS_USED and record_full_open will miss it. To fix this, we can use the existing find_record_target instead, which looks up for a record stratum target across the target stack. Since that means exporting find_record_target in record.h, RECORD_IS_USED ends up redundant, so the patch eliminates it. That exercise then reveals other issues: - adjust_pc_after_break is gating record_full_... calls based on RECORD_IS_USED. But, record_full_ calls shouldn't be made when recording with the record-btrace target. So this adds a new record_full_is_used predicate to be used in that spot. - record_full_open says "Process record target already running", even if the recording target is record-btrace ("process record" is the original complete name of the record-full target). record_btrace_open only says "The process is already being recorded." and does not suggest "record stop", like record-full does. The patch factors out and merges that error to a new record_preopen function that all record targets call in their open routine. Tested on x86_64 Fedora 17. gdb/ 2014-01-14 Pedro Alves <palves@redhat.com> Tom Tromey <tromey@redhat.com> * infrun.c (use_displaced_stepping): Use find_record_target instead of RECORD_IS_USED. (adjust_pc_after_break): Use record_full_is_used instead of RECORD_IS_USED. * record-btrace.c (record_btrace_open): Call record_preopen instead of checking RECORD_IS_USED. * record-full.c (record_full_shortname) (record_full_core_shortname): New globals. (record_full_is_used): New function. (find_full_open): Call record_preopen instead of checking RECORD_IS_USED. (init_record_full_ops): Set the target's shortname to record_full_shortname. (init_record_full_core_ops): Set the target's shortname to record_full_core_shortname. * record-full.h (record_full_is_used): Declare. * record.c (find_record_target): Make extern. (record_preopen): New function. * record.h (RECORD_IS_USED): Delete macro. (find_record_target, record_preopen): Declare functions.
2014-01-13replace XZALLOC with XCNEWTom Tromey1-1/+1
This replaces XZALLOC with XCNEW and removes XZALLOC. This change is purely mechanical. 2014-01-13 Tom Tromey <tromey@redhat.com> * defs.h (XZALLOC): Remove. * ada-lang.c (get_ada_inferior_data): Use XCNEW, not XZALLOC. * ada-tasks.c (get_ada_tasks_pspace_data): Likewise. (get_ada_tasks_inferior_data): Likewise. * auto-load.c (get_auto_load_pspace_data): Likewise. * auxv.c (get_auxv_inferior_data): Likewise. * bfd-target.c (target_bfd_reopen): Likewise. * breakpoint.c (get_catch_syscall_inferior_data): Likewise. (deprecated_insert_raw_breakpoint): Likewise. * bsd-uthread.c (bsd_uthread_pid_to_str): Likewise. * corelow.c (core_open): Likewise. * darwin-nat.c (darwin_check_new_threads): Likewise. (darwin_attach_pid): Likewise. * dummy-frame.c (dummy_frame_push): Likewise. * dwarf2-frame.c (dwarf2_frame_cache): Likewise. * dwarf2loc.c (allocate_piece_closure): Likewise. * elfread.c (elf_symfile_segments): Likewise. * eval.c (ptrmath_type_p): Likewise. * exceptions.c (EXCEPTIONS_SIGJMP_BUF): Likewise. * gdbtypes.c (alloc_type_arch): Likewise. (alloc_type_instance): Likewise. * hppa-tdep.c (hppa_gdbarch_init): Likewise. * inf-child.c (inf_child_can_use_agent): Likewise. * inflow.c (get_inflow_inferior_data): Likewise. * infrun.c (save_infcall_suspend_state): Likewise. * jit.c (jit_reader_load): Likewise. (get_jit_objfile_data): Likewise. (get_jit_program_space_data): Likewise. (jit_object_open_impl): Likewise. (jit_symtab_open_impl): Likewise. (jit_block_open_impl): Likewise. (jit_frame_sniffer): Likewise. * linux-fork.c (add_fork): Likewise. * maint.c (make_command_stats_cleanup): Likewise. * objfiles.c (get_objfile_pspace_data): Likewise. * opencl-lang.c (struct lval_closure): Likewise. * osdata.c (osdata_start_osdata): Likewise. * progspace.c (new_address_space): Likewise. (add_program_space): Likewise. * remote-sim.c (get_sim_inferior_data): Likewise. * sh-tdep.c (sh_gdbarch_init): Likewise. * skip.c (Ignore): Likewise. (skip_delete_command): Likewise. * solib-aix.c (get_solib_aix_inferior_data): Likewise. (library_list_start_library): Likewise. (solib_aix_current_sos): Likewise. * solib-darwin.c (get_darwin_info): Likewise. (darwin_current_sos): Likewise. * solib-dsbt.c (get_dsbt_info): Likewise. * solib-ia64-hpux.c (new_so_list): Likewise. (ia64_hpux_get_solib_linkage_addr): Likewise. * solib-spu.c (append_ocl_sos): Likewise. (spu_current_sos): Likewise. * solib-svr4.c (get_svr4_info): Likewise. (svr4_keep_data_in_core): Likewise. (library_list_start_library): Likewise. (svr4_default_sos): Likewise. (svr4_read_so_list): Likewise. * solib-target.c (library_list_start_library): Likewise. (solib_target_current_sos): Likewise. * sparc-tdep.c (sparc32_gdbarch_init): Likewise. * symfile-debug.c (install_symfile_debug_logging): Likewise. * symfile.c (default_symfile_segments): Likewise. * target-descriptions.c (tdesc_data_init): Likewise. (tdesc_create_reg): Likewise. (struct tdesc_type *): Likewise. (tdesc_create_vector): Likewise. (tdesc_set_struct_size): Likewise. (struct tdesc_type *): Likewise. (tdesc_free_feature): Likewise. (tdesc_create_feature): Likewise. * windows-nat.c (windows_add_thread): Likewise. (windows_make_so): Likewise. * xml-support.c (gdb_xml_body_text): Likewise. (gdb_xml_create_parser_and_cleanup): Likewise. (xml_process_xincludes): Likewise. * xml-syscall.c (allocate_syscalls_info): Likewise. (syscall_create_syscall_desc): Likewise.
2014-01-01Update Copyright year range in all files maintained by GDB.Joel Brobecker1-1/+1
2013-12-10Invalidate target cache before starting to handle event.Yao Qi1-0/+24
gdb: 2013-12-10 Yao Qi <yao@codesourcery.com> * infrun.c: Include "target-dcache.h". (prepare_for_detach): Call target_dcache_invalidate. (wait_for_inferior): Likewise. (fetch_inferior_event): Likewise. (infrun_thread_stop_requested_callback): Likewise. Set overlay_cache_invalid to 1.
2013-11-18remove gdb_string.hTom Tromey1-1/+1
This removes gdb_string.h. This patch is purely mechanical. I created it by running the two commands: git rm common/gdb_string.h perl -pi -e's/"gdb_string.h"/<string.h>/;' *.[chyl] */*.[chyl] 2013-11-18 Tom Tromey <tromey@redhat.com> * common/gdb_string.h: Remove. * aarch64-tdep.c: Use string.h, not gdb_string.h. * ada-exp.y: Use string.h, not gdb_string.h. * ada-lang.c: Use string.h, not gdb_string.h. * ada-lex.l: Use string.h, not gdb_string.h. * ada-typeprint.c: Use string.h, not gdb_string.h. * ada-valprint.c: Use string.h, not gdb_string.h. * aix-thread.c: Use string.h, not gdb_string.h. * alpha-linux-tdep.c: Use string.h, not gdb_string.h. * alpha-mdebug-tdep.c: Use string.h, not gdb_string.h. * alpha-nat.c: Use string.h, not gdb_string.h. * alpha-osf1-tdep.c: Use string.h, not gdb_string.h. * alpha-tdep.c: Use string.h, not gdb_string.h. * alphanbsd-tdep.c: Use string.h, not gdb_string.h. * amd64-dicos-tdep.c: Use string.h, not gdb_string.h. * amd64-linux-nat.c: Use string.h, not gdb_string.h. * amd64-linux-tdep.c: Use string.h, not gdb_string.h. * amd64-nat.c: Use string.h, not gdb_string.h. * amd64-sol2-tdep.c: Use string.h, not gdb_string.h. * amd64fbsd-tdep.c: Use string.h, not gdb_string.h. * amd64obsd-tdep.c: Use string.h, not gdb_string.h. * arch-utils.c: Use string.h, not gdb_string.h. * arm-linux-nat.c: Use string.h, not gdb_string.h. * arm-linux-tdep.c: Use string.h, not gdb_string.h. * arm-tdep.c: Use string.h, not gdb_string.h. * arm-wince-tdep.c: Use string.h, not gdb_string.h. * armbsd-tdep.c: Use string.h, not gdb_string.h. * armnbsd-nat.c: Use string.h, not gdb_string.h. * armnbsd-tdep.c: Use string.h, not gdb_string.h. * armobsd-tdep.c: Use string.h, not gdb_string.h. * avr-tdep.c: Use string.h, not gdb_string.h. * ax-gdb.c: Use string.h, not gdb_string.h. * ax-general.c: Use string.h, not gdb_string.h. * bcache.c: Use string.h, not gdb_string.h. * bfin-tdep.c: Use string.h, not gdb_string.h. * breakpoint.c: Use string.h, not gdb_string.h. * build-id.c: Use string.h, not gdb_string.h. * buildsym.c: Use string.h, not gdb_string.h. * c-exp.y: Use string.h, not gdb_string.h. * c-lang.c: Use string.h, not gdb_string.h. * c-typeprint.c: Use string.h, not gdb_string.h. * c-valprint.c: Use string.h, not gdb_string.h. * charset.c: Use string.h, not gdb_string.h. * cli-out.c: Use string.h, not gdb_string.h. * cli/cli-cmds.c: Use string.h, not gdb_string.h. * cli/cli-decode.c: Use string.h, not gdb_string.h. * cli/cli-dump.c: Use string.h, not gdb_string.h. * cli/cli-interp.c: Use string.h, not gdb_string.h. * cli/cli-logging.c: Use string.h, not gdb_string.h. * cli/cli-script.c: Use string.h, not gdb_string.h. * cli/cli-setshow.c: Use string.h, not gdb_string.h. * cli/cli-utils.c: Use string.h, not gdb_string.h. * coffread.c: Use string.h, not gdb_string.h. * common/common-utils.c: Use string.h, not gdb_string.h. * common/filestuff.c: Use string.h, not gdb_string.h. * common/linux-procfs.c: Use string.h, not gdb_string.h. * common/linux-ptrace.c: Use string.h, not gdb_string.h. * common/signals.c: Use string.h, not gdb_string.h. * common/vec.h: Use string.h, not gdb_string.h. * core-regset.c: Use string.h, not gdb_string.h. * corefile.c: Use string.h, not gdb_string.h. * corelow.c: Use string.h, not gdb_string.h. * cp-abi.c: Use string.h, not gdb_string.h. * cp-support.c: Use string.h, not gdb_string.h. * cp-valprint.c: Use string.h, not gdb_string.h. * cris-tdep.c: Use string.h, not gdb_string.h. * d-lang.c: Use string.h, not gdb_string.h. * dbxread.c: Use string.h, not gdb_string.h. * dcache.c: Use string.h, not gdb_string.h. * demangle.c: Use string.h, not gdb_string.h. * dicos-tdep.c: Use string.h, not gdb_string.h. * disasm.c: Use string.h, not gdb_string.h. * doublest.c: Use string.h, not gdb_string.h. * dsrec.c: Use string.h, not gdb_string.h. * dummy-frame.c: Use string.h, not gdb_string.h. * dwarf2-frame.c: Use string.h, not gdb_string.h. * dwarf2loc.c: Use string.h, not gdb_string.h. * dwarf2read.c: Use string.h, not gdb_string.h. * elfread.c: Use string.h, not gdb_string.h. * environ.c: Use string.h, not gdb_string.h. * eval.c: Use string.h, not gdb_string.h. * event-loop.c: Use string.h, not gdb_string.h. * exceptions.c: Use string.h, not gdb_string.h. * exec.c: Use string.h, not gdb_string.h. * expprint.c: Use string.h, not gdb_string.h. * f-exp.y: Use string.h, not gdb_string.h. * f-lang.c: Use string.h, not gdb_string.h. * f-typeprint.c: Use string.h, not gdb_string.h. * f-valprint.c: Use string.h, not gdb_string.h. * fbsd-nat.c: Use string.h, not gdb_string.h. * findcmd.c: Use string.h, not gdb_string.h. * findvar.c: Use string.h, not gdb_string.h. * fork-child.c: Use string.h, not gdb_string.h. * frame.c: Use string.h, not gdb_string.h. * frv-linux-tdep.c: Use string.h, not gdb_string.h. * frv-tdep.c: Use string.h, not gdb_string.h. * gdb.c: Use string.h, not gdb_string.h. * gdb_bfd.c: Use string.h, not gdb_string.h. * gdbarch.c: Use string.h, not gdb_string.h. * gdbtypes.c: Use string.h, not gdb_string.h. * gnu-nat.c: Use string.h, not gdb_string.h. * gnu-v2-abi.c: Use string.h, not gdb_string.h. * gnu-v3-abi.c: Use string.h, not gdb_string.h. * go-exp.y: Use string.h, not gdb_string.h. * go-lang.c: Use string.h, not gdb_string.h. * go32-nat.c: Use string.h, not gdb_string.h. * hppa-hpux-tdep.c: Use string.h, not gdb_string.h. * hppa-linux-nat.c: Use string.h, not gdb_string.h. * hppanbsd-tdep.c: Use string.h, not gdb_string.h. * hppaobsd-tdep.c: Use string.h, not gdb_string.h. * i386-cygwin-tdep.c: Use string.h, not gdb_string.h. * i386-dicos-tdep.c: Use string.h, not gdb_string.h. * i386-linux-nat.c: Use string.h, not gdb_string.h. * i386-linux-tdep.c: Use string.h, not gdb_string.h. * i386-nto-tdep.c: Use string.h, not gdb_string.h. * i386-sol2-tdep.c: Use string.h, not gdb_string.h. * i386-tdep.c: Use string.h, not gdb_string.h. * i386bsd-tdep.c: Use string.h, not gdb_string.h. * i386gnu-nat.c: Use string.h, not gdb_string.h. * i386nbsd-tdep.c: Use string.h, not gdb_string.h. * i386obsd-tdep.c: Use string.h, not gdb_string.h. * i387-tdep.c: Use string.h, not gdb_string.h. * ia64-libunwind-tdep.c: Use string.h, not gdb_string.h. * ia64-linux-nat.c: Use string.h, not gdb_string.h. * inf-child.c: Use string.h, not gdb_string.h. * inf-ptrace.c: Use string.h, not gdb_string.h. * inf-ttrace.c: Use string.h, not gdb_string.h. * infcall.c: Use string.h, not gdb_string.h. * infcmd.c: Use string.h, not gdb_string.h. * inflow.c: Use string.h, not gdb_string.h. * infrun.c: Use string.h, not gdb_string.h. * interps.c: Use string.h, not gdb_string.h. * iq2000-tdep.c: Use string.h, not gdb_string.h. * irix5-nat.c: Use string.h, not gdb_string.h. * jv-exp.y: Use string.h, not gdb_string.h. * jv-lang.c: Use string.h, not gdb_string.h. * jv-typeprint.c: Use string.h, not gdb_string.h. * jv-valprint.c: Use string.h, not gdb_string.h. * language.c: Use string.h, not gdb_string.h. * linux-fork.c: Use string.h, not gdb_string.h. * linux-nat.c: Use string.h, not gdb_string.h. * lm32-tdep.c: Use string.h, not gdb_string.h. * m2-exp.y: Use string.h, not gdb_string.h. * m2-typeprint.c: Use string.h, not gdb_string.h. * m32c-tdep.c: Use string.h, not gdb_string.h. * m32r-linux-nat.c: Use string.h, not gdb_string.h. * m32r-linux-tdep.c: Use string.h, not gdb_string.h. * m32r-rom.c: Use string.h, not gdb_string.h. * m32r-tdep.c: Use string.h, not gdb_string.h. * m68hc11-tdep.c: Use string.h, not gdb_string.h. * m68k-tdep.c: Use string.h, not gdb_string.h. * m68kbsd-tdep.c: Use string.h, not gdb_string.h. * m68klinux-nat.c: Use string.h, not gdb_string.h. * m68klinux-tdep.c: Use string.h, not gdb_string.h. * m88k-tdep.c: Use string.h, not gdb_string.h. * macrocmd.c: Use string.h, not gdb_string.h. * main.c: Use string.h, not gdb_string.h. * mdebugread.c: Use string.h, not gdb_string.h. * mem-break.c: Use string.h, not gdb_string.h. * memattr.c: Use string.h, not gdb_string.h. * memory-map.c: Use string.h, not gdb_string.h. * mep-tdep.c: Use string.h, not gdb_string.h. * mi/mi-cmd-break.c: Use string.h, not gdb_string.h. * mi/mi-cmd-disas.c: Use string.h, not gdb_string.h. * mi/mi-cmd-env.c: Use string.h, not gdb_string.h. * mi/mi-cmd-stack.c: Use string.h, not gdb_string.h. * mi/mi-cmd-var.c: Use string.h, not gdb_string.h. * mi/mi-cmds.c: Use string.h, not gdb_string.h. * mi/mi-console.c: Use string.h, not gdb_string.h. * mi/mi-getopt.c: Use string.h, not gdb_string.h. * mi/mi-interp.c: Use string.h, not gdb_string.h. * mi/mi-main.c: Use string.h, not gdb_string.h. * mi/mi-parse.c: Use string.h, not gdb_string.h. * microblaze-rom.c: Use string.h, not gdb_string.h. * microblaze-tdep.c: Use string.h, not gdb_string.h. * mingw-hdep.c: Use string.h, not gdb_string.h. * minidebug.c: Use string.h, not gdb_string.h. * minsyms.c: Use string.h, not gdb_string.h. * mips-irix-tdep.c: Use string.h, not gdb_string.h. * mips-linux-tdep.c: Use string.h, not gdb_string.h. * mips-tdep.c: Use string.h, not gdb_string.h. * mips64obsd-tdep.c: Use string.h, not gdb_string.h. * mipsnbsd-tdep.c: Use string.h, not gdb_string.h. * mipsread.c: Use string.h, not gdb_string.h. * mn10300-linux-tdep.c: Use string.h, not gdb_string.h. * mn10300-tdep.c: Use string.h, not gdb_string.h. * monitor.c: Use string.h, not gdb_string.h. * moxie-tdep.c: Use string.h, not gdb_string.h. * mt-tdep.c: Use string.h, not gdb_string.h. * nbsd-tdep.c: Use string.h, not gdb_string.h. * nios2-linux-tdep.c: Use string.h, not gdb_string.h. * nto-procfs.c: Use string.h, not gdb_string.h. * nto-tdep.c: Use string.h, not gdb_string.h. * objc-lang.c: Use string.h, not gdb_string.h. * objfiles.c: Use string.h, not gdb_string.h. * opencl-lang.c: Use string.h, not gdb_string.h. * osabi.c: Use string.h, not gdb_string.h. * osdata.c: Use string.h, not gdb_string.h. * p-exp.y: Use string.h, not gdb_string.h. * p-lang.c: Use string.h, not gdb_string.h. * p-typeprint.c: Use string.h, not gdb_string.h. * parse.c: Use string.h, not gdb_string.h. * posix-hdep.c: Use string.h, not gdb_string.h. * ppc-linux-nat.c: Use string.h, not gdb_string.h. * ppc-sysv-tdep.c: Use string.h, not gdb_string.h. * ppcfbsd-tdep.c: Use string.h, not gdb_string.h. * ppcnbsd-tdep.c: Use string.h, not gdb_string.h. * ppcobsd-tdep.c: Use string.h, not gdb_string.h. * printcmd.c: Use string.h, not gdb_string.h. * procfs.c: Use string.h, not gdb_string.h. * prologue-value.c: Use string.h, not gdb_string.h. * python/py-auto-load.c: Use string.h, not gdb_string.h. * python/py-gdb-readline.c: Use string.h, not gdb_string.h. * ravenscar-thread.c: Use string.h, not gdb_string.h. * regcache.c: Use string.h, not gdb_string.h. * registry.c: Use string.h, not gdb_string.h. * remote-fileio.c: Use string.h, not gdb_string.h. * remote-m32r-sdi.c: Use string.h, not gdb_string.h. * remote-mips.c: Use string.h, not gdb_string.h. * remote-sim.c: Use string.h, not gdb_string.h. * remote.c: Use string.h, not gdb_string.h. * reverse.c: Use string.h, not gdb_string.h. * rs6000-aix-tdep.c: Use string.h, not gdb_string.h. * ser-base.c: Use string.h, not gdb_string.h. * ser-go32.c: Use string.h, not gdb_string.h. * ser-mingw.c: Use string.h, not gdb_string.h. * ser-pipe.c: Use string.h, not gdb_string.h. * ser-tcp.c: Use string.h, not gdb_string.h. * ser-unix.c: Use string.h, not gdb_string.h. * serial.c: Use string.h, not gdb_string.h. * sh-tdep.c: Use string.h, not gdb_string.h. * sh64-tdep.c: Use string.h, not gdb_string.h. * shnbsd-tdep.c: Use string.h, not gdb_string.h. * skip.c: Use string.h, not gdb_string.h. * sol-thread.c: Use string.h, not gdb_string.h. * solib-dsbt.c: Use string.h, not gdb_string.h. * solib-frv.c: Use string.h, not gdb_string.h. * solib-osf.c: Use string.h, not gdb_string.h. * solib-spu.c: Use string.h, not gdb_string.h. * solib-target.c: Use string.h, not gdb_string.h. * solib.c: Use string.h, not gdb_string.h. * somread.c: Use string.h, not gdb_string.h. * source.c: Use string.h, not gdb_string.h. * sparc-nat.c: Use string.h, not gdb_string.h. * sparc-sol2-tdep.c: Use string.h, not gdb_string.h. * sparc-tdep.c: Use string.h, not gdb_string.h. * sparc64-tdep.c: Use string.h, not gdb_string.h. * sparc64fbsd-tdep.c: Use string.h, not gdb_string.h. * sparc64nbsd-tdep.c: Use string.h, not gdb_string.h. * sparcnbsd-tdep.c: Use string.h, not gdb_string.h. * spu-linux-nat.c: Use string.h, not gdb_string.h. * spu-multiarch.c: Use string.h, not gdb_string.h. * spu-tdep.c: Use string.h, not gdb_string.h. * stabsread.c: Use string.h, not gdb_string.h. * stack.c: Use string.h, not gdb_string.h. * std-regs.c: Use string.h, not gdb_string.h. * symfile.c: Use string.h, not gdb_string.h. * symmisc.c: Use string.h, not gdb_string.h. * symtab.c: Use string.h, not gdb_string.h. * target.c: Use string.h, not gdb_string.h. * thread.c: Use string.h, not gdb_string.h. * tilegx-linux-nat.c: Use string.h, not gdb_string.h. * tilegx-tdep.c: Use string.h, not gdb_string.h. * top.c: Use string.h, not gdb_string.h. * tracepoint.c: Use string.h, not gdb_string.h. * tui/tui-command.c: Use string.h, not gdb_string.h. * tui/tui-data.c: Use string.h, not gdb_string.h. * tui/tui-disasm.c: Use string.h, not gdb_string.h. * tui/tui-file.c: Use string.h, not gdb_string.h. * tui/tui-layout.c: Use string.h, not gdb_string.h. * tui/tui-out.c: Use string.h, not gdb_string.h. * tui/tui-regs.c: Use string.h, not gdb_string.h. * tui/tui-source.c: Use string.h, not gdb_string.h. * tui/tui-stack.c: Use string.h, not gdb_string.h. * tui/tui-win.c: Use string.h, not gdb_string.h. * tui/tui-windata.c: Use string.h, not gdb_string.h. * tui/tui-winsource.c: Use string.h, not gdb_string.h. * typeprint.c: Use string.h, not gdb_string.h. * ui-file.c: Use string.h, not gdb_string.h. * ui-out.c: Use string.h, not gdb_string.h. * user-regs.c: Use string.h, not gdb_string.h. * utils.c: Use string.h, not gdb_string.h. * v850-tdep.c: Use string.h, not gdb_string.h. * valarith.c: Use string.h, not gdb_string.h. * valops.c: Use string.h, not gdb_string.h. * valprint.c: Use string.h, not gdb_string.h. * value.c: Use string.h, not gdb_string.h. * varobj.c: Use string.h, not gdb_string.h. * vax-tdep.c: Use string.h, not gdb_string.h. * vaxnbsd-tdep.c: Use string.h, not gdb_string.h. * vaxobsd-tdep.c: Use string.h, not gdb_string.h. * windows-nat.c: Use string.h, not gdb_string.h. * xcoffread.c: Use string.h, not gdb_string.h. * xml-support.c: Use string.h, not gdb_string.h. * xstormy16-tdep.c: Use string.h, not gdb_string.h. * xtensa-linux-nat.c: Use string.h, not gdb_string.h.
2013-11-14infrun.c:handle_signal_stop: Move initial connection/attachment handling ↵Pedro Alves1-51/+57
code earlier. Before all this stop_soon handling, we have code that can end in keep_going. Particularly, the thread_hop_needed code looked suspicious considering breakpoint always-inserted mode, though on closer inspection, it'd take connecting to multiple remote targets that shared the same address space to trigger that. Still, I think it's clearer if all this remote connection setup / attach code is placed early, before any keep_going path could be reached. gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * infrun.c (handle_signal_stop): Move STOP_QUIETLY, STOP_QUIETLY_REMOTE and 'stop_after_trap' handling earlier.
2013-11-14infrun.c: Split handle_inferior_event further.Pedro Alves1-21/+38
After the previous patches, we only ever reach the code after the initial 'switch (ecs->ws.kind)' switch for TARGET_WAITKIND_STOPPED. We can now factor out all that to its own function. Unfortunately, stepped_after_stopped_by_watchpoint needed to move to the ecs. I think that indicates a state machine bug -- no event other than TARGET_WAITKIND_STOPPED indicates a single-step actually finished. TARGET_WAITKIND_SYSCALL_XXX, TARGET_WAITKIND_FORK, etc. are all events that are triggered from the kernel, _within_ a syscall, IOW, from userspace's perspective, halfway through an instruction being executed. This might actually matter for the syscall events, as syscalls can change memory (and thus trigger watchpoints). gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * infrun.c (struct execution_control_state) <stepped_after_stopped_by_watchpoint>: New field. (get_inferior_stop_soon): New function. (handle_inferior_event): 'stepped_after_stopped_by_watchpoint' was moved to struct execution_control_state -- adjust. Use get_inferior_stop_soon. Split TARGET_WAITKIND_STOPPED handling to new function. (handle_signal_stop): New function, factored out from handle_inferior_event.
2013-11-14Eliminate enum bpstat_signal_value, simplify random signal checks further.Pedro Alves1-9/+4
After the previous patch, there's actually no breakpoint type that returns BPSTAT_SIGNAL_HIDE, so we can go back to having bpstat_explains_signal return a boolean. The signal hiding actually disappears. gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * break-catch-sig.c (signal_catchpoint_explains_signal): Adjust to return a boolean. * breakpoint.c (bpstat_explains_signal): Adjust to return a boolean. (explains_signal_watchpoint, base_breakpoint_explains_signal): Adjust to return a boolean. * breakpoint.h (enum bpstat_signal_value): Delete. (struct breakpoint_ops) <explains_signal>: New returns a boolean. (bpstat_explains_signal): Likewise. * infrun.c (handle_inferior_event) <random signal checks>: bpstat_explains_signal now returns a boolean - adjust. No longer consider hiding signals.
2013-11-14infrun.c:handle_inferior_event: Rework random signal checks.Pedro Alves1-20/+15
Looking at the current random signal checks: if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) random_signal = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, GDB_SIGNAL_TRAP) != BPSTAT_SIGNAL_NO) || stopped_by_watchpoint || ecs->event_thread->control.trap_expected || (ecs->event_thread->control.step_range_end && (ecs->event_thread->control.step_resume_breakpoint == NULL))); else { enum bpstat_signal_value sval; sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, ecs->event_thread->suspend.stop_signal); random_signal = (sval == BPSTAT_SIGNAL_NO); if (sval == BPSTAT_SIGNAL_HIDE) ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; } We can observe: - the stepping checks bit: ... || ecs->event_thread->control.trap_expected || (ecs->event_thread->control.step_range_end && (ecs->event_thread->control.step_resume_breakpoint == NULL))); ... is just like currently_stepping: static int currently_stepping (struct thread_info *tp) { return ((tp->control.step_range_end && tp->control.step_resume_breakpoint == NULL) || tp->control.trap_expected || bpstat_should_step ()); } except it misses the bpstat_should_step check (***). It's not really necessary to check bpstat_should_step in the random signal tests, because software watchpoints always end up in the bpstat list anyway, which means bpstat_explains_signal with GDB_SIGNAL_TRAP always returns at least BPSSTAT_SIGNAL_HIDE, but I think the code is clearer if we reuse currently_stepping. *** - bpstat_should_step checks to see if there's any software watchpoint in the breakpoint list, because we need to force the target to single-step all the way, to evaluate the watchpoint's value at each step. - we never hide GDB_SIGNAL_TRAP, even if the bpstat returns BPSTAT_SIGNAL_HIDE, which is actually the default for all breakpoints. If we make the default be BPSTAT_SIGNAL_PASS, then we can merge the two bpstat_explains_signal paths. gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * breakpoint.c (bpstat_explains_signal) <Moribund locations>: Return BPSTAT_SIGNAL_PASS instead of BPSTAT_SIGNAL_HIDE. (explains_signal_watchpoint): Return BPSTAT_SIGNAL_PASS instead of BPSTAT_SIGNAL_HIDE. (base_breakpoint_explains_signal): Return BPSTAT_SIGNAL_PASS instead of BPSTAT_SIGNAL_HIDE. * infrun.c (handle_inferior_event): Rework random signal checks.
2013-11-14infrun.c: Don't set ecs->random_signal for "catchpoint" events (eliminate ↵Pedro Alves1-32/+13
ecs->random_signal). This goes a step forward in making only TARGET_WAITKIND_STOPPED talk about signals. There's no reason for the "catchpoint" TARGET_WAITKIND_XXXs to consult bpstat about signals -- unlike breakpoints, all these events are continuable, so we don't need to do a remove-break/step/reinsert-break -like dance. That means we don't actually need to run them through process_event_stop_test (for the bpstat_what checks), and can just use bpstat_causes_stop instead. Note we were already using it in the TARGET_WAITKIND_(V)FORKED cases. Then, these "catchpoint" waitkinds don't need to set ecs->random_signal for anything, because they check it immediately afterwards (and the value they set is never used again). gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * infrun.c (struct execution_control_state): Remove 'random_signal' field. (handle_syscall_event): Use bpstat_causes_stop instead of bpstat_explains_signal. Don't set ecs->random_signal. (handle_inferior_event): New 'random_signal' local. <TARGET_WAITKIND_FORKED, TARGET_WAITKIND_VFORKED, TARGET_WAITKIND_EXECD>: Use bpstat_causes_stop instead of bpstat_explains_signal. Don't set ecs->random_signal. <TARGET_WAITKIND_STOPPED>: Adjust to use local instead of ecs->random_signal.
2013-11-14infrun.c:handle_inferior_event: Move comment.Pedro Alves1-11/+12
This comment applies to the whole handle_inferior_event flow, top to bottom. Best move it to the function's intro. gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * infrun.c (handle_inferior_event): Move comment from the function's body to the function's description, adjusted.
2013-11-14infrun.c:handle_inferior_event: Don't fall through in TARGET_WAITKIND_LOADED ↵Pedro Alves1-8/+16
handling. Of all the TARGET_WAITKIND_XXXs event kinds other than TARGET_WAITKIND_STOPPED, TARGET_WAITKIND_LOADED is the only kind that doesn't end in a return, instead falling through to all the signal/breakpoint/stepping handling code. But it only falls through in the STOP_QUIETLY_NO_SIGSTOP and STOP_QUIETLY_REMOTE cases, which means the /* This is originated from start_remote(), start_inferior() and shared libraries hook functions. */ if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) { if (debug_infrun) fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); stop_stepping (ecs); return; } bit is eventually reached. All tests before that is reached will always fail. It's simpler to inline the stop_soon checks close to the TARGET_WAITKIND_LOADED code, which allows removing the fall through. Tested on x86_64 Fedora 17, but that doesn't exercise this TARGET_WAITKIND_LOADED. Also ran gdb.base/solib-disc.exp on Cygwin/gdbserver, which exercises reconnection while the inferior is stopped at an solib event, but then again, gdbserver always replies a regular trap on initial connection, instead of the last event the program had seen: Sending packet: $?#3f...Packet received: T0505:4ca72800;04:f8a62800;08:62fcc877;thread:d28; Sending packet: $Hc-1#09...Packet received: E01 Sending packet: $qAttached#8f...Packet received: 0 Packet qAttached (query-attached) is supported infrun: clear_proceed_status_thread (Thread 3368) Sending packet: $qOffsets#4b...Packet received: infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 42000 [Thread 3368], infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x77c8fc62 infrun: quietly stopped infrun: stop_stepping So the only way to exercise this would be to hack gdbserver. I didn't go that far though. I'm reasonably confident this is correct. gdb/ 2013-11-14 Pedro Alves <palves@redhat.com> * infrun.c (handle_inferior_event) <TARGET_WAITKIND_LOADED>: Handle STOP_QUIETLY_NO_SIGSTOP and STOP_QUIETLY_REMOTE here. Assert we never fall through out of the TARGET_WAITKIND_LOADED case.
2013-10-31infrun.c: use GDB_SIGNAL_0 when hidding signals, not GDB_SIGNAL_TRAP.Pedro Alves1-9/+4
IMO, it doesn't make sense to map random syscall, fork, etc. events to GDB_SIGNAL_TRAP, and possible have the debuggee see that trap. This just seems conceptually wrong to me - these aren't real signals a debuggee would ever see. In fact, when stopped for those events, on Linux, the debuggee isn't in a signal-stop -- there's no way to resume-and-deliver-signal at that point, for example. E.g., when stopped at a fork event: (gdb) catch fork Catchpoint 2 (fork) (gdb) c Continuing. Catchpoint 2 (forked process 4570), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131 131 pid = ARCH_FORK (); (gdb) set debug infrun 1 (gdb) signal SIGTRAP Continuing with signal SIGTRAP. infrun: clear_proceed_status_thread (process 4566) infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0) infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4566] at 0x323d4ba7c4 infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 4566 [process 4566], infrun: status->kind = exited, status = 0 infrun: infwait_normal_state infrun: TARGET_WAITKIND_EXITED [Inferior 1 (process 4566) exited normally] infrun: stop_stepping (gdb) Note the signal went nowhere. It was swallowed. Resuming with a SIGTRAP from a syscall event does queue the signal, but doesn't deliver it immediately, like "signal SIGTRAP" from a real signal would. It's still an artificial SIGTRAP: (gdb) catch syscall Catchpoint 2 (any syscall) (gdb) c Continuing. Catchpoint 2 (call to syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131 131 pid = ARCH_FORK (); (gdb) set debug infrun 1 (gdb) signal SIGTRAP Continuing with signal SIGTRAP. infrun: clear_proceed_status_thread (process 4622) infrun: proceed (addr=0xffffffffffffffff, signal=5, step=0) infrun: resume (step=0, signal=5), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4 infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 4622 [process 4622], infrun: status->kind = exited syscall infrun: infwait_normal_state infrun: TARGET_WAITKIND_SYSCALL_RETURN infrun: syscall number = '56' infrun: BPSTAT_WHAT_STOP_NOISY infrun: stop_stepping Catchpoint 2 (returned from syscall clone), 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131 131 pid = ARCH_FORK (); (gdb) c Continuing. infrun: clear_proceed_status_thread (process 4622) infrun: proceed (addr=0xffffffffffffffff, signal=144, step=0) infrun: resume (step=0, signal=0), trap_expected=0, current thread [process 4622] at 0x323d4ba7c4 infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 4622 [process 4622], infrun: status->kind = stopped, signal = SIGTRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4ba7c4 infrun: random signal 5 Program received signal SIGTRAP, Trace/breakpoint trap. infrun: stop_stepping 0x000000323d4ba7c4 in __libc_fork () at ../nptl/sysdeps/unix/sysv/linux/fork.c:131 131 pid = ARCH_FORK (); (gdb) In all the above, I used 'signal SIGTRAP' to emulate 'handle SIGTRAP pass'. As described in "keep_going", 'handle SIGTRAP pass' does have its place: /* Do not deliver GDB_SIGNAL_TRAP (except when the user explicitly specifies that such a signal should be delivered to the target program). Typically, that would occur when a user is debugging a target monitor on a simulator: the target monitor sets a breakpoint; the simulator encounters this breakpoint and halts the simulation handing control to GDB; GDB, noting that the stop address doesn't map to any known breakpoint, returns control back to the simulator; the simulator then delivers the hardware equivalent of a GDB_SIGNAL_TRAP to the program being debugged. */ ... and I've made use of that myself when implementing/debugging stubs/monitors. But in these cases, treating these events as SIGTRAP possibly injects signals in the debuggee they'd never see otherwise, because you need to use ptrace to enable these special events, which aren't real signals. There's more. Take this bit of handle_inferior_event, where we determine whether a real signal (TARGET_WAITKIND_STOPPED) was random or not: if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) ecs->random_signal = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, GDB_SIGNAL_TRAP) != BPSTAT_SIGNAL_NO) || stopped_by_watchpoint || ecs->event_thread->control.trap_expected || (ecs->event_thread->control.step_range_end && (ecs->event_thread->control.step_resume_breakpoint == NULL))); else { enum bpstat_signal_value sval; sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, ecs->event_thread->suspend.stop_signal); ecs->random_signal = (sval == BPSTAT_SIGNAL_NO); if (sval == BPSTAT_SIGNAL_HIDE) ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP; } Note that the if (sval == BPSTAT_SIGNAL_HIDE) ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP; bit is only reacheable for signals != GDB_SIGNAL_TRAP. AFAICS, sval can only be BPSTAT_SIGNAL_HIDE if nothing in the bpstat returns BPSTAT_SIGNAL_PASS. So that excludes a "catch signal" for the signal in question in the bpstat. All other catchpoints that aren't based on breakpoints behind the scenes call process_event_stop_test directly (don't pass through here) (well, almost all: TARGET_WAITKIND_LOADED does have a fall through, but only for STOP_QUIETLY or STOP_QUIETLY_NO_SIGSTOP, which still return before this code is reached). Catchpoints that are implemented as breakpoints behind the scenes can only appear in the bpstat if the signal was GDB_SIGNAL_TRAP (bkpt_breakpoint_hit returns false otherwise). So that leaves a target reporting a hardware watchpoint hit with a signal other than GDB_SIGNAL_TRAP. And even then it looks quite wrong to me to magically convert the signal into a GDB_SIGNAL_TRAP here too -- if the user has set SIGTRAP to "handle pass", the program will see a trap that gdb invented, not one the program would ever see without gdb in the picture. Tested on x86_64 Fedora 17. gdb/ 2013-10-31 Pedro Alves <palves@redhat.com> * infrun.c (handle_syscall_event): Don't set or clear stop_signal. (handle_inferior_event) <TARGET_WAITKIND_FORKED, TARGET_WAITKIND_VFORKED>: Don't set stop_signal to GDB_SIGNAL_TRAP, or clear it. Pass GDB_SIGNAL_0 to bpstat_explains signal, instead of GDB_SIGNAL_TRAP. <bpstat handling>: If the bpstat chain wants the signal to be hidden, then set stop_signal to GDB_SIGNAL_0 instead of GDB_SIGNAL_TRAP.
2013-10-28infrun.c:process_event_stop_test: Reindent.Pedro Alves1-187/+181
gdb/ 2013-10-28 Pedro Alves <palves@redhat.com> * infrun.c (process_event_stop_test): Remove unnecessary scoping level and reindent.
2013-10-28infrun.c:handle_inferior_event: Make process_event_stop_test label a function.Pedro Alves1-15/+30
Now that all ecs->random_signal handing is always done before the 'process_event_stop_test' label, we can easily make that a real function and actually give it a describing comment that somewhat makes sense. Reindenting the new function will be handled in a follow up patch. 2013-10-28 Pedro Alves <palves@redhat.com> * infrun.c (process_event_stop_test): New function, factored out from handle_inferior_event. (handle_inferior_event): 'process_event_stop_test' is now a function instead of a goto label -- adjust.
2013-10-28infrun.c:handle_inferior_event: Move process_event_stop_test goto label.Pedro Alves1-7/+7
We only ever call "goto process_event_stop_test;" right after checking that ecs->random_signal is clear. The code at the process_event_stop_test label looks like: /* For the program's own signals, act according to the signal handling tables. */ if (ecs->random_signal) { ... random signal handling ... return; } else { ... the stop tests that actually matter for the goto callers. } So this moves the label into the else branch. It'll make converting process_event_stop_test into a function a bit clearer. gdb/ 2013-10-28 Pedro Alves <palves@redhat.com> * infrun.c (handle_inferior_event): Move process_event_stop_test goto label to the else branch of the ecs->random_signal check, along with FRAME and GDBARCH re-fetching.
2013-10-28infrun.c:handle_inferior_event: Put all ecs->random_signal tests together.Pedro Alves1-78/+91
I recently added a new ecs->random_signal test after the "switch back to stepped thread" code, and before the stepping tests. Looking at making process_event_stop_test a proper function, I realized it'd be better to keep ecs->random_signal related code together. To do that, I needed to factor out the "switch back to stepped thread" code to a new function, and call it in both the "random signal" and "not random signal" paths. gdb/ 2013-10-28 Pedro Alves <palves@redhat.com> * infrun.c (switch_back_to_stepped_thread): New function, factored out from handle_inferior_event. (handle_inferior_event): Adjust to call switch_back_to_stepped_thread. Call it also at the tail of the random signal handling, and return, instead of also handling random signals just before the stepping tests.
2013-10-28infrun.c:handle_inferior_event: Remove some more dead code.Pedro Alves1-13/+0
'ecs' is always memset before being passed to handle_inferior_event. The stop func is only filled in later in the flow. And since "Remove dead sets/clears of ecs->random signal", nothing ever sets ecs->random_signal before this part is reached either. (Also tested with some added assertions in place.) gdb/ 2013-10-28 Pedro Alves <palves@redhat.com> * infrun.c (clear_stop_func): Delete. (handle_inferior_event): Don't call clear_stop_func and don't clear 'ecs->random_signal'.
2013-10-25infrun debug output: print enum gdb_signal symbol names instead of POSIX ↵Pedro Alves1-6/+9
signal names. The other day while debugging something related to random signals, I got confused with "set debug infrun 1" output, for it said: infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4e8b94 infrun: random signal 20 On GNU/Linux, 20 is SIGTSTP. For some reason, it took me a few minutes to realize that 20 is actually a GDB signal number, not a target signal number (duh!). In any case, I propose making GDB's output clearer here: One way would be to use gdb_signal_to_name, like already used elsewhere: infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4e8b94 infrun: random signal SIGCHLD (20) but I think that might confuse someone too ("20? Why does GDB believe SIGCHLD is 20?"). So I thought of printing the enum string instead: infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4e8b94 infrun: random signal GDB_SIGNAL_CHLD (20) Looking at a more complete infrun debug log, we had actually printed the (POSIX) signal name name a bit before: infrun: target_wait (-1, status) = infrun: 9300 [Thread 0x7ffff7fcb740 (LWP 9300)], infrun: status->kind = stopped, signal = SIGCHLD ... infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4e8b94 infrun: random signal 20 So I'm now thinking that it'd be even better to make infrun output consistently use the enum symbol string, like so: infrun: clear_proceed_status_thread (Thread 0x7ffff7fca700 (LWP 25663)) infrun: clear_proceed_status_thread (Thread 0x7ffff7fcb740 (LWP 25659)) - infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1) + infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT, step=1) - infrun: resume (step=1, signal=0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700 + infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700 infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 25659 [Thread 0x7ffff7fcb740 (LWP 25659)], - infrun: status->kind = stopped, signal = SIGCHLD + infrun: status->kind = stopped, signal = GDB_SIGNAL_CHLD infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x400700 - infrun: random signal 20 + infrun: random signal (GDB_SIGNAL_CHLD) infrun: random signal, keep going - infrun: resume (step=1, signal=20), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700 + infrun: resume (step=1, signal=GDB_SIGNAL_CHLD), trap_expected=0, current thread [Thread 0x7ffff7fcb740 (LWP 25659)] at 0x400700 infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 25659 [Thread 0x7ffff7fcb740 (LWP 25659)], - infrun: status->kind = stopped, signal = SIGTRAP + infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x400704 infrun: stepi/nexti infrun: stop_stepping GDB's signal numbers are public and hardcoded (see include/gdb/signals.h), so there's really no need to clutter the output with numeric values in some places while others not. Replacing the magic "144" with GDB_SIGNAL_DEFAULT in "proceed"'s debug output (see above) I think is quite nice. I posit that all this makes it clearer to newcomers that GDB has its own signal numbering (and that there must be some mapping going on). Tested on x86_64 Fedora 17. gdb/ 2013-10-23 Pedro Alves <palves@redhat.com> * common/gdb_signals.h (gdb_signal_to_symbol_string): Declare. * common/signals.c: Include "gdb_assert.h". (signals): New field 'symbol'. (SET): Use the 'symbol' parameter. (gdb_signal_to_symbol_string): New function. * infrun.c (handle_inferior_event) <random signal>: In debug output, print the random signal enum as string in addition to its number. * target/waitstatus.c (target_waitstatus_to_string): Print the signal's enum value as string instead of the (POSIX) signal name.
2013-10-25Remove dead sets/clears of ecs->random signal.Pedro Alves1-9/+0
'*ecs' is always memset by handle_inferior_event's callers, so all these clears are unnecessary. There's one place that sets the flag to true, but, afterwards, before ecs->random_signal is ever read, we reach the part of handle_inferior_even that clears ecs->random_signal, among other things: clear_stop_func (ecs); ecs->event_thread->stepping_over_breakpoint = 0; bpstat_clear (&ecs->event_thread->control.stop_bpstat); ecs->event_thread->control.stop_step = 0; stop_print_frame = 1; ecs->random_signal = 0; stopped_by_random_signal = 0; So all these ecs->random_signal accesses are dead code. Tested on x86_64 Fedora 17. gdb/ 2013-10-22 Pedro Alves <palves@redhat.com> * infrun.c (handle_inferior_event) <thread hop>: Don't clear or set ecs->random signal.
2013-10-25infrun.c:keep_going: update comments.Pedro Alves1-35/+31
This function still has comments referring back to when it was a goto label in wait_for_inferior, eons ago. Looking closer, actually most of its comments could use a facelift (contents/formatting/typos). That's what this patch does. gdb/ 2013-10-22 Pedro Alves <palves@redhat.com> * infrun.c (keep_going): Update comments.
2013-10-18[gdb/16062] stepi sometimes doesn't make progressPedro Alves1-0/+11
I noticed something odd while doing "stepi" over a fork syscall: ... (gdb) set disassemble-next-line on ... (gdb) si 0x000000323d4ba7c2 131 pid = ARCH_FORK (); 0x000000323d4ba7a4 <__libc_fork+132>: 64 4c 8b 04 25 10 00 00 00 mov %fs:0x10,%r8 0x000000323d4ba7ad <__libc_fork+141>: 31 d2 xor %edx,%edx 0x000000323d4ba7af <__libc_fork+143>: 4d 8d 90 d0 02 00 00 lea 0x2d0(%r8),%r10 0x000000323d4ba7b6 <__libc_fork+150>: 31 f6 xor %esi,%esi 0x000000323d4ba7b8 <__libc_fork+152>: bf 11 00 20 01 mov $0x1200011,%edi 0x000000323d4ba7bd <__libc_fork+157>: b8 38 00 00 00 mov $0x38,%eax => 0x000000323d4ba7c2 <__libc_fork+162>: 0f 05 syscall 0x000000323d4ba7c4 <__libc_fork+164>: 48 3d 00 f0 ff ff cmp $0xfffffffffffff000,%rax 0x000000323d4ba7ca <__libc_fork+170>: 0f 87 2b 01 00 00 ja 0x323d4ba8fb <__libc_fork+475> (gdb) si 0x000000323d4ba7c4 131 pid = ARCH_FORK (); 0x000000323d4ba7a4 <__libc_fork+132>: 64 4c 8b 04 25 10 00 00 00 mov %fs:0x10,%r8 0x000000323d4ba7ad <__libc_fork+141>: 31 d2 xor %edx,%edx 0x000000323d4ba7af <__libc_fork+143>: 4d 8d 90 d0 02 00 00 lea 0x2d0(%r8),%r10 0x000000323d4ba7b6 <__libc_fork+150>: 31 f6 xor %esi,%esi 0x000000323d4ba7b8 <__libc_fork+152>: bf 11 00 20 01 mov $0x1200011,%edi 0x000000323d4ba7bd <__libc_fork+157>: b8 38 00 00 00 mov $0x38,%eax 0x000000323d4ba7c2 <__libc_fork+162>: 0f 05 syscall => 0x000000323d4ba7c4 <__libc_fork+164>: 48 3d 00 f0 ff ff cmp $0xfffffffffffff000,%rax 0x000000323d4ba7ca <__libc_fork+170>: 0f 87 2b 01 00 00 ja 0x323d4ba8fb <__libc_fork+475> (gdb) si 0x000000323d4ba7c4 131 pid = ARCH_FORK (); 0x000000323d4ba7a4 <__libc_fork+132>: 64 4c 8b 04 25 10 00 00 00 mov %fs:0x10,%r8 0x000000323d4ba7ad <__libc_fork+141>: 31 d2 xor %edx,%edx 0x000000323d4ba7af <__libc_fork+143>: 4d 8d 90 d0 02 00 00 lea 0x2d0(%r8),%r10 0x000000323d4ba7b6 <__libc_fork+150>: 31 f6 xor %esi,%esi 0x000000323d4ba7b8 <__libc_fork+152>: bf 11 00 20 01 mov $0x1200011,%edi 0x000000323d4ba7bd <__libc_fork+157>: b8 38 00 00 00 mov $0x38,%eax 0x000000323d4ba7c2 <__libc_fork+162>: 0f 05 syscall => 0x000000323d4ba7c4 <__libc_fork+164>: 48 3d 00 f0 ff ff cmp $0xfffffffffffff000,%rax 0x000000323d4ba7ca <__libc_fork+170>: 0f 87 2b 01 00 00 ja 0x323d4ba8fb <__libc_fork+475> (gdb) si 0x000000323d4ba7ca 131 pid = ARCH_FORK (); 0x000000323d4ba7a4 <__libc_fork+132>: 64 4c 8b 04 25 10 00 00 00 mov %fs:0x10,%r8 0x000000323d4ba7ad <__libc_fork+141>: 31 d2 xor %edx,%edx 0x000000323d4ba7af <__libc_fork+143>: 4d 8d 90 d0 02 00 00 lea 0x2d0(%r8),%r10 0x000000323d4ba7b6 <__libc_fork+150>: 31 f6 xor %esi,%esi 0x000000323d4ba7b8 <__libc_fork+152>: bf 11 00 20 01 mov $0x1200011,%edi 0x000000323d4ba7bd <__libc_fork+157>: b8 38 00 00 00 mov $0x38,%eax 0x000000323d4ba7c2 <__libc_fork+162>: 0f 05 syscall 0x000000323d4ba7c4 <__libc_fork+164>: 48 3d 00 f0 ff ff cmp $0xfffffffffffff000,%rax => 0x000000323d4ba7ca <__libc_fork+170>: 0f 87 2b 01 00 00 ja 0x323d4ba8fb <__libc_fork+475> Notice how the third "si" didn't actually make progress. Turning on infrun and lin-lwp debug, we see: (gdb) infrun: clear_proceed_status_thread (process 5252) infrun: proceed (addr=0xffffffffffffffff, signal=144, step=1) infrun: resume (step=1, signal=0), trap_expected=0, current thread [process 5252] at 0x323d4ba7c4 LLR: Preparing to step process 5252, 0, inferior_ptid process 5252 RC: Not resuming sibling process 5252 (not stopped) LLR: PTRACE_SINGLESTEP process 5252, 0 (resume event thread) sigchld infrun: wait_for_inferior () linux_nat_wait: [process -1], [] LLW: enter LNW: waitpid(-1, ...) returned 5252, No child processes LLW: waitpid 5252 received Child exited (stopped) LLW: Candidate event Child exited (stopped) in process 5252. SEL: Select single-step process 5252 LLW: exit infrun: target_wait (-1, status) = infrun: 5252 [process 5252], infrun: status->kind = stopped, signal = SIGCHLD infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x323d4ba7c4 infrun: random signal 20 infrun: stepi/nexti infrun: stop_stepping So the inferior got a SIGCHLD (because the fork child exited while we're doing 'si'), and since that signal is set to "nostop noprint pass" (by default), it's considered a random signal, so it should not cause a stop. But, it resulted in an immediate a stop_stepping call anyway. So the single-step never really finished. This is a regression caused by: [[PATCH] Do not respawn signals, take 2.] https://sourceware.org/ml/gdb-patches/2012-06/msg00702.html Specifically, caused by this change (as mentioned in the "the lost step issue first" part of that mail): diff --git a/gdb/infrun.c b/gdb/infrun.c index 53db335..3e8dbc8 100644 --- a/gdb/infrun.c +++ b/gdb/infrun.c @@ -4363,10 +4363,8 @@ process_event_stop_test: (leaving the inferior at the step-resume-breakpoint without actually executing it). Either way continue until the breakpoint is really hit. */ - keep_going (ecs); - return; } - + else /* Handle cases caused by hitting a breakpoint. */ { That made GDB fall through to the > /* In all-stop mode, if we're currently stepping but have stopped in > some other thread, we need to switch back to the stepped thread. */ > if (!non_stop) part. However, if we don't have a stepped thread to get back to, we'll now also fall through to all the "stepping" tests. For line stepping, that'll turn out okay, as we'll just end up realizing the thread is still in the stepping range, and needs to be re-stepped. However, for stepi/nexti, we'll reach: if (ecs->event_thread->control.step_range_end == 1) { /* It is stepi or nexti. We always want to stop stepping after one instruction. */ if (debug_infrun) fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); ecs->event_thread->control.stop_step = 1; print_end_stepping_range_reason (); stop_stepping (ecs); return; } and stop, even though the thread actually made no progress. The fix is to restore the keep_going call, but put it after the "switch back to the stepped thread" code, and before the stepping tests. Tested on x86_64 Fedora 17, native and gdbserver. New test included. gdb/ 2013-10-18 Pedro Alves <palves@redhat.com> PR gdb/16062 * infrun.c (handle_inferior_event): Keep going if we got a random signal we should not stop for, instead of falling through to the step tests. gdb/testsuite/ 2013-10-18 Pedro Alves <palves@redhat.com> PR gdb/16062 * gdb.threads/stepi-random-signal.c: New file. * gdb.threads/stepi-random-signal.exp: New file.
2013-10-07This patch adds a new convenience variable called "$_exitsignal", whichSergio Durigan Junior1-1/+40
will hold the signal number when the inferior terminates due to the uncaught signal. I've made modifications on infrun.c:handle_inferior_event such that $_exitcode gets cleared when the inferior signalled, and vice-versa. This assumption was made because the variables are mutually exclusive, i.e., when the inferior terminates because of an uncaught signal it is not possible for it to return. I have also made modifications such that when a corefile is loaded, $_exitsignal gets set to the uncaught signal that "killed" the inferior, and $_exitcode is cleared. The patch also adds a NEWS entry, documentation bits, and a testcase. The documentation entry explains how to use $_exitsignal and $_exitcode in a GDB script, by making use of the new $_isvoid convenience function. gdb/ 2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com> * NEWS: Mention new convenience variable $_exitsignal. * corelow.c (core_open): Reset exit convenience variables. Set $_exitsignal to the uncaught signal which generated the corefile. * infrun.c (handle_inferior_event): Reset exit convenience variables. Set $_exitsignal for TARGET_WAITKIND_SIGNALLED. (clear_exit_convenience_vars): New function. * inferior.h (clear_exit_convenience_vars): New prototype. gdb/testsuite/ 2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.base/corefile.exp: Test whether $_exitsignal is set and $_exitcode is void when opening a corefile. * gdb.base/exitsignal.exp: New file. * gdb.base/segv.c: Likewise. * gdb.base/normal.c: Likewise. gdb/doc/ 2013-10-06 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.texinfo (Convenience Variables): Document $_exitsignal. Update entry for $_exitcode.
2013-09-30 * aarch64-linux-nat.c: Replace PIDGET with ptid_get_pid.Luis Machado1-3/+4
Replace TIDGET with ptid_get_lwp. Replace GET_LWP with ptid_get_lwp. * aix-thread.c (BUILD_THREAD, BUILD_LWP): Remove. Replace BUILD_THREAD with ptid_build. Replace BUILD_LWP with ptid_build. Replace PIDGET with ptid_get_pid. Replace TIDGET with ptid_get_lwp. * alphabsd-nat.c: Replace PIDGET with ptid_get_pid. * amd64-linux-nat.c: Replace PIDGET with ptid_get_pid. Replace TIDGET with ptid_get_lwp. * amd64bsd-nat.c: Replace PIDGET with ptid_get_pid. * arm-linux-nat.c: Replace PIDGET with ptid_get_pid. Replace TIDGET with ptid_get_lwp. Replace GET_LWP with ptid_get_lwp. * armnbsd-nat.c: Replace PIDGET with ptid_get_pid. * auxv.c: Likewise. * breakpoint.c: Likewise. * common/ptid.c (ptid_is_pid): Condense check for null_ptid and minus_one_ptid. (ptid_lwp_p): New function. (ptid_tid_p): New function. * common/ptid.h: Update comments for accessors. (ptid_lwp_p): New prototype. (ptid_tid_p): New prototype. * defs.h (PIDGET, TIDGET, MERGEPID): Do not define. * gcore.c: Replace PIDGET with ptid_get_pid. * gdbthread.h: Likewise. * gnu-nat.c: Likewise. * hppa-linux-nat.c: Replace PIDGET with ptid_get_pid. Replace TIDGET with ptid_get_lwp. * hppabsd-nat.c: Replace PIDGET with ptid_get_pid. * hppanbsd-nat.c: Likewise. * i386-linux-nat.c: Replace PIDGET with ptid_get_pid. Replace TIDGET with ptid_get_lwp. * i386bsd-nat.c: Replace PIDGET with ptid_get_pid. * ia64-linux-nat.c: Replace PIDGET with ptid_get_pid. * infcmd.c: Likewise. * inferior.h: Likewise. * inflow.c: Likewise. * infrun.c: Likewise. * linux-fork.c: Likewise. * linux-nat.c: Replace PIDGET with ptid_get_pid. Replace GET_PID with ptid_get_pid. Replace is_lwp with ptid_lwp_p. Replace GET_LWP with ptid_get_lwp. Replace BUILD_LWP with ptid_build.
2013-09-18When reverse-stepping, only insert a resume breakpoint at ecs->stop_func_startMarkus Metzger1-1/+1
if the function start is known. Otherwise, keep single-stepping.
2013-09-17PR gdb/15911: "info threads" changes the default source and line (for ↵Pedro Alves1-1/+1
"break", "list") "info threads" changes the default source for "break" and "list", to whatever the location of the first/bottom thread in the thread list is... (gdb) b start (gdb) c ... (gdb) list *lists "start"* (gdb) b 23 Breakpoint 3 at 0x400614: file test.c, line 23. (gdb) info threads Id Target Id Frame * 2 Thread 0x7ffff7fcb700 (LWP 1760) "test" start (arg=0x0) at test.c:23 1 Thread 0x7ffff7fcc740 (LWP 1748) "test" 0x000000323dc08e60 in pthread_join (threadid=140737353922304, thread_return=0x0) at pthread_join.c:93 (gdb) b 23 Breakpoint 4 at 0x323dc08d90: file pthread_join.c, line 23. ^^^^^^^^^^^^^^^ (gdb) list 93 lll_wait_tid (pd->tid); 94 95 96 /* Restore cancellation mode. */ 97 CANCEL_RESET (oldtype); 98 99 /* Remove the handler. */ 100 pthread_cleanup_pop (0); 101 102 The issue is that print_stack_frame always sets the current sal to the frame's sal. print_frame_info (which print_stack_frame calls to do most of the work) also sets the last displayed sal, but only if print_what isn't LOCATION. Now the call in question, from within thread.c:print_thread_info, does pass in LOCATION as print_what, but print_stack_frame doesn't have the same check print_frame_info has. We could consider adding it, but setting these globals depending on print_what isn't very clean, IMO. What we have is two logically distinct operations mixed in the same function(s): #1 - print frame, in the format specified by {print_what, print_level and print_args}. #2 - We're displaying a frame to the user, and I want the default sal to point here, because the program stopped here, or the user did some context-changing command (up, down, etc.). So I added a new parameter to print_stack_frame & friends for point #2, and went through all calls in the tree adjusting as necessary. Tested on x86_64 Fedora 17. gdb/ 2013-09-17 Pedro Alves <palves@redhat.com> PR gdb/15911 * ada-tasks.c (task_command_1): Adjust call to print_stack_frame. * bsd-kvm.c (bsd_kvm_open, bsd_kvm_proc_cmd, bsd_kvm_pcb_cmd): * corelow.c (core_open): * frame.h (print_stack_frame, print_frame_info): New 'set_current_sal' parameter. * infcmd.c (finish_command, kill_command): Adjust call to print_stack_frame. * inferior.c (inferior_command): Likewise. * infrun.c (normal_stop): Likewise. * linux-fork.c (linux_fork_context): Likewise. * record-full.c (record_full_goto_entry, record_full_restore): Likewise. * remote-mips.c (common_open): Likewise. * stack.c (print_stack_frame): New 'set_current_sal' parameter. Use it. (print_frame_info): New 'set_current_sal' parameter. Set the last displayed sal depending on the new paremeter instead of looking at print_what. (backtrace_command_1, select_and_print_frame, frame_command) (current_frame_command, up_command, down_command): Adjust call to print_stack_frame. * thread.c (print_thread_info, restore_selected_frame) (do_captured_thread_select): Adjust call to print_stack_frame. * tracepoint.c (tfind_1): Likewise. * mi/mi-cmd-stack.c (mi_cmd_stack_list_frames) (mi_cmd_stack_info_frame): Likewise. * mi/mi-interp.c (mi_on_normal_stop): Likewise. * mi/mi-main.c (mi_cmd_exec_return, mi_cmd_trace_find): Likewise. gdb/testsuite/ * gdb.threads/info-threads-cur-sal-2.c: New file. * gdb.threads/info-threads-cur-sal.c: New file. * gdb.threads/info-threads-cur-sal.exp: New file.
2013-09-03 * inf-child.c (inf_child_follow_fork) New parameterLuis Machado1-3/+7
detach_fork. * inf-ptrace.c (inf_ptrace_follow_fork): Likewise. * inf-ttrace.c (inf_ttrace_follow_fork): Likewise. * inferior.h (detach_fork): Remove. * infrun.c (detach_fork): Adjust comment and make it static. (follow_fork): Pass detach_fork parameter to target_follow_fork. * linux-nat.c (linux_child_follow_fork): New parameter detach_fork. * target.c (target_follow_fork): New parameter detach_fork. Pass detach_fork as parameter and print its value. * target.h (struct target_ops) <to_follow_fork>: New int parameter. (target_follow_fork): New parameter detach_fork.
2013-06-28Move pagination_enabled declaration to a proper place.Pedro Alves1-2/+0
Declare it close to other related declarations in utils.h, and remove local extern declaration hack. gdb/ 2013-06-28 Pedro Alves <palves@redhat.com> * infrun.c (set_observer_mode): Don't declare pagination_enabled here. * utils.h (pagination_enabled): Declare.
2013-06-28infrun.c: Move non_stop_1 etc., higher up in file.Pedro Alves1-28/+27
The "non_stop_1" global is out of place, mixed with the observer bits. This moves all the non-stop user-interface-related bits together. gdb/ 2013-06-28 Pedro Alves <palves@redhat.com> * infrun.c (non_stop, non_stop_1, set_non_stop, show_non_stop): Move higher up in file.
2013-06-27Move comment on the 'stepping over resolver' mechanism to the internals manual.Pedro Alves1-40/+0
This whole comment is now a bit out of place. I looked into moving it to handle_inferior_event, close to where in_solib_dynsym_resolve_code is used, but then there are 3 such places. I then looked at fragmenting it, pushing bits closer to the definitions of in_solib_dynsym_resolve_code and gdbarch_skip_solib_resolver, but then we'd lose the main advantage which is the overview. In the end, I realized this can fit nicely as internals manual material. This could possibly be a subsection of a new "run control", or "source stepping" or "stepping" or some such a bit more general section, but we can do that when we have more related content... Even the "single stepping" section is presently empty... gdb/doc/ 2013-06-27 Pedro Alves <palves@redhat.com> * gdbint.texinfo (Algorithms) <Stepping over runtime loader dynamic symbol resolution code>: New section, based on infrun.c comment. gdb/ 2013-06-27 Pedro Alves <palves@redhat.com> * infrun.c: Remove comment describing the 'stepping over runtime loader dynamic symbol resolution code' mechanism; moved to gdbint.texinfo.
2013-06-26Garbage collect SOLIB_IN_DYNAMIC_LINKER.Pedro Alves1-12/+0
This hasn't been used for years. gdb/ 2013-06-26 Pedro Alves <palves@redhat.com> * infrun.c (SOLIB_IN_DYNAMIC_LINKER): Delete macro and describing comment.
2013-06-26Update comments on stepping over resolver code.Pedro Alves1-16/+16
This updates the comments on the step-over-resolver mechanism a bit, adjusting it to refer to the gdbarch hooks instead of the old macros; to mention the in_dynsym_resolve_code hook of the target_so_ops vector; and to American English spelling (signalling->signaling). gdb/ 2013-06-26 Pedro Alves <palves@redhat.com> * infrun.c: Update comments on stepping over runtime loader dynamic symbol resolution code.
2013-06-18Fix PR cli/15603Tom Tromey1-6/+12
This fixes PR cli/15603. The bug here is that when a software watchpoint is being used, gdb will stop responding to C-c. This is a regression caused by the "catch signal" patch. The problem is that software watchpoints always end up on the bpstat list. However, this makes bpstat_explains_signal return BPSTAT_SIGNAL_HIDE, causing infrun to think that the signal is not a "random signal". The fix is to change bpstat_explains_signal to handle this better. I chose to do it in a "clean API" way, by passing the signal value to bpstat_explains_signal and then adding an explains_signal method for watchpoints, which handles the specifics. Built and regtested on x86-64 Fedora 18. New test case included. * break-catch-sig.c (signal_catchpoint_explains_signal): Add 'sig' argument. * breakpoint.c (bpstat_explains_signal): Add 'sig' argument. Special case signals other than GDB_SIGNAL_TRAP. (explains_signal_watchpoint): New function. (base_breakpoint_explains_signal): Add 'sig' argument. (initialize_breakpoint_ops): Set 'explains_signal' method for watchpoints. * breakpoint.h (struct breakpoint_ops) <explains_signal>: Add signal argument. (bpstat_explains_signal): Likewise. * infrun.c (handle_syscall_event, handle_inferior_event): Update. * gdb.base/random-signal.c: New file. * gdb.base/random-signal.exp: New file.
2013-06-042013-06-04 Gary Benson <gbenson@redhat.com>Gary Benson1-1/+11
* breakpoint.h (handle_solib_event): Moved function declaration to solib.h. * breakpoint.c (handle_solib_event): Moved function to solib.c. (bpstat_stop_status): Pass new argument to handle_solib_event. * solib.h (update_solib_breakpoints): New function declaration. (handle_solib_event): Moved function declaration from breakpoint.h. * solib.c (update_solib_breakpoints): New function. (handle_solib_event): Moved function from breakpoint.c. Updated to call solib_ops->handle_event if not NULL. * solist.h (target_so_ops): New fields "update_breakpoints" and "handle_event". * infrun.c (set_stop_on_solib_events): New function. (_initialize_infrun): Use the above for "set stop-on-solib-events". (handle_inferior_event): Pass new argument to handle_solib_event. * solib-svr4.c (probe.h): New include. (svr4_free_library_list): New forward declaration. (probe_action): New enum. (probe_info): New struct. (probe_info): New static variable. (NUM_PROBES): New definition. (svr4_info): New fields "using_xfer", "probes_table" and "solib_list". (free_probes_table): New function. (free_solib_list): New function. (svr4_pspace_data_cleanup): Free probes table and solib list. (svr4_copy_library_list): New function. (svr4_current_sos_via_xfer_libraries): New parameter "annex". (svr4_read_so_list): New parameter "prev_lm". (svr4_current_sos_direct): Renamed from "svr4_current_sos". (svr4_current_sos): New function. (probe_and_action): New struct. (hash_probe_and_action): New function. (equal_probe_and_action): Likewise. (register_solib_event_probe): Likewise. (solib_event_probe_at): Likewise. (solib_event_probe_action): Likewise. (solist_update_full): Likewise. (solist_update_incremental): Likewise. (disable_probes_interface_cleanup): Likewise. (svr4_handle_solib_event): Likewise. (svr4_update_solib_event_breakpoint): Likewise. (svr4_update_solib_event_breakpoints): Likewise. (svr4_create_solib_event_breakpoints): Likewise. (enable_break): Free probes table before creating breakpoints. Use svr4_create_solib_event_breakpoints to create breakpoints. (svr4_solib_create_inferior_hook): Free the solib list. (_initialize_svr4_solib): Initialise svr4_so_ops.handle_solib_event and svr4_so_ops.update_breakpoints.
2013-05-30some fixes to infrun.cTom Tromey1-4/+3
This fixes some of the problems in infrun.c that the checker reported. I filed the remaining problems as bugs. This patch is purely stylistic. * infrun.c (adjust_pc_after_break): Introduce an outer null cleanup.
2013-05-23range stepping: gdbPedro Alves1-0/+33
This patch teaches GDB to take advantage of target-assisted range stepping. It adds a new 'r ADDR1,ADDR2' action to vCont (vCont;r), meaning, "step once, and keep stepping as long as the thread is in the [ADDR1,ADDR2) range". Rationale: When user issues the "step" command on the following line of source, a = b + c + d * e - a; GDB single-steps every single instruction until the program reaches a new different line. E.g., on x86_64, that line compiles to: 0x08048434 <+65>: mov 0x1c(%esp),%eax 0x08048438 <+69>: mov 0x30(%esp),%edx 0x0804843c <+73>: add %eax,%edx 0x0804843e <+75>: mov 0x18(%esp),%eax 0x08048442 <+79>: imul 0x2c(%esp),%eax 0x08048447 <+84>: add %edx,%eax 0x08048449 <+86>: sub 0x34(%esp),%eax 0x0804844d <+90>: mov %eax,0x34(%esp) 0x08048451 <+94>: mov 0x1c(%esp),%eax and the following is the RSP traffic between GDB and GDBserver: --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:3c840408;thread:p2e13.2e13;core:1; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:3e840408;thread:p2e13.2e13;core:2; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:42840408;thread:p2e13.2e13;core:2; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:47840408;thread:p2e13.2e13;core:0; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:49840408;thread:p2e13.2e13;core:0; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:4d840408;thread:p2e13.2e13;core:0; --> vCont;s:p2e13.2e13;c <-- T0505:68efffbf;04:30efffbf;08:51840408;thread:p2e13.2e13;core:0; IOW, a lot of roundtrips between GDB and GDBserver. If we add a new command to the RSP, meaning "keep stepping and don't report a stop until the program goes out of the [0x08048434, 0x08048451) address range", then the RSP traffic can be reduced down to: --> vCont;r8048434,8048451:p2db0.2db0;c <-- T0505:68efffbf;04:30efffbf;08:51840408;thread:p2db0.2db0;core:1; As number of packets is reduced dramatically, the performance of stepping source lines is much improved. In case something is wrong with range stepping on the stub side, the debug info or even gdb, this adds a "set/show range-stepping" command to be able to turn range stepping off. gdb/ 2013-05-23 Yao Qi <yao@codesourcery.com> Pedro Alves <palves@redhat.com> * gdbthread.h (struct thread_control_state) <may_range_step>: New field. * infcmd.c (step_once, until_next_command): Enable range stepping. * infrun.c (displaced_step_prepare): Disable range stepping. (resume): Disable range stepping if stepping over a breakpoint or we have software watchpoints. If range stepping is enabled, assert the thread is in the stepping range. (clear_proceed_status_thread): Clear may_range_step. (handle_inferior_event): Disable range stepping as soon as we know the thread that hit the event. Re-enable it whenever we're going to step with a step range. * remote.c (struct vCont_action_support) <r>: New field. (use_range_stepping): New global. (remote_vcont_probe): Handle 'r' action. (append_resumption): Append an 'r' action if the thread may range step. (show_range_stepping): New function. (set_range_stepping): New function. (_initialize_remote): Call add_setshow_boolean_cmd to register the 'set range-stepping' and 'show range-stepping' commands. * NEWS: Mention range stepping, the new vCont;r action, and the new "set/show range-stepping" commands. gdb/doc/ 2013-05-23 Yao Qi <yao@codesourcery.com> Pedro Alves <palves@redhat.com> * gdb.texinfo (Packets): Document 'vCont;r'. (Continuing and Stepping): Document target-assisted range stepping, and the 'set range-stepping' and 'show range-stepping' commands.
2013-05-23Factor out in-stepping-range checks.Pedro Alves1-4/+2
This adds a function for doing within-thread's-stepping-range checks, and converts a couple spots to use it. Following patches will add more uses. gdb/ 2013-05-23 Yao Qi <yao@codesourcery.com> Pedro Alves <palves@redhat.com> * gdbthread.h (pc_in_thread_step_range): New declaration. * thread.c (pc_in_thread_step_range): New function. * infrun.c (handle_inferior_event): Use it.