Age | Commit message (Collapse) | Author | Files | Lines |
|
This patch implements compiling agent expressions to native code for
AArch64. This allows us to compile conditions set on fast tracepoints.
The compiled function has the following prologue:
High *------------------------------------------------------*
| LR |
| FP | <- FP
| x1 (ULONGEST *value) |
| x0 (unsigned char *regs) |
Low *------------------------------------------------------*
We save the function's argument on the stack as well as the return
address and the frame pointer. We then set the current frame pointer to
point to the previous one.
The generated code for the expression will freely update the stack
pointer so we use the frame pointer to refer to `*value' and `*regs'.
`*value' needs to be accessed in the epilogue of the function, in order
to set it to whatever is on top of the stack. `*regs' needs to be passed
down to the `gdb_agent_get_raw_reg' function with the `reg' operation.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low-.c: Include ax.h and tracepoint.h.
(enum aarch64_opcodes) <RET>, <SUBS>, <AND>, <ORR>, <ORN>,
<EOR>, <LSLV>, <LSRV>, <ASRV>, <SBFM>, <UBFM>, <CSINC>, <MUL>,
<NOP>: New.
(enum aarch64_condition_codes): New enum.
(w0): New static global.
(fp): Likewise.
(lr): Likewise.
(struct aarch64_memory_operand) <type>: New
MEMORY_OPERAND_POSTINDEX type.
(postindex_memory_operand): New helper function.
(emit_ret): New function.
(emit_load_store_pair): New function, factored out of emit_stp
with support for MEMORY_OPERAND_POSTINDEX.
(emit_stp): Rewrite using emit_load_store_pair.
(emit_ldp): New function.
(emit_load_store): Likewise.
(emit_ldr): Mention post-index instruction in comment.
(emit_ldrh): New function.
(emit_ldrb): New function.
(emit_ldrsw): Mention post-index instruction in comment.
(emit_str): Likewise.
(emit_subs): New function.
(emit_cmp): Likewise.
(emit_and): Likewise.
(emit_orr): Likewise.
(emit_orn): Likewise.
(emit_eor): Likewise.
(emit_mvn): Likewise.
(emit_lslv): Likewise.
(emit_lsrv): Likewise.
(emit_asrv): Likewise.
(emit_mul): Likewise.
(emit_sbfm): Likewise.
(emit_sbfx): Likewise.
(emit_ubfm): Likewise.
(emit_ubfx): Likewise.
(emit_csinc): Likewise.
(emit_cset): Likewise.
(emit_nop): Likewise.
(emit_ops_insns): New helper function.
(emit_pop): Likewise.
(emit_push): Likewise.
(aarch64_emit_prologue): New function.
(aarch64_emit_epilogue): Likewise.
(aarch64_emit_add): Likewise.
(aarch64_emit_sub): Likewise.
(aarch64_emit_mul): Likewise.
(aarch64_emit_lsh): Likewise.
(aarch64_emit_rsh_signed): Likewise.
(aarch64_emit_rsh_unsigned): Likewise.
(aarch64_emit_ext): Likewise.
(aarch64_emit_log_not): Likewise.
(aarch64_emit_bit_and): Likewise.
(aarch64_emit_bit_or): Likewise.
(aarch64_emit_bit_xor): Likewise.
(aarch64_emit_bit_not): Likewise.
(aarch64_emit_equal): Likewise.
(aarch64_emit_less_signed): Likewise.
(aarch64_emit_less_unsigned): Likewise.
(aarch64_emit_ref): Likewise.
(aarch64_emit_if_goto): Likewise.
(aarch64_emit_goto): Likewise.
(aarch64_write_goto_address): Likewise.
(aarch64_emit_const): Likewise.
(aarch64_emit_call): Likewise.
(aarch64_emit_reg): Likewise.
(aarch64_emit_pop): Likewise.
(aarch64_emit_stack_flush): Likewise.
(aarch64_emit_zero_ext): Likewise.
(aarch64_emit_swap): Likewise.
(aarch64_emit_stack_adjust): Likewise.
(aarch64_emit_int_call_1): Likewise.
(aarch64_emit_void_call_2): Likewise.
(aarch64_emit_eq_goto): Likewise.
(aarch64_emit_ne_goto): Likewise.
(aarch64_emit_lt_goto): Likewise.
(aarch64_emit_le_goto): Likewise.
(aarch64_emit_gt_goto): Likewise.
(aarch64_emit_ge_got): Likewise.
(aarch64_emit_ops_impl): New static global variable.
(aarch64_emit_ops): New target function, return
&aarch64_emit_ops_impl.
(struct linux_target_ops): Install it.
|
|
This patch adds support for fast tracepoints for aarch64-linux. With this
implementation, a tracepoint can only be placed in a +/- 128MB range of
the jump pad. This is due to the unconditional branch instruction
being limited to a (26 bit << 2) offset from the current PC.
Three target operations are implemented:
- target_install_fast_tracepoint_jump_pad
Building the jump pad the biggest change of this patch. We need to add
functions to emit all instructions needed to save and restore the
current state when the tracepoint is hit. As well as implementing a
lock and creating a collecting_t object identifying the current thread.
Steps performed by the jump pad:
* Save the current state on the stack.
* Push a collecting_t object on the stack. We read the special
tpidr_el0 system register to get the thread ID.
* Spin-lock on the shared memory location of all tracing threads. We
write the address of our collecting_t object there once we have the
lock.
* Call gdb_collect.
* Release the lock.
* Restore the state.
* Execute the replaced instruction which will have been relocated.
* Jump back to the program.
- target_get_thread_area
As implemented in ps_get_thread_area, target_get_thread_area uses ptrace
to fetch the NT_ARM_TLS register. At the architecture level, NT_ARM_TLS
represents the tpidr_el0 system register.
So this ptrace call (if lwpid is the current thread):
~~~
ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec);
~~~
Is equivalent to the following instruction:
~~~
msr x0, tpidr_el0
~~~
This instruction is used when creating the collecting_t object that
GDBserver can read to know if a given thread is currently tracing.
So target_get_thread_area must get the same thread IDs as what the jump
pad writes into its collecting_t object.
- target_get_min_fast_tracepoint_insn_len
This just returns 4.
gdb/gdbserver/ChangeLog:
* Makefile.in (linux-aarch64-ipa.o, aarch64-ipa.o): New rules.
* configure.srv (aarch64*-*-linux*): Add linux-aarch64-ipa.o and
aarch64-ipa.o.
* linux-aarch64-ipa.c: New file.
* linux-aarch64-low.c: Include arch/aarch64-insn.h, inttypes.h
and endian.h.
(aarch64_get_thread_area): New target method.
(extract_signed_bitfield): New helper function.
(aarch64_decode_ldr_literal): New function.
(enum aarch64_opcodes): New enum.
(struct aarch64_register): New struct.
(struct aarch64_operand): New struct.
(x0): New static global.
(x1): Likewise.
(x2): Likewise.
(x3): Likewise.
(x4): Likewise.
(w2): Likewise.
(ip0): Likewise.
(sp): Likewise.
(xzr): Likewise.
(aarch64_register): New helper function.
(register_operand): Likewise.
(immediate_operand): Likewise.
(struct aarch64_memory_operand): New struct.
(offset_memory_operand): New helper function.
(preindex_memory_operand): Likewise.
(enum aarch64_system_control_registers): New enum.
(ENCODE): New macro.
(emit_insn): New helper function.
(emit_b): New function.
(emit_bcond): Likewise.
(emit_cb): Likewise.
(emit_tb): Likewise.
(emit_blr): Likewise.
(emit_stp): Likewise.
(emit_ldp_q_offset): Likewise.
(emit_stp_q_offset): Likewise.
(emit_load_store): Likewise.
(emit_ldr): Likewise.
(emit_ldrsw): Likewise.
(emit_str): Likewise.
(emit_ldaxr): Likewise.
(emit_stxr): Likewise.
(emit_stlr): Likewise.
(emit_data_processing_reg): Likewise.
(emit_data_processing): Likewise.
(emit_add): Likewise.
(emit_sub): Likewise.
(emit_mov): Likewise.
(emit_movk): Likewise.
(emit_mov_addr): Likewise.
(emit_mrs): Likewise.
(emit_msr): Likewise.
(emit_sevl): Likewise.
(emit_wfe): Likewise.
(append_insns): Likewise.
(can_encode_int32_in): New helper function.
(aarch64_relocate_instruction): New function.
(aarch64_install_fast_tracepoint_jump_pad): Likewise.
(aarch64_get_min_fast_tracepoint_insn_len): Likewise.
(struct linux_target_ops): Install aarch64_get_thread_area,
aarch64_install_fast_tracepoint_jump_pad and
aarch64_get_min_fast_tracepoint_insn_len.
|
|
This patch moves the following functions into the arch/ common
directory, in new files arch/aarch64-insn.{h,c}. They are prefixed with
'aarch64_':
- aarch64_decode_adrp
- aarch64_decode_b
- aarch64_decode_cb
- aarch64_decode_tb
We will need them to implement fast tracepoints in GDBserver.
For consistency, this patch also adds the 'aarch64_' prefix to static
decoding functions that do not need to be shared right now.
V2:
make sure the formatting issues propagated
fix `gdbserver/configure.srv'.
gdb/ChangeLog:
* Makefile.in (ALL_64_TARGET_OBS): Add aarch64-insn.o.
(HFILES_NO_SRCDIR): Add arch/aarch64-insn.h.
(aarch64-insn.o): New rule.
* configure.tgt (aarch64*-*-elf): Add aarch64-insn.o.
(aarch64*-*-linux*): Likewise.
* arch/aarch64-insn.c: New file.
* arch/aarch64-insn.h: New file.
* aarch64-tdep.c: Include arch/aarch64-insn.h.
(aarch64_debug): Move to arch/aarch64-insn.c. Declare in
arch/aarch64-insn.h.
(decode_add_sub_imm): Rename to ...
(aarch64_decode_add_sub_imm): ... this.
(decode_adrp): Rename to ...
(aarch64_decode_adrp): ... this. Move to arch/aarch64-insn.c.
Declare in arch/aarch64-insn.h.
(decode_b): Rename to ...
(aarch64_decode_b): ... this. Move to arch/aarch64-insn.c.
Declare in arch/aarch64-insn.h.
(decode_bcond): Rename to ...
(aarch64_decode_bcond): ... this. Move to arch/aarch64-insn.c.
Declare in arch/aarch64-insn.h.
(decode_br): Rename to ...
(aarch64_decode_br): ... this.
(decode_cb): Rename to ...
(aarch64_decode_cb): ... this. Move to arch/aarch64-insn.c.
Declare in arch/aarch64-insn.h.
(decode_eret): Rename to ...
(aarch64_decode_eret): ... this.
(decode_movz): Rename to ...
(aarch64_decode_movz): ... this.
(decode_orr_shifted_register_x): Rename to ...
(aarch64_decode_orr_shifted_register_x): ... this.
(decode_ret): Rename to ...
(aarch64_decode_ret): ... this.
(decode_stp_offset): Rename to ...
(aarch64_decode_stp_offset): ... this.
(decode_stp_offset_wb): Rename to ...
(aarch64_decode_stp_offset_wb): ... this.
(decode_stur): Rename to ...
(aarch64_decode_stur): ... this.
(decode_tb): Rename to ...
(aarch64_decode_tb): ... this. Move to arch/aarch64-insn.c.
Declare in arch/aarch64-insn.h.
(aarch64_analyze_prologue): Adjust calls to renamed functions.
gdb/gdbserver/ChangeLog:
* Makefile.in (aarch64-insn.o): New rule.
* configure.srv (aarch64*-*-linux*): Add aarch64-insn.o.
|
|
Hi,
I see the following build warning with recent GCC built from mainline,
aarch64-none-linux-gnu-gcc -g -O2 -I. -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/../common -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/../regformats -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/.. -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/../../include -I/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/../gnulib/import -Ibuild-gnulib-gdbserver/import -Wall -Wpointer-arith -Wformat-nonliteral -Wno-char-subscripts -Wempty-body -Wdeclaration-after-statement -Werror -DGDBSERVER -DCONFIG_UST_GDB_INTEGRATION -fPIC -DIN_PROCESS_AGENT -fvisibility=hidden -c -o ax-ipa.o -MT ax-ipa.o -MMD -MP -MF .deps/ax-ipa.Tpo `echo " -Wall -Wpointer-arith -Wformat-nonliteral -Wno-char-subscripts -Wempty-body -Wdeclaration-after-statement " | sed "s/ -Wformat-nonliteral / -Wno-format-nonliteral /g"` /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/ax.c
/home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/ax.c:73:28: error: 'gdb_agent_op_sizes' defined but not used [-Werror=unused-const-variable]
static const unsigned char gdb_agent_op_sizes [gdb_agent_op_last] =
^
cc1: all warnings being treated as errors
gdb_agent_op_sizes is only used in function is_goto_target, which is
defined inside #ifndef IN_PROCESS_AGENT. This warning is not arch
specific, so GCC mainline for other targets should produce this warning
too, although this warning is triggered by enabling aarch64 fast
tracepoint. The fix is to move gdb_agent_op_sizes to
gdb/gdbserver:
2015-09-21 Yao Qi <yao.qi@linaro.org>
* ax.c [!IN_PROCESS_AGENT] (gdb_agent_op_sizes): Define it.
|
|
This patch is to remove max_jump_pad_size which isn't used else where,
and it causes a recent gcc warning like this,
gdb/gdbserver/tracepoint.c:2920:18: error: 'max_jump_pad_size' defined but not used [-Werror=unused-const-variable]
static const int max_jump_pad_size = 0x100;
^
cc1: all warnings being treated as errors
This variable max_jump_pad_size wasn't used since it was added in 2010
by https://sourceware.org/ml/gdb-patches/2010-06/msg00002.html
gdb/gdbserver:
2015-09-21 Yao Qi <yao.qi@linaro.org>
* tracepoint.c (max_jump_pad_size): Remove.
|
|
With the kernle fix <http://lists.infradead.org/pipermail/linux-arm-kernel/2015-July/356511.html>,
aarch64 GDB is able to read the base of thread area of 32-bit arm
program through NT_ARM_TLS.
This patch is to teach both GDB and GDBserver to read the base of
thread area correctly in the multi-arch case. A new function
aarch64_ps_get_thread_area is added, and is shared between GDB and
GDBserver.
With this patch applied, the following fails in multi-arch testing
(GDB is aarch64 but the test cases are arm) are fixed,
-FAIL: gdb.threads/tls-nodebug.exp: thread local storage
-FAIL: gdb.threads/tls-shared.exp: print thread local storage variable
-FAIL: gdb.threads/tls-so_extern.exp: print thread local storage variable
-FAIL: gdb.threads/tls-var.exp: print tls_var
-FAIL: gdb.threads/tls.exp: first thread local storage
-FAIL: gdb.threads/tls.exp: first another thread local storage
-FAIL: gdb.threads/tls.exp: p a_thread_local
-FAIL: gdb.threads/tls.exp: p file2_thread_local
-FAIL: gdb.threads/tls.exp: p a_thread_local second time
gdb:
2015-09-18 Yao Qi <yao.qi@linaro.org>
* nat/aarch64-linux.c: Include elf/common.h,
nat/gdb_ptrace.h, asm/ptrace.h and sys/uio.h.
(aarch64_ps_get_thread_area): New function.
* nat/aarch64-linux.h: Include gdb_proc_service.h.
(aarch64_ps_get_thread_area): Declare.
* aarch64-linux-nat.c (ps_get_thread_area): Call
aarch64_ps_get_thread_area.
gdb/gdbserver:
2015-09-18 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c: Don't include sys/uio.h.
(ps_get_thread_area): Call aarch64_ps_get_thread_area.
|
|
This patch fixes the argument passed to compiled_cond. It should be
regs buffer instead of tracepoint_hit_ctx. Test case is added as
well for testing compiled-cond.
gdb/gdbserver/ChangeLog
2015-09-16 Wei-cheng Wang <cole945@gmail.com>
* tracepoint.c (eval_result_type): Change prototype.
(condition_true_at_tracepoint): Fix argument to compiled_cond.
gdb/testsuite/ChangeLog
2015-09-16 Wei-cheng Wang <cole945@gmail.com>
* gdb.trace/ftrace.exp: (test_ftrace_condition) New function
for testing bytecode compilation.
|
|
gdb/gdbserver/ChangeLog:
2015-09-15 Pedro Alves <palves@redhat.com>
* remote-utils.c (prepare_resume_reply) <TARGET_WAITKIND_EXECD>:
Check whether to report exec events instead of checking whether
multiprocess is enabled.
|
|
gdb/ChangeLog -> gdb/gdbserver/ChangeLog
2015-09-15 Pedro Alves <palves@redhat.com>
PR remote/18965
* remote-utils.c (prepare_resume_reply): Merge
TARGET_WAITKIND_VFORK_DONE switch case with the
TARGET_WAITKIND_FORKED case.
|
|
The vforkdone stop reply misses indicating the thread ID of the vfork
parent which the event relates to:
@cindex vfork events, remote reply
@item vfork
The packet indicates that @code{vfork} was called, and @var{r}
is the thread ID of the new child process. Refer to
@ref{thread-id syntax} for the format of the @var{thread-id}
field. This packet is only applicable to targets that support
vfork events.
@cindex vforkdone events, remote reply
@item vforkdone
The packet indicates that a child process created by a vfork
has either called @code{exec} or terminated, so that the
address spaces of the parent and child process are no longer
shared. The @var{r} part is ignored. This packet is only
applicable to targets that support vforkdone events.
Unfortunately, this is not just a documentation issue. GDBserver
is really not specifying the thread ID. I noticed because
in non-stop mode, gdb complains:
[Thread 6089.6089] #1 stopped.
#0 0x0000003615a011f0 in ?? ()
0x0000003615a011f0 in ?? ()
(gdb) set debug remote 1
(gdb) c
Continuing.
Sending packet: $QPassSignals:e;10;14;17;1a;1b;1c;21;24;25;2c;4c;#5f...Packet received: OK
Sending packet: $vCont;c:p17c9.17c9#88...Packet received: OK
Notification received: Stop:T05vfork:p17ce.17ce;06:40d7ffffff7f0000;07:30d7ffffff7f0000;10:e4c9eb1536000000;thread:p17c9.17c9;core:2;
Sending packet: $vStopped#55...Packet received: OK
Sending packet: $D;17ce#af...Packet received: OK
Sending packet: $vCont;c:p17c9.17c9#88...Packet received: OK
Notification received: Stop:T05vforkdone:;
No process or thread specified in stop reply: T05vforkdone:;
(gdb)
This is not non-stop-mode-specific, however. Consider e.g., that in
all-stop, you may be debugging more than one process at the same time.
You continue, and both processes vfork. So when you next get a
T05vforkdone, there's no way to tell which of the parent processes is
done with the vfork.
Tests will be added later.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-09-15 Pedro Alves <palves@redhat.com>
PR remote/18965
* remote-utils.c (prepare_resume_reply): Merge
TARGET_WAITKIND_VFORK_DONE switch case with the
TARGET_WAITKIND_FORKED case.
gdb/doc/ChangeLog:
2015-09-15 Pedro Alves <palves@redhat.com>
PR remote/18965
* gdb.texinfo (Stop Reply Packets): Explain that vforkdone's 'r'
part indicates the thread ID of the parent process.
|
|
gdb/gdbserver:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* server.c (handle_query): Check string comparison using
"else if" instead of "if".
|
|
Nowadays, GDB only knows whether architecture supports hardware single
step or software single step (through gdbarch hook software_single_step),
and for a given instruction or instruction sequence, GDB knows how to
do single step (hardware or software). However, GDB doesn't know whether
the target supports hardware single step. It is possible that the
architecture doesn't support hardware single step, such as arm, but
the target supports, such as simulator. This was discussed in this
thread https://www.sourceware.org/ml/gdb/2009-12/msg00033.html before.
I encounter this problem for aarch64 multi-arch support. When aarch64
debugs arm program, gdbarch is arm, so software single step is still
used. However, the underneath linux kernel does support hardware
single step, so IWBN to use it.
This patch is to add a new target_ops hook to_can_do_single_step, and
only use it in arm_linux_software_single_step to decide whether or not
to use hardware single step. On the native aarch64 linux target, 1 is
returned. On other targets, -1 is returned. On the remote target, if
the target supports s and S actions in the vCont? reply, then target
can do single step. However, old GDBserver will send s and S in the
reply to vCont?, which will confuse new GDB. For example, old GDBserver
on arm-linux will send s and S in the reply to vCont?, but it doesn't
support hardware single step. On the other hand, new GDBserver, on
arm-linux for example, will not send s and S in the reply to vCont?,
but old GDB thinks it doesn't support vCont packet at all. In order
to address this problem, I add a new qSupported feature vContSupported,
which indicates GDB wants to know the supported actions in the reply
to vCont?, and qSupported response contains vContSupported if the
stub is able tell supported vCont actions in the reply of vCont?.
If the patched GDB talks with patched GDBserver on x86, the RSP traffic
is like this:
-> $qSupported:...+;vContSupported+
<- ...+;vContSupported+
...
-> $vCont?
<- vCont;c;C;t;s;S;r
then, GDB knows the stub can do single step, and may stop using software
single step even the architecture doesn't support hardware single step.
If the patched GDB talks with patched GDBserver on arm, the last vCont?
reply will become:
<- vCont;c;C;t
GDB thinks the target doesn't support single step, so it will use software
single step.
If the patched GDB talks with unpatched GDBserver, the RSP traffic is like
this:
-> $qSupported:...+;vContSupported+
<- ...+
...
-> $vCont?
<- vCont;c;C;t;s;S;r
although GDBserver returns s and S, GDB still thinks GDBserver may not
support single step because it doesn't support vContSupported.
If the unpatched GDB talks with patched GDBserver on x86, the RSP traffic
is like:
-> $qSupported:...+;
<- ...+;vContSupported+
...
-> $vCont?
<- vCont;c;C;t;s;S;r
Since GDB doesn't sent vContSupported in the qSupported feature, GDBserver
sends s and S regardless of the support of hardware single step.
gdb:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_can_do_single_step): New
function.
(_initialize_aarch64_linux_nat): Install it to to_can_do_single_step.
* arm-linux-tdep.c (arm_linux_software_single_step): Return 0
if target_can_do_single_step returns 1.
* remote.c (struct vCont_action_support) <s, S>: New fields.
(PACKET_vContSupported): New enum.
(remote_protocol_features): New element for vContSupported.
(remote_query_supported): Append "vContSupported+".
(remote_vcont_probe): Remove support_s and support_S, use
rs->supports_vCont.s and rs->supports_vCont.S instead. Disable
vCont packet if c and C actions are not supported.
(remote_can_do_single_step): New function.
(init_remote_ops): Install it to to_can_do_single_step.
(_initialize_remote): Call add_packet_config_cmd.
* target.h (struct target_ops) <to_can_do_single_step>: New field.
(target_can_do_single_step): New macro.
* target-delegates.c: Re-generated.
gdb/gdbserver:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* server.c (vCont_supported): New global variable.
(handle_query): Set vCont_supported to 1 if "vContSupported+"
matches. Append ";vContSupported+" to own_buf.
(handle_v_requests): Append ";s;S" to own_buf if target supports
hardware single step or vCont_supported is false.
(capture_main): Set vCont_supported to zero.
gdb/doc:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* gdb.texinfo (General Query Packets): Add vContSupported to
tables of 'gdbfeatures' and 'stub features' supported in the
qSupported packet, as well as to the list containing stub
feature details.
|
|
supports_hardware_single_step
In my patch https://sourceware.org/ml/gdb-patches/2015-04/msg01110.html
a new target_ops hook supports_conditional_breakpoints was added to
disable conditional breakpoints if target doesn't have hardware single
step. This patch is to generalize this hook from
supports_conditional_breakpoints to supports_hardware_single_step,
so that the following patch can use it.
gdb/gdbserver:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* linux-low.c (linux_supports_conditional_breakpoints): Rename
it to ...
(linux_supports_hardware_single_step): ... New function.
(linux_target_ops): Update.
* lynx-low.c (lynx_target_ops): Set field
supports_hardware_single_step to target_can_do_hardware_single_step.
* nto-low.c (nto_target_ops): Likewise.
* spu-low.c (spu_target_ops): Likewise.
* win32-low.c (win32_target_ops): Likewise.
* target.c (target_can_do_hardware_single_step): New function.
* target.h (struct target_ops) <supports_conditional_breakpoints>:
Remove. <supports_hardware_single_step>: New field.
(target_supports_conditional_breakpoints): Remove.
(target_supports_hardware_single_step): New macro.
(target_can_do_hardware_single_step): Declare.
* server.c (handle_query): Use target_supports_hardware_single_step
instead of target_supports_conditional_breakpoints.
|
|
This patch is to fixup the siginfo_t when aarch64 gdb or gdbserver
read from or write to the arm inferior. It is to convert the
"struct siginfo_t" between aarch64 and arm, which is quite mechanical.
gdb/gdbserver:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_linux_siginfo_fixup): New
function.
(struct linux_target_ops the_low_target): Install
aarch64_linux_siginfo_fixup.
gdb:
2015-09-15 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_siginfo_fixup): New function.
(_initialize_aarch64_linux_nat): Call linux_nat_set_siginfo_fixup.
* nat/aarch64-linux.c (aarch64_compat_siginfo_from_siginfo):
New function.
(aarch64_siginfo_from_compat_siginfo): New function.
* nat/aarch64-linux.h: Include signal.h.
(compat_int_t, compat_uptr_t, compat_time_t): Typedef.
(compat_timer_t, compat_clock_t): Likewise.
(struct compat_timeval): New.
(union compat_sigval): New.
(struct compat_siginfo): New.
(cpt_si_pid, cpt_si_uid, cpt_si_timerid): New macros.
(cpt_si_overrun, cpt_si_status, cpt_si_utime): Likewise.
(cpt_si_stime, cpt_si_ptr, cpt_si_addr): Likewise.
(cpt_si_band, cpt_si_fd): Likewise.
|
|
This patch implements support for exec events on extended-remote Linux
targets. Follow-exec-mode and rerun behave as expected. Catchpoints and
test updates are implemented in subsequent patches.
This patch was derived from a patch posted last October:
https://sourceware.org/ml/gdb-patches/2014-10/msg00877.html.
It was originally based on some work done by Luis Machado in 2013.
IMPLEMENTATION
----------------
Exec events are enabled via ptrace options.
When an exec event is detected by gdbserver, the existing process
data, along with all its associated lwp and thread data, is deleted
and replaced by data for a new single-threaded process. The new
process data is initialized with the appropriate parts of the state
of the execing process. This approach takes care of several potential
pitfalls, including:
* deleting the data for an execing non-leader thread before any
wait/sigsuspend occurs
* correctly initializing the architecture of the execed process
We then report the exec event using a new RSP stop reason, "exec".
When GDB receives an "exec" event, it saves the status in the event
structure's target_waitstatus field, like what is done for remote fork
events. Because the original and execed programs may have different
architectures, we skip parsing the section of the stop reply packet
that contains register data. The register data will be retrieved
later after the inferior's architecture has been set up by
infrun.c:follow_exec.
At that point the exec event is handled by the existing event handling
in GDB. However, a few changes were necessary so that
infrun.c:follow_exec could accommodate the remote target.
* Where follow-exec-mode "new" is handled, we now call
add_inferior_with_spaces instead of add_inferior with separate calls
to set up the program and address spaces. The motivation for this
is that add_inferior_with_spaces also sets up the initial architecture
for the inferior, which is needed later by target_find_description
when it calls target_gdbarch.
* We call a new target function, target_follow_exec. This function
allows us to store the execd_pathname in the inferior, instead of
using the static string remote_exec_file from remote.c. The static
string didn't work for follow-exec-mode "new", since once you switched
to the execed program, the original remote exec-file was lost. The
execd_pathname is now stored in the inferior's program space as a
REGISTRY field. All of the requisite mechanisms for this are
defined in remote.c.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_mourn): Static declaration.
(linux_arch_setup): Move in front of
handle_extended_wait.
(linux_arch_setup_thread): New function.
(handle_extended_wait): Handle exec events. Call
linux_arch_setup_thread. Make event_lwp argument a
pointer-to-a-pointer.
(check_zombie_leaders): Do not check stopped threads.
(linux_low_ptrace_options): Add PTRACE_O_TRACEEXEC.
(linux_low_filter_event): Add lwp and thread for exec'ing
non-leader thread if leader thread has been deleted.
Refactor code into linux_arch_setup_thread and call it.
Pass child lwp pointer by reference to handle_extended_wait.
(linux_wait_for_event_filtered): Update comment.
(linux_wait_1): Prevent clobbering exec event status.
(linux_supports_exec_events): New function.
(linux_target_ops) <supports_exec_events>: Initialize new member.
* lynx-low.c (lynx_target_ops) <supports_exec_events>: Initialize
new member.
* remote-utils.c (prepare_resume_reply): New stop reason 'exec'.
* server.c (report_exec_events): New global variable.
(handle_query): Handle qSupported query for exec-events feature.
(captured_main): Initialize report_exec_events.
* server.h (report_exec_events): Declare new global variable.
* target.h (struct target_ops) <supports_exec_events>: New
member.
(target_supports_exec_events): New macro.
* win32-low.c (win32_target_ops) <supports_exec_events>:
Initialize new member.
gdb/ChangeLog:
* infrun.c (follow_exec): Use process-style ptid for
exec message. Call add_inferior_with_spaces and
target_follow_exec.
* nat/linux-ptrace.c (linux_supports_traceexec): New function.
* nat/linux-ptrace.h (linux_supports_traceexec): Declare.
* remote.c (remote_pspace_data): New static variable.
(remote_pspace_data_cleanup): New function.
(get_remote_exec_file): New function.
(set_remote_exec_file_1): New function.
(set_remote_exec_file): New function.
(show_remote_exec_file): New function.
(remote_exec_file): Delete static variable.
(anonymous enum) <PACKET_exec_event_feature> New
enumeration constant.
(remote_protocol_features): Add entry for exec-events feature.
(remote_query_supported): Add client side of qSupported query
for exec-events feature.
(remote_follow_exec): New function.
(remote_parse_stop_reply): Handle 'exec' stop reason.
(extended_remote_run, extended_remote_create_inferior): Call
get_remote_exec_file and set_remote_exec_file_1.
(init_extended_remote_ops) <to_follow_exec>: Initialize new
member.
(_initialize_remote): Call
register_program_space_data_with_cleanup. Call
add_packet_config_cmd for remote exec-events feature.
Modify call to add_setshow_string_noescape_cmd for exec-file
to use new functions set_remote_exec_file and
show_remote_exec_file.
* target-debug.h, target-delegates.c: Regenerated.
* target.c (target_follow_exec): New function.
* target.h (struct target_ops) <to_follow_exec>: New member.
(target_follow_exec): Declare new function.
|
|
For the BTS recording format, we sometimes get a FROM->TO record where the
FROM address lies in the kernel and the TO address lies in user space at
whatever address the user process was resumed.
GDB has a heuristic to filter out such records based on looking at the most
significant bit in the PC. This works fine for 64-bit systems but it doesn't
always work for 32-bit systems. Libraries that are loaded at fairly high
addresses might be mistaken for kernel code and branches inside the library
are filtered out.
Change the heuristic to (again heuristically) try to determine the lowest
address in kernel space. Any PC that is smaller than that should be in
user space.
On today's systems, there should be a symbol "_text" at that address.
Read /proc/kallsyms and search for that symbol.
It is not guaranteed that /proc/kallsyms is readable on all systems. On
64-bit systems, we fall back to check the most significant bit. On 32-bit
systems, we refrain from filtering out addresses.
The filtering should really be done by the kernel. And it soon will be:
https://lkml.org/lkml/2015/8/31/212.
gdb/
* nat/linux-btrace.h (struct btrace_target_info) <ptr_bits>: Remove.
* nat/linux-btrace.c: Include filestuff.h and inttypes.h.
Remove include of sys/utsname.h.
(linux_determine_kernel_ptr_bits): Remove.
(linux_determine_kernel_start): New.
(perf_event_is_kernel_addr): Remove tinfo argument. Update users.
Update check.
(perf_event_skip_bts_record): Remove tinfo argument. Update users.
(linux_enable_bts, linux_enable_pt): Remove tinfo->ptr_bits
initialization.
* x86-linux-nat.c (x86_linux_enable_btrace): Remove ptr_bits
assignment.
gdbserver/
* linux-low.c (linux_low_enable_btrace): Remove.
(linux_target_ops): Replace linux_low_enable_btrace with
linux_enable_btrace.
|
|
Nowadays, if user requests HW watchpoint to monitor a large memory area
or unaligned area, aarch64 GDB will split into multiple aligned areas,
and use multiple debugging registers to watch them. However, the
registers are not updated in a transaction way. GDBserver doesn't revert
updates in previous iterations if some debugging registers fail to update
due to some reason, like no free debugging registers available, in the
latter iteration. For example, if we have a char buf[34], and watch buf
in gdb,
(gdb) watch buf
Hardware watchpoint 2: buf
(gdb) c
Continuing.
infrun: clear_proceed_status_thread (Thread 13466)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: step-over queue now empty
infrun: resuming [Thread 13466] for step-over
Sending packet: $m410838,22#35...Packet received: 00000000000000000000000000000000000000000000000000000000000000000000
infrun: skipping breakpoint: stepping past insn at: 0x400524
infrun: skipping breakpoint: stepping past insn at: 0x400524
Sending packet: $Z2,410838,22#80...Packet received: E01 <----- [1]
Packet Z2 (write-watchpoint) is supported
Sending packet: $Z0,7fb7fe0a8c,4#43...Packet received: OK
Warning:
Could not insert hardware watchpoint 2.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
GDB receives E01 for Z2 packet [1] but GDBserver updates the debugging
register status,
insert_point (addr=0x00410838, len=34, type=hw-write-watchpoint):
BREAKPOINTs:
BP0: addr=0x0, ctrl=0x00000000, ref.count=0
BP1: addr=0x0, ctrl=0x00000000, ref.count=0
BP2: addr=0x0, ctrl=0x00000000, ref.count=0
BP3: addr=0x0, ctrl=0x00000000, ref.count=0
BP4: addr=0x0, ctrl=0x00000000, ref.count=0
BP5: addr=0x0, ctrl=0x00000000, ref.count=0
WATCHPOINTs:
WP0: addr=0x410850, ctrl=0x00001ff5, ref.count=1
WP1: addr=0x410848, ctrl=0x00001ff5, ref.count=1
WP2: addr=0x410840, ctrl=0x00001ff5, ref.count=1
WP3: addr=0x410838, ctrl=0x00001ff5, ref.count=1
four debugging registers can not monitor 34-byte long area, so the last
iteration of updating debugging register state fails but previous
iterations succeed. This makes GDB think no HW watchpoint is inserted
but some debugging registers are used.
This problem was exposed by "watch buf" gdb.base/watchpoint.exp with
aarch64 GDBserver debugging arm 32-bit program. The buf is 30-byte long
but 4-byte aligned, and four debugging registers can't cover 34-byte
(extend 4 bytes to be 8-byte aligned) area. However, this problem
does exist on non-multi-arch debugging scenario as well.
This patch moves code in aarch64_linux_region_ok_for_hw_watchpoint to
aarch64_linux_region_ok_for_watchpoint in nat/aarch64-linux-hw-point.c.
Then, checks with aarch64_linux_region_ok_for_watchpoint, like what we
are doing in GDB. If the region is OK, call aarch64_handle_watchpoint.
Regression tested on aarch64 with both 64-bit program and 32-bit
program. Some fails in gdb.base/watchpoint.exp are fixed.
gdb:
2015-09-03 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_region_ok_for_hw_watchpoint):
Move code to aarch64_linux_region_ok_for_watchpoint. Call
aarch64_linux_region_ok_for_watchpoint.
* nat/aarch64-linux-hw-point.c (aarch64_linux_region_ok_for_watchpoint):
New function.
* nat/aarch64-linux-hw-point.h (aarch64_linux_region_ok_for_watchpoint):
Declare it.
gdb/gdbserver:
2015-09-03 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_insert_point): Call
aarch64_handle_watchpoint if aarch64_linux_region_ok_for_watchpoint
returns true.
|
|
The first lines of these ChangeLog entries are "Likewise"... it doesn't
make much sense.
|
|
The Linux target and gdbserver now check the siginfo si_code
reported on a SIGTRAP to detect whether the trap indicates
a software breakpoint was hit.
Unfortunately, on Cell/B.E., the kernel uses an si_code value
of TRAP_BRKPT when a SW breakpoint was hit in PowerPC code,
but a si_code value of SI_KERNEL when a SW breakpoint was
hit in SPU code.
This patch updates Linux target and gdbserver to accept both
si_code values to indicate SW breakpoint on PowerPC.
ChangeLog:
* nat/linux-ptrace.h (GDB_ARCH_TRAP_BRKPT): Replace by ...
(GDB_ARCH_IS_TRAP_BRKPT): ... this. Add __powerpc__ case.
* linux-nat.c (check_stopped_by_breakpoint): Use
GDB_ARCH_IS_TRAP_BRKPT instead of GDB_ARCH_TRAP_BRKPT.
gdbserver/ChangeLog:
* linux-low.c (check_stopped_by_breakpoint): Use
GDB_ARCH_IS_TRAP_BRKPT instead of GDB_ARCH_TRAP_BRKPT.
|
|
Building in C++ mode shows:
int write_inferior_memory (CORE_ADDR memaddr, const unsigned char *myaddr,
^
src/gdb/gdbserver/proc-service.c:93:64: error: invalid conversion from ‘int’ to ‘ps_err_e’ [-fpermissive]
return write_inferior_memory ((unsigned long) addr, buf, size);
^
It only works today by accident, write_inferior_memory does not return
a ps_err_e.
gdb/gdbserver/ChangeLog:
2015-08-27 Pedro Alves <palves@redhat.com>
* proc-service.c (ps_pdwrite): Return PS_ERR/PS_OK explicily.
|
|
This patch is part of the make-gdb-buildable-in-C++ effort. The idea is
to change some calls to the xmalloc family of functions to calls to the
equivalents in the XNEW family. This avoids adding an explicit cast, so
it keeps the code a bit more readable. Some of them also map relatively
well to a C++ equivalent (XNEW (struct foo) -> new foo), so it will be
possible to do scripted replacements if needed.
I only changed calls that were obviously allocating memory for one or
multiple "objects". Allocation of variable sizes (such as strings or
buffer handling) will be for later (and won't use XNEW).
- xmalloc (sizeof (struct foo)) -> XNEW (struct foo)
- xmalloc (num * sizeof (struct foo)) -> XNEWVEC (struct foo, num)
- xcalloc (1, sizeof (struct foo)) -> XCNEW (struct foo)
- xcalloc (num, sizeof (struct foo)) -> XCNEWVEC (struct foo, num)
- xrealloc (p, num * sizeof (struct foo) -> XRESIZEVEC (struct foo, p, num)
- obstack_alloc (ob, sizeof (struct foo)) -> XOBNEW (ob, struct foo)
- obstack_alloc (ob, num * sizeof (struct foo)) -> XOBNEWVEC (ob, struct foo, num)
- alloca (sizeof (struct foo)) -> XALLOCA (struct foo)
- alloca (num * sizeof (struct foo)) -> XALLOCAVEC (struct foo, num)
Some instances of xmalloc followed by memset to zero the buffer were
replaced by XCNEW or XCNEWVEC.
I regtested on x86-64, Ubuntu 14.04, but the patch touches many
architecture-specific files. For those I'll have to rely on the
buildbot or people complaining that I broke their gdb.
gdb/ChangeLog:
* aarch64-linux-nat.c (aarch64_add_process): Likewise.
* aarch64-tdep.c (aarch64_gdbarch_init): Likewise.
* ada-exp.y (write_ambiguous_var): Likewise.
* ada-lang.c (resolve_subexp): Likewise.
(user_select_syms): Likewise.
(assign_aggregate): Likewise.
(ada_evaluate_subexp): Likewise.
(cache_symbol): Likewise.
* addrmap.c (allocate_key): Likewise.
(addrmap_create_mutable): Likewise.
* aix-thread.c (sync_threadlists): Likewise.
* alpha-tdep.c (alpha_push_dummy_call): Likewise.
(alpha_gdbarch_init): Likewise.
* amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise.
* arm-linux-nat.c (arm_linux_add_process): Likewise.
* arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise.
* arm-tdep.c (push_stack_item): Likewise.
(arm_displaced_step_copy_insn): Likewise.
(arm_gdbarch_init): Likewise.
(_initialize_arm_tdep): Likewise.
* avr-tdep.c (push_stack_item): Likewise.
* ax-general.c (new_agent_expr): Likewise.
* block.c (block_initialize_namespace): Likewise.
* breakpoint.c (alloc_counted_command_line): Likewise.
(update_dprintf_command_list): Likewise.
(parse_breakpoint_sals): Likewise.
(decode_static_tracepoint_spec): Likewise.
(until_break_command): Likewise.
(clear_command): Likewise.
(update_global_location_list): Likewise.
(get_breakpoint_objfile_data) Likewise.
* btrace.c (ftrace_new_function): Likewise.
(btrace_set_insn_history): Likewise.
(btrace_set_call_history): Likewise.
* buildsym.c (add_symbol_to_list): Likewise.
(record_pending_block): Likewise.
(start_subfile): Likewise.
(start_buildsym_compunit): Likewise.
(push_subfile): Likewise.
(end_symtab_get_static_block): Likewise.
(buildsym_init): Likewise.
* cli/cli-cmds.c (source_command): Likewise.
* cli/cli-decode.c (add_cmd): Likewise.
* cli/cli-script.c (build_command_line): Likewise.
(setup_user_args): Likewise.
(realloc_body_list): Likewise.
(process_next_line): Likewise.
(copy_command_lines): Likewise.
* cli/cli-setshow.c (do_set_command): Likewise.
* coff-pe-read.c (read_pe_exported_syms): Likewise.
* coffread.c (coff_locate_sections): Likewise.
(coff_symtab_read): Likewise.
(coff_read_struct_type): Likewise.
* common/cleanups.c (make_my_cleanup2): Likewise.
* common/common-exceptions.c (throw_it): Likewise.
* common/filestuff.c (make_cleanup_close): Likewise.
* common/format.c (parse_format_string): Likewise.
* common/queue.h (DEFINE_QUEUE_P): Likewise.
* compile/compile-object-load.c (munmap_list_add): Likewise.
(compile_object_load): Likewise.
* compile/compile-object-run.c (compile_object_run): Likewise.
* compile/compile.c (append_args): Likewise.
* corefile.c (specify_exec_file_hook): Likewise.
* cp-support.c (make_symbol_overload_list): Likewise.
* cris-tdep.c (push_stack_item): Likewise.
(cris_gdbarch_init): Likewise.
* ctf.c (ctf_trace_file_writer_new): Likewise.
* dbxread.c (init_header_files): Likewise.
(add_new_header_file): Likewise.
(init_bincl_list): Likewise.
(dbx_end_psymtab): Likewise.
(start_psymtab): Likewise.
(dbx_end_psymtab): Likewise.
* dcache.c (dcache_init): Likewise.
* dictionary.c (dict_create_hashed): Likewise.
(dict_create_hashed_expandable): Likewise.
(dict_create_linear): Likewise.
(dict_create_linear_expandable): Likewise.
* dtrace-probe.c (dtrace_process_dof_probe): Likewise.
* dummy-frame.c (register_dummy_frame_dtor): Likewise.
* dwarf2-frame-tailcall.c (cache_new_ref1): Likewise.
* dwarf2-frame.c (dwarf2_build_frame_info): Likewise.
(decode_frame_entry_1): Likewise.
* dwarf2expr.c (new_dwarf_expr_context): Likewise.
* dwarf2loc.c (dwarf2_compile_expr_to_ax): Likewise.
* dwarf2read.c (dwarf2_has_info): Likewise.
(create_signatured_type_table_from_index): Likewise.
(dwarf2_read_index): Likewise.
(dw2_get_file_names_reader): Likewise.
(create_all_type_units): Likewise.
(read_cutu_die_from_dwo): Likewise.
(init_tu_and_read_dwo_dies): Likewise.
(init_cutu_and_read_dies): Likewise.
(create_all_comp_units): Likewise.
(queue_comp_unit): Likewise.
(inherit_abstract_dies): Likewise.
(read_call_site_scope): Likewise.
(dwarf2_add_field): Likewise.
(dwarf2_add_typedef): Likewise.
(dwarf2_add_member_fn): Likewise.
(attr_to_dynamic_prop): Likewise.
(abbrev_table_alloc_abbrev): Likewise.
(abbrev_table_read_table): Likewise.
(add_include_dir): Likewise.
(add_file_name): Likewise.
(dwarf_decode_line_header): Likewise.
(dwarf2_const_value_attr): Likewise.
(dwarf_alloc_block): Likewise.
(parse_macro_definition): Likewise.
(set_die_type): Likewise.
(write_psymtabs_to_index): Likewise.
(create_cus_from_index): Likewise.
(dwarf2_create_include_psymtab): Likewise.
(process_psymtab_comp_unit_reader): Likewise.
(build_type_psymtab_dependencies): Likewise.
(read_comp_units_from_section): Likewise.
(compute_compunit_symtab_includes): Likewise.
(create_dwo_unit_in_dwp_v1): Likewise.
(create_dwo_unit_in_dwp_v2): Likewise.
(read_func_scope): Likewise.
(process_structure_scope): Likewise.
(mark_common_block_symbol_computed): Likewise.
(load_partial_dies): Likewise.
(dwarf2_symbol_mark_computed): Likewise.
* elfread.c (elf_symfile_segments): Likewise.
(elf_read_minimal_symbols): Likewise.
* environ.c (make_environ): Likewise.
* eval.c (evaluate_subexp_standard): Likewise.
* event-loop.c (create_file_handler): Likewise.
(create_async_signal_handler): Likewise.
(create_async_event_handler): Likewise.
(create_timer): Likewise.
* exec.c (build_section_table): Likewise.
* fbsd-nat.c (fbsd_remember_child): Likewise.
* fork-child.c (fork_inferior): Likewise.
* frv-tdep.c (new_variant): Likewise.
* gdbarch.sh (gdbarch_alloc): Likewise.
(append_name): Likewise.
* gdbtypes.c (rank_function): Likewise.
(copy_type_recursive): Likewise.
(add_dyn_prop): Likewise.
* gnu-nat.c (make_proc): Likewise.
(make_inf): Likewise.
(gnu_write_inferior): Likewise.
* gnu-v3-abi.c (build_gdb_vtable_type): Likewise.
(build_std_type_info_type): Likewise.
* guile/scm-param.c (compute_enum_list): Likewise.
* guile/scm-utils.c (gdbscm_parse_function_args): Likewise.
* guile/scm-value.c (gdbscm_value_call): Likewise.
* h8300-tdep.c (h8300_gdbarch_init): Likewise.
* hppa-tdep.c (hppa_init_objfile_priv_data): Likewise.
(read_unwind_info): Likewise.
* ia64-tdep.c (ia64_gdbarch_init): Likewise.
* infcall.c (dummy_frame_context_saver_setup): Likewise.
(call_function_by_hand_dummy): Likewise.
* infcmd.c (step_once): Likewise.
(finish_forward): Likewise.
(attach_command): Likewise.
(notice_new_inferior): Likewise.
* inferior.c (add_inferior_silent): Likewise.
* infrun.c (add_displaced_stepping_state): Likewise.
(save_infcall_control_state): Likewise.
(save_inferior_ptid): Likewise.
(_initialize_infrun): Likewise.
* jit.c (bfd_open_from_target_memory): Likewise.
(jit_gdbarch_data_init): Likewise.
* language.c (add_language): Likewise.
* linespec.c (decode_line_2): Likewise.
* linux-nat.c (add_to_pid_list): Likewise.
(add_initial_lwp): Likewise.
* linux-thread-db.c (add_thread_db_info): Likewise.
(record_thread): Likewise.
(info_auto_load_libthread_db): Likewise.
* m32c-tdep.c (m32c_gdbarch_init): Likewise.
* m68hc11-tdep.c (m68hc11_gdbarch_init): Likewise.
* m68k-tdep.c (m68k_gdbarch_init): Likewise.
* m88k-tdep.c (m88k_analyze_prologue): Likewise.
* macrocmd.c (macro_define_command): Likewise.
* macroexp.c (gather_arguments): Likewise.
* macroscope.c (sal_macro_scope): Likewise.
* macrotab.c (new_macro_table): Likewise.
* mdebugread.c (push_parse_stack): Likewise.
(parse_partial_symbols): Likewise.
(parse_symbol): Likewise.
(psymtab_to_symtab_1): Likewise.
(new_block): Likewise.
(new_psymtab): Likewise.
(mdebug_build_psymtabs): Likewise.
(add_pending): Likewise.
(elfmdebug_build_psymtabs): Likewise.
* mep-tdep.c (mep_gdbarch_init): Likewise.
* mi/mi-main.c (mi_execute_command): Likewise.
* mi/mi-parse.c (mi_parse_argv): Likewise.
* minidebug.c (lzma_open): Likewise.
* minsyms.c (terminate_minimal_symbol_table): Likewise.
* mips-linux-nat.c (mips_linux_insert_watchpoint): Likewise.
* mips-tdep.c (mips_gdbarch_init): Likewise.
* mn10300-tdep.c (mn10300_gdbarch_init): Likewise.
* msp430-tdep.c (msp430_gdbarch_init): Likewise.
* mt-tdep.c (mt_registers_info): Likewise.
* nat/aarch64-linux.c (aarch64_linux_new_thread): Likewise.
* nat/linux-btrace.c (linux_enable_bts): Likewise.
(linux_enable_pt): Likewise.
* nat/linux-osdata.c (linux_xfer_osdata_processes): Likewise.
(linux_xfer_osdata_processgroups): Likewise.
* nios2-tdep.c (nios2_gdbarch_init): Likewise.
* nto-procfs.c (procfs_meminfo): Likewise.
* objc-lang.c (start_msglist): Likewise.
(selectors_info): Likewise.
(classes_info): Likewise.
(find_methods): Likewise.
* objfiles.c (allocate_objfile): Likewise.
(update_section_map): Likewise.
* osabi.c (gdbarch_register_osabi): Likewise.
(gdbarch_register_osabi_sniffer): Likewise.
* parse.c (start_arglist): Likewise.
* ppc-linux-nat.c (hwdebug_find_thread_points_by_tid): Likewise.
(hwdebug_insert_point): Likewise.
* printcmd.c (display_command): Likewise.
(ui_printf): Likewise.
* procfs.c (create_procinfo): Likewise.
(load_syscalls): Likewise.
(proc_get_LDT_entry): Likewise.
(proc_update_threads): Likewise.
* prologue-value.c (make_pv_area): Likewise.
(pv_area_store): Likewise.
* psymtab.c (extend_psymbol_list): Likewise.
(init_psymbol_list): Likewise.
(allocate_psymtab): Likewise.
* python/py-inferior.c (add_thread_object): Likewise.
* python/py-param.c (compute_enum_values): Likewise.
* python/py-value.c (valpy_call): Likewise.
* python/py-varobj.c (py_varobj_iter_next): Likewise.
* python/python.c (ensure_python_env): Likewise.
* record-btrace.c (record_btrace_start_replaying): Likewise.
* record-full.c (record_full_reg_alloc): Likewise.
(record_full_mem_alloc): Likewise.
(record_full_end_alloc): Likewise.
(record_full_core_xfer_partial): Likewise.
* regcache.c (get_thread_arch_aspace_regcache): Likewise.
* remote-fileio.c (remote_fileio_init_fd_map): Likewise.
* remote-notif.c (remote_notif_state_allocate): Likewise.
* remote.c (demand_private_info): Likewise.
(remote_notif_stop_alloc_reply): Likewise.
(remote_enable_btrace): Likewise.
* reverse.c (save_bookmark_command): Likewise.
* rl78-tdep.c (rl78_gdbarch_init): Likewise.
* rx-tdep.c (rx_gdbarch_init): Likewise.
* s390-linux-nat.c (s390_insert_watchpoint): Likewise.
* ser-go32.c (dos_get_tty_state): Likewise.
(dos_copy_tty_state): Likewise.
* ser-mingw.c (ser_windows_open): Likewise.
(ser_console_wait_handle): Likewise.
(ser_console_get_tty_state): Likewise.
(make_pipe_state): Likewise.
(net_windows_open): Likewise.
* ser-unix.c (hardwire_get_tty_state): Likewise.
(hardwire_copy_tty_state): Likewise.
* solib-aix.c (solib_aix_new_lm_info): Likewise.
* solib-dsbt.c (dsbt_current_sos): Likewise.
(dsbt_relocate_main_executable): Likewise.
* solib-frv.c (frv_current_sos): Likewise.
(frv_relocate_main_executable): Likewise.
* solib-spu.c (spu_bfd_fopen): Likewise.
* solib-svr4.c (lm_info_read): Likewise.
(svr4_copy_library_list): Likewise.
(svr4_default_sos): Likewise.
* source.c (find_source_lines): Likewise.
(line_info): Likewise.
(add_substitute_path_rule): Likewise.
* spu-linux-nat.c (spu_bfd_open): Likewise.
* spu-tdep.c (info_spu_dma_cmdlist): Likewise.
* stabsread.c (dbx_lookup_type): Likewise.
(read_type): Likewise.
(read_member_functions): Likewise.
(read_struct_fields): Likewise.
(read_baseclasses): Likewise.
(read_args): Likewise.
(_initialize_stabsread): Likewise.
* stack.c (func_command): Likewise.
* stap-probe.c (handle_stap_probe): Likewise.
* symfile.c (addrs_section_sort): Likewise.
(addr_info_make_relative): Likewise.
(load_section_callback): Likewise.
(add_symbol_file_command): Likewise.
(init_filename_language_table): Likewise.
* symtab.c (create_filename_seen_cache): Likewise.
(sort_search_symbols_remove_dups): Likewise.
(search_symbols): Likewise.
* target.c (make_cleanup_restore_target_terminal): Likewise.
* thread.c (new_thread): Likewise.
(enable_thread_stack_temporaries): Likewise.
(make_cleanup_restore_current_thread): Likewise.
(thread_apply_all_command): Likewise.
* tic6x-tdep.c (tic6x_gdbarch_init): Likewise.
* top.c (gdb_readline_wrapper): Likewise.
* tracefile-tfile.c (tfile_trace_file_writer_new): Likewise.
* tracepoint.c (trace_find_line_command): Likewise.
(all_tracepoint_actions_and_cleanup): Likewise.
(make_cleanup_restore_current_traceframe): Likewise.
(get_uploaded_tp): Likewise.
(get_uploaded_tsv): Likewise.
* tui/tui-data.c (tui_alloc_generic_win_info): Likewise.
(tui_alloc_win_info): Likewise.
(tui_alloc_content): Likewise.
(tui_add_content_elements): Likewise.
* tui/tui-disasm.c (tui_find_disassembly_address): Likewise.
(tui_set_disassem_content): Likewise.
* ui-file.c (ui_file_new): Likewise.
(stdio_file_new): Likewise.
(tee_file_new): Likewise.
* utils.c (make_cleanup_restore_integer): Likewise.
(add_internal_problem_command): Likewise.
* v850-tdep.c (v850_gdbarch_init): Likewise.
* valops.c (find_oload_champ): Likewise.
* value.c (allocate_value_lazy): Likewise.
(record_latest_value): Likewise.
(create_internalvar): Likewise.
* varobj.c (install_variable): Likewise.
(new_variable): Likewise.
(new_root_variable): Likewise.
(cppush): Likewise.
(_initialize_varobj): Likewise.
* windows-nat.c (windows_make_so): Likewise.
* x86-nat.c (x86_add_process): Likewise.
* xcoffread.c (arrange_linetable): Likewise.
(allocate_include_entry): Likewise.
(process_linenos): Likewise.
(SYMBOL_DUP): Likewise.
(xcoff_start_psymtab): Likewise.
(xcoff_end_psymtab): Likewise.
* xml-support.c (gdb_xml_parse_attr_ulongest): Likewise.
* xtensa-tdep.c (xtensa_register_type): Likewise.
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
gdb/gdbserver/ChangeLog:
* ax.c (gdb_parse_agent_expr): Likewise.
(compile_bytecodes): Likewise.
* dll.c (loaded_dll): Likewise.
* event-loop.c (append_callback_event): Likewise.
(create_file_handler): Likewise.
(create_file_event): Likewise.
* hostio.c (handle_open): Likewise.
* inferiors.c (add_thread): Likewise.
(add_process): Likewise.
* linux-aarch64-low.c (aarch64_linux_new_process): Likewise.
* linux-arm-low.c (arm_new_process): Likewise.
(arm_new_thread): Likewise.
* linux-low.c (add_to_pid_list): Likewise.
(linux_add_process): Likewise.
(handle_extended_wait): Likewise.
(add_lwp): Likewise.
(enqueue_one_deferred_signal): Likewise.
(enqueue_pending_signal): Likewise.
(linux_resume_one_lwp_throw): Likewise.
(linux_resume_one_thread): Likewise.
(linux_read_memory): Likewise.
(linux_write_memory): Likewise.
* linux-mips-low.c (mips_linux_new_process): Likewise.
(mips_linux_new_thread): Likewise.
(mips_add_watchpoint): Likewise.
* linux-x86-low.c (initialize_low_arch): Likewise.
* lynx-low.c (lynx_add_process): Likewise.
* mem-break.c (set_raw_breakpoint_at): Likewise.
(set_breakpoint): Likewise.
(add_condition_to_breakpoint): Likewise.
(add_commands_to_breakpoint): Likewise.
(clone_agent_expr): Likewise.
(clone_one_breakpoint): Likewise.
* regcache.c (new_register_cache): Likewise.
* remote-utils.c (look_up_one_symbol): Likewise.
* server.c (queue_stop_reply): Likewise.
(start_inferior): Likewise.
(queue_stop_reply_callback): Likewise.
(handle_target_event): Likewise.
* spu-low.c (fetch_ppc_memory): Likewise.
(store_ppc_memory): Likewise.
* target.c (set_target_ops): Likewise.
* thread-db.c (thread_db_load_search): Likewise.
(try_thread_db_load_1): Likewise.
* tracepoint.c (add_tracepoint): Likewise.
(add_tracepoint_action): Likewise.
(create_trace_state_variable): Likewise.
(cmd_qtdpsrc): Likewise.
(cmd_qtro): Likewise.
(add_while_stepping_state): Likewise.
* win32-low.c (child_add_thread): Likewise.
(get_image_name): Likewise.
|
|
This patch moves aarch64_linux_new_thread in GDB and GDBserver to
nat/aarch64-linux.c.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_new_thread): Move it to ...
* nat/aarch64-linux.c (aarch64_linux_new_thread): ... here.
* nat/aarch64-linux.h (aarch64_linux_new_thread): Declare.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_linux_new_thread): Remove.
|
|
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* Makefile.in (aarch64-liunx.o): New rule.
(HFILES_NO_SRCDIR): Add aarch64-linux.h.
* config/aarch64/linux.mh (NAT_FILE): Add aarch64-linux.o.
* aarch64-linux-nat.c: Include nat/aarch64-linux.h.
* aarch64-linux-nat.c (aarch64_get_debug_reg_state): Make it
extern.
(aarch64_linux_prepare_to_resume): Move it nat/aarch64-linux.c.
* nat/aarch64-linux-hw-point.h (aarch64_debug_reg_state): Declare
* nat/aarch64-linux.c: New file.
* nat/aarch64-linux.h: New file.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* Makefile.in (aarch64-linux.o): New rule.
* configure.srv (aarch64*-*-linux*): Append aarch64-linux.o to
srv_tgtobj.
* linux-aarch64-low.c: Include nat/aarch64-linux.h.
(aarch64_init_debug_reg_state): Make it extern.
(aarch64_linux_prepare_to_resume): Remove.
|
|
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_prepare_to_resume): Use
lwp_arch_private_info and ptid_of_lwp.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_linux_prepare_to_resume): Use
lwp_arch_private_info and ptid_of_lwp.
|
|
This patch addes argument pid in aarch64_get_debug_reg_state, so that
its interface is the same on both GDB and GDBserver.
gdb/gdbserver:
2015-018-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_get_debug_reg_state): Add argument pid.
Find proc_info by find_process_pid. All callers updated.
|
|
nat/aarch64-linux-hw-point.c
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (struct arch64_dr_update_callback_param):
Move it to nat/aarch64-linux-hw-point.c.
(debug_reg_change_callback): Likewise.
(aarch64_notify_debug_reg_change): :Likewise.
* nat/aarch64-linux-hw-point.c: Include nat/linux-nat.h.
(aarch64_dr_update_callback_param): New.
(debug_reg_change_callback): New function.
(aarch64_notify_debug_reg_change): Likewise.
* nat/aarch64-linux-hw-point.h (aarch64_notify_debug_reg_change):
Remove the declaration.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (struct arch64_dr_update_callback_param):
Remove.
(debug_reg_change_callback): Remove.
(aarch64_notify_debug_reg_change): Remove.
|
|
This patch makes function debug_reg_change_callback in GDB and GDBserver
look the same, so that the following patch can move them to
nat/aarch64-linux-hw-point.c.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (debug_reg_change_callback): Use
ptid_of_lwp to get ptid of lwp.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Use
ptid_of_lwp to get ptid of lwp.
|
|
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_notify_debug_reg_change):
Call current_lwp_ptid.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_notify_debug_reg_change):
Call current_lwp_ptid.
|
|
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (debug_reg_change_callback): Use
debug_printf.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Use
debug_printf.
|
|
This patch is to use phex in debug_reg_change_callback to make it
identical in GDB and GDBserver.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Use phex.
|
|
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Remove comments.
|
|
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Re-indent
the code.
|
|
This patch makes more bits on aarch64 watchpoint between GDB and GDBserver
look similar.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_dr_update_callback_param) <pid>:
Remove.
(debug_reg_change_callback): Remove argument entry and add argument
lwp. Remove local variable thread. Don't print thread id in the
debugging output. Don't check whether pid of thread equals to pid.
(aarch64_notify_debug_reg_change): Don't set param.pid. Call
iterate_over_lwps instead find_inferior.
|
|
Ref: https://sourceware.org/ml/gdb-patches/2015-08/msg00675.html
If multiprocess extensions are off (because specific gdbserver port
doesn't support them), then when gdbserver doesn't have a thread
selected yet, and GDB sends Hg packet to select one, gdbserver
crashes. That's because extracting the desired thread id out of the
packet that GDB sent depends on the current thread to fill in the
missing process id ... Fix this by getting the process id from the
first (and only) process in the processes list instead.
The GNU/Linux port doesn't trip on this because it always runs with
multiprocess extensions enabled. To make it easier to catch such
regressions going forward, this commit also adds a new smoke test that
spawns gdbserver, connects to it and runs to main with the
multiprocess extensions force-disabled.
gdb/gdbserver/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* inferiors.c (get_first_process): New function.
* inferiors.h (get_first_process): New declaration.
* remote-utils.c (read_ptid): Default to the first process in the
list, instead of to the current thread's process.
gdb/testsuite/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* gdb.server/connect-without-multi-process.c: New file.
* gdb.server/connect-without-multi-process.exp: New file.
|
|
After the last gnulib import (Dec 2012), gnulib upstream started
replacing mingw's 'struct timeval' with a version with 64-bit time_t,
for POSIX compliance:
commit f8e84098084b3b53bc6943a5542af1f607ffd477
Author: Bruno Haible <bruno@clisp.org>
Date: Sat Jan 28 18:12:10 2012 +0100
sys_time: Override 'struct timeval' on some native Windows platforms.
See:
https://lists.gnu.org/archive/html/bug-gnulib/2012-01/msg00372.html
However, that results in conflicts with native Winsock2's 'select':
select()'s argument
http://sourceforge.net/p/mingw-w64/mailman/message/29610438/
... and libiberty's timeval-utils.h timeval_add/timeval_sub, at the
least.
We don't really need the POSIX compliance, so this patch prepares us
to simply not use gnulib's 'struct timeval' replacement once a more
recent gnulib is imported, thus preserving the current behavior, by
adding a sys/time.h wrapper header that undefs gnulib's replacements,
and including that everywhere instead.
The SIZE -> OSIZE change is necessary because newer gnulib's
sys/time.h also includes windows.h/winsock2.h, which defines a
conflicting SIZE symbol.
Cross build-tested mingw-w64 32-bit and 64-bit.
Regtested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* Makefile.in (HFILES_NO_SRCDIR): Add common/gdb_sys_time.h.
* common/gdb_sys_time.h: New file.
* event-loop.c: Include gdb_sys_time.h instead of sys/time.h.
* gdb_select.h: Likewise.
* gdb_usleep.c: Likewise.
* maint.c: Likewise.
* mi/mi-main.c: Likewise.
* mi/mi-parse.h: Likewise.
* remote-fileio.c: Likewise.
* remote-m32r-sdi.c: Likewise.
* remote.c: Likewise.
* ser-base.c: Likewise.
* ser-pipe.c: Likewise.
* ser-tcp.c: Likewise.
* ser-unix.c: Likewise.
* symfile.c: Likewise.
* symfile.c: Likewise. Rename OSIZE to SIZE throughout.
* target-memory.c: Include gdb_sys_time.h instead of sys/time.h.
* utils.c: Likewise.
gdb/gdbserver/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* debug.c: Include gdb_sys_time.h instead of sys/time.h.
* event-loop.c: Likewise.
* remote-utils.c: Likewise.
* tracepoint.c: Likewise.
|
|
Ref: https://sourceware.org/ml/gdb-patches/2015-08/msg00675.html
gdbserver/spu-low.c: In function 'spu_request_interrupt':
gdbserver/spu-low.c:639: error: incompatible type for argument 1 of 'ptid_get_lwp'
gdb/gdbserver/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* spu-low.c (spu_request_interrupt): Use lwpid_of instead of
ptid_get_lwp.
|
|
In C++ mode:
src/gdb/gdbserver/ax.c: In function ‘eval_result_type gdb_eval_agent_expr(eval_agent_expr_context*, agent_expr*, ULONGEST*)’:
src/gdb/gdbserver/ax.c:1335:11: error: invalid conversion from ‘int’ to ‘eval_result_type’ [-fpermissive]
return 1;
^
"1" as an enum eval_result_type is expr_eval_empty_expression, but
clearly this wants to return expr_eval_unhandled_opcode.
gdb/gdbserver/ChangeLog:
2015-08-21 Pedro Alves <palves@redhat.com>
* ax.c (gdb_eval_agent_expr): Return expr_eval_unhandled_opcode
instead of literal 1.
|
|
In C++ mode, we get:
src/gdb/gdbserver/tdesc.c:43:33: error: uninitialized const ‘default_description’ [-fpermissive]
static const struct target_desc default_description;
^
In file included from src/gdb/gdbserver/tdesc.c:19:0:
src/gdb/gdbserver/tdesc.h:26:8: note: ‘const struct target_desc’ has no user-provided default constructor
struct target_desc
^
gdb/ChangeLog:
2015-08-21 Pedro Alves <palves@redhat.com>
* frame.c (null_frame_id): Explicitly zero-initialize.
gdb/gdbserver/ChangeLog:
2015-08-21 Pedro Alves <palves@redhat.com>
* tdesc.c (default_description): Explicitly zero-initialize.
|
|
Running that test in a loop, I found a gdbserver core dump with the
following back trace:
Core was generated by `../gdbserver/gdbserver --once --multi :2346'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x0000000000406ab6 in inferior_regcache_data (inferior=0x0) at src/gdb/gdbserver/inferiors.c:236
236 return inferior->regcache_data;
(gdb) up
#1 0x0000000000406d7f in get_thread_regcache (thread=0x0, fetch=1) at src/gdb/gdbserver/regcache.c:31
31 regcache = (struct regcache *) inferior_regcache_data (thread);
(gdb) bt
#0 0x0000000000406ab6 in inferior_regcache_data (inferior=0x0) at src/gdb/gdbserver/inferiors.c:236
#1 0x0000000000406d7f in get_thread_regcache (thread=0x0, fetch=1) at src/gdb/gdbserver/regcache.c:31
#2 0x0000000000409271 in prepare_resume_reply (buf=0x20dd593 "", ptid=..., status=0x20edce0) at src/gdb/gdbserver/remote-utils.c:1147
#3 0x000000000040ab0a in vstop_notif_reply (event=0x20edcc0, own_buf=0x20dd590 "T05") at src/gdb/gdbserver/server.c:183
#4 0x0000000000426b38 in notif_write_event (notif=0x66e6c0 <notif_stop>, own_buf=0x20dd590 "T05") at src/gdb/gdbserver/notif.c:69
#5 0x0000000000426c55 in handle_notif_ack (own_buf=0x20dd590 "T05", packet_len=8) at src/gdb/gdbserver/notif.c:113
#6 0x000000000041118f in handle_v_requests (own_buf=0x20dd590 "T05", packet_len=8, new_packet_len=0x7fff742c77b8)
at src/gdb/gdbserver/server.c:2862
#7 0x0000000000413850 in process_serial_event () at src/gdb/gdbserver/server.c:4148
#8 0x0000000000413945 in handle_serial_event (err=0, client_data=0x0) at src/gdb/gdbserver/server.c:4196
#9 0x000000000041a1ef in handle_file_event (event_file_desc=5) at src/gdb/gdbserver/event-loop.c:429
#10 0x00000000004199b6 in process_event () at src/gdb/gdbserver/event-loop.c:184
#11 0x000000000041a735 in start_event_loop () at src/gdb/gdbserver/event-loop.c:547
#12 0x00000000004123d2 in captured_main (argc=4, argv=0x7fff742c7ac8) at src/gdb/gdbserver/server.c:3562
#13 0x000000000041252e in main (argc=4, argv=0x7fff742c7ac8) at src/gdb/gdbserver/server.c:3631
Clearly this means that a thread pushed a stop reply in the event
queue, and then before GDB confused the event, the whole process died,
along with its thread. But the pending thread event was left
dangling. When GDB fetched that event, gdbserver looked up the
corresponding thread, but found NULL; not expecting this, gdbserver
crashes when it tries to read this thread's registers.
gdb/gdbserver/
2015-08-21 Pedro Alves <palves@redhat.com>
PR gdb/18749
* inferiors.c (remove_thread): Discard any pending stop reply for
this thread.
* server.c (remove_all_on_match_pid): Rename to ...
(remove_all_on_match_ptid): ... this. Work with a filter ptid
instead of a pid.
(discard_queued_stop_replies): Change parameter to a ptid. Now
extern.
(handle_v_kill, kill_inferior_callback)
(process_serial_event): Adjust.
(captured_main): Call initialize_notif before starting the
program, thus before threads are created.
* server.h (discard_queued_stop_replies): Declare.
|
|
In all-stop mode, if the current thread disappears while stopping all
threads, gdbserver calls set_desired_thread(0) ['0' means "I want the
continue thread"] which just picks the first thread in the list.
This looks like a dangerous thing to do. GDBserver continues
processing whatever it was doing, but to the wrong thread. If
debugging more than one process, we may even pick the wrong process.
Instead, GDBserver should detect the situation and bail out of
whatever is was doing.
The backends used to pay attention to the set 'cont_thread' (the Hc
thread, used in the old way to resume threads, before vCont), but all
such 'cont_thread' checks have been eliminated meanwhile. The
remaining implicit dependencies that I found on there being a selected
thread in the backends are in the Ctrl-C handling, which some backends
use as thread to send a signal to. Even that seems to me to be better
handled by always using the first thread in the list or by using the
signal_pid PID.
In order to make this a systematic approach, I'm making
set_desired_thread never fallback to a random thread, and instead end
up with current_thread == NULL, like already done in non-stop mode.
Then I updated all callers to handle the situation.
I stumbled on this while fixing other bugs exposed by
gdb.threads/fork-plus-threads.exp test. The problems I saw were fixed
in a different way, but in any case, I think the potential for
problems is more or less obvious, and the resulting code looks a bit
less magical to me.
Tested on x86-64 Fedora 20, w/ native-extended-gdbserver board.
gdb/gdbserver/ChangeLog:
2015-08-21 Pedro Alves <palves@redhat.com>
* linux-low.c (wait_for_sigstop): Always switch to no thread
selected if the previously current thread dies.
* lynx-low.c (lynx_request_interrupt): Use the first thread's
process instead of the current thread's.
* remote-utils.c (input_interrupt): Don't check if there's no
current thread.
* server.c (gdb_read_memory, gdb_write_memory): If setting the
current thread to the general thread fails, error out.
(handle_qxfer_auxv, handle_qxfer_libraries)
(handle_qxfer_libraries_svr4, handle_qxfer_siginfo)
(handle_qxfer_spu, handle_qxfer_statictrace, handle_qxfer_fdpic)
(handle_query): Check if there's a thread selected instead of
checking whether there's any thread in the thread list.
(handle_qxfer_threads, handle_qxfer_btrace)
(handle_qxfer_btrace_conf): Don't error out early if there's no
thread in the thread list.
(handle_v_cont, myresume): Don't set the current thread to the
continue thread.
(process_serial_event) <Hg handling>: Also set thread_id if the
previous general thread is still alive.
(process_serial_event) <g/G handling>: If setting the current
thread to the general thread fails, error out.
* spu-low.c (spu_resume, spu_request_interrupt): Use the first
thread's lwp instead of the current thread's.
* target.c (set_desired_thread): If the desired thread was not
found, leave the current thread pointing to NULL. Return an int
(boolean) indicating success.
* target.h (set_desired_thread): Change return type to int.
|
|
These changes allow debugging multithreaded NPTL xtensa applications.
2015-08-20 Max Filippov <jcmvbkbc@gmail.com>
gdb/gdbserver/
* configure.srv (xtensa*-*-linux*): Add srv_linux_thread_db=yes.
* linux-xtensa-low.c (arch/xtensa.h gdb_proc_service.h): New
#includes.
(ps_get_thread_area): New function.
2015-08-20 Max Filippov <jcmvbkbc@gmail.com>
gdb/
* arch/xtensa.h: New file.
* xtensa-linux-nat.c (gdb_proc_service.h): New #include.
(ps_get_thread_area): New function.
* xtensa-linux-tdep.c (xtensa_linux_init_abi): Add call to
set_gdbarch_fetch_tls_load_module_address to enable TLS support.
* xtensa-tdep.c (osabi.h): New #include.
(xtensa_gdbarch_init): Call gdbarch_init_osabi to register
xtensa-specific hooks.
* xtensa-tdep.h (struct xtensa_elf_gregset_t): Add threadptr
member and move the structure to arch/xtensa.h.
|
|
While handling "vFile:pread:" packets, gdbserver would read the
number of bytes requested regardless of whether this would fit
into the reply packet. gdbserver would then return a packet's
worth of data and discard the remainder. When accessing large
binaries GDB (via BFD) routinely makes large "vFile:pread:"
requests, resulting in gdbserver allocating large unnecessary
buffers and reading some portions of the file many times over.
This commit causes gdbserver to limit the number of bytes to be
read to a sensible maximum prior to allocating buffers and reading
data.
gdb/gdbserver/ChangeLog:
* hostio.c (handle_pread): Do not attempt to read more data
than hostio_reply_with_data can fit in a packet.
|
|
On some older versions of GNU/Linux, gdbserver now fails to build
due to an undefined reference to NT_ARM_VFP. Same issue on Android,
where this macros is undefined until Android API level 21 (Android
5.0 "Lollipop").
This patch modifies linux-aarch32-low.c to define that macros when
not already defined.
gdb/gdbserver/ChangeLog:
* linux-aarch32-low.c (NT_ARM_VFP): Define if not already defined.
|
|
This tag allows debugging of MIPS position independent executables
and provides access to shared library information.
gdb/gdbserver/
* linux-low.c (get_r_debug): Handle DT_MIPS_RLD_MAP_REL.
gdb/
* solib-svr4.c (read_program_header): Add base_addr argument to
report the runtime address of the segment.
(find_program_interpreter): Update read_program_header call to pass
a NULL pointer for the new argument.
(scan_dyntag): Add ptr_addr argument to report the runtime address
of the tag payload.
(scan_dyntag_auxv): Likewise and use thew new base_addr argument of
read_program_header to get the base address of the dynamic segment.
(elf_locate_base): Update uses of scan_dyntag, scan_dyntag_auxv and
read_program_header.
(elf_locate_base): Scan for and handle DT_MIPS_RLD_MAP_REL.
|
|
Fixes another C++ -fpermissive error:
src/gdb/gdbserver/tracepoint.c:4535:21: error: invalid conversion from ‘int’ to ‘eval_result_type’ [-fpermissive]
expr_eval_result = ipa_expr_eval_result;
gdb/gdbserver/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* tracepoint.c (expr_eval_result): Now an int.
|
|
The regcache used to be hidden inside inferiors.c, but since the
tracepoints support that it's a first class object. This also fixes a
few implicit pointer conversion errors in C++ mode, caused by a few
places missing the explicit cast.
gdb/gdbserver/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* gdbthread.h (struct regcache): Forward declare.
(struct thread_info) <regcache_data>: Now a struct regcache
pointer.
* inferiors.c (inferior_regcache_data)
(set_inferior_regcache_data): Now work with struct regcache
pointers.
* inferiors.h (struct regcache): Forward declare.
(inferior_regcache_data, set_inferior_regcache_data): Now work
with struct regcache pointers.
* regcache.c (get_thread_regcache, regcache_invalidate_thread)
(free_register_cache_thread): Remove struct regcache pointer
casts.
|
|
Running gdb.threads/process-dies-while-handling-bp.exp against
gdbserver sometimes FAILs because GDBserver drops the connection, but
the logs leave no clue on what the reason could be. Running manually
a few times, I saw the same:
$ ./gdbserver/gdbserver --multi :9999 testsuite/gdb.threads/process-dies-while-handling-bp
Process testsuite/gdb.threads/process-dies-while-handling-bp created; pid = 12766
Listening on port 9999
Remote debugging from host 127.0.0.1
Listening on port 9999
Child exited with status 0
Child exited with status 0
What happened is that an exception escaped and gdbserver reopened the
connection, which led to that second "Listening on port 9999" output.
The error was a failure to access registers from a now-dead thread.
The exception probably shouldn't have escaped here, but meanwhile,
this at least makes the issue less mysterious.
Tested on x86_64 Fedora 20.
gdb/gdbserver/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* server.c (captured_main): On error, print the exception message
to stderr, and if run_once is set, throw a quit.
|
|
While hacking on the fix for PR threads/18600 (Threads left stopped
after fork+thread spawn), I once saw its test (fork-plus-threads.exp)
FAIL against gdbserver because move_out_of_jump_pad_callback has a
gdb_breakpoint_here call, and the caller isn't making sure the current
thread points to the right thread. In the case I saw, the current
thread pointed to the wrong process, so gdb_breakpoint_here returned
the wrong answer. Unfortunately I didn't save logs. Still, seems
obvious enough and it should fix a potential occasional racy FAIL.
Tested on x86_64 Fedora 20.
gdb/gdbserver/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* linux-low.c (move_out_of_jump_pad_callback): Temporarily switch
the current thread.
|
|
Running gdbserver --debug under Valgrind shows:
==4803== Invalid read of size 4
==4803== at 0x432B62: linux_write_memory (linux-low.c:5320)
==4803== by 0x4143F7: write_inferior_memory (target.c:83)
==4803== by 0x415895: remove_memory_breakpoint (mem-break.c:362)
==4803== by 0x432EF5: linux_remove_point (linux-low.c:5460)
==4803== by 0x416319: delete_raw_breakpoint (mem-break.c:802)
==4803== by 0x4163F3: release_breakpoint (mem-break.c:842)
==4803== by 0x416477: delete_breakpoint_1 (mem-break.c:869)
==4803== by 0x4164EF: delete_breakpoint (mem-break.c:891)
==4803== by 0x416843: delete_gdb_breakpoint_1 (mem-break.c:1069)
==4803== by 0x4168D8: delete_gdb_breakpoint (mem-break.c:1098)
==4803== by 0x4134E3: process_serial_event (server.c:4051)
==4803== by 0x4138E4: handle_serial_event (server.c:4196)
==4803== Address 0x4c6b930 is 0 bytes inside a block of size 1 alloc'd
==4803== at 0x4A0645D: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==4803== by 0x4240C6: xmalloc (common-utils.c:43)
==4803== by 0x41439C: write_inferior_memory (target.c:80)
==4803== by 0x415895: remove_memory_breakpoint (mem-break.c:362)
==4803== by 0x432EF5: linux_remove_point (linux-low.c:5460)
==4803== by 0x416319: delete_raw_breakpoint (mem-break.c:802)
==4803== by 0x4163F3: release_breakpoint (mem-break.c:842)
==4803== by 0x416477: delete_breakpoint_1 (mem-break.c:869)
==4803== by 0x4164EF: delete_breakpoint (mem-break.c:891)
==4803== by 0x416843: delete_gdb_breakpoint_1 (mem-break.c:1069)
==4803== by 0x4168D8: delete_gdb_breakpoint (mem-break.c:1098)
==4803== by 0x4134E3: process_serial_event (server.c:4051)
==4803==
And:
==7272== Conditional jump or move depends on uninitialised value(s)
==7272== at 0x3615E48361: vfprintf (vfprintf.c:1634)
==7272== by 0x414E89: debug_vprintf (debug.c:60)
==7272== by 0x42800A: debug_printf (common-debug.c:35)
==7272== by 0x43937B: my_waitpid (linux-waitpid.c:149)
==7272== by 0x42D740: linux_wait_for_event_filtered (linux-low.c:2441)
==7272== by 0x42DADA: linux_wait_for_event (linux-low.c:2552)
==7272== by 0x42E165: linux_wait_1 (linux-low.c:2860)
==7272== by 0x42F5D8: linux_wait (linux-low.c:3453)
==7272== by 0x4144A4: mywait (target.c:107)
==7272== by 0x413969: handle_target_event (server.c:4214)
==7272== by 0x41A1A6: handle_file_event (event-loop.c:429)
==7272== by 0x41996D: process_event (event-loop.c:184)
gdb/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* nat/linux-waitpid.c (my_waitpid): Only print *status if waitpid
returned > 0.
gdb/gdbserver/ChangeLog:
2015-08-06 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_write_memory): Rewrite debug output to avoid
reading beyond the passed in buffer length.
|
|
This field was never set nor used. This patch removes it.
gdb/ChangeLog:
* common/agent.c (symbol_list) <required>: Remove.
gdb/gdbserver/ChangeLog:
* tracepoint.c (symbol_list) <required>: Remove.
|