Age | Commit message (Collapse) | Author | Files | Lines |
|
Before this patch, some functions would read the inferior memory with
(*the_target)->read_memory, which returns the raw memory, rather than the
shadowed memory.
This is wrong since these functions do not expect to read a breakpoint
instruction and can lead to invalid behavior.
Use of raw memory in get_next_pcs_read_memory_unsigned_integer for example
could lead to get_next_pc returning an invalid pc.
Here's how this would happen:
In non-stop:
the user issues:
thread 1
step&
thread 2
step&
thread 3
step&
In a similar way as non-stop-fair-events.exp (threads are looping).
GDBServer:
linux_resume is called
GDBServer has pending events,
threads are not resumed and single-step breakpoint for thread 1 not installed.
linux_wait_1 is called with a pending event on thread 2 at pc A
GDBServer handles the event and calls proceed_all_lwps
This calls proceed_one_lwp and installs single-step breakpoints on all
the threads that need one.
Now since thread 1 needs to install a single-step breakpoint and is at pc B
(different than thread 2), a step-over is not initiated and get_next_pc
is called to figure out the next instruction from pc B.
However it may just be that thread 3 as a single step breakpoint at pc
B. And thus get_next_pc fails.
This situation is tested with non-stop-fair-events.exp.
In other words, single-step breakpoints are installed in proceed_one_lwp
for each thread. GDBserver proceeds two threads for resume_step, as
requested by GDB, and the thread proceeded later may see the single-step
breakpoints installed for the thread proceeded just now.
Tested on gdbserver-native/-m{thumb,arm} no regressions.
gdb/gdbserver/ChangeLog:
* linux-aarch32-low.c (arm_breakpoint_kind_from_pc): Use
target_read_memory.
* linux-arm-low.c (get_next_pcs_read_memory_unsigned_integer): Likewise.
(get_next_pcs_syscall_next_pc): Likewise.
|
|
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
GLIBC BZ#20311 [1] proc_service.h install patch also remove 'const'
attributes from ps_get_thread_area and comment #15 discuss why to remove
the const attribute (basically since it a callback with the struct
ps_prochandle owned by the client it should be able to modify it if
it the case).
On default build this is not the issue and current g++ does not trigger
any issue with this mismatch declaration. However, on some bootstrap
build configuration where gdbserver is build with gcc instead this
triggers:
error: conflicting types for 'ps_get_thread_area'
This patch fixes it by syncing the declaration with GLIBC.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=20311
gdb/ChangeLog:
2016-08-25 Adhemerval Zanella <adhemerval.zanella@linaro.org>
* aarch64-linux-nat.c (ps_get_thread_area): Remove const from
struct ps_prochandle.
* amd64-linux-nat.c (ps_get_thread_area): Likewise.
* arm-linux-nat.c (ps_get_thread_area): Likewise.
* gdb_proc_service.h (ps_get_thread_area): Likewise.
* i386-linux-nat.c (ps_get_thread_area): Likewise.
* m68klinux-nat.c (ps_get_thread_area): Likewise.
* mips-linux-nat.c (ps_get_thread_area): Likewise.
* nat/aarch64-linux.c (aarch64_ps_get_thread_area): Likewise.
* nat/aarch64-linux.h (aarch64_ps_get_thread_area): Likewise.
* xtensa-linux-nat.c (ps_get_thread_area): Likewise.
gdb/gdbserver/ChangeLog:
2016-08-25 Adhemerval Zanella <adhemerval.zanella@linaro.org>
PR server/20491
* gdb_proc_service.h (ps_get_thread_area): Remove const from struct
ps_prochandle.
* linux-aarch64-low.c (ps_get_thread_area): Likewise.
* linux-arm-low.c (ps_get_thread_area): Likewise.
* linux-crisv32-low.c (ps_get_thread_area): Likewise.
* linux-m68k-low.c (ps_get_thread_area): Likewise.
* linux-mips-low.c (ps_get_thread_area): Likewise.
* linux-nios2-low.c (ps_get_thread_area): Likewise.
* linux-tic6x-low.c (ps_get_thread_area): Likewise.
* linux-x86-low.c (ps_get_thread_area): Likewise.
* linux-xtensa-low.c (ps_get_thread_area): Likewise.
|
|
gdb/gdbserver:
2016-06-28 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_get_syscall_trapinfo): New function.
(the_low_target): Install arm_get_syscall_trapinfo.
|
|
This patch initialize res to zero, otherwise, it may have some garbage
bits after the *the_target->read_memory call.
gdb/gdbserver:
2016-05-05 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (get_next_pcs_read_memory_unsigned_integer):
Initialize res to zero.
|
|
Variable cpsr holds the value of cpsr register, which is 32-bit. It
is better to explicitly use uint32_t.
gdb/gdbserver:
2016-05-05 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_sigreturn_next_pc): Change type of cpsr
to uint32_t.
|
|
Method syscall_next_pc of struct arm_get_next_pcs_ops has an argument
PC, which is not necessary, because PC can be got from regcache in
'struct arm_get_next_pcs'. This patch removes the PC argument of
syscall_next_pc.
gdb:
2016-02-16 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.h (struct arm_get_next_pcs_ops)
<syscall_next_pc>: Remove argument PC. Callers updated.
* arm-linux-tdep.c (arm_linux_get_next_pcs_syscall_next_pc):
Remove argument PC. Get pc from regcache_read_pc.
* arm-tdep.c (arm_get_next_pcs_syscall_next_pc): Remove
argument PC.
gdb/gdbserver:
2016-02-16 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (get_next_pcs_syscall_next_pc): Remove argument
PC. Get pc from regcache_read_pc.
|
|
When I exercise GDBserver software single step, I see the following
error, which has been already handled by GDB properly.
In GDBserver log, we can see, GDBserver tries to single step instruction
on 0xb6e0a6e4, and destination address is 0xffff0fe0,
stop pc is 0xb6e0a6e4
Writing f001f0e7 to 0xffff0fe0 in process 7132
Failed to insert breakpoint at 0xffff0fe0 (Input/output error).
Failed to insert breakpoint at 0xffff0fe0 (-1).
(gdb) disassemble __aeabi_read_tp,+8
Dump of assembler code from 0xb6e0a6e0 to 0xb6e0a6e8:
0xb6e0a6e0 <__aeabi_read_tp+0>: mvn r0, #61440 ; 0xf000
0xb6e0a6e4 <__aeabi_read_tp+4>: sub pc, r0, #31
however, it fails inserting breakpoint there. This problem has already
fixed by GDB, see comments in arm-linux-tdep.c:arm_linux_software_single_step
/* The Linux kernel offers some user-mode helpers in a high page. We can
not read this page (as of 2.6.23), and even if we could then we
couldn't set breakpoints in it, and even if we could then the atomic
operations would fail when interrupted. They are all called as
functions and return to the address in LR, so step to there
instead. */
so we need to do the same thing in GDB side as well. This patch adds
a new field fixup in arm_get_next_pcs_ops, so that we can fix up PC
for arm-linux target. In this way, both GDB and GDBserver can single
step instructions going to kernel helpers.
gdb:
2016-02-12 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (arm_get_next_pcs): Call
self->ops->fixup if it isn't NULL.
* arch/arm-get-next-pcs.h: Include gdb_vecs.h.
(struct arm_get_next_pcs_ops) <fixup>: New field.
* arch/arm-linux.c: Include common-regcache.h and
arch/arm-get-next-pcs.h.
(arm_linux_get_next_pcs_fixup): New function.
* arch/arm-linux.h (arm_linux_get_next_pcs_fixup): Declare.
* arm-linux-tdep.c (arm_linux_get_next_pcs_ops): Initialize
it with arm_linux_get_next_pcs_fixup.
(arm_linux_software_single_step): Move code to
arm_linux_get_next_pcs_fixup.
* arm-tdep.c (arm_get_next_pcs_ops): Initialize it.
gdb/gdbserver:
2016-02-12 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (get_next_pcs_ops): Initialize it with
arm_linux_get_next_pcs_fixup.
|
|
Nowadays, get_next_pcs in linux_target_ops has two parameters PC
and REGCACHE. Parameter PC looks redundant because it can be go
from REGCACHE. The patch is to remove PC from the arguments for
various functions.
gdb:
2016-01-26 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (thumb_deal_with_atomic_sequence_raw):
Remove argument pc. Get pc by regcache_read_pc. Callers updated.
(arm_deal_with_atomic_sequence_raw): Likewise.
(thumb_get_next_pcs_raw): Likewise.
(arm_get_next_pcs_raw): Likewise.
(arm_get_next_pcs): Remove argument pc. Callers updated.
* arch/arm-get-next-pcs.h (arm_get_next_pcs): Update declaration.
gdb/gdbserver:
2016-01-26 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_gdbserver_get_next_pcs): Remove argument pc.
* linux-low.c (install_software_single_step_breakpoints): Don't
call regcache_read_pc.
* linux-low.h (struct linux_target_ops) <get_next_pcs>: Remove
argument pc.
|
|
This patch fixes the following regression introduced by commit d0e59a68
step^M
39 } /* handler */^M
1: x/i $pc^M
=> 0x8740 <handler+80>: sub sp, r11, #0^M
(gdb) step^M
^M
Program received signal SIGSEGV, Segmentation fault.^M
setitimer () at ../sysdeps/unix/syscall-template.S:81^M
81 ../sysdeps/unix/syscall-template.S: No such file or directory.^M
1: x/i $pc^M
=> 0xb6eff9c0 <setitimer>: push {r7}^M
(gdb) FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler
in my test setting, program is compiled in arm mode, but the glibc
is built in thumb mode, so when we do 'step' to step over syscall
instruction svc for SIGRETURN, GDB should set breakpoint for arm mode
in the program, even though the current program in glibc is in thumb
mode. Current GDB doesn't consider the case that the mode of program
SIGRETURN goes to can be different from current program mode.
In fact, GDB has taken care of this arm/thumb mode changes already,
see
/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
return 1. In addition, set IS_THUMB depending on whether we
will return to ARM or Thumb code. Return 0 if it is not a
rt_sigreturn/sigreturn syscall. */
static int
arm_linux_sigreturn_return_addr (struct frame_info *frame,
unsigned long svc_number,
CORE_ADDR *pc, int *is_thumb)
but in the commit d0e59a68
> - arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
> + if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
> + next_pc = arm_linux_sigreturn_next_pc (regcache, svc_number);
the IS_THUMB setting is lost, so it is a regression.
gdb:
2016-01-21 Yao Qi <yao.qi@linaro.org>
* arm-linux-tdep.c (arm_linux_sigreturn_next_pc): Add parameter
is_thumb and set it according to CPSR saved on the stack.
(arm_linux_get_next_pcs_syscall_next_pc): Pass is_thumb to
arm_linux_sigreturn_next_pc.
gdb/gdbserver:
2016-01-21 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_sigreturn_next_pc): Add parameter
is_thumb and set it according to CPSR saved on the stack.
(get_next_pcs_syscall_next_pc): Pass is_thumb to
arm_sigreturn_next_pc.
|
|
This patch adds a pair of new functions linux_get_pc_32bit and
linux_set_pc_32bit which get and set 32-bit register "pc" from
regcache. This function can be used some targets and these own
$ARCH_{get,set}_pc are replaced by linux_{get,set}_pc_32bit
respectively.
This patch touches many targets, but I only have arm board to
test and no regression. I also rebuilt nios2-linux GDBserver.
If it is right to go, I'll post the 64-bit counterpart later.
gdb/gdbserver:
2016-01-18 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (debug_threads): Remove declaration.
(arm_get_pc, arm_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-bfin-low.c (bfin_get_pc, bfin_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-cris-low.c (debug_threads): Remove declaration.
(cris_get_pc, cris_set_pc,): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-crisv32-low.c (debug_threads): Remove declaration.
(cris_get_pc, cris_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-low.c: Include inttypes.h.
(linux_get_pc_32bit, linux_set_pc_32bit): New functions.
* linux-low.h (linux_get_pc_32bit, linux_set_pc_32bit): Declare.
* linux-m32r-low.c (m32r_get_pc, m32r_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-m68k-low.c (m68k_get_pc, m68k_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-nios2-low.c (nios2_get_pc, nios2_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-sh-low.c (sh_get_pc, sh_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
* linux-xtensa-low.c (xtensa_get_pc, xtensa_set_pc): Remove.
(the_low_target): Use linux_get_pc_32bit and
linux_set_pc_32bit.
|
|
This patch makes thumb2_breakpoint static. When writing this patch,
I find the only reason we keep thumb2_breakpoint extern is that it
is used as an argument passed to arm_gdbserver_get_next_pcs. However,
field arm_thumb2_breakpoint is only used in a null check in
thumb_get_next_pcs_raw, so I wonder why do need to pass thumb2_breakpoint
to arm_gdbserver_get_next_pcs.
thumb2_breakpoint was added by Daniel Jacobowitz in order to support
single-step IT block
https://sourceware.org/ml/gdb-patches/2010-01/msg00624.html the logic
there was if we have 32-bit thumb-2 breakpoint defined, we can safely
single-step IT block, otherwise, we can't. Daniel didn't want to use
16-bit thumb BKPT instruction, because it triggers even on instruction
which should be executed. Secondly, using 16-bit thumb illegal
instruction on top of 32-bit thumb instruction may break the meaning of
original IT blocks, because the other 16-bit can be regarded as an
instruction. See more explanations from Daniel's kernel patch
http://www.spinics.net/lists/arm-kernel/msg80476.html
Let us back to this patch, GDB/GDBserver can safely single step
IT block if thumb2_breakpoint is defined, but the single step logic
doesn't have to know the thumb-2 breakpoint instruction. Only
breakpoint insertion mechanism decides to use which breakpoint
instruction. In the software single step code, instead of pass
thumb2_breakpoint, we can pass a boolean variable
has_thumb2_breakpoint indicate whether the target has thumb-2
breakpoint defined, which is equivalent to the original code.
Regression tested on arm-linux. No regression.
gdb:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* arch/arm-get-next-pcs.c (arm_get_next_pcs_ctor): Change
argument arm_thumb2_breakpoint to has_thumb2_breakpoint.
(thumb_get_next_pcs_raw): Check has_thumb2_breakpoint
instead.
* arch/arm-get-next-pcs.h (struct arm_get_next_pcs)
<arm_thumb2_breakpoint>: Remove.
<has_thumb2_breakpoint>: New field.
(arm_get_next_pcs_ctor): Update declaration.
* arm-linux-tdep.c (arm_linux_software_single_step): Pass
1 to arm_get_next_pcs_ctor.
* arm-tdep.c (arm_software_single_step): Pass 0 to
arm_get_next_pcs_ctor.
gdb/gdbserver:
2016-01-14 Yao Qi <yao.qi@linaro.org>
* linux-aarch32-low.c (thumb2_breakpoint): Make it static.
* linux-aarch32-low.h (thumb2_breakpoint): Remove declaration.
* linux-arm-low.c (arm_gdbserver_get_next_pcs): Pass 1 to
arm_get_next_pcs_ctor.
|
|
gdb/ChangeLog:
Update year range in copyright notice of all files.
|
|
This patch teaches GDBServer how to software single step on ARM
linux by sharing code with GDB.
The arm_get_next_pcs function in GDB is now shared with GDBServer. So
that GDBServer can use the function to return the possible addresses of
the next PC.
A proper shared context was also needed so that we could share the code,
this context is described in the arm_get_next_pcs structure.
Testing :
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in (ALL_TARGET_OBS): Append arm-get-next-pcs.o,
arm-linux.o.
(ALLDEPFILES): Append arm-get-next-pcs.c, arm-linux.c
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* arch/arm-get-next-pcs.c: New file.
* arch/arm-get-next-pcs.h: New file.
* arch/arm-linux.h: New file.
* arch/arm-linux.c: New file.
* arm.c: Include common-regcache.c.
(thumb_advance_itstate): Moved from arm-tdep.c.
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm.h (submask): Move macro from arm-tdep.h
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_advance_itstate): Moved declaration from arm-tdep.h
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm-linux-tdep.c: Include arch/arm.h, arch/arm-get-next-pcs.h
arch/arm-linux.h.
(arm_linux_get_next_pcs_ops): New struct.
(ARM_SIGCONTEXT_R0, ARM_UCONTEXT_SIGCONTEXT,
ARM_OLD_RT_SIGFRAME_SIGINFO, ARM_OLD_RT_SIGFRAME_UCONTEXT,
ARM_NEW_RT_SIGFRAME_UCONTEXT, ARM_NEW_SIGFRAME_MAGIC): Move stack
layout defines to arch/arm-linux.h.
(arm_linux_sigreturn_next_pc_offset): Move to arch/arm-linux.c.
(arm_linux_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.c: Include arch/arm-get-next-pcs.h.
(arm_get_next_pcs_ops): New struct.
(submask): Move macro to arm.h.
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_instruction_changes_pc): Move to arm.c
(thumb2_instruction_changes_pc): Likewise.
(arm_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
(thumb_advance_itstate): Likewise.
(thumb_get_next_pc_raw): Move to arm-get-next-pcs.c.
(arm_get_next_pc_raw): Likewise.
(arm_get_next_pc): Likewise.
(thumb_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence): Likewise.
(arm_get_next_pcs_read_memory_unsigned_integer): New function.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.h: (arm_get_next_pc): Remove declaration.
(arm_get_next_pcs_read_memory_unsigned_integer):
New declaration.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_deal_with_atomic_sequence: Remove declaration.
* common/gdb_vecs.h: Add CORE_ADDR vector definition.
* configure.tgt (aarch64*-*-linux): Add arm-get-next-pcs.o,
arm-linux.o.
(arm*-wince-pe): Add arm-get-next-pcs.o.
(arm*-*-linux*): Add arm-get-next-pcs.o, arm-linux.o,
arm-get-next-pcs.o
(arm*-*-netbsd*,arm*-*-knetbsd*-gnu): Add arm-get-next-pcs.o.
(arm*-*-openbsd*): Likewise.
(arm*-*-symbianelf*): Likewise.
(arm*-*-*): Likewise.
* symtab.h: Move CORE_ADDR vector definition to gdb_vecs.h.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Append arch/arm-linux.c,
arch/arm-get-next-pcs.c.
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* configure.srv (arm*-*-linux*): Add arm-get-next-pcs.o,
arm-linux.o.
* linux-aarch32-low.c (arm_abi_breakpoint): Remove macro. Moved
to linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): Make non-static.
* linux-aarch32-low.h (arm_abi_breakpoint): New macro. Moved
from linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): New declaration.
* linux-arm-low.c: Include arch/arm-linux.h
aarch/arm-get-next-pcs.h, sys/syscall.h.
(get_next_pcs_ops): New struct.
(get_next_pcs_addr_bits_remove): New function.
(get_next_pcs_is_thumb): New function.
(get_next_pcs_read_memory_unsigned_integer): Likewise.
(arm_sigreturn_next_pc): Likewise.
(get_next_pcs_syscall_next_pc): Likewise.
(arm_gdbserver_get_next_pcs): Likewise.
(struct linux_target_ops) <arm_gdbserver_get_next_pcs>:
Initialize.
* linux-low.h: Move CORE_ADDR vector definition to gdb_vecs.h.
* server.h: Include gdb_vecs.h.
|
|
This patch in preparation for software single step support on ARM. It refactors
breakpoint_reinsert_addr into get_next_pcs so that multiple location can be
returned.
When software single stepping there can be multiple possible next addresses
because we're stepping over a conditional branch instruction, for example.
The operation get_next_pcs handles that by returning a vector of all the
possible next addresses.
Software breakpoints are installed at each location returned.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (the_low_targets): Rename
breakpoint_reinsert_addr to get_next_pcs.
* linux-arm-low.c (the_low_targets): Likewise.
* linux-bfin-low.c (the_low_targets): Likewise.
* linux-cris-low.c (the_low_targets): Likewise.
* linux-crisv32-low.c (the_low_targets): Likewise.
* linux-low.c (can_software_single_step): Likewise.
(install_software_single_step_breakpoints): New function.
(start_step_over): Use install_software_single_step_breakpoints.
* linux-low.h: New CORE_ADDR vector.
(struct linux_target_ops) Rename breakpoint_reinsert_addr to
get_next_pcs.
* linux-mips-low.c (the_low_targets): Likewise.
* linux-nios2-low.c (the_low_targets): Likewise.
* linux-sparc-low.c (the_low_targets): Likewise.
|
|
In commit 6085d6f6, Z0 packet is disabled in aarch64 GDBserver if
the inferior is 32-bit or there may be multiple inferiors, because
Z0 packet isn't supported for arm then. Recently, Z0 packet
is supported in arm target, so we don't have such limitation in
aarch64 GDBserver, that is to say, aarch64 GDBserver can use Z0
packet in multi-arch/multi-inferior debugging when the inferior's
arch is arm.
Part of this patch is to revert 6085d6f6, and the rest of the patch
is to move some breakpoint related arm_* functions into
linux-aarch32-low.c in order to share them between arm and aarch64.
This patch is regression tested on aarch64-linux for debugging both
aarch64 programs and arm programs respectively.
gdb/gdbserver:
2015-12-07 Yao Qi <yao.qi@linaro.org>
* configure.srv: Append arm.o to srv_tgtobj for
aarch64*-*-linux* target.
* linux-aarch32-low.c (arm_abi_breakpoint): New macro. Moved
from linux-arm-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode, arm_breakpoint_at): Likewise.
(arm_breakpoint_kinds): Likewise.
(arm_breakpoint_kind_from_pc): Likewise.
(arm_sw_breakpoint_from_kind): Likewise.
(arm_breakpoint_kind_from_current_state): Likewise.
* linux-aarch32-low.h (arm_breakpoint_kind_from_pc): Declare.
(arm_sw_breakpoint_from_kind): Declare.
(arm_breakpoint_kind_from_current_state): Declare.
(arm_breakpoint_at): Declare.
* linux-aarch64-low.c (aarch64_sw_breakpoint_from_kind): Call
arm_sw_breakpoint_from_kind if process is 32-bit.
(aarch64_breakpoint_kind_from_pc): New function.
(aarch64_breakpoint_kind_from_current_state): New function.
(the_low_target): Initialize fields breakpoint_kind_from_pc
and breakpoint_kind_from_current_state.
* linux-arm-low.c (arm_breakpoint_kinds): Move to
linux-aarch32-low.c.
(arm_abi_breakpoint, arm_eabi_breakpoint): Likewise.
(arm_breakpoint, arm_breakpoint_len): Likewise.
(thumb_breakpoint, thumb_breakpoint_len): Likewise.
(thumb2_breakpoint, thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): Likewise.
(arm_breakpoint_at): Likewise.
(arm_breakpoint_kind_from_pc): Likewise.
(arm_sw_breakpoint_from_kind): Likewise.
(arm_breakpoint_kind_from_current_state): Likewise.
Revert:
2015-08-04 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_supports_z_point_type): Return
0 for Z_PACKET_SW_BP if it may be used in multi-arch debugging.
* server.c (extended_protocol): Remove "static".
* server.h (extended_protocol): Declare it.
|
|
A duplicate include arm/arm.h was introduced, remove it.
Pushed as obvious.
gdb/gdbserver/ChangeLog:
* linux-arm-low.c: Remove duplicate arch/arm.h include.
|
|
This patch removes too simple implementations of the breakpoint_reinsert_addr
operation.
The only reason to keep them around was to support thread events when
PTRACE_EVENT_CLONE was not present but this support has been removed in a
previous patch.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
Also compilation was tested on aarch64, bfin, cris, crisv32,
m32r, mips, nios2, ppc, s390, sparc, tic6x, tile, xtensa.
gdb/gdbserver/ChangeLog:
* linux-arm-low.c (arm_reinsert_addr): Remove function.
(struct linux_target_ops <breakpoint_reinsert_addr>: Set to NULL.
* linux-cris-low.c (cris_reinsert_addr> Remove function.
(struct linux_target_ops) <breakpoint_reinsert_addr>: Set to NULL.
* linux-crisv32-low.c (cris_reinsert_addr): Remove function.
(struct linux_target_ops) <breakpoint_reinsert_addr>: Set to NULL.
* linux-mips-low.c (mips_reinsert_addr): Remove function.
(struct linux_target_ops) <breakpoint_reinsert_addr>: Set to NULL.
* linux-nios2-low.c (nios2_reinsert_addr): Remove function.
(struct linux_target_ops) <breakpoint_reinsert_addr>: Set to NULL.
* linux-sparc-low.c (sparc_reinsert_addr): Remove function.
(struct linux_target_ops) <breakpoint_reinsert_addr>: Set to NULL.
|
|
Before this patch there was only one call: can_hardware_single_step. Its
implementation was a check on breakpoint_reinsert_addr if NULL it assumed
that the target could hardware single step.
This patch prepares for the case where this is not true anymore.
In order to improve software single stepping in GDBServer the
breakpoint_reinsert_addr operation of targets that had a very simple
software implementation used only for stepping over thread creation events
will be removed.
This will create a case where a target does not support hardware single
step and has the operation breakpoint_reinsert_addr set to NULL, thus
can_hardware_single_step needs to be implemented another way.
A new target operation supports_hardware_single_step is introduced and is
to return true if the target does support such a feature, support for the
feature is manually hardcoded.
Note that the hardware single step support was enabled as per the current
behavior, I did not check if tile for example really has ptrace singlestep
support but since the current implementation assumed it had, I kept it
that way.
No regressions on Ubuntu 14.04 on ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
Compilation tested on: aarch64,arm,bfind,crisv32,m32r,ppc,s390,tic6x,tile,
xtensa.
Not tested : sh.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_supports_hardware_single_step):
New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-arm-low.c (arm_supports_hardware_single_step): New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-bfin-low.c (bfin_supports_hardware_single_step): New function.
(struct linux_target_ops) <bfin_supports_hardware_single_step>:
Initialize.
* linux-crisv32-low.c (cris_supports_hardware_single_step):
New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-low.c (can_hardware_single_step): Use
supports_hardware_single_step.
(can_software_single_step): New function.
(start_step_over): Call can_software_single_step.
(linux_supports_hardware_single_step): New function.
(struct target_ops) <supports_software_single_step>: Initialize.
* linux-low.h (struct linux_target_ops)
<supports_hardware_single_step>: Initialize.
* linux-m32r-low.c (m32r_supports_hardware_single_step): New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-ppc-low.c (ppc_supports_hardware_single_step): New function.
(struct linux_target_ops) <supports_hardware_single_step> Initialize.
* linux-s390-low.c (s390_supports_hardware_single_step): New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-sh-low.c (sh_supports_hardware_single_step): New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-tic6x-low.c (tic6x_supports_hardware_single_step): New function.
(struct linux_target_ops) <tic6x_supports_hardware_single_step>:
Initialize.
* linux-tile-low.c (tile_supports_hardware_single_step): New function.
(struct linux_target_ops) <tile_supports_hardware_single_step>:
Initialize.
* linux-x86-low.c (x86_supports_hardware_single_step) New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* linux-xtensa-low.c (xtensa_supports_hardware_single_step):
New function.
(struct linux_target_ops) <supports_hardware_single_step>: Initialize.
* target.h (struct target_ops): <supports_software_single_step>:
New field.
(target_supports_software_single_step): New macro.
|
|
When manually stepping over a permanent breakpoint on ARM we need to fetch the
right breakpoint size based on the current instruction set used.
Since this is not encoded in the stop_pc, the instruction mode needs to be
fetched from the CPSR register.
This is done by introducing a new target operation called :
breakpoint_kind_from_current_state.
For other targets that do not need this, breakpoint_kind_from_pc is used.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/gdbserver/ChangeLog:
* linux-arm-low.c (arm_is_thumb_mode): New function.
(arm_breakpoint_at): Use arm_is_thumb_mode.
(arm_breakpoint_kind_from_current_state): New function.
(struct linux_target_ops) <breakpoint_kind_from_current_state>:
Initialize.
* linux-low.c (linux_wait_1): Call breakpoint_kind_from_current_state.
(linux_breakpoint_kind_from_current_state): New function.
(struct target_ops <breakpoint_kind_from_current_state>: Initialize.
* linux-low.h (struct linux_target_ops)
<breakpoint_kind_from_current_state>: New field.
* target.h (struct target_ops): Likewise.
(target_breakpoint_kind_from_current_state): New macro.
|
|
Fixes:
/home/simark/src/binutils-gdb/gdb/gdbserver/linux-arm-low.c: In function ‘int arm_linux_hw_point_initialize(raw_bkpt_type, CORE_ADDR, int, arm_linux_hw_breakpoint*)’:
/home/simark/src/binutils-gdb/gdb/gdbserver/linux-arm-low.c:459:55: error: invalid conversion from ‘int’ to ‘arm_hwbp_type’ [-fpermissive]
hwbp_type = raw_bkpt_type_to_arm_hwbp_type (raw_type);
^
gdb/gdbserver/ChangeLog:
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type):
Change return type to arm_hwbp_type.
|
|
Trivial casts for C++.
Fixes things like
In file included from /home/simark/src/binutils-gdb/gdb/gdbserver/../common/common-defs.h:39:0,
from /home/simark/src/binutils-gdb/gdb/gdbserver/server.h:22,
from /home/simark/src/binutils-gdb/gdb/gdbserver/linux-arm-low.c:19:
/home/simark/src/binutils-gdb/gdb/gdbserver/linux-arm-low.c: In function ‘int arm_get_hwcap(long unsigned int*)’:
/home/simark/src/binutils-gdb/gdb/gdbserver/../../include/libiberty.h:711:38: error: invalid conversion from ‘void*’ to ‘unsigned char*’ [-fpermissive]
# define alloca(x) __builtin_alloca(x)
^
/home/simark/src/binutils-gdb/gdb/gdbserver/linux-arm-low.c:807:25: note: in expansion of macro ‘alloca’
unsigned char *data = alloca (8);
^
gdb/gdbserver/ChangeLog:
* linux-aarch32-low.c (arm_fill_gregset): Add cast.
(arm_store_gregset): Likewise.
* linux-arm-low.c (arm_get_hwcap): Likewise.
(arm_read_description): Likewise.
|
|
gdb/gdbserver/ChangeLog:
* linux-arm-low.c (arm_new_thread): Move pointer dereference
to after assert checks.
Signed-off-by: Henrik Wallin <henrik.wallin@windriver.com>
|
|
Fixes errors like:
src/gdb/gdbserver/linux-x86-low.c:477:1: error: invalid conversion from 'int' to 'regset_type' [-fpermissive]
gdb/gdbserver/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* linux-low.h (NULL_REGSET): Define.
* linux-aarch64-low.c (aarch64_regsets): Use NULL_REGSET.
* linux-arm-low.c (arm_regsets): Likewise.
* linux-crisv32-low.c (cris_regsets): Likewise.
* linux-m68k-low.c (m68k_regsets): Likewise.
* linux-mips-low.c (mips_regsets): Likewise.
* linux-nios2-low.c (nios2_regsets): Likewise.
* linux-ppc-low.c (ppc_regsets): Likewise.
* linux-s390-low.c (s390_regsets): Likewise.
* linux-sh-low.c (sh_regsets): Likewise.
* linux-sparc-low.c (sparc_regsets): Likewise.
* linux-tic6x-low.c (tic6x_regsets): Likewise.
* linux-tile-low.c (tile_regsets): Likewise.
* linux-x86-low.c (x86_regsets): Likewise.
* linux-xtensa-low.c (xtensa_regsets): Likewise.
|
|
This patch enables software breakpoints via GDB's Z0 packets on ARM.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/gdbserver/ChangeLog:
* linux-arm-low.c (arm_supports_z_point_type): Add software
breakpoint support.
|
|
Before arm_sw_breakpoint_from_kind would use an #ifdef to return the right
arm_breakpoint from the abi or eabi breakpoint type.
arm_breakpoint_at would also check for the arm_breakpoint ||
arm_eabi_breakpoint.
Thus the selected arm_breakpoint would be what arm_sw_breakpoint_from_kind
returned and arm_breakpoint was arm_abi_breakpoint.
This patch makes it more clear by naming those for what they are : 2 separate
entities: arm_abi_breakpoint and arm_eabi_breakpoint and set the current used
one as arm_breakpoint.
This allows a cleaner arm_sw_breakpoint_from_kind as it just returns
arm_breakpoint rather than having the #ifdef in that function.
Any other reference to the arm_breakpoint can now also be clear of #ifdefs...
No regressions on Ubuntu 14.04 on ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/gdbserver/ChangeLog:
* linux-arm-low.c: Refactor breakpoint definitions.
(arm_breakpoint_at): Adjust for arm_abi_breakpoint.
(arm_sw_breakpoint_from_kind): Adjust for arm_breakpoint.
|
|
GDBServer.
ARM can have multiple breakpoint types based on the instruction set
it's currently in: arm, thumb or thumb2.
GDBServer needs to know what breakpoint is to be inserted at location
when inserting a breakpoint.
This is handled by the breakpoint_kind_from_pc and sw_breakpoint_from_kind
target ops introduced in a previous patch, this patch adds the
arm_breakpoint_kind_from_pc and arm_sw_breakpoint_from_kind implementation so
that the proper breakpoint type is returned based on the pc.
Also in order to share some code with GDB a new file called arm.c have been
introduced in arch/.
While this file does not contain much yet future patches will add more
to it thus the inclusion at this stage.
No regressions on Ubuntu 14.04 on ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in: Add arm.c/o.
* arch/arm.c: New file.
* arch/arm.h: (IS_THUMB_ADDR): Move macro from arm-tdep.c.
(MAKE_THUMB_ADDR): Likewise.
(UNMAKE_THUMB_ADDR): Likewise.
* arm-tdep.c (int thumb_insn_size): Move to arm.c.
(IS_THUMB_ADDR): Move to arm.h.
(MAKE_THUMB_ADDR): Likewise.
(UNMAKE_THUMB_ADDR): Likewise.
* configure.tgt: Add arm.o to all ARM configs.
gdb/gdbserver/ChangeLog:
* Makefile.in: Add arm.c/o.
* configure.srv: Likewise.
* linux-arm-low.c (arm_breakpoint_kinds): New enum.
(arm_breakpoint_kind_from_pc): New function.
(arm_sw_breakpoint_from_kind): Return proper kind.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize.
|
|
This patch is in preparation for software breakpoints on ARM linux. It
refactors breakpoint and breakpoint_len into breakpoint_kind_from_pc and
sw_breakpoint_from kind to prepare the case where we have multiple types of
breakpoints.
Kind is the type of breakpoint (hardware or software) to be inserted, usually it
is the lenght of the software breakpoint but can be something else depending on
the target.
This patch introduces the linux_target_ops breakpoint_kind_from_pc and
sw_breakpoint_from_kind.
breakpoint_kind_from_pc returns the breakpoint kind and adjusts the PC to the
real memory location in case a flag was present in the PC. E.g the instruction
mode on ARM.
sw_breakpoint_from_kind returns the software breakpoint for this kind as a
string of bytes, the length of the breakpoint is adjusted for the breakpoint's
size in memory.
For targets that have only one kind of breakpoint, the default value 0 is
returned by linux_breakpoint_kind_from_pc so that not all targets need to
implement the breakpoint_kind_from_pc operation.
No regressions, tested on Ubuntu 14.04 on ARMv7 and x86
With gdbserver-{native,extended} / { -marm -mthumb }
Also since the target_ops have been changed compilation was tested on
affected archs namely : aarch64, arm, bfin, cris, crisv32, m32r,
m68k, mips, nios2, ppc, s390, sparc, tic6x, tile, x86, steins.
Not tested : sh
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-arm-low.c (arm_breakpoint_kind_from_pc): New function.
(arm_sw_breakpoint_from_kind): New function.
* linux-bfin-low.c (bfin_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-cris-low.c (cris_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-crisv32-low.c (cris_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-low.c (linux_wait_1): Call breakpoint_kind_from_pc
and sw_breakpoint_from_kind to increment the pc.
(linux_breakpoint_kind_from_pc): New function.
(linux_sw_breakpoint_from_kind): New function.
(struct target_ops) <sw_breakpoint_from_kind>: Initialize field.
(initialize_low): Call breakpoint_kind_from_pc and
sw_breakpoint_from_kind to replace breakpoint_data/len.
* linux-low.h (struct linux_target_ops) <breakpoint_kind_from_pc>:
New field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Likewise.
* linux-m32r-low.c (m32r_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-m68k-low.c (m68k_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-mips-low.c (mips_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-nios2-low.c (nios2_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-ppc-low.c (ppc_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-s390-low.c (s390_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-sh-low.c (sh_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-sparc-low.c (sparc_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-tic6x-low.c (tic6x_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-tile-low.c (tile_sw_breakpoint_from_kind): New function.
* linux-x86-low.c (x86_sw_breakpoint_from_kind): New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
* linux-xtensa-low.c (xtensa_sw_breakpoint_from_kind) New function.
(struct linux_target_ops) <breakpoint>: Remove.
(struct linux_target_ops) <breakpoint_len>: Remove.
(struct linux_target_ops) <breakpoint_kind_from_pc>: Initialize field.
(struct linux_target_ops) <sw_breakpoint_from_kind>: Initialize field.
|
|
This patch is part of the make-gdb-buildable-in-C++ effort. The idea is
to change some calls to the xmalloc family of functions to calls to the
equivalents in the XNEW family. This avoids adding an explicit cast, so
it keeps the code a bit more readable. Some of them also map relatively
well to a C++ equivalent (XNEW (struct foo) -> new foo), so it will be
possible to do scripted replacements if needed.
I only changed calls that were obviously allocating memory for one or
multiple "objects". Allocation of variable sizes (such as strings or
buffer handling) will be for later (and won't use XNEW).
- xmalloc (sizeof (struct foo)) -> XNEW (struct foo)
- xmalloc (num * sizeof (struct foo)) -> XNEWVEC (struct foo, num)
- xcalloc (1, sizeof (struct foo)) -> XCNEW (struct foo)
- xcalloc (num, sizeof (struct foo)) -> XCNEWVEC (struct foo, num)
- xrealloc (p, num * sizeof (struct foo) -> XRESIZEVEC (struct foo, p, num)
- obstack_alloc (ob, sizeof (struct foo)) -> XOBNEW (ob, struct foo)
- obstack_alloc (ob, num * sizeof (struct foo)) -> XOBNEWVEC (ob, struct foo, num)
- alloca (sizeof (struct foo)) -> XALLOCA (struct foo)
- alloca (num * sizeof (struct foo)) -> XALLOCAVEC (struct foo, num)
Some instances of xmalloc followed by memset to zero the buffer were
replaced by XCNEW or XCNEWVEC.
I regtested on x86-64, Ubuntu 14.04, but the patch touches many
architecture-specific files. For those I'll have to rely on the
buildbot or people complaining that I broke their gdb.
gdb/ChangeLog:
* aarch64-linux-nat.c (aarch64_add_process): Likewise.
* aarch64-tdep.c (aarch64_gdbarch_init): Likewise.
* ada-exp.y (write_ambiguous_var): Likewise.
* ada-lang.c (resolve_subexp): Likewise.
(user_select_syms): Likewise.
(assign_aggregate): Likewise.
(ada_evaluate_subexp): Likewise.
(cache_symbol): Likewise.
* addrmap.c (allocate_key): Likewise.
(addrmap_create_mutable): Likewise.
* aix-thread.c (sync_threadlists): Likewise.
* alpha-tdep.c (alpha_push_dummy_call): Likewise.
(alpha_gdbarch_init): Likewise.
* amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise.
* arm-linux-nat.c (arm_linux_add_process): Likewise.
* arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise.
* arm-tdep.c (push_stack_item): Likewise.
(arm_displaced_step_copy_insn): Likewise.
(arm_gdbarch_init): Likewise.
(_initialize_arm_tdep): Likewise.
* avr-tdep.c (push_stack_item): Likewise.
* ax-general.c (new_agent_expr): Likewise.
* block.c (block_initialize_namespace): Likewise.
* breakpoint.c (alloc_counted_command_line): Likewise.
(update_dprintf_command_list): Likewise.
(parse_breakpoint_sals): Likewise.
(decode_static_tracepoint_spec): Likewise.
(until_break_command): Likewise.
(clear_command): Likewise.
(update_global_location_list): Likewise.
(get_breakpoint_objfile_data) Likewise.
* btrace.c (ftrace_new_function): Likewise.
(btrace_set_insn_history): Likewise.
(btrace_set_call_history): Likewise.
* buildsym.c (add_symbol_to_list): Likewise.
(record_pending_block): Likewise.
(start_subfile): Likewise.
(start_buildsym_compunit): Likewise.
(push_subfile): Likewise.
(end_symtab_get_static_block): Likewise.
(buildsym_init): Likewise.
* cli/cli-cmds.c (source_command): Likewise.
* cli/cli-decode.c (add_cmd): Likewise.
* cli/cli-script.c (build_command_line): Likewise.
(setup_user_args): Likewise.
(realloc_body_list): Likewise.
(process_next_line): Likewise.
(copy_command_lines): Likewise.
* cli/cli-setshow.c (do_set_command): Likewise.
* coff-pe-read.c (read_pe_exported_syms): Likewise.
* coffread.c (coff_locate_sections): Likewise.
(coff_symtab_read): Likewise.
(coff_read_struct_type): Likewise.
* common/cleanups.c (make_my_cleanup2): Likewise.
* common/common-exceptions.c (throw_it): Likewise.
* common/filestuff.c (make_cleanup_close): Likewise.
* common/format.c (parse_format_string): Likewise.
* common/queue.h (DEFINE_QUEUE_P): Likewise.
* compile/compile-object-load.c (munmap_list_add): Likewise.
(compile_object_load): Likewise.
* compile/compile-object-run.c (compile_object_run): Likewise.
* compile/compile.c (append_args): Likewise.
* corefile.c (specify_exec_file_hook): Likewise.
* cp-support.c (make_symbol_overload_list): Likewise.
* cris-tdep.c (push_stack_item): Likewise.
(cris_gdbarch_init): Likewise.
* ctf.c (ctf_trace_file_writer_new): Likewise.
* dbxread.c (init_header_files): Likewise.
(add_new_header_file): Likewise.
(init_bincl_list): Likewise.
(dbx_end_psymtab): Likewise.
(start_psymtab): Likewise.
(dbx_end_psymtab): Likewise.
* dcache.c (dcache_init): Likewise.
* dictionary.c (dict_create_hashed): Likewise.
(dict_create_hashed_expandable): Likewise.
(dict_create_linear): Likewise.
(dict_create_linear_expandable): Likewise.
* dtrace-probe.c (dtrace_process_dof_probe): Likewise.
* dummy-frame.c (register_dummy_frame_dtor): Likewise.
* dwarf2-frame-tailcall.c (cache_new_ref1): Likewise.
* dwarf2-frame.c (dwarf2_build_frame_info): Likewise.
(decode_frame_entry_1): Likewise.
* dwarf2expr.c (new_dwarf_expr_context): Likewise.
* dwarf2loc.c (dwarf2_compile_expr_to_ax): Likewise.
* dwarf2read.c (dwarf2_has_info): Likewise.
(create_signatured_type_table_from_index): Likewise.
(dwarf2_read_index): Likewise.
(dw2_get_file_names_reader): Likewise.
(create_all_type_units): Likewise.
(read_cutu_die_from_dwo): Likewise.
(init_tu_and_read_dwo_dies): Likewise.
(init_cutu_and_read_dies): Likewise.
(create_all_comp_units): Likewise.
(queue_comp_unit): Likewise.
(inherit_abstract_dies): Likewise.
(read_call_site_scope): Likewise.
(dwarf2_add_field): Likewise.
(dwarf2_add_typedef): Likewise.
(dwarf2_add_member_fn): Likewise.
(attr_to_dynamic_prop): Likewise.
(abbrev_table_alloc_abbrev): Likewise.
(abbrev_table_read_table): Likewise.
(add_include_dir): Likewise.
(add_file_name): Likewise.
(dwarf_decode_line_header): Likewise.
(dwarf2_const_value_attr): Likewise.
(dwarf_alloc_block): Likewise.
(parse_macro_definition): Likewise.
(set_die_type): Likewise.
(write_psymtabs_to_index): Likewise.
(create_cus_from_index): Likewise.
(dwarf2_create_include_psymtab): Likewise.
(process_psymtab_comp_unit_reader): Likewise.
(build_type_psymtab_dependencies): Likewise.
(read_comp_units_from_section): Likewise.
(compute_compunit_symtab_includes): Likewise.
(create_dwo_unit_in_dwp_v1): Likewise.
(create_dwo_unit_in_dwp_v2): Likewise.
(read_func_scope): Likewise.
(process_structure_scope): Likewise.
(mark_common_block_symbol_computed): Likewise.
(load_partial_dies): Likewise.
(dwarf2_symbol_mark_computed): Likewise.
* elfread.c (elf_symfile_segments): Likewise.
(elf_read_minimal_symbols): Likewise.
* environ.c (make_environ): Likewise.
* eval.c (evaluate_subexp_standard): Likewise.
* event-loop.c (create_file_handler): Likewise.
(create_async_signal_handler): Likewise.
(create_async_event_handler): Likewise.
(create_timer): Likewise.
* exec.c (build_section_table): Likewise.
* fbsd-nat.c (fbsd_remember_child): Likewise.
* fork-child.c (fork_inferior): Likewise.
* frv-tdep.c (new_variant): Likewise.
* gdbarch.sh (gdbarch_alloc): Likewise.
(append_name): Likewise.
* gdbtypes.c (rank_function): Likewise.
(copy_type_recursive): Likewise.
(add_dyn_prop): Likewise.
* gnu-nat.c (make_proc): Likewise.
(make_inf): Likewise.
(gnu_write_inferior): Likewise.
* gnu-v3-abi.c (build_gdb_vtable_type): Likewise.
(build_std_type_info_type): Likewise.
* guile/scm-param.c (compute_enum_list): Likewise.
* guile/scm-utils.c (gdbscm_parse_function_args): Likewise.
* guile/scm-value.c (gdbscm_value_call): Likewise.
* h8300-tdep.c (h8300_gdbarch_init): Likewise.
* hppa-tdep.c (hppa_init_objfile_priv_data): Likewise.
(read_unwind_info): Likewise.
* ia64-tdep.c (ia64_gdbarch_init): Likewise.
* infcall.c (dummy_frame_context_saver_setup): Likewise.
(call_function_by_hand_dummy): Likewise.
* infcmd.c (step_once): Likewise.
(finish_forward): Likewise.
(attach_command): Likewise.
(notice_new_inferior): Likewise.
* inferior.c (add_inferior_silent): Likewise.
* infrun.c (add_displaced_stepping_state): Likewise.
(save_infcall_control_state): Likewise.
(save_inferior_ptid): Likewise.
(_initialize_infrun): Likewise.
* jit.c (bfd_open_from_target_memory): Likewise.
(jit_gdbarch_data_init): Likewise.
* language.c (add_language): Likewise.
* linespec.c (decode_line_2): Likewise.
* linux-nat.c (add_to_pid_list): Likewise.
(add_initial_lwp): Likewise.
* linux-thread-db.c (add_thread_db_info): Likewise.
(record_thread): Likewise.
(info_auto_load_libthread_db): Likewise.
* m32c-tdep.c (m32c_gdbarch_init): Likewise.
* m68hc11-tdep.c (m68hc11_gdbarch_init): Likewise.
* m68k-tdep.c (m68k_gdbarch_init): Likewise.
* m88k-tdep.c (m88k_analyze_prologue): Likewise.
* macrocmd.c (macro_define_command): Likewise.
* macroexp.c (gather_arguments): Likewise.
* macroscope.c (sal_macro_scope): Likewise.
* macrotab.c (new_macro_table): Likewise.
* mdebugread.c (push_parse_stack): Likewise.
(parse_partial_symbols): Likewise.
(parse_symbol): Likewise.
(psymtab_to_symtab_1): Likewise.
(new_block): Likewise.
(new_psymtab): Likewise.
(mdebug_build_psymtabs): Likewise.
(add_pending): Likewise.
(elfmdebug_build_psymtabs): Likewise.
* mep-tdep.c (mep_gdbarch_init): Likewise.
* mi/mi-main.c (mi_execute_command): Likewise.
* mi/mi-parse.c (mi_parse_argv): Likewise.
* minidebug.c (lzma_open): Likewise.
* minsyms.c (terminate_minimal_symbol_table): Likewise.
* mips-linux-nat.c (mips_linux_insert_watchpoint): Likewise.
* mips-tdep.c (mips_gdbarch_init): Likewise.
* mn10300-tdep.c (mn10300_gdbarch_init): Likewise.
* msp430-tdep.c (msp430_gdbarch_init): Likewise.
* mt-tdep.c (mt_registers_info): Likewise.
* nat/aarch64-linux.c (aarch64_linux_new_thread): Likewise.
* nat/linux-btrace.c (linux_enable_bts): Likewise.
(linux_enable_pt): Likewise.
* nat/linux-osdata.c (linux_xfer_osdata_processes): Likewise.
(linux_xfer_osdata_processgroups): Likewise.
* nios2-tdep.c (nios2_gdbarch_init): Likewise.
* nto-procfs.c (procfs_meminfo): Likewise.
* objc-lang.c (start_msglist): Likewise.
(selectors_info): Likewise.
(classes_info): Likewise.
(find_methods): Likewise.
* objfiles.c (allocate_objfile): Likewise.
(update_section_map): Likewise.
* osabi.c (gdbarch_register_osabi): Likewise.
(gdbarch_register_osabi_sniffer): Likewise.
* parse.c (start_arglist): Likewise.
* ppc-linux-nat.c (hwdebug_find_thread_points_by_tid): Likewise.
(hwdebug_insert_point): Likewise.
* printcmd.c (display_command): Likewise.
(ui_printf): Likewise.
* procfs.c (create_procinfo): Likewise.
(load_syscalls): Likewise.
(proc_get_LDT_entry): Likewise.
(proc_update_threads): Likewise.
* prologue-value.c (make_pv_area): Likewise.
(pv_area_store): Likewise.
* psymtab.c (extend_psymbol_list): Likewise.
(init_psymbol_list): Likewise.
(allocate_psymtab): Likewise.
* python/py-inferior.c (add_thread_object): Likewise.
* python/py-param.c (compute_enum_values): Likewise.
* python/py-value.c (valpy_call): Likewise.
* python/py-varobj.c (py_varobj_iter_next): Likewise.
* python/python.c (ensure_python_env): Likewise.
* record-btrace.c (record_btrace_start_replaying): Likewise.
* record-full.c (record_full_reg_alloc): Likewise.
(record_full_mem_alloc): Likewise.
(record_full_end_alloc): Likewise.
(record_full_core_xfer_partial): Likewise.
* regcache.c (get_thread_arch_aspace_regcache): Likewise.
* remote-fileio.c (remote_fileio_init_fd_map): Likewise.
* remote-notif.c (remote_notif_state_allocate): Likewise.
* remote.c (demand_private_info): Likewise.
(remote_notif_stop_alloc_reply): Likewise.
(remote_enable_btrace): Likewise.
* reverse.c (save_bookmark_command): Likewise.
* rl78-tdep.c (rl78_gdbarch_init): Likewise.
* rx-tdep.c (rx_gdbarch_init): Likewise.
* s390-linux-nat.c (s390_insert_watchpoint): Likewise.
* ser-go32.c (dos_get_tty_state): Likewise.
(dos_copy_tty_state): Likewise.
* ser-mingw.c (ser_windows_open): Likewise.
(ser_console_wait_handle): Likewise.
(ser_console_get_tty_state): Likewise.
(make_pipe_state): Likewise.
(net_windows_open): Likewise.
* ser-unix.c (hardwire_get_tty_state): Likewise.
(hardwire_copy_tty_state): Likewise.
* solib-aix.c (solib_aix_new_lm_info): Likewise.
* solib-dsbt.c (dsbt_current_sos): Likewise.
(dsbt_relocate_main_executable): Likewise.
* solib-frv.c (frv_current_sos): Likewise.
(frv_relocate_main_executable): Likewise.
* solib-spu.c (spu_bfd_fopen): Likewise.
* solib-svr4.c (lm_info_read): Likewise.
(svr4_copy_library_list): Likewise.
(svr4_default_sos): Likewise.
* source.c (find_source_lines): Likewise.
(line_info): Likewise.
(add_substitute_path_rule): Likewise.
* spu-linux-nat.c (spu_bfd_open): Likewise.
* spu-tdep.c (info_spu_dma_cmdlist): Likewise.
* stabsread.c (dbx_lookup_type): Likewise.
(read_type): Likewise.
(read_member_functions): Likewise.
(read_struct_fields): Likewise.
(read_baseclasses): Likewise.
(read_args): Likewise.
(_initialize_stabsread): Likewise.
* stack.c (func_command): Likewise.
* stap-probe.c (handle_stap_probe): Likewise.
* symfile.c (addrs_section_sort): Likewise.
(addr_info_make_relative): Likewise.
(load_section_callback): Likewise.
(add_symbol_file_command): Likewise.
(init_filename_language_table): Likewise.
* symtab.c (create_filename_seen_cache): Likewise.
(sort_search_symbols_remove_dups): Likewise.
(search_symbols): Likewise.
* target.c (make_cleanup_restore_target_terminal): Likewise.
* thread.c (new_thread): Likewise.
(enable_thread_stack_temporaries): Likewise.
(make_cleanup_restore_current_thread): Likewise.
(thread_apply_all_command): Likewise.
* tic6x-tdep.c (tic6x_gdbarch_init): Likewise.
* top.c (gdb_readline_wrapper): Likewise.
* tracefile-tfile.c (tfile_trace_file_writer_new): Likewise.
* tracepoint.c (trace_find_line_command): Likewise.
(all_tracepoint_actions_and_cleanup): Likewise.
(make_cleanup_restore_current_traceframe): Likewise.
(get_uploaded_tp): Likewise.
(get_uploaded_tsv): Likewise.
* tui/tui-data.c (tui_alloc_generic_win_info): Likewise.
(tui_alloc_win_info): Likewise.
(tui_alloc_content): Likewise.
(tui_add_content_elements): Likewise.
* tui/tui-disasm.c (tui_find_disassembly_address): Likewise.
(tui_set_disassem_content): Likewise.
* ui-file.c (ui_file_new): Likewise.
(stdio_file_new): Likewise.
(tee_file_new): Likewise.
* utils.c (make_cleanup_restore_integer): Likewise.
(add_internal_problem_command): Likewise.
* v850-tdep.c (v850_gdbarch_init): Likewise.
* valops.c (find_oload_champ): Likewise.
* value.c (allocate_value_lazy): Likewise.
(record_latest_value): Likewise.
(create_internalvar): Likewise.
* varobj.c (install_variable): Likewise.
(new_variable): Likewise.
(new_root_variable): Likewise.
(cppush): Likewise.
(_initialize_varobj): Likewise.
* windows-nat.c (windows_make_so): Likewise.
* x86-nat.c (x86_add_process): Likewise.
* xcoffread.c (arrange_linetable): Likewise.
(allocate_include_entry): Likewise.
(process_linenos): Likewise.
(SYMBOL_DUP): Likewise.
(xcoff_start_psymtab): Likewise.
(xcoff_end_psymtab): Likewise.
* xml-support.c (gdb_xml_parse_attr_ulongest): Likewise.
* xtensa-tdep.c (xtensa_register_type): Likewise.
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
gdb/gdbserver/ChangeLog:
* ax.c (gdb_parse_agent_expr): Likewise.
(compile_bytecodes): Likewise.
* dll.c (loaded_dll): Likewise.
* event-loop.c (append_callback_event): Likewise.
(create_file_handler): Likewise.
(create_file_event): Likewise.
* hostio.c (handle_open): Likewise.
* inferiors.c (add_thread): Likewise.
(add_process): Likewise.
* linux-aarch64-low.c (aarch64_linux_new_process): Likewise.
* linux-arm-low.c (arm_new_process): Likewise.
(arm_new_thread): Likewise.
* linux-low.c (add_to_pid_list): Likewise.
(linux_add_process): Likewise.
(handle_extended_wait): Likewise.
(add_lwp): Likewise.
(enqueue_one_deferred_signal): Likewise.
(enqueue_pending_signal): Likewise.
(linux_resume_one_lwp_throw): Likewise.
(linux_resume_one_thread): Likewise.
(linux_read_memory): Likewise.
(linux_write_memory): Likewise.
* linux-mips-low.c (mips_linux_new_process): Likewise.
(mips_linux_new_thread): Likewise.
(mips_add_watchpoint): Likewise.
* linux-x86-low.c (initialize_low_arch): Likewise.
* lynx-low.c (lynx_add_process): Likewise.
* mem-break.c (set_raw_breakpoint_at): Likewise.
(set_breakpoint): Likewise.
(add_condition_to_breakpoint): Likewise.
(add_commands_to_breakpoint): Likewise.
(clone_agent_expr): Likewise.
(clone_one_breakpoint): Likewise.
* regcache.c (new_register_cache): Likewise.
* remote-utils.c (look_up_one_symbol): Likewise.
* server.c (queue_stop_reply): Likewise.
(start_inferior): Likewise.
(queue_stop_reply_callback): Likewise.
(handle_target_event): Likewise.
* spu-low.c (fetch_ppc_memory): Likewise.
(store_ppc_memory): Likewise.
* target.c (set_target_ops): Likewise.
* thread-db.c (thread_db_load_search): Likewise.
(try_thread_db_load_1): Likewise.
* tracepoint.c (add_tracepoint): Likewise.
(add_tracepoint_action): Likewise.
(create_trace_state_variable): Likewise.
(cmd_qtdpsrc): Likewise.
(cmd_qtro): Likewise.
(add_while_stepping_state): Likewise.
* win32-low.c (child_add_thread): Likewise.
(get_image_name): Likewise.
|
|
This patch adds a new regs_info regs_info_aarch32 for aarch32, which
can be used by both aarch64 and arm backend.
gdb/gdbserver:
2015-08-04 Yao Qi <yao.qi@linaro.org>
* configure.srv (srv_tgtobj): Add linux-aarch32-low.o.
* linux-aarch32-low.c: New file.
* linux-aarch32-low.h: New file.
* linux-arm-low.c (arm_fill_gregset): Move it to
linux-aarch32-low.c.
(arm_store_gregset): Likewise.
(arm_fill_vfpregset): Call arm_fill_vfpregset_num
(arm_store_vfpregset): Caa arm_store_vfpregset_num.
(arm_arch_setup): Check if PTRACE_GETREGSET works.
(regs_info): Rename to regs_info_arm.
(arm_regs_info): Return regs_info_aarch32 if
have_ptrace_getregset is 1 and target description is
arm_with_neon or arm_with_vfpv3.
(initialize_low_arch): Don't call init_registers_arm_with_neon.
Call initialize_low_arch_aarch32 instead.
|
|
After previous patch, we don't need global variable arm_hwcap. This
patch is to remove it.
gdb/gdbserver:
2015-07-30 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_hwcap): Remove it.
(arm_read_description): New local variable arm_hwcap. Don't
set arm_hwcap to zero.
|
|
arm_hwcap is a global variable, and we should avoid using it as much
as we can. Instead of checking arm_hwcap, we can check whether
regcache->tdesc is a certain kind of target description. This is
what this patch does.
gdb/gdbserver:
2015-07-30 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c (arm_fill_wmmxregset): Don't use arm_hwcap.
Use regcache->tdesc instead.
(arm_store_wmmxregset): Likewise.
(arm_fill_vfpregset): Likewise.
(arm_store_vfpregset): Likewise.
|
|
In order to align with arm-linux-nat.c counterparts, we don't use
arm_num_regs and arm_regmap in functions arm_fill_gregset and
arm_store_gregset. Instead, we use register numbers. With this
patch applied, arm_fill_gregset and arm_store_gregset don't need
arm_num_regs and arm_regmap, and they will be moved to a separate
file shared for both arm and aarch64 in the following patch.
gdb/gdbserver:
2015-07-30 Yao Qi <yao.qi@linaro.org>
* linux-arm-low.c: Include arch/arm.h.
(arm_fill_gregset): Don't use arm_num_regs and arm_regmap.
(arm_store_gregset): Likewise.
|
|
So that we pick the enum __ptrace_request fix everywhere.
gdb/ChangeLog:
2015-07-24 Pedro Alves <palves@redhat.com>
* aarch64-linux-nat.c: Include nat/gdb_ptrace.h instead of
sys/ptrace.h.
* alpha-linux-nat.c: Likewise.
* amd64-linux-nat.c: Likewise.
* arm-linux-nat.c: Likewise.
* hppa-linux-nat.c: Likewise.
* i386-linux-nat.c: Likewise.
* ia64-linux-nat.c: Likewise.
* linux-fork.c: Likewise.
* linux-nat.c: Likewise.
* m32r-linux-nat.c: Likewise.
* m68klinux-nat.c: Likewise.
* mips-linux-nat.c: Likewise.
* nat/linux-btrace.c: Likewise.
* nat/linux-ptrace.c: Likewise.
* nat/linux-ptrace.h
* nat/mips-linux-watch.c: Likewise.
* nat/x86-linux-dregs.c: Likewise.
* ppc-linux-nat.c: Likewise.
* s390-linux-nat.c: Likewise.
* spu-linux-nat.c: Likewise.
* tilegx-linux-nat.c: Likewise.
* x86-linux-nat.c: Likewise.
* xtensa-linux-nat.c: Likewise.
gdb/gdbserver/ChangeLog:
2015-07-24 Pedro Alves <palves@redhat.c: Likewise.om>
* linux-aarch64-low.c: Include nat/gdb_ptrace.h instead of
sys/ptrace.h.
* linux-arm-low.c: Likewise.
* linux-cris-low.c: Likewise.
* linux-crisv32-low.c: Likewise.
* linux-low.c: Likewise.
* linux-m68k-low.c: Likewise.
* linux-mips-low.c: Likewise.
* linux-nios2-low.c: Likewise.
* linux-s390-low.c: Likewise.
* linux-sparc-low.c: Likewise.
* linux-tic6x-low.c: Likewise.
* linux-tile-low.c: Likewise.
* linux-x86-low.c: Likewise.
|
|
Fix build errors introduced by
https://sourceware.org/ml/gdb-patches/2015-05/msg00281.html, which
didn't account for the change of the name of the struct process_info
field 'private' to 'priv' made in
https://sourceware.org/ml/gdb-patches/2015-02/msg00829.html.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): Change reference
to process_info.private to process_info.priv.
* linux-arm-low.c (arm_new_fork): Likewise.
* linux-mips-low.c (mips_linux_new_fork): Likewise.
|
|
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
|
|
This commit changes the signature of linux_target_ops.new_thread in
gdbserver to match that used in GDB's equivalent.
gdb/gdbserver/ChangeLog:
* linux-low.h (linux_target_ops) <new_thread>: Changed signature.
* linux-arm-low.c (arm_new_thread): Likewise.
* linux-aarch64-low.c (aarch64_linux_new_thread): Likewise.
* linux-mips-low.c (mips_linux_new_thread): Likewise.
* linux-x86-low.c (x86_linux_new_thread): Likewise.
* linux-low.c (add_lwp): Update the_low_target.new_thread call.
|
|
This patch renames symbols that happen to have names which are
reserved keywords in C++.
Most of this was generated with Tromey's cxx-conversion.el script.
Some places where later hand massaged a bit, to fix formatting, etc.
And this was rebased several times meanwhile, along with re-running
the script, so re-running the script from scratch probably does not
result in the exact same output. I don't think that matters anyway.
gdb/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
gdb/gdbserver/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
|
|
gdb/ChangeLog:
Update year range in copyright notice of all files.
|
|
GDB has a function named "current_inferior" and gdbserver has a global
variable named "current_inferior", but the two are not equivalent;
indeed, gdbserver does not have any real equivalent of what GDB calls
an inferior. What gdbserver's "current_inferior" is actually pointing
to is a structure describing the current thread. This commit renames
current_inferior as current_thread in gdbserver to clarify this. It
also renames the function "set_desired_inferior" to "set_desired_thread"
and renames various local variables from foo_inferior to foo_thread.
gdb/gdbserver/ChangeLog:
* inferiors.h (current_inferior): Renamed as...
(current_thread): New variable. All uses updated.
* linux-low.c (get_pc): Renamed saved_inferior as saved_thread.
(maybe_move_out_of_jump_pad): Likewise.
(cancel_breakpoint): Likewise.
(linux_low_filter_event): Likewise.
(wait_for_sigstop): Likewise.
(linux_resume_one_lwp): Likewise.
(need_step_over_p): Likewise.
(start_step_over): Likewise.
(linux_stabilize_threads): Renamed save_inferior as saved_thread.
* linux-x86-low.c (x86_linux_update_xmltarget): Likewise.
* proc-service.c (ps_lgetregs): Renamed reg_inferior as reg_thread
and save_inferior as saved_thread.
* regcache.c (get_thread_regcache): Renamed saved_inferior as
saved_thread.
(regcache_invalidate_thread): Likewise.
* remote-utils.c (prepare_resume_reply): Likewise.
* thread-db.c (thread_db_get_tls_address): Likewise.
(disable_thread_event_reporting): Likewise.
(remove_thread_event_breakpoints): Likewise.
* tracepoint.c (gdb_agent_about_to_close): Renamed save_inferior
as saved_thread.
* target.h (set_desired_inferior): Renamed as...
(set_desired_thread): New declaration. All uses updated.
* server.c (myresume): Updated comment to reference thread instead
of inferior.
(handle_serial_event): Likewise.
(handle_target_event): Likewise.
|
|
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
|
|
* inferiors.h (ptid_of): Move here from linux-low.h.
(pid_of, lwpid_of): Ditto.
* linux-aarch64-low.c (debug_reg_change_callback): Update, "entry"
parameter is a struct thread_info * now.
(aarch64_notify_debug_reg_change): Fetch pid from current_inferior
directly. Pass &all_threads to find_inferior instead of &all_lwps.
(aarch64_stopped_data_address): Fetch lwpid from current_inferior
directly.
(aarch64_linux_prepare_to_resume): Fetch ptid from thread.
(aarch64_arch_setup): Fetch lwpid from current_inferior directly.
* linux-arm-low.c (update_registers_callback): Update, "entry"
parameter is a struct thread_info * now.
Fetch lwpid from current_inferior directly.
(arm_insert_point): Pass &all_threads to find_inferior instead of
&all_lwps.
(arm_remove_point): Ditto.
(arm_stopped_by_watchpoint): Fetch lwp from current_inferior.
(arm_prepare_to_resume): Fetch pid from thread.
(arm_read_description): Fetch lwpid from current_inferior directly.
* linux-low.c (all_lwps): Delete.
(delete_lwp): Delete call to remove_inferior.
(handle_extended_wait): Fetch lwpid from thread.
(add_lwp): Don't set lwp->entry.id. Remove call to
add_inferior_to_list.
(linux_attach_lwp_1): Fetch pid from current_inferior directly.
(linux_kill_one_lwp): Fetch ptid,lwpid from thread.
(kill_one_lwp_callback): Ditto.
(linux_kill): Don't dereference NULL pointer.
Fetch ptid,lwpid from thread.
(get_detach_signal): Fetch ptid from thread.
(linux_detach_one_lwp): Fetch ptid,lwpid from thread.
Simplify call to regcache_invalidate_thread.
(delete_lwp_callback): Update, "entry" parameter is a
struct thread_info * now. Fetch pid from thread.
(linux_mourn): Pass &all_threads to find_inferior instead of &all_lwps.
(status_pending_p_callback): Update, "entry" parameter is a
struct thread_info * now. Fetch ptid from thread.
(find_lwp_pid): Update, "entry" parameter is a
struct thread_info * now.
(linux_wait_for_lwp): Fetch pid from thread.
(linux_fast_tracepoint_collecting): Fetch lwpid from thread.
(maybe_move_out_of_jump_pad): Fetch lwpid from current_inferior.
(enqueue_one_deferred_signal): Fetch lwpid from thread.
(dequeue_one_deferred_signal): Ditto.
(cancel_breakpoint): Fetch ptid from current_inferior.
(linux_wait_for_event): Pass &all_threads to find_inferior,
not &all_lwps. Fetch ptid, lwpid from thread.
(count_events_callback): Update, "entry" parameter is a
struct thread_info * now.
(select_singlestep_lwp_callback): Ditto.
(select_event_lwp_callback): Ditto.
(cancel_breakpoints_callback): Ditto.
(linux_cancel_breakpoints): Pass &all_threads to find_inferior,
not &all_lwps.
(select_event_lwp): Ditto. Fetch ptid from event_thread.
(unsuspend_one_lwp): Update, "entry" parameter is a
struct thread_info * now.
(unsuspend_all_lwps): Pass &all_threads to find_inferior,
not &all_lwps.
(linux_stabilize_threads): Ditto. And for for_each_inferior.
Fetch lwpid from thread, not lwp.
(linux_wait_1): Fetch ptid, lwpid from current_inferior.
Pass &all_threads to find_inferior, not &all_lwps.
(send_sigstop): Fetch lwpid from thread, not lwp.
(send_sigstop_callback): Update, "entry" parameter is a
struct thread_info * now.
(suspend_and_send_sigstop_callback): Ditto.
(wait_for_sigstop): Ditto. Fetch ptid, lwpid from thread, lwp.
(stuck_in_jump_pad_callback): Update, "entry" parameter is a
struct thread_info * now.
(move_out_of_jump_pad_callback): Ditto. Fetch ptid, lwpid
from thread, lwp.
(lwp_running): Update, "entry" parameter is a
struct thread_info * now.
(stop_all_lwps): Fetch ptid from thread.
Pass &all_threads to find_inferior, for_each_inferior, not &all_lwps.
(linux_resume_one_lwp): Fetch lwpid from thread.
(linux_set_resume_request): Update, "entry" parameter is a
struct thread_info * now. Fetch pid, lwpid from thread.
(resume_status_pending_p): Update, "entry" parameter is a
struct thread_info * now.
(need_step_over_p): Ditto. Fetch lwpid from thread.
(start_step_over): Fetch lwpid from thread.
(linux_resume_one_thread): Update, "entry" parameter is a
struct thread_info * now. Fetch lwpid from thread.
(linux_resume): Pass &all_threads to find_inferior, not &all_lwps.
(proceed_one_lwp): Update, "entry" parameter is a
struct thread_info * now. Fetch lwpid from thread.
(unsuspend_and_proceed_one_lwp): Update, "entry" parameter is a
struct thread_info * now.
(proceed_all_lwps): Pass &all_threads to find_inferior, not &all_lwps.
(unstop_all_lwps): Ditto. Fetch lwpid from thread.
(regsets_fetch_inferior_registers): Fetch lwpid from current_inferior
directly.
(regsets_store_inferior_registers): Ditto.
(fetch_register, store_register): Ditto.
(linux_read_memory, linux_write_memory): Ditto.
(linux_request_interrupt): Ditto.
(linux_read_auxv): Ditto.
(linux_xfer_siginfo): Ditto.
(linux_qxfer_spu): Ditto.
(linux_qxfer_libraries_svr4): Ditto.
* linux-low.h (ptid_of, pid_of, lwpid_of): Delete,
moved to inferiors.h.
(get_lwp): Delete.
(get_thread_lwp): Update.
(struct lwp_info): Delete member "entry". Simplify comment for
member "thread".
(all_lwps): Delete.
* linux-mips-low.c (mips_read_description): Fetch lwpid from
current_inferior directly.
(update_watch_registers_callback): Update, "entry" parameter is a
struct thread_info * now. Fetch pid from thread.
(mips_linux_prepare_to_resume): Fetch ptid from thread.
(mips_insert_point): Fetch lwpid from current_inferior.
Pass &all_threads to find_inferior, not &all_lwps.
(mips_remove_point): Pass &all_threads to find_inferior, not &all_lwps.
(mips_stopped_by_watchpoint): Fetch lwpid from current_inferior
directly.
(mips_stopped_data_address): Ditto.
* linux-s390-low.c (s390_arch_setup): Fetch pid from current_inferior
directly.
* linux-tile-low.c (tile_arch_setup): Ditto.
* linux-x86-low.c (x86_get_thread_area): Fetch lwpid from thread.
(update_debug_registers_callback): Update, "entry" parameter is a
struct thread_info * now. Fetch pid from thread.
(i386_dr_low_set_addr): Fetch pid from current_inferior directly.
Pass &all_threads to find_inferior, not &all_lwps.
(i386_dr_low_get_addr): Fetch ptid from current_inferior directly.
(i386_dr_low_set_control): Fetch pid from current_inferior directly.
Pass &all_threads to find_inferior, not &all_lwps.
(i386_dr_low_get_control): Fetch ptid from current_inferior directly.
(i386_dr_low_get_status): Ditto.
(x86_linux_prepare_to_resume): Fetch ptid from thread.
(x86_siginfo_fixup): Fetch lwpid from current_inferior directly.
(x86_linux_read_description): Ditto.
* proc-service.c (ps_getpid): Fetch pid from current_inferior directly.
|
|
* NEWS: Mention it.
gdbserver/
* configure.ac (AC_CHECK_FUNCS): Add test for gettimeofday.
* configure: Regenerate.
* config.in: Regenerate.
* Makefile.in (SFILES): Add debug.c.
(OBS): Add debug.o.
* debug.c: New file.
* debug.h: New file.
* linux-aarch64-low.c (*): Update all debugging printfs to use
debug_printf instead of fprintf.
* linux-arm-low.c (*): Ditto.
* linux-cris-low.c (*): Ditto.
* linux-crisv32-low.c (*): Ditto.
* linux-m32r-low.c (*): Ditto.
* linux-sparc-low.c (*): Ditto.
* linux-x86.c (*): Ditto.
* linux-low.c (*): Ditto.
(linux_wait_1): Add calls to debug_enter, debug_exit.
(linux_wait): Remove redundant debugging printf.
(stop_all_lwps): Add calls to debug_enter, debug_exit.
(linux_resume, unstop_all_lwps): Ditto.
* mem-break.c (*): Update all debugging printfs to use
debug_printf instead of fprintf.
* remote-utils.c (*): Ditto.
* thread-db.c (*): Ditto.
* server.c #include <ctype.h>, "gdb_vecs.h".
(debug_threads): Moved to debug.c.
(*): Update all debugging printfs to use debug_printf instead of
fprintf.
(start_inferior): Replace call to fflush with call to debug_flush.
(monitor_show_help): Mention set debug-format.
(parse_debug_format_options): New function.
(handle_monitor_command): Handle "monitor set debug-format".
(gdbserver_usage): Mention --debug-format.
(main): Parse --debug-format.
* server.h (debug_threads): Declaration moved to debug.h.
#include "debug.h".
* tracepoint.c (trace_debug_1) [!IN_PROCESS_AGENT]: Add version of
trace_debug_1 that uses debug_printf.
(tracepoint_look_up_symbols): Update all debugging printfs to use
debug_printf instead of fprintf.
doc/
* gdb.texinfo (Server): Mention --debug-format=all|none|timestamp.
(gdbserver man): Ditto.
testsuite/
* gdb.server/server-mon.exp: Add tests for "set debug-format".
|
|
|
|
to PTRACE_TYPE_ARG3.
* linux-low.c: Rename all occurrences of PTRACE_ARG3_TYPE
to PTRACE_TYPE_ARG3 and PTRACE_ARG4_TYPE to
PTRACE_TYPE_ARG4.
* linux-low.h (PTRACE_ARG3_TYPE): Rename to PTRACE_TYPE_ARG3.
(PTRACE_ARG4_TYPE): Rename to PTRACE_TYPE_ARG4.
|
|
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
|
|
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
|
|
* linux-arm-low.c (arm_linux_hw_point_initialize): Distinguish
between unsupported TYPE and unimplementable ADDR/LEN combination.
(arm_insert_point): Act on new return value.
testsuite/ChangeLog:
* gdb.base/watchpoint.exp (test_wide_location_1): Expect software
watchpoints on ARM. When expecting software watchpoints, tolerate
(remote) targets that report unsupported hardware watchpoint only
at continue time.
(test_wide_location_2): Likewise.
|
|
* arm-linux-nat.c (arm_linux_hw_breakpoint_initialize): Do not
attempt to 4-byte-align HW breakpoint addresses for Thumb.
gdbserver/ChangeLog:
* linux-arm-low.c (arm_linux_hw_point_initialize): Do not attempt
to 4-byte-align HW breakpoint addresses for Thumb.
|
|
(PTRACE_ARG4_TYPE): Likewise.
(PTRACE_XFER_TYPE): Likewise.
* linux-arm-low.c (arm_prepare_to_resume): Cast third argument of
ptrace to PTRACE_ARG3_TYPE.
* linux-low.c (PTRACE_ARG3_TYPE): Move macro to linux-low.h.
(PTRACE_ARG4_TYPE): Likewise.
(PTRACE_XFER_TYPE): Likewise.
(linux_detach_one_lwp): Cast fourth argument of
ptrace to long then PTRACE_ARG4_TYPE.
(regsets_fetch_inferior_registers): Cast third argument of
ptrace to long then PTRACE_ARG3_TYPE.
(regsets_store_inferior_registers): Likewise.
|