Age | Commit message (Collapse) | Author | Files | Lines |
|
The previous patch introduced a new overload of gdbarch_return_value.
The intent here is that this new overload always be called by the core
of gdb -- the previous implementation is effectively deprecated,
because a call to the old-style method will not work with any
converted architectures (whereas calling the new-style method is will
delegate when needed).
This patch changes gdbarch.py so that the old gdbarch_return_value
wrapper function can be omitted. This will prevent any errors from
creeping in.
|
|
The gdbarch "return_value" can't correctly handle variably-sized
types. The problem here is that the TYPE_LENGTH of such a type is 0,
until the type is resolved, which requires reading memory. However,
gdbarch_return_value only accepts a buffer as an out parameter.
Fixing this requires letting the implementation of the gdbarch method
resolve the type and return a value -- that is, both the contents and
the new type.
After an attempt at this, I realized I wouldn't be able to correctly
update all implementations (there are ~80) of this method. So,
instead, this patch adds a new method that falls back to the current
method, and it updates gdb to only call the new method. This way it's
possible to incrementally convert the architectures that I am able to
test.
|
|
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
|
|
PR gdb/28947
The address_significant gdbarch setting was introduced as a way to remove
non-address bits from pointers, and it is specified by a constant. This
constant represents the number of address bits in a pointer.
Right now AArch64 is the only architecture that uses it, and 56 was a
correct option so far.
But if we are using Pointer Authentication (PAuth), we might use up to 2 bytes
from the address space to store the required information. We could also have
cases where we're using both PAuth and MTE.
We could adjust the constant to 48 to cover those cases, but this doesn't
cover the case where GDB needs to sign-extend kernel addresses after removal
of the non-address bits.
This has worked so far because bit 55 is used to select between kernel-space
and user-space addresses. But trying to clear a range of bits crossing the
bit 55 boundary requires the hook to be smarter.
The following patch renames the gdbarch hook from significant_addr_bit to
remove_non_address_bits and passes a pointer as opposed to the number of
bits. The hook is now responsible for removing the required non-address bits
and sign-extending the address if needed.
While at it, make GDB and GDBServer share some more code for aarch64 and add a
new arch-specific testcase gdb.arch/aarch64-non-address-bits.exp.
Bug-url: https://sourceware.org/bugzilla/show_bug.cgi?id=28947
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
values.
Currently, a non-trivial return value from a function cannot currently be
reliably determined on PowerPC. This is due to the fact that the PowerPC
ABI uses register r3 to store the address of the buffer containing the
non-trivial return value when the function is called. The PowerPC ABI
does not guarantee the value in register r3 is not modified in the
function. Thus the value in r3 cannot be reliably used to obtain the
return addreses on exit from the function.
This patch adds a new gdbarch method to allow PowerPC to access the value
of r3 on entry to a function. On PowerPC, the new gdbarch method attempts
to use the DW_OP_entry_value for the DWARF entries, when exiting the
function, to determine the value of r3 on entry to the function. This
requires the use of the -fvar-tracking compiler option to compile the
user application thus generating the DW_OP_entry_value in the binary. The
DW_OP_entry_value entries in the binary file allows GDB to resolve the
DW_TAG_call_site entries. This new gdbarch method is used to get the
return buffer address, in the case of a function returning a nontrivial
data type, on exit from the function. The GDB function should_stop checks
to see if RETURN_BUF is non-zero. By default, RETURN_BUF will be set to
zero by the new gdbarch method call for all architectures except PowerPC.
The get_return_value function will be used to obtain the return value on
all other architectures as is currently being done if RETURN_BUF is zero.
On PowerPC, the new gdbarch method will return a nonzero address in
RETURN_BUF if the value can be determined. The value_at function uses the
return buffer address to get the return value.
This patch fixes five testcase failures in gdb.cp/non-trivial-retval.exp.
The correct function return values are now reported.
Note this patch is dependent on patch: "PowerPC, function
ppc64_sysv_abi_return_value add missing return value convention".
This patch has been tested on Power 10 and x86-64 with no regressions.
|
|
This changes gdbarch to use an enum for call_dummy_location, providing
a little more type safety.
|
|
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
|
|
After the previous commit, this commit sets out to formalise the API
for gdbarch_register_name. Not every architecture is actually in
compliance with the API I set out here, but I believe that most are.
I think architectures that don't comply with the API laid out here
will fail the gdb.base/completion.exp test.
The claims in the comment are I feel, best demonstrated with the
asserts in this code:
const char *
gdbarch_register_name (struct gdbarch *gdbarch, int regnr)
{
gdb_assert (regnr >= 0);
gdb_assert (regnr < gdbarch_num_cooked_regs (gdbarch));
const char *name = gdbarch->register_name (gdbarch, regnr);
gdb_assert (name != nullptr);
return name;
}
Like I said, I don't believe every architecture follows these rules
right now, which is why I'm not actually adding any asserts. Instead,
this commit adds a comment to gdbarch_register_name, this comment is
where I'd like to get to, rather than where we are right now.
Subsequent commits will fix all targets to be in compliance with this
comment, and will even add the asserts shown above to
gdbarch_register_name.
|
|
Constify the input parameters of the various auxv parse functions, they
don't need to modify the raw auxv data.
Change-Id: I13eacd5ab8e925ec2b5c1f7722cbab39c41516ec
|
|
This changs solib_ops to be an ordinary gdbarch value and updates all
the uses. This removes a longstanding FIXME and makes the code
somewhat cleaner as well.
|
|
Teach GDB how to dump memory tags for AArch64 when using the gcore command
and how to read memory tag data back from a core file generated by GDB
(via gcore) or by the Linux kernel.
The format is documented in the Linux Kernel documentation [1].
Each tagged memory range (listed in /proc/<pid>/smaps) gets dumped to its
own PT_AARCH64_MEMTAG_MTE segment. A section named ".memtag" is created for each
of those segments when reading the core file back.
To save a little bit of space, given MTE tags only take 4 bits, the memory tags
are stored packed as 2 tags per byte.
When reading the data back, the tags are unpacked.
I've added a new testcase to exercise the feature.
Build-tested with --enable-targets=all and regression tested on aarch64-linux
Ubuntu 20.04.
[1] Documentation/arm64/memory-tagging-extension.rst (Core Dump Support)
|
|
gdbarch_iterate_over_objfiles_in_search_order callback
A rather straightforward patch to change an instance of callback +
void pointer to gdb::function_view, allowing pasing lambdas that
capture, and eliminating the need for the untyped pointer.
Change-Id: I73ed644e7849945265a2c763f79f5456695b0037
|
|
Change gdbarch_register_reggroup_p to take a 'const struct reggroup *'
argument. This requires a change to the gdb/gdbarch-components.py
script, regeneration of gdbarch.{c,h}, and then updates to all the
architectures that implement this method.
There should be no user visible changes after this commit.
|
|
I don't believe that the gdbarch_register_type_p predicate is called
anywhere in GDB, and the gdbarch_register_type function is called
without checking the gdbarch_register_type_p predicate function
everywhere it is used, for example in
init_regcache_descr (regcache.c).
My claim is that the gdbarch_register_type function is required for
every architecture, and GDB will not work if this function is not
supplied.
And so, in this commit, I remove the 'predicate=True' from
gdbarch-components.py for the 'register_type' field, and regenerate
the gdbarch files.
There should be no user visible changes after this commit.
|
|
This moves the copyright code from gdbarch.py to a new Python source
file, gdbcopyright.py. The function in this file will find the
copyright dates by scanning the calling script. This will be reused
in a future patch.
This involved minor changes to the output of gdbarch.py. Also, I've
updated copyright.py to remove the reference to gdbarch.sh. We don't
need to mention gdbarch.py there, either.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
This patch runs gdbarch.py and removes gdbarch.sh.
|
|
This patch splits gdbarch.h into two files -- gdbarch.h now is
editable and hand-maintained, and the new gdbarch-gen.h file is the
only thing generated by gdbarch.sh. This lets us avoid maintaining
boilerplate in the gdbarch.sh file.
Note that gdbarch.sh still generates gdbarch.h after this patch. This
makes it easier to re-run when rebasing. This code is removed in a
subsequent patch.
|