aboutsummaryrefslogtreecommitdiff
path: root/gdb/disasm-flags.h
AgeCommit message (Collapse)AuthorFilesLines
2024-08-14btrace: Enable auxiliary instructions in record instruction-history.Felix Willgerodt1-0/+1
Print the auxiliary data when a btrace_insn of type BTRACE_INSN_AUX is encountered in the instruction-history. Printing is active by default, it can be silenced with the /a modifier. This patch is in preparation for the new ptwrite feature, which is based on auxiliary instructions. Approved-By: Markus Metzger <markus.t.metzger@intel.com> Reviewed-By: Eli Zaretskii <eliz@gnu.org>
2024-01-12Update copyright year range in header of all files managed by GDBAndrew Burgess1-1/+1
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
2023-01-01Update copyright year range in header of all files managed by GDBJoel Brobecker1-1/+1
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
2022-10-02gdb: make gdb_disassembly_flag unsignedAndrew Burgess1-1/+1
In a later commit I want to use operator~ on a gdb_disassembly_flag flag value. This is currently not possible as gdb_disassembly_flag is, by default, signed. This commit just makes this enum unsigned. There should be no user visible changes after this commit.
2022-10-02gdb: disassembler opcode display formattingAndrew Burgess1-0/+1
This commit changes the format of 'disassemble /r' to match GNU objdump. Specifically, GDB will now display the instruction bytes in as 'objdump --wide --disassemble' does. Here is an example for RISC-V before this patch: (gdb) disassemble /r 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: 03 26 84 fe lw a2,-24(s0) 0x00010192 <call_me+70>: 83 25 c4 fe lw a1,-20(s0) 0x00010196 <call_me+74>: 61 65 lui a0,0x18 0x00010198 <call_me+76>: 13 05 85 6a addi a0,a0,1704 0x0001019c <call_me+80>: f1 22 jal 0x10368 <printf> End of assembler dump. And here's an example after this patch: (gdb) disassemble /r 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: fe842603 lw a2,-24(s0) 0x00010192 <call_me+70>: fec42583 lw a1,-20(s0) 0x00010196 <call_me+74>: 6561 lui a0,0x18 0x00010198 <call_me+76>: 6a850513 addi a0,a0,1704 0x0001019c <call_me+80>: 22f1 jal 0x10368 <printf> End of assembler dump. There are two differences here. First, the instruction bytes after the patch are grouped based on the size of the instruction, and are byte-swapped to little-endian order. Second, after the patch, GDB now uses the bytes-per-line hint from libopcodes to add whitespace padding after the opcode bytes, this means that in most cases the instructions are nicely aligned. It is still possible for a very long instruction to intrude into the disassembled text space. The next example is x86-64, before the patch: (gdb) disassemble /r main Dump of assembler code for function main: 0x0000000000401106 <+0>: 55 push %rbp 0x0000000000401107 <+1>: 48 89 e5 mov %rsp,%rbp 0x000000000040110a <+4>: c7 87 d8 00 00 00 01 00 00 00 movl $0x1,0xd8(%rdi) 0x0000000000401114 <+14>: b8 00 00 00 00 mov $0x0,%eax 0x0000000000401119 <+19>: 5d pop %rbp 0x000000000040111a <+20>: c3 ret End of assembler dump. And after the patch: (gdb) disassemble /r main Dump of assembler code for function main: 0x0000000000401106 <+0>: 55 push %rbp 0x0000000000401107 <+1>: 48 89 e5 mov %rsp,%rbp 0x000000000040110a <+4>: c7 87 d8 00 00 00 01 00 00 00 movl $0x1,0xd8(%rdi) 0x0000000000401114 <+14>: b8 00 00 00 00 mov $0x0,%eax 0x0000000000401119 <+19>: 5d pop %rbp 0x000000000040111a <+20>: c3 ret End of assembler dump. Most instructions are aligned, except for the very long instruction. Notice too that for x86-64 libopcodes doesn't request that GDB group the instruction bytes. This matches the behaviour of objdump. In case the user really wants the old behaviour, I have added a new modifier 'disassemble /b', this displays the instruction byte at a time. For x86-64, which never groups instruction bytes, /b and /r are equivalent, but for RISC-V, using /b gets the old layout back (except that the whitespace for alignment is still present). Consider our original RISC-V example, this time using /b: (gdb) disassemble /b 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: 03 26 84 fe lw a2,-24(s0) 0x00010192 <call_me+70>: 83 25 c4 fe lw a1,-20(s0) 0x00010196 <call_me+74>: 61 65 lui a0,0x18 0x00010198 <call_me+76>: 13 05 85 6a addi a0,a0,1704 0x0001019c <call_me+80>: f1 22 jal 0x10368 <printf> End of assembler dump. Obviously, this patch is a potentially significant change to the behaviour or /r. I could have added /b with the new behaviour and left /r alone. However, personally, I feel the new behaviour is significantly better than the old, hence, I made /r be what I consider the "better" behaviour. The reason I prefer the new behaviour is that, when I use /r, I almost always want to manually decode the instruction for some reason, and having the bytes displayed in "instruction order" rather than memory order, just makes this easier. The 'record instruction-history' command also takes a /r modifier, and has been modified in the same way as disassemble; /r gets the new behaviour, and /b has been added to retain the old behaviour. Finally, the MI command -data-disassemble, is unchanged in behaviour, this command now requests the raw bytes of the instruction, which is equivalent to the /b modifier. This means that the MI output will remain backward compatible.
2022-04-06gdb: move gdb_disassembly_flag into a new disasm-flags.h fileAndrew Burgess1-0/+40
While working on the disassembler I was getting frustrated. Every time I touched disasm.h it seemed like every file in GDB would need to be rebuilt. Surely the disassembler can't be required by that many parts of GDB, right? Turns out that disasm.h is included in target.h, so pretty much every file was being rebuilt! The only thing from disasm.h that target.h needed is the gdb_disassembly_flag enum, as this is part of the target_ops api. In this commit I move gdb_disassembly_flag into its own file. This is then included in target.h and disasm.h, after which, the number of files that depend on disasm.h is much reduced. I also audited all the other includes of disasm.h and found that the includes in mep-tdep.c and python/py-registers.c are no longer needed, so I've removed these. Now, after changing disasm.h, GDB rebuilds much quicker. There should be no user visible changes after this commit.