aboutsummaryrefslogtreecommitdiff
path: root/gdb/configure.in
AgeCommit message (Expand)AuthorFilesLines
2002-08-14 * configure.in: Move SUBDIRS to near top of the file so thatKeith Seitz1-1/+4
2002-07-09 Define HAVE_SYS_PROC_H if sys/proc.h existsJoel Brobecker1-1/+1
2002-06-21 * gdb_locale.h: New file.Tom Tromey1-2/+3
2002-05-11From Christian Limpach <chris@Pin.LU>Jason Thorpe1-1/+2
2002-04-112002-04-11 Michael Snyder <msnyder@redhat.com>Michael Snyder1-0/+1
2002-04-04* configure.in: Call AC_C_INLINE.Jim Blandy1-0/+1
2002-03-15 * configure.in: Detect declaration for canonicalize_file_name.Richard Henderson1-1/+1
2002-03-06* configure.in (gdb_cv_bigtoc): Check for -bbigtoc on AIX.Alexandre Oliva1-0/+17
2002-02-24Zap lin-thread.cAndrew Cagney1-1/+1
2002-02-23* configure.in: (AC_CHECK_FUNCS) Added test forAndrew Cagney1-2/+2
2002-02-142002-02-14 Daniel Jacobowitz <drow@mvista.com>Daniel Jacobowitz1-7/+14
2002-01-20Remove assumption that there is a host.Andrew Cagney1-1/+8
2002-01-05Don't include <endian.h>Andrew Cagney1-1/+1
2002-01-05* acconfig.h (HAVE_PT_GETXMMREGS): New.Jason Thorpe1-1/+14
2001-12-21 * configure, config.in: Rebuilt.Tom Tromey1-1/+1
2001-12-072001-12-07 Martin M. Hunt <hunt@redhat.com>Martin Hunt1-1/+1
2001-11-05* configure.in (AC_OUTPUT): Handle assignments to NATDEPFILESJim Blandy1-2/+4
2001-10-31Fix -W... flags check.Andrew Cagney1-5/+4
2001-09-06 From Ian Roxborough <irox@redhat.com>Keith Seitz1-21/+3
2001-08-27* event-top.c (async_stop_sig) [HAVE_SIGPROCMASK]: SomeMark Kettenis1-2/+3
2001-08-16 * configure.in (GDBTK_SRC_DIR): We must have autoconfKeith Seitz1-0/+8
2001-07-30 * configure.in: Only invoke AC_FUNC_SETPGRP if not cross-compiling.Daniel Jacobowitz1-1/+18
2001-07-27Added dependency on tcl/tk libraries.John R. Moore1-0/+29
2001-07-23* configure.in (AC_CHECK_FUNCS): Add setpggrp.Mark Kettenis1-1/+2
2001-07-12* configure.in: Add check for sigsetjmp.Mark Kettenis1-0/+11
2001-06-28Build MI by default.Andrew Cagney1-1/+2
2001-06-22* configure.in: include nlist.h when checking for member som_addrJ.T. Conklin1-0/+3
2001-03-31* i386bsd-nat.c: Include "gdb_assert.h".Mark Kettenis1-3/+17
2001-03-28Gag -Wuninitialized warnings.Andrew Cagney1-2/+2
2001-03-232001-03-23 David Smith <dsmith@redhat.com>David Smith1-5/+5
2001-03-20Conditionally include nlist.h in solib-legacy.c for older *BSD systems.Kevin Buettner1-1/+1
2001-03-19Fix solib support so that non-svr4-solib-host x svr4-solib-target will work.Kevin Buettner1-13/+62
2001-03-06Update/correct copyright notices.Kevin Buettner1-2/+2
2001-03-06Configury changes for AIX5/IA-64.Kevin Buettner1-1/+8
2001-02-14 * configure.in (AC_CHECK_HEADERS): Add sys/file.h.Michael Sokolov1-2/+3
2001-01-31Cleanup autoconfigury of vfork().Andrew Cagney1-1/+2
2001-01-19Drop -Wuninitialized until GDB compiles with it.Andrew Cagney1-1/+1
2000-12-212000-12-20 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-5/+5
2000-12-202000-12-20 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-0/+23
2000-12-112000-12-11 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-3/+5
2000-12-112000-12-11 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-6/+7
2000-12-112000-12-11 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-3/+3
2000-12-112000-12-11 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-5/+5
2000-12-02Add check for vfork() to configure.in. Cleanup uses.Andrew Cagney1-1/+1
2000-12-012000-12-01 Fernando Nasser <fnasser@redhat.com>Fernando Nasser1-0/+34
2000-11-24Add --enable-gdb-build-warnings=... to configure{,.in}.Andrew Cagney1-2/+18
2000-09-11Fix HAVE_STRUCT_LINK_MAP32 configure test.Kevin Buettner1-10/+3
2000-08-302000-08-29 Michael Snyder <msnyder@seadog.cygnus.com>Michael Snyder1-0/+23
2000-08-10Adapt support for SSE registers in Linux/x86 for Linux 2.4.Mark Kettenis1-16/+10
2000-08-02Thu Jul 27 17:38:35 2000 Andrew Cagney <cagney@b1.cygnus.com>Andrew Cagney1-14/+28
3' href='#n623'>623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
   Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "frame.h"
#include "command.h"
#include "gdbcmd.h"
#include "target.h"
#include "language.h"
#include "scm-lang.h"
#include "demangle.h"

/* Prototypes for exported functions. */

void _initialize_values PARAMS ((void));

/* Prototypes for local functions. */

static value_ptr value_headof PARAMS ((value_ptr, struct type *,
				       struct type *));

static void show_values PARAMS ((char *, int));

static void show_convenience PARAMS ((char *, int));

static int vb_match PARAMS ((struct type *, int, struct type *));

/* The value-history records all the values printed
   by print commands during this session.  Each chunk
   records 60 consecutive values.  The first chunk on
   the chain records the most recent values.
   The total number of values is in value_history_count.  */

#define VALUE_HISTORY_CHUNK 60

struct value_history_chunk
  {
    struct value_history_chunk *next;
    value_ptr values[VALUE_HISTORY_CHUNK];
  };

/* Chain of chunks now in use.  */

static struct value_history_chunk *value_history_chain;

static int value_history_count;	/* Abs number of last entry stored */

/* List of all value objects currently allocated
   (except for those released by calls to release_value)
   This is so they can be freed after each command.  */

static value_ptr all_values;

/* Allocate a  value  that has the correct length for type TYPE.  */

value_ptr
allocate_value (type)
     struct type *type;
{
  register value_ptr val;
  struct type *atype = check_typedef (type);

  val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
  VALUE_NEXT (val) = all_values;
  all_values = val;
  VALUE_TYPE (val) = type;
  VALUE_ENCLOSING_TYPE (val) = type;
  VALUE_LVAL (val) = not_lval;
  VALUE_ADDRESS (val) = 0;
  VALUE_FRAME (val) = 0;
  VALUE_OFFSET (val) = 0;
  VALUE_BITPOS (val) = 0;
  VALUE_BITSIZE (val) = 0;
  VALUE_REGNO (val) = -1;
  VALUE_LAZY (val) = 0;
  VALUE_OPTIMIZED_OUT (val) = 0;
  VALUE_BFD_SECTION (val) = NULL;
  VALUE_EMBEDDED_OFFSET (val) = 0;
  VALUE_POINTED_TO_OFFSET (val) = 0;
  val->modifiable = 1;
  return val;
}

/* Allocate a  value  that has the correct length
   for COUNT repetitions type TYPE.  */

value_ptr
allocate_repeat_value (type, count)
     struct type *type;
     int count;
{
  int low_bound = current_language->string_lower_bound;		/* ??? */
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  struct type *range_type
  = create_range_type ((struct type *) NULL, builtin_type_int,
		       low_bound, count + low_bound - 1);
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  return allocate_value (create_array_type ((struct type *) NULL,
					    type, range_type));
}

/* Return a mark in the value chain.  All values allocated after the
   mark is obtained (except for those released) are subject to being freed
   if a subsequent value_free_to_mark is passed the mark.  */
value_ptr
value_mark ()
{
  return all_values;
}

/* Free all values allocated since MARK was obtained by value_mark
   (except for those released).  */
void
value_free_to_mark (mark)
     value_ptr mark;
{
  value_ptr val, next;

  for (val = all_values; val && val != mark; val = next)
    {
      next = VALUE_NEXT (val);
      value_free (val);
    }
  all_values = val;
}

/* Free all the values that have been allocated (except for those released).
   Called after each command, successful or not.  */

void
free_all_values ()
{
  register value_ptr val, next;

  for (val = all_values; val; val = next)
    {
      next = VALUE_NEXT (val);
      value_free (val);
    }

  all_values = 0;
}

/* Remove VAL from the chain all_values
   so it will not be freed automatically.  */

void
release_value (val)
     register value_ptr val;
{
  register value_ptr v;

  if (all_values == val)
    {
      all_values = val->next;
      return;
    }

  for (v = all_values; v; v = v->next)
    {
      if (v->next == val)
	{
	  v->next = val->next;
	  break;
	}
    }
}

/* Release all values up to mark  */
value_ptr
value_release_to_mark (mark)
     value_ptr mark;
{
  value_ptr val, next;

  for (val = next = all_values; next; next = VALUE_NEXT (next))
    if (VALUE_NEXT (next) == mark)
      {
	all_values = VALUE_NEXT (next);
	VALUE_NEXT (next) = 0;
	return val;
      }
  all_values = 0;
  return val;
}

/* Return a copy of the value ARG.
   It contains the same contents, for same memory address,
   but it's a different block of storage.  */

value_ptr
value_copy (arg)
     value_ptr arg;
{
  register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
  register value_ptr val = allocate_value (encl_type);
  VALUE_TYPE (val) = VALUE_TYPE (arg);
  VALUE_LVAL (val) = VALUE_LVAL (arg);
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
  VALUE_OFFSET (val) = VALUE_OFFSET (arg);
  VALUE_BITPOS (val) = VALUE_BITPOS (arg);
  VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
  VALUE_FRAME (val) = VALUE_FRAME (arg);
  VALUE_REGNO (val) = VALUE_REGNO (arg);
  VALUE_LAZY (val) = VALUE_LAZY (arg);
  VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
  VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
  val->modifiable = arg->modifiable;
  if (!VALUE_LAZY (val))
    {
      memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
	      TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));

    }
  return val;
}

/* Access to the value history.  */

/* Record a new value in the value history.
   Returns the absolute history index of the entry.
   Result of -1 indicates the value was not saved; otherwise it is the
   value history index of this new item.  */

int
record_latest_value (val)
     value_ptr val;
{
  int i;

  /* We don't want this value to have anything to do with the inferior anymore.
     In particular, "set $1 = 50" should not affect the variable from which
     the value was taken, and fast watchpoints should be able to assume that
     a value on the value history never changes.  */
  if (VALUE_LAZY (val))
    value_fetch_lazy (val);
  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
     from.  This is a bit dubious, because then *&$1 does not just return $1
     but the current contents of that location.  c'est la vie...  */
  val->modifiable = 0;
  release_value (val);

  /* Here we treat value_history_count as origin-zero
     and applying to the value being stored now.  */

  i = value_history_count % VALUE_HISTORY_CHUNK;
  if (i == 0)
    {
      register struct value_history_chunk *new
      = (struct value_history_chunk *)
      xmalloc (sizeof (struct value_history_chunk));
      memset (new->values, 0, sizeof new->values);
      new->next = value_history_chain;
      value_history_chain = new;
    }

  value_history_chain->values[i] = val;

  /* Now we regard value_history_count as origin-one
     and applying to the value just stored.  */

  return ++value_history_count;
}

/* Return a copy of the value in the history with sequence number NUM.  */

value_ptr
access_value_history (num)
     int num;
{
  register struct value_history_chunk *chunk;
  register int i;
  register int absnum = num;

  if (absnum <= 0)
    absnum += value_history_count;

  if (absnum <= 0)
    {
      if (num == 0)
	error ("The history is empty.");
      else if (num == 1)
	error ("There is only one value in the history.");
      else
	error ("History does not go back to $$%d.", -num);
    }
  if (absnum > value_history_count)
    error ("History has not yet reached $%d.", absnum);

  absnum--;

  /* Now absnum is always absolute and origin zero.  */

  chunk = value_history_chain;
  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
       i > 0; i--)
    chunk = chunk->next;

  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
}

/* Clear the value history entirely.
   Must be done when new symbol tables are loaded,
   because the type pointers become invalid.  */

void
clear_value_history ()
{
  register struct value_history_chunk *next;
  register int i;
  register value_ptr val;

  while (value_history_chain)
    {
      for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
	if ((val = value_history_chain->values[i]) != NULL)
	  free ((PTR) val);
      next = value_history_chain->next;
      free ((PTR) value_history_chain);
      value_history_chain = next;
    }
  value_history_count = 0;
}

static void
show_values (num_exp, from_tty)
     char *num_exp;
     int from_tty;
{
  register int i;
  register value_ptr val;
  static int num = 1;

  if (num_exp)
    {
      /* "info history +" should print from the stored position.
         "info history <exp>" should print around value number <exp>.  */
      if (num_exp[0] != '+' || num_exp[1] != '\0')
	num = parse_and_eval_address (num_exp) - 5;
    }
  else
    {
      /* "info history" means print the last 10 values.  */
      num = value_history_count - 9;
    }

  if (num <= 0)
    num = 1;

  for (i = num; i < num + 10 && i <= value_history_count; i++)
    {
      val = access_value_history (i);
      printf_filtered ("$%d = ", i);
      value_print (val, gdb_stdout, 0, Val_pretty_default);
      printf_filtered ("\n");
    }

  /* The next "info history +" should start after what we just printed.  */
  num += 10;

  /* Hitting just return after this command should do the same thing as
     "info history +".  If num_exp is null, this is unnecessary, since
     "info history +" is not useful after "info history".  */
  if (from_tty && num_exp)
    {
      num_exp[0] = '+';
      num_exp[1] = '\0';
    }
}

/* Internal variables.  These are variables within the debugger
   that hold values assigned by debugger commands.
   The user refers to them with a '$' prefix
   that does not appear in the variable names stored internally.  */

static struct internalvar *internalvars;

/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.

   If the specified internal variable does not exist,
   one is created, with a void value.  */

struct internalvar *
lookup_internalvar (name)
     char *name;
{
  register struct internalvar *var;

  for (var = internalvars; var; var = var->next)
    if (STREQ (var->name, name))
      return var;

  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
  var->name = concat (name, NULL);
  var->value = allocate_value (builtin_type_void);
  release_value (var->value);
  var->next = internalvars;
  internalvars = var;
  return var;
}

value_ptr
value_of_internalvar (var)
     struct internalvar *var;
{
  register value_ptr val;

#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
    return VALUE_OF_TRAPPED_INTERNALVAR (var);
#endif

  val = value_copy (var->value);
  if (VALUE_LAZY (val))
    value_fetch_lazy (val);
  VALUE_LVAL (val) = lval_internalvar;
  VALUE_INTERNALVAR (val) = var;
  return val;
}

void
set_internalvar_component (var, offset, bitpos, bitsize, newval)
     struct internalvar *var;
     int offset, bitpos, bitsize;
     value_ptr newval;
{
  register char *addr = VALUE_CONTENTS (var->value) + offset;

#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
    SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
#endif

  if (bitsize)
    modify_field (addr, value_as_long (newval),
		  bitpos, bitsize);
  else
    memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
}

void
set_internalvar (var, val)
     struct internalvar *var;
     value_ptr val;
{
  value_ptr newval;

#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
    SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
#endif

  newval = value_copy (val);
  newval->modifiable = 1;

  /* Force the value to be fetched from the target now, to avoid problems
     later when this internalvar is referenced and the target is gone or
     has changed.  */
  if (VALUE_LAZY (newval))
    value_fetch_lazy (newval);

  /* Begin code which must not call error().  If var->value points to
     something free'd, an error() obviously leaves a dangling pointer.
     But we also get a danling pointer if var->value points to
     something in the value chain (i.e., before release_value is
     called), because after the error free_all_values will get called before
     long.  */
  free ((PTR) var->value);
  var->value = newval;
  release_value (newval);
  /* End code which must not call error().  */
}

char *
internalvar_name (var)
     struct internalvar *var;
{
  return var->name;
}

/* Free all internalvars.  Done when new symtabs are loaded,
   because that makes the values invalid.  */

void
clear_internalvars ()
{
  register struct internalvar *var;

  while (internalvars)
    {
      var = internalvars;
      internalvars = var->next;
      free ((PTR) var->name);
      free ((PTR) var->value);
      free ((PTR) var);
    }
}

static void
show_convenience (ignore, from_tty)
     char *ignore;
     int from_tty;
{
  register struct internalvar *var;
  int varseen = 0;

  for (var = internalvars; var; var = var->next)
    {
#ifdef IS_TRAPPED_INTERNALVAR
      if (IS_TRAPPED_INTERNALVAR (var->name))
	continue;
#endif
      if (!varseen)
	{
	  varseen = 1;
	}
      printf_filtered ("$%s = ", var->name);
      value_print (var->value, gdb_stdout, 0, Val_pretty_default);
      printf_filtered ("\n");
    }
  if (!varseen)
    printf_unfiltered ("No debugger convenience variables now defined.\n\
Convenience variables have names starting with \"$\";\n\
use \"set\" as in \"set $foo = 5\" to define them.\n");
}

/* Extract a value as a C number (either long or double).
   Knows how to convert fixed values to double, or
   floating values to long.
   Does not deallocate the value.  */

LONGEST
value_as_long (val)
     register value_ptr val;
{
  /* This coerces arrays and functions, which is necessary (e.g.
     in disassemble_command).  It also dereferences references, which
     I suspect is the most logical thing to do.  */
  COERCE_ARRAY (val);
  return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
}

DOUBLEST
value_as_double (val)
     register value_ptr val;
{
  DOUBLEST foo;
  int inv;

  foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
  if (inv)
    error ("Invalid floating value found in program.");
  return foo;
}
/* Extract a value as a C pointer.
   Does not deallocate the value.  */
CORE_ADDR
value_as_pointer (val)
     value_ptr val;
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
#if 0
  /* ADDR_BITS_REMOVE is wrong if we are being called for a
     non-address (e.g. argument to "signal", "info break", etc.), or
     for pointers to char, in which the low bits *are* significant.  */
  return ADDR_BITS_REMOVE (value_as_long (val));
#else
  return value_as_long (val);
#endif
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a long, or as a double, assuming the raw data is described
   by type TYPE.  Knows how to convert different sizes of values
   and can convert between fixed and floating point.  We don't assume
   any alignment for the raw data.  Return value is in host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_long() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

LONGEST
unpack_long (type, valaddr)
     struct type *type;
     char *valaddr;
{
  register enum type_code code = TYPE_CODE (type);
  register int len = TYPE_LENGTH (type);
  register int nosign = TYPE_UNSIGNED (type);

  if (current_language->la_language == language_scm
      && is_scmvalue_type (type))
    return scm_unpack (type, valaddr, TYPE_CODE_INT);

  switch (code)
    {
    case TYPE_CODE_TYPEDEF:
      return unpack_long (check_typedef (type), valaddr);
    case TYPE_CODE_ENUM:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
      if (nosign)
	return extract_unsigned_integer (valaddr, len);
      else
	return extract_signed_integer (valaddr, len);

    case TYPE_CODE_FLT:
      return extract_floating (valaddr, len);

    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
         whether we want this to be true eventually.  */
      if (GDB_TARGET_IS_D10V
	  && len == 2)
	return D10V_MAKE_DADDR (extract_address (valaddr, len));
      return extract_address (valaddr, len);

    case TYPE_CODE_MEMBER:
      error ("not implemented: member types in unpack_long");

    default:
      error ("Value can't be converted to integer.");
    }
  return 0;			/* Placate lint.  */
}

/* Return a double value from the specified type and address.
   INVP points to an int which is set to 0 for valid value,
   1 for invalid value (bad float format).  In either case,
   the returned double is OK to use.  Argument is in target
   format, result is in host format.  */

DOUBLEST
unpack_double (type, valaddr, invp)
     struct type *type;
     char *valaddr;
     int *invp;
{
  enum type_code code;
  int len;
  int nosign;

  *invp = 0;			/* Assume valid.   */
  CHECK_TYPEDEF (type);
  code = TYPE_CODE (type);
  len = TYPE_LENGTH (type);
  nosign = TYPE_UNSIGNED (type);
  if (code == TYPE_CODE_FLT)
    {
#ifdef INVALID_FLOAT
      if (INVALID_FLOAT (valaddr, len))
	{
	  *invp = 1;
	  return 1.234567891011121314;
	}
#endif
      return extract_floating (valaddr, len);
    }
  else if (nosign)
    {
      /* Unsigned -- be sure we compensate for signed LONGEST.  */
#if !defined (_MSC_VER) || (_MSC_VER > 900)
      return (ULONGEST) unpack_long (type, valaddr);
#else
      /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
      return (LONGEST) unpack_long (type, valaddr);
#endif /* _MSC_VER */
    }
  else
    {
      /* Signed -- we are OK with unpack_long.  */
      return unpack_long (type, valaddr);
    }
}

/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a CORE_ADDR, assuming the raw data is described by type TYPE.
   We don't assume any alignment for the raw data.  Return value is in
   host byte order.

   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_pointer() instead.

   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */

CORE_ADDR
unpack_pointer (type, valaddr)
     struct type *type;
     char *valaddr;
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return unpack_long (type, valaddr);
}

/* Get the value of the FIELDN'th field (which must be static) of TYPE. */

value_ptr
value_static_field (type, fieldno)
     struct type *type;
     int fieldno;
{
  CORE_ADDR addr;
  asection *sect;
  if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
    {
      addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
      sect = NULL;
    }
  else
    {
      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
      if (sym == NULL)
	{
	  /* With some compilers, e.g. HP aCC, static data members are reported
	     as non-debuggable symbols */
	  struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
	  if (!msym)
	    return NULL;
	  else
	    {
	      addr = SYMBOL_VALUE_ADDRESS (msym);
	      sect = SYMBOL_BFD_SECTION (msym);
	    }
	}
      else
	{
	  addr = SYMBOL_VALUE_ADDRESS (sym);
	  sect = SYMBOL_BFD_SECTION (sym);
	}
      SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
    }
  return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
}

/* Given a value ARG1 (offset by OFFSET bytes)
   of a struct or union type ARG_TYPE,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */

value_ptr
value_primitive_field (arg1, offset, fieldno, arg_type)
     register value_ptr arg1;
     int offset;
     register int fieldno;
     register struct type *arg_type;
{
  register value_ptr v;
  register struct type *type;

  CHECK_TYPEDEF (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Handle packed fields */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
    {
      v = value_from_longest (type,
			      unpack_field_as_long (arg_type,
						    VALUE_CONTENTS (arg1)
						    + offset,
						    fieldno));
      VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
      VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
	+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
    }
  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
    {
      /* This field is actually a base subobject, so preserve the
         entire object's contents for later references to virtual
         bases, etc.  */
      v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
      VALUE_TYPE (v) = arg_type;
      if (VALUE_LAZY (arg1))
	VALUE_LAZY (v) = 1;
      else
	memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
		TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
      VALUE_EMBEDDED_OFFSET (v)
	= offset +
	VALUE_EMBEDDED_OFFSET (arg1) +
	TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
    }
  else
    {
      /* Plain old data member */
      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
      v = allocate_value (type);
      if (VALUE_LAZY (arg1))
	VALUE_LAZY (v) = 1;
      else
	memcpy (VALUE_CONTENTS_RAW (v),
		VALUE_CONTENTS_RAW (arg1) + offset,
		TYPE_LENGTH (type));
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
    }
  VALUE_LVAL (v) = VALUE_LVAL (arg1);
  if (VALUE_LVAL (arg1) == lval_internalvar)
    VALUE_LVAL (v) = lval_internalvar_component;
  VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
/*  VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
   + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
  return v;
}

/* Given a value ARG1 of a struct or union type,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */

value_ptr
value_field (arg1, fieldno)
     register value_ptr arg1;
     register int fieldno;
{
  return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
}

/* Return a non-virtual function as a value.
   F is the list of member functions which contains the desired method.
   J is an index into F which provides the desired method. */

value_ptr
value_fn_field (arg1p, f, j, type, offset)
     value_ptr *arg1p;
     struct fn_field *f;
     int j;
     struct type *type;
     int offset;
{
  register value_ptr v;
  register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
  struct symbol *sym;

  sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
		       0, VAR_NAMESPACE, 0, NULL);
  if (!sym)
    return NULL;
/*
   error ("Internal error: could not find physical method named %s",
   TYPE_FN_FIELD_PHYSNAME (f, j));
 */

  v = allocate_value (ftype);
  VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
  VALUE_TYPE (v) = ftype;

  if (arg1p)
    {
      if (type != VALUE_TYPE (*arg1p))
	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
					value_addr (*arg1p)));

      /* Move the `this' pointer according to the offset. 
         VALUE_OFFSET (*arg1p) += offset;
       */
    }

  return v;
}

/* Return a virtual function as a value.
   ARG1 is the object which provides the virtual function
   table pointer.  *ARG1P is side-effected in calling this function.
   F is the list of member functions which contains the desired virtual
   function.
   J is an index into F which provides the desired virtual function.

   TYPE is the type in which F is located.  */
value_ptr
value_virtual_fn_field (arg1p, f, j, type, offset)
     value_ptr *arg1p;
     struct fn_field *f;
     int j;
     struct type *type;
     int offset;
{
  value_ptr arg1 = *arg1p;
  struct type *type1 = check_typedef (VALUE_TYPE (arg1));

  if (TYPE_HAS_VTABLE (type))
    {
      /* Deal with HP/Taligent runtime model for virtual functions */
      value_ptr vp;
      value_ptr argp;		/* arg1 cast to base */
      CORE_ADDR coreptr;	/* pointer to target address */
      int class_index;		/* which class segment pointer to use */
      struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);	/* method type */

      argp = value_cast (type, *arg1p);

      if (VALUE_ADDRESS (argp) == 0)
	error ("Address of object is null; object may not have been created.");

      /* pai: FIXME -- 32x64 possible problem? */
      /* First word (4 bytes) in object layout is the vtable pointer */
      coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp));		/* pai: (temp)  */
      /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */

      if (!coreptr)
	error ("Virtual table pointer is null for object; object may not have been created.");

      /* pai/1997-05-09
       * FIXME: The code here currently handles only
       * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
       * is introduced, the condition for the "if" below will have to
       * be changed to be a test for the RRBC case.  */

      if (1)
	{
	  /* Non-RRBC case; the virtual function pointers are stored at fixed
	   * offsets in the virtual table. */

	  /* Retrieve the offset in the virtual table from the debug
	   * info.  The offset of the vfunc's entry is in words from
	   * the beginning of the vtable; but first we have to adjust
	   * by HP_ACC_VFUNC_START to account for other entries */

	  /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
	   * which case the multiplier should be 8 and values should be long */
	  vp = value_at (builtin_type_int,
			 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);

	  coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
	  /* coreptr now contains the address of the virtual function */
	  /* (Actually, it contains the pointer to the plabel for the function. */
	}
      else
	{
	  /* RRBC case; the virtual function pointers are found by double
	   * indirection through the class segment tables. */

	  /* Choose class segment depending on type we were passed */
	  class_index = class_index_in_primary_list (type);

	  /* Find class segment pointer.  These are in the vtable slots after
	   * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
	  /* pai: FIXME 32x64 problem here, if words are 8 bytes long
	   * the multiplier below has to be 8 and value should be long. */
	  vp = value_at (builtin_type_int,
		    coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
	  /* Indirect once more, offset by function index */
	  /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
	  coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
	  vp = value_at (builtin_type_int, coreptr, NULL);
	  coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));

	  /* coreptr now contains the address of the virtual function */
	  /* (Actually, it contains the pointer to the plabel for the function.) */

	}

      if (!coreptr)
	error ("Address of virtual function is null; error in virtual table?");

      /* Wrap this addr in a value and return pointer */
      vp = allocate_value (ftype);
      VALUE_TYPE (vp) = ftype;
      VALUE_ADDRESS (vp) = coreptr;

      /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
      return vp;
    }
  else
    {				/* Not using HP/Taligent runtime conventions; so try to
				 * use g++ conventions for virtual table */

      struct type *entry_type;
      /* First, get the virtual function table pointer.  That comes
         with a strange type, so cast it to type `pointer to long' (which
         should serve just fine as a function type).  Then, index into
         the table, and convert final value to appropriate function type.  */
      value_ptr entry, vfn, vtbl;
      value_ptr vi = value_from_longest (builtin_type_int,
				    (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
      struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
      struct type *context;
      if (fcontext == NULL)
	/* We don't have an fcontext (e.g. the program was compiled with
	   g++ version 1).  Try to get the vtbl from the TYPE_VPTR_BASETYPE.
	   This won't work right for multiple inheritance, but at least we
	   should do as well as GDB 3.x did.  */
	fcontext = TYPE_VPTR_BASETYPE (type);
      context = lookup_pointer_type (fcontext);
      /* Now context is a pointer to the basetype containing the vtbl.  */
      if (TYPE_TARGET_TYPE (context) != type1)
	{
	  value_ptr tmp = value_cast (context, value_addr (arg1));
	  VALUE_POINTED_TO_OFFSET (tmp) = 0;
	  arg1 = value_ind (tmp);
	  type1 = check_typedef (VALUE_TYPE (arg1));
	}

      context = type1;
      /* Now context is the basetype containing the vtbl.  */

      /* This type may have been defined before its virtual function table
         was.  If so, fill in the virtual function table entry for the
         type now.  */
      if (TYPE_VPTR_FIELDNO (context) < 0)
	fill_in_vptr_fieldno (context);

      /* The virtual function table is now an array of structures
         which have the form { int16 offset, delta; void *pfn; }.  */
      vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
				    TYPE_VPTR_BASETYPE (context));

      /* With older versions of g++, the vtbl field pointed to an array
         of structures.  Nowadays it points directly to the structure. */
      if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
      && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
	{
	  /* Handle the case where the vtbl field points to an
	     array of structures. */
	  vtbl = value_ind (vtbl);

	  /* Index into the virtual function table.  This is hard-coded because
	     looking up a field is not cheap, and it may be important to save
	     time, e.g. if the user has set a conditional breakpoint calling
	     a virtual function.  */
	  entry = value_subscript (vtbl, vi);
	}
      else
	{
	  /* Handle the case where the vtbl field points directly to a structure. */
	  vtbl = value_add (vtbl, vi);
	  entry = value_ind (vtbl);
	}

      entry_type = check_typedef (VALUE_TYPE (entry));

      if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
	{
	  /* Move the `this' pointer according to the virtual function table. */
	  VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));

	  if (!VALUE_LAZY (arg1))
	    {
	      VALUE_LAZY (arg1) = 1;
	      value_fetch_lazy (arg1);
	    }

	  vfn = value_field (entry, 2);
	}
      else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
	vfn = entry;
      else
	error ("I'm confused:  virtual function table has bad type");
      /* Reinstantiate the function pointer with the correct type.  */
      VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));

      *arg1p = arg1;
      return vfn;
    }
}

/* ARG is a pointer to an object we know to be at least
   a DTYPE.  BTYPE is the most derived basetype that has
   already been searched (and need not be searched again).
   After looking at the vtables between BTYPE and DTYPE,
   return the most derived type we find.  The caller must
   be satisfied when the return value == DTYPE.

   FIXME-tiemann: should work with dossier entries as well.  */

static value_ptr
value_headof (in_arg, btype, dtype)
     value_ptr in_arg;
     struct type *btype, *dtype;
{
  /* First collect the vtables we must look at for this object.  */
  /* FIXME-tiemann: right now, just look at top-most vtable.  */
  value_ptr arg, vtbl, entry, best_entry = 0;
  int i, nelems;
  int offset, best_offset = 0;
  struct symbol *sym;
  CORE_ADDR pc_for_sym;
  char *demangled_name;
  struct minimal_symbol *msymbol;

  btype = TYPE_VPTR_BASETYPE (dtype);
  CHECK_TYPEDEF (btype);
  arg = in_arg;
  if (btype != dtype)
    arg = value_cast (lookup_pointer_type (btype), arg);
  vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));

  /* Check that VTBL looks like it points to a virtual function table.  */
  msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
  if (msymbol == NULL
      || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
      || !VTBL_PREFIX_P (demangled_name))
    {
      /* If we expected to find a vtable, but did not, let the user
         know that we aren't happy, but don't throw an error.
         FIXME: there has to be a better way to do this.  */
      struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
      memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
      TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
      VALUE_TYPE (in_arg) = error_type;
      return in_arg;
    }

  /* Now search through the virtual function table.  */
  entry = value_ind (vtbl);
  nelems = longest_to_int (value_as_long (value_field (entry, 2)));
  for (i = 1; i <= nelems; i++)
    {
      entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
							 (LONGEST) i));
      /* This won't work if we're using thunks. */
      if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
	break;
      offset = longest_to_int (value_as_long (value_field (entry, 0)));
      /* If we use '<=' we can handle single inheritance
       * where all offsets are zero - just use the first entry found. */
      if (offset <= best_offset)
	{
	  best_offset = offset;
	  best_entry = entry;
	}
    }
  /* Move the pointer according to BEST_ENTRY's offset, and figure
     out what type we should return as the new pointer.  */
  if (best_entry == 0)
    {
      /* An alternative method (which should no longer be necessary).
       * But we leave it in for future use, when we will hopefully
       * have optimizes the vtable to use thunks instead of offsets. */
      /* Use the name of vtable itself to extract a base type. */
      demangled_name += 4;	/* Skip _vt$ prefix. */
    }
  else
    {
      pc_for_sym = value_as_pointer (value_field (best_entry, 2));
      sym = find_pc_function (pc_for_sym);
      demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
      *(strchr (demangled_name, ':')) = '\0';
    }
  sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
  if (sym == NULL)
    error ("could not find type declaration for `%s'", demangled_name);
  if (best_entry)
    {
      free (demangled_name);
      arg = value_add (value_cast (builtin_type_int, arg),
		       value_field (best_entry, 0));
    }
  else
    arg = in_arg;
  VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
  return arg;
}

/* ARG is a pointer object of type TYPE.  If TYPE has virtual
   function tables, probe ARG's tables (including the vtables
   of its baseclasses) to figure out the most derived type that ARG
   could actually be a pointer to.  */

value_ptr
value_from_vtable_info (arg, type)
     value_ptr arg;
     struct type *type;
{
  /* Take care of preliminaries.  */
  if (TYPE_VPTR_FIELDNO (type) < 0)
    fill_in_vptr_fieldno (type);
  if (TYPE_VPTR_FIELDNO (type) < 0)
    return 0;

  return value_headof (arg, 0, type);
}

/* Return true if the INDEXth field of TYPE is a virtual baseclass
   pointer which is for the base class whose type is BASECLASS.  */

static int
vb_match (type, index, basetype)
     struct type *type;
     int index;
     struct type *basetype;
{
  struct type *fieldtype;
  char *name = TYPE_FIELD_NAME (type, index);
  char *field_class_name = NULL;

  if (*name != '_')
    return 0;
  /* gcc 2.4 uses _vb$.  */
  if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
    field_class_name = name + 4;
  /* gcc 2.5 will use __vb_.  */
  if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
    field_class_name = name + 5;

  if (field_class_name == NULL)
    /* This field is not a virtual base class pointer.  */
    return 0;

  /* It's a virtual baseclass pointer, now we just need to find out whether
     it is for this baseclass.  */
  fieldtype = TYPE_FIELD_TYPE (type, index);
  if (fieldtype == NULL
      || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
    /* "Can't happen".  */
    return 0;

  /* What we check for is that either the types are equal (needed for
     nameless types) or have the same name.  This is ugly, and a more
     elegant solution should be devised (which would probably just push
     the ugliness into symbol reading unless we change the stabs format).  */
  if (TYPE_TARGET_TYPE (fieldtype) == basetype)
    return 1;

  if (TYPE_NAME (basetype) != NULL
      && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
      && STREQ (TYPE_NAME (basetype),
		TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
    return 1;
  return 0;
}

/* Compute the offset of the baseclass which is
   the INDEXth baseclass of class TYPE,
   for value at VALADDR (in host) at ADDRESS (in target).
   The result is the offset of the baseclass value relative
   to (the address of)(ARG) + OFFSET.

   -1 is returned on error. */

int
baseclass_offset (type, index, valaddr, address)
     struct type *type;
     int index;
     char *valaddr;
     CORE_ADDR address;
{
  struct type *basetype = TYPE_BASECLASS (type, index);

  if (BASETYPE_VIA_VIRTUAL (type, index))
    {
      /* Must hunt for the pointer to this virtual baseclass.  */
      register int i, len = TYPE_NFIELDS (type);
      register int n_baseclasses = TYPE_N_BASECLASSES (type);

      /* First look for the virtual baseclass pointer
         in the fields.  */
      for (i = n_baseclasses; i < len; i++)
	{
	  if (vb_match (type, i, basetype))
	    {
	      CORE_ADDR addr
	      = unpack_pointer (TYPE_FIELD_TYPE (type, i),
				valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));

	      return addr - (LONGEST) address;
	    }
	}
      /* Not in the fields, so try looking through the baseclasses.  */
      for (i = index + 1; i < n_baseclasses; i++)
	{
	  int boffset =
	  baseclass_offset (type, i, valaddr, address);
	  if (boffset)
	    return boffset;
	}
      /* Not found.  */
      return -1;
    }

  /* Baseclass is easily computed.  */
  return TYPE_BASECLASS_BITPOS (type, index) / 8;
}

/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
   VALADDR.

   Extracting bits depends on endianness of the machine.  Compute the
   number of least significant bits to discard.  For big endian machines,
   we compute the total number of bits in the anonymous object, subtract
   off the bit count from the MSB of the object to the MSB of the
   bitfield, then the size of the bitfield, which leaves the LSB discard
   count.  For little endian machines, the discard count is simply the
   number of bits from the LSB of the anonymous object to the LSB of the
   bitfield.

   If the field is signed, we also do sign extension. */

LONGEST
unpack_field_as_long (type, valaddr, fieldno)
     struct type *type;
     char *valaddr;
     int fieldno;
{
  ULONGEST val;
  ULONGEST valmask;
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  int lsbcount;
  struct type *field_type;

  val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
  field_type = TYPE_FIELD_TYPE (type, fieldno);
  CHECK_TYPEDEF (field_type);

  /* Extract bits.  See comment above. */

  if (BITS_BIG_ENDIAN)
    lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
  else
    lsbcount = (bitpos % 8);
  val >>= lsbcount;

  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */

  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
    {
      valmask = (((ULONGEST) 1) << bitsize) - 1;
      val &= valmask;
      if (!TYPE_UNSIGNED (field_type))
	{
	  if (val & (valmask ^ (valmask >> 1)))
	    {
	      val |= ~valmask;
	    }
	}
    }
  return (val);
}

/* Modify the value of a bitfield.  ADDR points to a block of memory in
   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
   indicate which bits (in target bit order) comprise the bitfield.  */

void
modify_field (addr, fieldval, bitpos, bitsize)
     char *addr;
     LONGEST fieldval;
     int bitpos, bitsize;
{
  LONGEST oword;

  /* If a negative fieldval fits in the field in question, chop
     off the sign extension bits.  */
  if (bitsize < (8 * (int) sizeof (fieldval))
      && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
    fieldval = fieldval & ((1 << bitsize) - 1);

  /* Warn if value is too big to fit in the field in question.  */
  if (bitsize < (8 * (int) sizeof (fieldval))
      && 0 != (fieldval & ~((1 << bitsize) - 1)))
    {
      /* FIXME: would like to include fieldval in the message, but
         we don't have a sprintf_longest.  */
      warning ("Value does not fit in %d bits.", bitsize);

      /* Truncate it, otherwise adjoining fields may be corrupted.  */
      fieldval = fieldval & ((1 << bitsize) - 1);
    }

  oword = extract_signed_integer (addr, sizeof oword);

  /* Shifting for bit field depends on endianness of the target machine.  */
  if (BITS_BIG_ENDIAN)
    bitpos = sizeof (oword) * 8 - bitpos - bitsize;

  /* Mask out old value, while avoiding shifts >= size of oword */
  if (bitsize < 8 * (int) sizeof (oword))
    oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
  else
    oword &= ~((~(ULONGEST) 0) << bitpos);
  oword |= fieldval << bitpos;

  store_signed_integer (addr, sizeof oword, oword);
}

/* Convert C numbers into newly allocated values */

value_ptr
value_from_longest (type, num)
     struct type *type;
     register LONGEST num;
{
  register value_ptr val = allocate_value (type);
  register enum type_code code;
  register int len;
retry:
  code = TYPE_CODE (type);
  len = TYPE_LENGTH (type);

  switch (code)
    {
    case TYPE_CODE_TYPEDEF:
      type = check_typedef (type);
      goto retry;
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_RANGE:
      store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
      break;

    case TYPE_CODE_REF:
    case TYPE_CODE_PTR:
      /* This assumes that all pointers of a given length
         have the same form.  */
      store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
      break;

    default:
      error ("Unexpected type (%d) encountered for integer constant.", code);
    }
  return val;
}

/* Create a value for a string constant to be stored locally
   (not in the inferior's memory space, but in GDB memory).  
   This is analogous to value_from_longest, which also does not
   use inferior memory.  String shall NOT contain embedded nulls.  */

value_ptr
value_from_string (ptr)
     char *ptr;
{
  value_ptr val;
  int len = strlen (ptr);
  int lowbound = current_language->string_lower_bound;
  struct type *rangetype =
  create_range_type ((struct type *) NULL,
		     builtin_type_int,
		     lowbound, len + lowbound - 1);
  struct type *stringtype =
  create_array_type ((struct type *) NULL,
		     *current_language->string_char_type,
		     rangetype);

  val = allocate_value (stringtype);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
  return val;
}

value_ptr
value_from_double (type, num)
     struct type *type;
     DOUBLEST num;
{
  register value_ptr val = allocate_value (type);
  struct type *base_type = check_typedef (type);
  register enum type_code code = TYPE_CODE (base_type);
  register int len = TYPE_LENGTH (base_type);

  if (code == TYPE_CODE_FLT)
    {
      store_floating (VALUE_CONTENTS_RAW (val), len, num);
    }
  else
    error ("Unexpected type encountered for floating constant.");

  return val;
}

/* Deal with the value that is "about to be returned".  */

/* Return the value that a function returning now
   would be returning to its caller, assuming its type is VALTYPE.
   RETBUF is where we look for what ought to be the contents
   of the registers (in raw form).  This is because it is often
   desirable to restore old values to those registers
   after saving the contents of interest, and then call
   this function using the saved values.
   struct_return is non-zero when the function in question is
   using the structure return conventions on the machine in question;
   0 when it is using the value returning conventions (this often
   means returning pointer to where structure is vs. returning value). */

value_ptr
value_being_returned (valtype, retbuf, struct_return)
     register struct type *valtype;
     char *retbuf;
     int struct_return;
     /*ARGSUSED */
{
  register value_ptr val;
  CORE_ADDR addr;

  /* If this is not defined, just use EXTRACT_RETURN_VALUE instead.  */
  if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
    if (struct_return)
      {
	addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
	if (!addr)
	  error ("Function return value unknown");
	return value_at (valtype, addr, NULL);
      }

  val = allocate_value (valtype);
  CHECK_TYPEDEF (valtype);
  EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));

  return val;
}

/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   and TYPE is the type (which is known to be struct, union or array).

   On most machines, the struct convention is used unless we are
   using gcc and the type is of a special size.  */
/* As of about 31 Mar 93, GCC was changed to be compatible with the
   native compiler.  GCC 2.3.3 was the last release that did it the
   old way.  Since gcc2_compiled was not changed, we have no
   way to correctly win in all cases, so we just do the right thing
   for gcc1 and for gcc2 after this change.  Thus it loses for gcc
   2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
   would cause more chaos than dealing with some struct returns being
   handled wrong.  */

int
generic_use_struct_convention (gcc_p, value_type)
     int gcc_p;
     struct type *value_type;
{
  return !((gcc_p == 1)
	   && (TYPE_LENGTH (value_type) == 1
	       || TYPE_LENGTH (value_type) == 2
	       || TYPE_LENGTH (value_type) == 4
	       || TYPE_LENGTH (value_type) == 8));
}

#ifndef USE_STRUCT_CONVENTION
#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
#endif

/* Some fundamental types (such as long double) are returned on the stack for
   certain architectures.  This macro should return true for any type besides
   struct, union or array that gets returned on the stack.  */

#ifndef RETURN_VALUE_ON_STACK
#define RETURN_VALUE_ON_STACK(TYPE) 0
#endif

/* Return true if the function specified is using the structure returning
   convention on this machine to return arguments, or 0 if it is using
   the value returning convention.  FUNCTION is the value representing
   the function, FUNCADDR is the address of the function, and VALUE_TYPE
   is the type returned by the function.  GCC_P is nonzero if compiled
   with GCC.  */

int
using_struct_return (function, funcaddr, value_type, gcc_p)
     value_ptr function;
     CORE_ADDR funcaddr;
     struct type *value_type;
     int gcc_p;
     /*ARGSUSED */
{
  register enum type_code code = TYPE_CODE (value_type);

  if (code == TYPE_CODE_ERROR)
    error ("Function return type unknown.");

  if (code == TYPE_CODE_STRUCT
      || code == TYPE_CODE_UNION
      || code == TYPE_CODE_ARRAY
      || RETURN_VALUE_ON_STACK (value_type))
    return USE_STRUCT_CONVENTION (gcc_p, value_type);

  return 0;
}

/* Store VAL so it will be returned if a function returns now.
   Does not verify that VAL's type matches what the current
   function wants to return.  */

void
set_return_value (val)
     value_ptr val;
{
  struct type *type = check_typedef (VALUE_TYPE (val));
  register enum type_code code = TYPE_CODE (type);

  if (code == TYPE_CODE_ERROR)
    error ("Function return type unknown.");

  if (code == TYPE_CODE_STRUCT
      || code == TYPE_CODE_UNION)	/* FIXME, implement struct return.  */
    error ("GDB does not support specifying a struct or union return value.");

  STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
}

void
_initialize_values ()
{
  add_cmd ("convenience", no_class, show_convenience,
	   "Debugger convenience (\"$foo\") variables.\n\
These variables are created when you assign them values;\n\
thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\n\
A few convenience variables are given values automatically:\n\
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
\"$__\" holds the contents of the last address examined with \"x\".",
	   &showlist);

  add_cmd ("values", no_class, show_values,
	   "Elements of value history around item number IDX (or last ten).",
	   &showlist);
}