Age | Commit message (Collapse) | Author | Files | Lines |
|
A following patch will want to do
string_file str_file;
scoped_restore save_stdout
= make_scoped_restore (&gdb_stdout, &str_file);
where gdb_stdout is a ui_file *, and string_file is a type that
inherits from ui_file, but that doesn't compile today:
src/gdb/top.c: In function ‘std::__cxx11::string execute_command_to_string(char*, int)’:
src/gdb/top.c:710:50: error: no matching function for call to ‘make_scoped_restore(ui_file**, string_file*)’
= make_scoped_restore (&gdb_stdout, &str_file);
^
[...]
In file included from src/gdb/utils.h:25:0,
from src/gdb/defs.h:732,
from src/gdb/top.c:20:
src/gdb/common/scoped_restore.h:94:24: note: candidate: template<class T> scoped_restore_tmpl<T> make_scoped_restore(T*, T)
scoped_restore_tmpl<T> make_scoped_restore (T *var, T value)
^
src/gdb/common/scoped_restore.h:94:24: note: template argument deduction/substitution failed:
src/gdb/top.c:710:50: note: deduced conflicting types for parameter ‘T’ (‘ui_file*’ and ‘string_file*’)
= make_scoped_restore (&gdb_stdout, &str_file);
^
This commit makes code such as the above possible.
gdb/ChangeLog:
2017-01-31 Pedro Alves <palves@redhat.com>
* common/scoped_restore.h
(scoped_restore_tmpl::scoped_restore_tmpl): Template on T2, and
change the value's parameter type to T2.
(make_scoped_restore): Likewise.
|
|
This introduces a new class, gdb::unlinker, that unlinks a file in the
destructor. The user of this class has the option to preserve the
file instead, by calling the "keep" method.
This patch then changes the spots in gdb that use unlink in a cleanup
to use this class instead. In one spot I went ahead and removed all
the cleanups from the function.
This fixes one latent bug -- do_bfd_delete_cleanup could refer to
freed memory, by decref'ing the BFD before using its filename.
2017-01-10 Tom Tromey <tom@tromey.com>
* record-full.c (record_full_save_cleanups): Remove.
(record_full_save): Use gdb::unlinker.
* gcore.c (do_bfd_delete_cleanup): Remove.
(gcore_command): Use gdb::unlinker, unique_xmalloc_ptr. Remove
cleanups.
* dwarf2read.c (unlink_if_set): Remove.
(write_psymtabs_to_index): Use gdb::unlinker.
* common/gdb_unlinker.h: New file.
|
|
This introduces a new specialization of gdb::ref_ptr that can be used
to manage BFD reference counts. Then it changes most places in gdb to
use this new class, rather than explicit reference-counting or
cleanups. This patch removes make_cleanup_bfd_unref.
If you look you will see a couple of spots using "release" where a use
of gdb_bfd_ref_ptr would be cleaner. These will be fixed in the next
patch.
I think this patch fixes some latent bugs. For example, it seems to
me that previously objfpy_add_separate_debug_file leaked a BFD.
I'm not 100% certain that the macho_symfile_read_all_oso change is
correct. The existing code here is hard for me to follow. One goal
of this sort of automated reference counting, though, is to make it
more difficult to make logic errors; so hopefully the code is clear
now.
2017-01-10 Tom Tromey <tom@tromey.com>
* windows-tdep.c (windows_xfer_shared_library): Update.
* windows-nat.c (windows_make_so): Update.
* utils.h (make_cleanup_bfd_unref): Remove.
* utils.c (do_bfd_close_cleanup, make_cleanup_bfd_unref): Remove.
* symfile.h (symfile_bfd_open)
(find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr.
* symfile.c (read_symbols, symbol_file_add)
(separate_debug_file_exists): Update.
(symfile_bfd_open): Return gdb_bfd_ref_ptr.
(generic_load, reread_symbols): Update.
* symfile-mem.c (symbol_file_add_from_memory): Update.
* spu-linux-nat.c (spu_bfd_open): Return gdb_bfd_ref_ptr.
(spu_symbol_file_add_from_memory): Update.
* solist.h (struct target_so_ops) <bfd_open>: Return
gdb_bfd_ref_ptr.
(solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr.
* solib.c (solib_bfd_fopen, solib_bfd_open): Return
gdb_bfd_ref_ptr.
(solib_map_sections, reload_shared_libraries_1): Update.
* solib-svr4.c (enable_break): Update.
* solib-spu.c (spu_bfd_fopen): Return gdb_bfd_ref_ptr.
* solib-frv.c (enable_break2): Update.
* solib-dsbt.c (enable_break): Update.
* solib-darwin.c (gdb_bfd_mach_o_fat_extract): Return
gdb_bfd_ref_ptr.
(darwin_solib_get_all_image_info_addr_at_init): Update.
(darwin_bfd_open): Return gdb_bfd_ref_ptr.
* solib-aix.c (solib_aix_bfd_open): Return gdb_bfd_ref_ptr.
* record-full.c (record_full_save): Update.
* python/py-objfile.c (objfpy_add_separate_debug_file): Update.
* procfs.c (insert_dbx_link_bpt_in_file): Update.
* minidebug.c (find_separate_debug_file_in_section): Return
gdb_bfd_ref_ptr.
* machoread.c (macho_add_oso_symfile): Change abfd to
gdb_bfd_ref_ptr.
(macho_symfile_read_all_oso): Update.
(macho_check_dsym): Return gdb_bfd_ref_ptr.
(macho_symfile_read): Update.
* jit.c (bfd_open_from_target_memory): Return gdb_bfd_ref_ptr.
(jit_bfd_try_read_symtab): Update.
* gdb_bfd.h (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
(gdb_bfd_ref_policy): New struct.
(gdb_bfd_ref_ptr): New typedef.
* gdb_bfd.c (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
* gcore.h (create_gcore_bfd): Return gdb_bfd_ref_ptr.
* gcore.c (create_gcore_bfd): Return gdb_bfd_ref_ptr.
(gcore_command): Update.
* exec.c (exec_file_attach): Update.
* elfread.c (elf_symfile_read): Update.
* dwarf2read.c (dwarf2_get_dwz_file): Update.
(try_open_dwop_file, open_dwo_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwo_file): Update.
(open_dwp_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwp_file): Update.
* corelow.c (core_open): Update.
* compile/compile-object-load.c (compile_object_load): Update.
* common/gdb_ref_ptr.h (ref_ptr::operator->): New operator.
* coffread.c (coff_symfile_read): Update.
* cli/cli-dump.c (bfd_openr_or_error, bfd_openw_or_error): Return
gdb_bfd_ref_ptr. Rename.
(dump_bfd_file, restore_command): Update.
* build-id.h (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
* build-id.c (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
(find_separate_debug_file_by_buildid): Update.
|
|
This adds a new gdb_ref_ptr.h, that implements a reference-counting
smart pointer class, where the user of the class supplies a
reference-counting policy object.
This class will be used in the next patch, which changes most explicit
BFD reference counts to use this new type. Meanwhile, this patch
changes gdbpy_ref to be a specialization of this new class.
This change required adding new nullptr_t overloads some operators in
gdb_ref_ptr.h. I suspect this was needed because some Python header
redefines NULL, but I'm not certain.
2017-01-10 Tom Tromey <tom@tromey.com>
* common/gdb_ref_ptr.h: New file.
* python/py-ref.h (struct gdbpy_ref_policy): New.
(gdbpy_ref): Now a typedef.
|
|
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
Both libc++ and libstdc++ declare non-throwing new operators as
noexcept and overloads must also be noexcept. This fixes a
-Wmissing-exception-spec warning with clang.
gdb/ChangeLog:
* common/new-op.c (operator new): Mark 'noexcept'.
(operator new[]): Likewise.
|
|
This patch fixes a few problems with GDB's time handling.
#1 - It avoids problems with gnulib's C++ namespace support
On MinGW, the struct timeval that should be passed to gnulib's
gettimeofday replacement is incompatible with libiberty's
timeval_sub/timeval_add. That's because gnulib also replaces "struct
timeval" with its own definition, while libiberty expects the
system's.
E.g., in code like this:
gettimeofday (&prompt_ended, NULL);
timeval_sub (&prompt_delta, &prompt_ended, &prompt_started);
timeval_add (&prompt_for_continue_wait_time,
&prompt_for_continue_wait_time, &prompt_delta);
That's currently handled in gdb by not using gnulib's gettimeofday at
all (see common/gdb_sys_time.h), but that #undef hack won't work with
if/when we enable gnulib's C++ namespace support, because that mode
adds compile time warnings for uses of ::gettimeofday, which are hard
errors with -Werror.
#2 - But there's an elephant in the room: gettimeofday is not monotonic...
We're using it to:
a) check how long functions take, for performance analysis
b) compute when in the future to fire events in the event-loop
c) print debug timestamps
But that's exactly what gettimeofday is NOT meant for. Straight from
the man page:
~~~
The time returned by gettimeofday() is affected by
discontinuous jumps in the system time (e.g., if the system
administrator manually changes the system time). If you need a
monotonically increasing clock, see clock_gettime(2).
~~~
std::chrono (part of the C++11 standard library) has a monotonic clock
exactly for such purposes (std::chrono::steady_clock). This commit
switches to use that instead of gettimeofday, fixing all the issues
mentioned above.
gdb/ChangeLog:
2016-11-23 Pedro Alves <palves@redhat.com>
* Makefile.in (SFILES): Add common/run-time-clock.c.
(HFILES_NO_SRCDIR): Add common/run-time-clock.h.
(COMMON_OBS): Add run-time-clock.o.
* common/run-time-clock.c, common/run-time-clock.h: New files.
* defs.h (struct timeval, print_transfer_performance): Delete
declarations.
* event-loop.c (struct gdb_timer) <when>: Now a
std::chrono::steady_clock::time_point.
(create_timer): use std::chrono::steady_clock instead of
gettimeofday. Use new instead of malloc.
(delete_timer): Use delete instead of xfree.
(duration_cast_timeval): New.
(update_wait_timeout): Use std::chrono::steady_clock instead of
gettimeofday.
* maint.c: Include <chrono> instead of "gdb_sys_time.h", <time.h>
and "timeval-utils.h".
(scoped_command_stats::~scoped_command_stats)
(scoped_command_stats::scoped_command_stats): Use
std::chrono::steady_clock instead of gettimeofday. Use
user_cpu_time_clock instead of get_run_time.
* maint.h: Include "run-time-clock.h" and <chrono>.
(scoped_command_stats): <m_start_cpu_time>: Now a
user_cpu_time_clock::time_point.
<m_start_wall_time>: Now a std::chrono::steady_clock::time_point.
* mi/mi-main.c: Include "run-time-clock.h" and <chrono> instead of
"gdb_sys_time.h" and <sys/resource.h>.
(rusage): Delete.
(mi_execute_command): Use new instead of XNEW.
(mi_load_progress): Use std::chrono::steady_clock instead of
gettimeofday.
(timestamp): Rewrite in terms of std::chrono::steady_clock,
user_cpu_time_clock and system_cpu_time_clock.
(timeval_diff): Delete.
(print_diff): Adjust to use std::chrono::steady_clock,
user_cpu_time_clock and system_cpu_time_clock.
* mi/mi-parse.h: Include "run-time-clock.h" and <chrono> instead
of "gdb_sys_time.h".
(struct mi_timestamp): Change fields types to
std::chrono::steady_clock::time_point, user_cpu_time_clock::time
and system_cpu_time_clock::time_point, instead of struct timeval.
* symfile.c: Include <chrono> instead of <time.h> and
"gdb_sys_time.h".
(struct time_range): New.
(generic_load): Use std::chrono::steady_clock instead of
gettimeofday.
(print_transfer_performance): Replace timeval parameters with a
std::chrono::steady_clock::duration parameter. Adjust.
* utils.c: Include <chrono> instead of "timeval-utils.h",
"gdb_sys_time.h", and <time.h>.
(prompt_for_continue_wait_time): Now a
std::chrono::steady_clock::duration.
(defaulted_query, prompt_for_continue): Use
std::chrono::steady_clock instead of
gettimeofday/timeval_sub/timeval_add.
(reset_prompt_for_continue_wait_time): Use
std::chrono::steady_clock::duration instead of struct timeval.
(get_prompt_for_continue_wait_time): Return a
std::chrono::steady_clock::duration instead of struct timeval.
(vfprintf_unfiltered): Use std::chrono::steady_clock instead of
gettimeofday. Use std::string. Use '.' instead of ':'.
* utils.h: Include <chrono>.
(get_prompt_for_continue_wait_time): Return a
std::chrono::steady_clock::duration instead of struct timeval.
gdb/gdbserver/ChangeLog:
2016-11-23 Pedro Alves <palves@redhat.com>
* debug.c: Include <chrono> instead of "gdb_sys_time.h".
(debug_vprintf): Use std::chrono::steady_clock instead of
gettimeofday. Use '.' instead of ':'.
* tracepoint.c: Include <chrono> instead of "gdb_sys_time.h".
(get_timestamp): Use std::chrono::steady_clock instead of
gettimeofday.
|
|
Now that we require C++11 and all uses of gdb::unique_ptr and
gdb::move are gone, let's remove their definitions...
With my lazy hat on, I repurposed the header for "generally useful
unique_ptr specializations", and left gdb::unique_xmalloc_ptr in
there. Not sure whether we it'd be better move it out of the gdb
namespace or leave it be. I left it because it's less work and avoids
disrupting yet-unmerged patches that use it.
gdb/ChangeLog:
2016-11-15 Pedro Alves <palves@redhat.com>
* common/common-defs.h: Update comment.
* common/gdb_unique_ptr.h: Update header comment and copyright
year.
(gdb::unique_ptr, gdb::move): Delete.
|
|
This introduces the string_printf function. Like asprintf, but
returns a std::string.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* Makefile.in (COMMON_OBS): Add utils-selftests.o.
* common/common-utils.c (string_printf): New function.
* common/common-utils.h: Include <string>.
(string_printf): Declare.
* utils-selftests.c: New file.
|
|
Ref: https://sourceware.org/ml/gdb-patches/2016-10/msg00694.html
gdb/ChangeLog:
2016-10-25 Pedro Alves <palves@redhat.com>
* common/common-defs.h (__STDC_FORMAT_MACROS): Define.
|
|
gdb/ChangeLog:
2016-10-25 Pedro Alves <palves@redhat.com>
* common/new-op.c: Add comment about -fsanitize=address.
|
|
Revert commit f6abaf7a4088 (gdb: no longer define
__STDC_CONSTANT_MACROS/__STDC_LIMIT_MACROS), with the tweak suggested
in that commit's log: the macros are now defined before any system
header is included.
This should fix AIX:
https://sourceware.org/ml/gdb-patches/2016-10/msg00682.html
gdb/ChangeLog:
2016-10-25 Pedro Alves <palves@redhat.com>
* common/common-defs.h (__STDC_CONSTANT_MACROS)
(__STDC_LIMIT_MACROS): Define.
|
|
Nowadays, if we build GDB with -fsanitize=address, we can get the asan
error below,
(gdb) quit
=================================================================
==9723==ERROR: AddressSanitizer: alloc-dealloc-mismatch (malloc vs operator delete) on 0x60200003bf70
#0 0x7f88f3837527 in operator delete(void*) (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x55527)
#1 0xac8e13 in __gnu_cxx::new_allocator<void (*)()>::deallocate(void (**)(), unsigned long) /usr/include/c++/4.9/ext/new_allocator.h:110
#2 0xac8cc2 in __gnu_cxx::__alloc_traits<std::allocator<void (*)()> >::deallocate(std::allocator<void (*)()>&, void (**)(), unsigned long) /usr/include/c++/4.9/ext/alloc_traits.h:185
....
0x60200003bf70 is located 0 bytes inside of 8-byte region [0x60200003bf70,0x60200003bf78)
allocated by thread T0 here:
#0 0x7f88f38367ef in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547ef)
#1 0xbd2762 in operator new(unsigned long) /home/yao/SourceCode/gnu/gdb/git/gdb/common/new-op.c:42
#2 0xac8edc in __gnu_cxx::new_allocator<void (*)()>::allocate(unsigned long, void const*) /usr/include/c++/4.9/ext/new_allocator.h:104
#3 0xac8d81 in __gnu_cxx::__alloc_traits<std::allocator<void (*)()> >::allocate(std::allocator<void (*)()>&, unsigned long) /usr/include/c++/4.9/ext/alloc_traits.h:182
The reason for this is that we override operator new but don't override
operator delete. This patch does the override if the code is NOT
compiled with asan.
gdb:
2016-10-25 Yao Qi <yao.qi@linaro.org>
PR gdb/20716
* common/new-op.c (__has_feature): New macro.
Don't override operator new if asan is used.
|
|
This patch replaces many (but not all) uses of
make_cleanup_restore_integer with a simple RAII-based template class.
It also removes the similar restore_execution_direction cleanup in
favor of this new class. Subsequent patches will replace other
similar cleanups with this class.
The class is typically instantiated using make_scoped_restore. This
allows for template argument deduction.
2016-10-21 Tom Tromey <tom@tromey.com>
* common/scoped_restore.h: New file.
* utils.h: Include scoped_restore.h.
* top.c (execute_command_to_string): Use scoped_restore.
* python/python.c (python_interactive_command): Use
scoped_restore.
(python_command, execute_gdb_command): Likewise.
* printcmd.c (do_one_display): Use scoped_restore.
* mi/mi-main.c (exec_continue): Use scoped_restore.
* mi/mi-cmd-var.c (mi_cmd_var_assign): Use scoped_restore.
* linux-fork.c (checkpoint_command): Use scoped_restore.
* infrun.c (restore_execution_direction): Remove.
(fetch_inferior_event): Use scoped_restore.
* compile/compile.c (compile_file_command): Use
scoped_restore.
(compile_code_command, compile_print_command): Likewise.
* cli/cli-script.c (execute_user_command): Use
scoped_restore.
(while_command, if_command, script_from_file): Likewise.
* arm-tdep.c (arm_insert_single_step_breakpoint): Use
scoped_restore.
|
|
My gnulib fix at:
https://lists.gnu.org/archive/html/bug-gnulib/2015-11/msg00010.html
was merged upstream meanwhile and our gnulib copy now includes it.
As a concidence, Kevin was telling me today that these macros are
causing a build problem on FreeBSD:
common/common-defs.h:47:0: error: "__STDC_CONSTANT_MACROS" redefined [-Werror]
#define __STDC_CONSTANT_MACROS 1
/usr/include/sys/cdefs.h:408:0: note: this is the location of the previous definition
#define __STDC_CONSTANT_MACROS
(and a similar error for __STDC_LIMIT_MACROS)
The problem seems to be that we should be defining these input macros
before including any system header, but, we're not.
So let's just revert e063da67902e ([C++] Define __STDC_CONSTANT_MACROS
/ __STDC_LIMIT_MACROS for stdint.h). If this causes a problem
somewhere, we can re-define the macros higher up in the file, before
system headers are included.
gdb/ChangeLog:
2016-10-18 Pedro Alves <palves@redhat.com>
* common/common-defs.h (__STDC_CONSTANT_MACROS)
(__STDC_LIMIT_MACROS): Delete.
|
|
Many make_cleanup uses in the code base are best eliminated by using a
"owning" smart pointer to manage ownership of the resource
automatically.
The question is _which_ smart pointer.
GDB currently supports building with a C++03 compiler. We have
std::auto_ptr in C++03, but, as is collective wisdom by now, that's
too easy to misuse, and has therefore been deprecated in C++11 and
finally removed in C++17.
It'd be nice to be able to use std::unique_ptr instead, which is the
modern, safe std::auto_ptr replacement in C++11.
In addition to extra safety -- moving (i.e., transfer of ownership of
the managed pointer between smart pointers) must be explicit --
std::unique_ptr has (among others) one nice feature that std::auto_ptr
doesn't --- ability to specify a custom deleter as template parameter.
In gdb's context, that allows easily creating a smart pointer for
memory allocated with xmalloc -- the smart pointer then knows to
release with xfree instead of delete. This is particularly
interesting when managing objects allocated in C libraries, and also,
for C++-fying parts of GDB that interact with other parts that still
return objects allocated with xmalloc.
Since std::unique_ptr's API is quite nice, and eventually we'd like to
move to C++11, this patch adds a C++03-compatible smart pointer that
exposes the subset of the std::unique_ptr API that we're interested
in. An advantage is that whenever we start requiring C++11, we won't
have to learn a new API. Meanwhile, this allows continuing to support
building with a C++03 compiler.
Since C++03 doesn't support rvalue references (boost gets close to
emulating them, but it's not fully transparent to user code), the
C++03 std::unique_ptr emulation here doesn't try hard to prevent
accidentally moving, which is where most of complication of a more
thorough emulation would be. Instead, we rely on the fact that GDB
will be usually compiled with a C++11 compiler, and use the real
std::unique_ptr in that case to catch such accidental moves. IOW, the
goal here is to allow code that would be correct using std::unique_ptr
to be equally correct in C++03 mode, and, just as efficient.
The C++03 version was originally based on GCC 7.0's std::auto_ptr and
then heavily customized to behave more like C++11's std::unique_ptr:
- Support for custom (stateless) deleters. (Support for stateful
deleters could be added, if necessary.)
- unique_ptr<T[]> partial specialization (auto_ptr<T> does not know
to use delete[]).
- Support for all of 'ptr != NULL', 'ptr == NULL' and 'if (ptr)'
using the safe bool idiom to emulate C++11's explicit bool
operator.
- There's no nullptr in C++03, so this allows initialization and
assignment from NULL instead (std::auto_ptr allows neither).
- Variable names un-uglified (ie., no leading __ prefix everywhere).
- Formatting made to follow GDB's coding conventions, including
comment style.
- Converting "move" constructors done differently in order to truly
support:
unique_ptr<Derived> func_returning_unique_ptr (.....);
...
unique_ptr<Base> ptr = func_returning_unique_ptr (.....);
At this point, it no longer shares much at all with the original file,
but, that's the history.
See comments in the code to find out more.
I thought of putting the "emulation" / shim in the "std" namespace, so
that when we start requiring C++11 at some point, no actual changes to
users of the smart pointer throughout would be necessary. Putting
things in the std namespace is technically undefined, however in
practice it doesn't cause any issue with any compiler. However,
thinking that people might be confused with seeing std::unique_ptr and
thinking that we're actually requiring C++11 already, I put the new
types in the "gdb" namespace instead.
For managing xmalloc pointers, this adds a gdb::unique_xmalloc_ptr<T>
"specialization" with a custom xfree deleter.
No actual use of any smart pointer is introduced in this patch.
That'll be done in following patches.
Tested (along with the rest of the series) on:
- NetBSD 5.1 (gcc70 on the compile farm), w/ gcc 4.1.3
- x86-64 Fedora 23, gcc 5.3.1 (gnu++03)
- x86-64 Fedora 23, and gcc 7.0 (gnu++14)
gdb/ChangeLog:
2016-10-18 Pedro Alves <palves@redhat.com>
* common/common-defs.h: Include "gdb_unique_ptr.h".
* common/gdb_unique_ptr.h: New.
|
|
gdb/ChangeLog
2016-10-14 Eli Zaretskii <eliz@gnu.org>
* common/common-defs.h [HAVE_STRINGS_H]: Include strings.h if
available, to get prototypes of 'strcasecmp' and 'strncasecmp'.
|
|
Remove some __cplusplus checks, inline EXPORTED_CONST, and update some comments.
gdb/ChangeLog:
2016-10-06 Pedro Alves <palves@redhat.com>
* cp-valprint.c (vtbl_ptr_name): Write "extern const" instead of
EXPORTED_CONST.
* stub-termcap.c: Remove __cplusplus checks.
* common/common-defs.h [!__cplusplus] (EXTERN_C, EXTERN_C_PUSH,
EXTERN_C_POP): Delete.
* common/common-exceptions.h (GDB_XCPT_SJMP): Update comments.
(GDB_XCPT) [!__cplusplus]: Delete.
(throw_exception, throw_exception_sjlj): Update comments.
* guile/guile-internal.h (as_a_scm_t_subr) [!__cplusplus]: Delete.
* guile/guile.c (extension_language_guile): Write "extern const"
instead of EXPORTED_CONST.
* features/feature_to_c.sh: Don't emit !__cplusplus code. Write
"extern const" instead of EXPORTED_CONST.
|
|
If xmalloc fails allocating memory, usually because something tried a
huge allocation, like xmalloc(-1) or some such, GDB asks the user what
to do:
.../src/gdb/utils.c:1079: internal-error: virtual memory exhausted.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
If the user says "n", that throws a QUIT exception, which is caught by
one of the multiple CATCH(RETURN_MASK_ALL) blocks somewhere up the
stack.
The default implementations of operator new / operator new[] call
malloc directly, and on memory allocation failure throw
std::bad_alloc. Currently, if that happens, since nothing catches it,
the exception escapes out of main, and GDB aborts from unhandled
exception.
This patch replaces the default operator new variants with versions
that, just like xmalloc:
#1 - Raise an internal-error on memory allocation failure.
#2 - Throw a QUIT gdb_exception, so that the exact same CATCH blocks
continue handling memory allocation problems.
A minor complication of #2 is that operator new can _only_ throw
std::bad_alloc, or something that extends it:
void* operator new (std::size_t size) throw (std::bad_alloc);
That means that if we let a gdb QUIT exception escape from within
operator new, the C++ runtime aborts due to unexpected exception
thrown.
So to bridge the gap, this patch adds a new gdb_quit_bad_alloc
exception type that inherits both std::bad_alloc and gdb_exception,
and throws _that_.
If we decide that we should be catching memory allocation errors in
fewer places than all the places we currently catch them (everywhere
we use RETURN_MASK_ALL currently), then we could change operator new
to throw plain std::bad_alloc then. But I'm considering such a change
as separate matter from this one -- it'd make sense to do the same to
xmalloc at the same time, for instance.
Meanwhile, this allows using new/new[] instead of xmalloc/XNEW/etc.
without losing the "virtual memory exhausted" internal-error
safeguard.
Tested on x86_64 Fedora 23.
gdb/ChangeLog:
2016-09-23 Pedro Alves <palves@redhat.com>
* Makefile.in (SFILES): Add common/new-op.c.
(COMMON_OBS): Add common/new-op.o.
(new-op.o): New rule.
* common/common-exceptions.h: Include <new>.
(struct gdb_quit_bad_alloc): New type.
* common/new-op.c: New file.
gdb/gdbserver/ChangeLog:
2016-09-23 Pedro Alves <palves@redhat.com>
* Makefile.in (SFILES): Add common/new-op.c.
(OBS): Add common/new-op.o.
(new-op.o): New rule.
|
|
Ref: https://sourceware.org/ml/gdb-patches/2016-09/msg00203.html
The std::{min,max} patch caused build failures when configuring GDB
with with --disable-nls and using GCC 4.1.
The reason is this bit in common/gdb_locale.h:
#ifdef ENABLE_NLS
...
#else
# define gettext(Msgid) (Msgid)
...
#endif
This causes problems if the <libintl.h> header is first included at
any point after "gdb_locale.h".
Specifically, the gettext&co declarations in libintl.h:
extern char *gettext (__const char *__msgid)
__THROW __attribute_format_arg__ (1);
end up broken after preprocessing:
extern char *(__const char *__msgid)
throw () __attribute__ ((__format_arg__ (1)));
After the std::min/std::max change to include <algorithm>, this now
happens with at least the GCC 4.1 copy of <algorithm>, which includes
<libintl.h> via <bits/stl_algobase.h>, <iosfwd>, and
<bits/c++locale.h>.
The fix is to simply remove the troublesome *gettext and *textdomain
macros, leaving only the _ and N_ ones.
gdb/ChangeLog:
2016-09-19 Pedro Alves <palves@redhat.com>
* common/gdb_locale.h [!ENABLE_NLS] (gettext, dgettext, dcgettext,
textdomain, bindtextdomain): Delete macros.
* main.c (captured_main) [!ENABLE_NLS]: Skip bintextdomain and
textdomain calls.
|
|
The ARI complains about this new file:
common/signals-state-save-restore.c:46: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:59: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:87: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:92: warning: gettext: All messages should be marked up with _.
Since these are untranslatable strings, use () instead of _().
gdb/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
* common/signals-state-save-restore.c
(save_original_signals_state, restore_original_signals_state):
Wrap perror_with_name arguments with '()'.
|
|
gdb's (or gdbserver's) own signal handling should not interfere with
the signal dispositions their spawned children inherit. However, it
currently does. For example, some paths in gdb cause SIGPIPE to be
set to SIG_IGN, and as consequence, the child starts with SIGPIPE to
set to SIG_IGN too, even though gdb was started with SIGPIPE set to
SIG_DFL.
This is because the exec family of functions does not reset the signal
disposition of signals that are set to SIG_IGN:
http://pubs.opengroup.org/onlinepubs/7908799/xsh/execve.html
Signals set to the default action (SIG_DFL) in the calling process
image are set to the default action in the new process
image. Signals set to be ignored (SIG_IGN) by the calling process
image are set to be ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action
in the new process image (see <signal.h>).
And neither does it reset signal masks or flags.
In order to be transparent, when spawning new child processes to debug
(with "run", etc.), reset signal actions and mask back to what was
originally inherited from gdb/gdbserver's parent, just before execing
the target program to debug.
gdb/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* Makefile.in (SFILES): Add
common/signals-state-save-restore.c.
(HFILES_NO_SRCDIR): Add common/signals-state-save-restore.h.
(COMMON_OBS): Add signals-state-save-restore.o.
(signals-state-save-restore.o): New rule.
* configure: Regenerate.
* fork-child.c: Include "signals-state-save-restore.h".
(fork_inferior): Call restore_original_signals_state.
* main.c: Include "signals-state-save-restore.h".
(captured_main): Call save_original_signals_state.
* common/common.m4: Add sigaction to AC_CHECK_FUNCS checks.
* common/signals-state-save-restore.c: New file.
* common/signals-state-save-restore.h: New file.
gdb/gdbserver/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* Makefile.in (OBS): Add signals-state-save-restore.o.
(signals-state-save-restore.o): New rule.
* config.in: Regenerate.
* configure: Regenerate.
* linux-low.c: Include "signals-state-save-restore.h".
(linux_create_inferior): Call
restore_original_signals_state.
* server.c: Include "dispositions-save-restore.h".
(captured_main): Call save_original_signals_state.
gdb/testsuite/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* gdb.base/signals-state-child.c: New file.
* gdb.base/signals-state-child.exp: New file.
* gdb.gdb/selftest.exp (do_steps_and_nexts): Add new pattern.
|
|
FreeBSD's librt uses SIGLIBRT as an internal signal to implement
SIGEV_THREAD sigevent notifications. Similar to SIGLWP or SIGCANCEL
this signal should be passed through to child processes by default.
include/ChangeLog:
* signals.def: Add GDB_SIGNAL_LIBRT.
gdb/ChangeLog:
* common/signals.c (gdb_signal_from_host): Handle SIGLIBRT.
(do_gdb_signal_to_host): Likewise.
* infrun.c (_initialize_infrun): Pass GDB_SIGNAL_LIBRT through to
programs.
* proc-events.c (signal_table): Add entry for SIGLIBRT.
|
|
Eclipse CDT now supports enabling execution recording using two methods
(full and btrace) and both formats for btrace (bts and pt). In the
event that recording is enabled behind the back of the GUI (by the user
on the command line, or a script), we need to know which method/format
are being used, so it can be correctly reflected in the interface. This
patch adds this information to the =record-started async record.
Before:
=record-started,thread-group="i1"
After:
=record-started,thread-group="i1",method="btrace",format="bts"
=record-started,thread-group="i1",method="btrace",format="pt"
=record-started,thread-group="i1",method="full"
The "format" field is only present when the current method supports
multiple formats (only the btrace method as of now).
gdb/ChangeLog:
* NEWS: Mention the new fields in =record-started.
* common/btrace-common.h (btrace_format_short_string): New function
declaration.
* common/btrace-common.c (btrace_format_short_string): New
function.
* mi/mi-interp.c (mi_record_changed): Output method and format
fields in the =record-started record.
* record-btrace.c (record_btrace_open): Adapt record_changed
notification.
* record-full.c (record_full_open): Likewise.
* record.c (cmd_record_stop): Likewise.
gdb/doc/ChangeLog:
* gdb.texinfo (GDB/MI Async Records): Document method and
format fields in =record-started.
* observer.texi (record_changed): Add method and format
parameters.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-record-changed.exp: Adjust =record-started output
matching.
|
|
in libiberty's xmalloc code.
|
|
The exceptions-across-readline issue was fixed by the previous commit.
Let's try this again.
gdb/ChangeLog:
2016-04-22 Pedro Alves <palves@redhat.com>
* common/common-exceptions.h (GDB_XCPT_TRY): Remove mention of
the foreign frames issue.
[__cplusplus] (GDB_XCPT): Define as GDB_XCPT_TRY.
|
|
If we map GDB'S TRY/CATCH macros to C++ try/catch, GDB breaks on
systems where readline isn't built with exceptions support. The
problem is that readline calls into GDB through the callback
interface, and if GDB's callback throws a C++ exception/error, the
system unwinder won't manage to unwind past the readline frame, and
ends up calling std::terminate(), which aborts the process:
(gdb) whatever-command-that-causes-an-error
terminate called after throwing an instance of 'gdb_exception_RETURN_MASK_ERROR'
Aborted
$
This went unnoticed for so long because:
- the x86-64 ABI requires -fasynchronous-unwind-tables, making it
possible for exceptions to cross readline with no special handling.
But e.g., on ARM or AIX, unless you build readline with
-fexceptions, you trip on the problem.
- TRY/CATCH was mapped to setjmp/longjmp, even in C++ mode, until
quite recently.
The fix is to catch and save any GDB exception that is thrown inside
the GDB readline callback, and then once the callback returns back to
the GDB code that called into readline in the first place, rethrow the
saved GDB exception.
This is similar in spirit to how we catch/map GDB exceptions at the
GDB/Python and GDB/Guile API boundaries.
The next question is then: if we intercept all exceptions within GDB's
readline callback, should we simply return normally to readline? The
callback prototype has no way to signal an error back to readline (*).
The answer is no -- if we return normally, we'll be returning to a
loop inside rl_callback_read_char that continues processing pending
input, calling into GDB again, redisplaying the prompt, etc. Thus if
we want to error out of rl_callback_read_char, we need to long jump
across it, just like we always did before TRY/CATCH were ever mapped
to C++ exceptions.
My first approach built a specialized API to handle this, with a
couple macros to hide the setjmp/longjmp and the struct gdb_exception
saving/rethrowing.
However, I realized that we need to:
- Handle multiple active rl_callback_read_char invocations. If,
while processing input something triggers a secondary prompt, we
end up in a nested rl_callback_read_char call, through
gdb_readline_wrapper.
- Propagate a struct gdb_exception along with the longjmp.
... and that this is exactly what the setjmp/longjmp-based TRY/CATCH
does.
So the fix makes the setjmp/longjmp TRY/CATCH always available under
new TRY_SJLJ/CATCH_SJLJ aliases, even when TRY/CATCH is mapped to C++
try/catch, and then uses TRY_SJLJ/CATCH_SJLJ to propagate GDB
exceptions across the readline callback.
This turns out to be a much better looking fix than my bespoke API
attempt, even. We'll probably be able to simplify TRY_SJLJ/CATCH_SJLJ
when we finally get rid of TRY/CATCH all over the tree, but until
then, this reuse seems quite nice for avoiding a second parallel
setjmp/longjmp mechanism.
(*) - maybe we could propose a readline API change, but we still need
to handle current readline, anyway.
gdb/ChangeLog:
2016-04-22 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (enum catcher_state, struct catcher)
(current_catcher): Define in C++ mode too.
(exceptions_state_mc_catch): Call throw_exception_sjlj instead of
throw_exception.
(throw_exception_sjlj, throw_exception_cxx): New functions,
factored out from throw_exception.
(throw_exception): Reimplement.
* common/common-exceptions.h (exceptions_state_mc_init)
(exceptions_state_mc_action_iter)
(exceptions_state_mc_action_iter_1, exceptions_state_mc_catch):
Declare in C++ mode too.
(TRY): Rename to ...
(TRY_SJLJ): ... this.
(CATCH): Rename to ...
(CATCH_SJLJ): ... this.
(END_CATCH): Rename to ...
(END_CATCH_SJLJ): ... this.
[GDB_XCPT == GDB_XCPT_SJMP] (TRY, CATCH, END_CATCH): Map to SJLJ
equivalents.
(throw_exception): Update comments.
(throw_exception_sjlj): Declare.
* event-top.c (gdb_rl_callback_read_char_wrapper): Extend intro
comment. Wrap body in TRY_SJLJ/CATCH_SJLJ and rethrow any
intercepted exception.
(gdb_rl_callback_handler): New function.
(gdb_rl_callback_handler_install): Always install
gdb_rl_callback_handler as readline callback.
|
|
We don't currently handle the case of gdb's readline callback throwing
gdb C++ exceptions across a readline that wasn't built with
-fexceptions. The end result is:
(gdb) whatever-command-that-causes-an-error
terminate called after throwing an instance of 'gdb_exception_RETURN_MASK_ERROR'
Aborted
$
Until that is fixed, revert back to sjlj-based exceptions again.
gdb/ChangeLog:
2016-04-21 Pedro Alves <palves@redhat.com>
* common/common-exceptions.h (GDB_XCPT_TRY): Add comment.
(GDB_XCPT): Always define as GDB_XCPT_SJMP.
|
|
The current MPX target descriptions assume that MPX is always combined
with AVX, however that's not correct. We can have machines with MPX
and without AVX; or machines with AVX and without MPX.
This patch adds new target descriptions for machines that support
both MPX and AVX, as duplicates of the existing MPX descriptions.
The following commit will remove AVX from the MPX-only descriptions.
2016-04-16 Walfred Tedeschi <walfred.tedeschi@intel.com>
gdb/ChangeLog:
* amd64-linux-tdep.c (features/i386/amd64-avx-mpx-linux.c):
New include.
(amd64_linux_core_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
(_initialize_amd64_linux_tdep): Call initialize_tdesc_amd64_avx_mpx_linux.
* amd64-linux-tdep.h (tdesc_amd64_avx_mpx_linux): New definition.
* amd64-tdep.c (features/i386/amd64-avx-mpx.c): New include.
(amd64_target_description): Add case for X86_XSTATE_AVX_MPX_MASK.
(_initialize_amd64_tdep): Call initialize_tdesc_amd64_avx_mpx.
* common/x86-xstate.h (X86_XSTATE_MPX_MASK): Remove AVX bits.
(X86_XSTATE_AVX_MPX_MASK): New case.
* features/Makefile (i386/i386-avx-mpx, i386/i386-avx-mpx-linux)
(i386/amd64-avx-mpx, i386/amd64-avx-mpx-linux): New rules.
(i386/i386-avx-mpx-expedite, i386/i386-avx-mpx-linux-expedite)
(i386/amd64-avx-mpx-expedite, i386/amd64-avx-mpx-linux-expedite):
New expedites.
* i386-linux-tdep.c (features/i386/i386-avx-mpx-linux.c): New
include.
(i386_linux_core_read_description): Add case
X86_XSTATE_AVX_MPX_MASK.
(_initialize_i386_linux_tdep): Call
initialize_tdesc_i386_avx_mpx_linux.
* i386-linux-tdep.h (tdesc_i386_avx_mpx_linux): New include.
* i386-tdep.c (features/i386/i386-avx-mpx.c): New include.
(i386_target_description): Add case for X86_XSTATE_AVX_MPX_MASK.
* x86-linux-nat.c (x86_linux_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
* features/i386/amd64-avx-mpx-linux.xml: New file.
* features/i386/i386-avx-mpx-linux.xml: New file.
* features/i386/i386-avx-mpx.xml: New file.
* features/i386/amd64-avx-mpx.xml: New file.
* features/i386/amd64-avx-mpx-linux.c: Generated.
* features/i386/amd64-avx-mpx.c: Generated.
* features/i386/i386-avx-mpx-linux.c: Generated.
* features/i386/i386-avx-mpx.c: Generated.
* regformats/i386/amd64-avx-mpx-linux.dat: Generated.
* regformats/i386/amd64-avx-mpx.dat: Generated.
* regformats/i386/i386-avx-mpx-linux.dat: Generated.
* regformats/i386/i386-avx-mpx.dat: Generated.
gdb/gdbserver/ChangeLog:
* Makefile.in (clean): Add removal for i386-avx-mpx.c,
i386-avx-mpx-linux.c, amd64-avx-mpx.c and amd64-avx-mpx-linux.c.
(i386-avx-mpx.c, i386-avx-mpx-linux.c, amd64-avx-mpx.c)
(amd64-avx-mpx-linux.c): New rules.
(amd64-avx-mpx-linux-ipa.o, i386-avx-mpx-linux-ipa.o): New rule.
* configure.srv (srv_i386_regobj): Add i386-avx-mpx.o.
(srv_i386_linux_regobj): Add i386-avx-mpx-linux.o.
(srv_amd64_regobj): Add amd64-avx-mpx.o.
(srv_amd64_linux_regobj): Add amd64-avx-mpx-linux.o.
(srv_i386_xmlfiles): Add i386/i386-avx-mpx.xml.
(srv_amd64_xmlfiles): Add i386/amd64-avx-mpx.xml.
(srv_i386_linux_xmlfiles): Add i386/i386-avx-mpx-linux.xml.
(srv_amd64_linux_xmlfiles): Add i386/amd64-avx-mpx-linux.xml.
(ipa_i386_linux_regobj): Add i386-avx-mpx-linux-ipa.o.
(ipa_amd64_linux_regobj): Add amd64-avx-mpx-linux-ipa.o.
* linux-x86-low.c (x86_linux_read_description): Add case for
X86_XSTATE_AVX_MPX_MASK.
(x86_get_ipa_tdesc_idx): Add cases for avx_mpx.
(initialize_low_arch): Call init_registers_amd64_avx_mpx_linux and
init_registers_i386_avx_mpx_linux.
* linux-i386-ipa.c (get_ipa_tdesc): Add case for avx_mpx.
(initialize_low_tracepoint): Call
init_registers_i386_avx_mpx_linux.
* linux-amd64-ipa.c (get_ipa_tdesc): Add case for avx_mpx.
(initialize_low_tracepoint): Call
init_registers_amd64_avx_mpx_linux.
* linux-x86-tdesc.h (X86_TDESC_AVX_MPX): New enum value.
(init_registers_amd64_avx_mpx_linux, tdesc_amd64_avx_mpx_linux)
(init_registers_i386_avx_mpx_linux, tdesc_i386_avx_mpx_linux): New
declarations.
|
|
Now that we don't ever throw GDB exceptions from signal handlers [1],
we can switch back to having TRY/CATCH implemented in terms of C++
try/catch instead of sigjmp/longjmp.
[1] - https://sourceware.org/ml/gdb-patches/2016-03/msg00351.html
Tested on x86_64 Fedora 23, native and gdbserver.
gdb/ChangeLog:
2016-04-12 Pedro Alves <palves@redhat.com>
* common/common-exceptions.h (GDB_XCPT_TRY): Update comment.
[__cplusplus] (GDB_XCPT): Define as GDB_XCPT_TRY.
|
|
Now that we don't ever throw GDB exceptions from signal handlers [1],
we can switch to have TRY/CATCH implemented in terms of plain
setjmp/longjmp instead of sigsetjmp/siglongjmp.
In https://sourceware.org/ml/gdb-patches/2015-02/msg00114.html, Yichun
Zhang mentions a 11%/14%+ speedup in his GDB python scripts with a
patch that did something similar to only a specific set of TRY/CATCH
calls.
[1] - https://sourceware.org/ml/gdb-patches/2016-03/msg00351.html
Tested on x86_64 Fedora 23, native and gdbserver.
gdb/ChangeLog:
2016-04-12 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <buf>: Now a
'jmp_buf' instead of SIGJMP_BUF.
(exceptions_state_mc_init): Change return type to 'jmp_buf'.
(throw_exception): Use longjmp instead of SIGLONGJMP.
* common/common-exceptions.h: Include <setjmp.h> instead of
"gdb_setjmp.h".
(exceptions_state_mc_init): Change return type to 'jmp_buf'.
[GDB_XCPT == GDB_XCPT_SJMP] (TRY): Use setjmp instead of
SIGSETJMP.
* cp-support.c: Include "gdb_setjmp.h".
|
|
No longer necessary.
gdb/ChangeLog:
2016-04-12 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (exception_rethrow): Remove
prepare_to_throw_exception call.
* common/common-exceptions.h (prepare_to_throw_exception): Delete
declaration.
* exceptions.c (prepare_to_throw_exception): Delete.
gdb/gdbserver/ChangeLog:
2016-04-12 Pedro Alves <palves@redhat.com>
* utils.c (prepare_to_throw_exception): Delete.
|
|
gdb/ChangeLog:
2016-03-09 Pedro Alves <palves@redhat.com>
* common/buffer.h (buffer_grow_char): New function.
* top.c: Include buffer.h.
(gdb_readline_no_editing): Rename 'prompt_arg' parameter to
'prompt'. Use struct buffer instead of xrealloc.
|
|
Two obvious fixes.
gdb/ChangeLog:
* common/common-utils.c (skip_spaces): Fix comment.
(skip_to_space_const): Likewise.
|
|
Add a new function to print a thread ID, in the style of paddress,
plongest, etc. and adjust all CLI-reachable paths to use it.
This gives us a single place to tweak to print inferior-qualified
thread IDs later:
- [Switching to thread 1 (Thread 0x7ffff7fc2740 (LWP 8155))]
+ [Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
etc., though for now, this has no user-visible change.
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* breakpoint.c (remove_threaded_breakpoints)
(print_one_breakpoint_location): Use print_thread_id.
* btrace.c (btrace_enable, btrace_disable, btrace_teardown)
(btrace_fetch, btrace_clear): Use print_thread_id.
* common/print-utils.c (CELLSIZE): Delete.
(get_cell): Rename to ...
(get_print_cell): ... this and made extern. Adjust call callers.
Adjust to use PRINT_CELL_SIZE.
* common/print-utils.h (get_print_cell): Declare.
(PRINT_CELL_SIZE): New.
* gdbthread.h (print_thread_id): Declare.
* infcmd.c (signal_command): Use print_thread_id.
* inferior.c (print_inferior): Use print_thread_id.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe)
(print_signal_received_reason): Use print_thread_id.
* record-btrace.c (record_btrace_info)
(record_btrace_resume_thread, record_btrace_cancel_resume)
(record_btrace_step_thread, record_btrace_wait): Use
print_thread_id.
* thread.c (thread_apply_all_command): Use print_thread_id.
(print_thread_id): New function.
(thread_apply_command): Use print_thread_id.
(thread_command, thread_find_command, do_captured_thread_select):
Use print_thread_id.
|
|
The GNU Coding Standards say:
"Please do not include any trademark acknowledgements in GNU
software packages or documentation."
gdb/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
gdb/gdbserver/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
gdb/doc/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
Remove use of the registered trademark symbol throughout.
|
|
gdb/ChangeLog:
Update year range in copyright notice of all files.
|
|
This patch teaches GDBServer how to software single step on ARM
linux by sharing code with GDB.
The arm_get_next_pcs function in GDB is now shared with GDBServer. So
that GDBServer can use the function to return the possible addresses of
the next PC.
A proper shared context was also needed so that we could share the code,
this context is described in the arm_get_next_pcs structure.
Testing :
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in (ALL_TARGET_OBS): Append arm-get-next-pcs.o,
arm-linux.o.
(ALLDEPFILES): Append arm-get-next-pcs.c, arm-linux.c
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* arch/arm-get-next-pcs.c: New file.
* arch/arm-get-next-pcs.h: New file.
* arch/arm-linux.h: New file.
* arch/arm-linux.c: New file.
* arm.c: Include common-regcache.c.
(thumb_advance_itstate): Moved from arm-tdep.c.
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm.h (submask): Move macro from arm-tdep.h
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_advance_itstate): Moved declaration from arm-tdep.h
(arm_instruction_changes_pc): Likewise.
(thumb_instruction_changes_pc): Likewise.
(thumb2_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
* arm-linux-tdep.c: Include arch/arm.h, arch/arm-get-next-pcs.h
arch/arm-linux.h.
(arm_linux_get_next_pcs_ops): New struct.
(ARM_SIGCONTEXT_R0, ARM_UCONTEXT_SIGCONTEXT,
ARM_OLD_RT_SIGFRAME_SIGINFO, ARM_OLD_RT_SIGFRAME_UCONTEXT,
ARM_NEW_RT_SIGFRAME_UCONTEXT, ARM_NEW_SIGFRAME_MAGIC): Move stack
layout defines to arch/arm-linux.h.
(arm_linux_sigreturn_next_pc_offset): Move to arch/arm-linux.c.
(arm_linux_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.c: Include arch/arm-get-next-pcs.h.
(arm_get_next_pcs_ops): New struct.
(submask): Move macro to arm.h.
(bit): Likewise.
(bits): Likewise.
(sbits): Likewise.
(BranchDest): Likewise.
(thumb_instruction_changes_pc): Move to arm.c
(thumb2_instruction_changes_pc): Likewise.
(arm_instruction_changes_pc): Likewise.
(shifted_reg_val): Likewise.
(thumb_advance_itstate): Likewise.
(thumb_get_next_pc_raw): Move to arm-get-next-pcs.c.
(arm_get_next_pc_raw): Likewise.
(arm_get_next_pc): Likewise.
(thumb_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence_raw): Likewise.
(arm_deal_with_atomic_sequence): Likewise.
(arm_get_next_pcs_read_memory_unsigned_integer): New function.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_software_single_step): Adjust for arm_get_next_pcs
implementation.
* arm-tdep.h: (arm_get_next_pc): Remove declaration.
(arm_get_next_pcs_read_memory_unsigned_integer):
New declaration.
(arm_get_next_pcs_addr_bits_remove): Likewise.
(arm_get_next_pcs_syscall_next_pc): Likewise.
(arm_get_next_pcs_is_thumb): Likewise.
(arm_deal_with_atomic_sequence: Remove declaration.
* common/gdb_vecs.h: Add CORE_ADDR vector definition.
* configure.tgt (aarch64*-*-linux): Add arm-get-next-pcs.o,
arm-linux.o.
(arm*-wince-pe): Add arm-get-next-pcs.o.
(arm*-*-linux*): Add arm-get-next-pcs.o, arm-linux.o,
arm-get-next-pcs.o
(arm*-*-netbsd*,arm*-*-knetbsd*-gnu): Add arm-get-next-pcs.o.
(arm*-*-openbsd*): Likewise.
(arm*-*-symbianelf*): Likewise.
(arm*-*-*): Likewise.
* symtab.h: Move CORE_ADDR vector definition to gdb_vecs.h.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Append arch/arm-linux.c,
arch/arm-get-next-pcs.c.
(arm-linux.o): New rule.
(arm-get-next-pcs.o): New rule.
* configure.srv (arm*-*-linux*): Add arm-get-next-pcs.o,
arm-linux.o.
* linux-aarch32-low.c (arm_abi_breakpoint): Remove macro. Moved
to linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): Make non-static.
* linux-aarch32-low.h (arm_abi_breakpoint): New macro. Moved
from linux-aarch32-low.c.
(arm_eabi_breakpoint, arm_breakpoint): Likewise.
(arm_breakpoint_len, thumb_breakpoint): Likewise.
(thumb_breakpoint_len, thumb2_breakpoint): Likewise.
(thumb2_breakpoint_len): Likewise.
(arm_is_thumb_mode): New declaration.
* linux-arm-low.c: Include arch/arm-linux.h
aarch/arm-get-next-pcs.h, sys/syscall.h.
(get_next_pcs_ops): New struct.
(get_next_pcs_addr_bits_remove): New function.
(get_next_pcs_is_thumb): New function.
(get_next_pcs_read_memory_unsigned_integer): Likewise.
(arm_sigreturn_next_pc): Likewise.
(get_next_pcs_syscall_next_pc): Likewise.
(arm_gdbserver_get_next_pcs): Likewise.
(struct linux_target_ops) <arm_gdbserver_get_next_pcs>:
Initialize.
* linux-low.h: Move CORE_ADDR vector definition to gdb_vecs.h.
* server.h: Include gdb_vecs.h.
|
|
This patch is in preparation for software single step support on ARM in
GDBServer. It adds a new shared function regcache_raw_read_unsigned and
regcache_raw_get_unsigned so that GDB and GDBServer can use the same call
to fetch a raw register into an integer.
No regressions, tested on ubuntu 14.04 ARMv7 and x86.
With gdbserver-{native,extended} / { -marm -mthumb }
gdb/ChangeLog:
* Makefile.in (SFILES): Append common/common-regcache.c.
(COMMON_OBS): Append common/common-regcache.o.
(common-regcache.o): New rule.
* common/common-regcache.h (register_status) New enum.
(regcache_raw_read_unsigned): New declaration.
* common/common-regcache.c: New file.
* regcache.h (enum register_status): Move to common-regcache.h.
(regcache_raw_read_unsigned): Likewise.
(regcache_raw_get_unsigned): Likewise.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Append common/common-regcache.c.
(OBS): Append common-regcache.o.
(common-regcache.o): New rule.
* regcache.c (init_register_cache): Initialize cache to
REG_UNAVAILABLE.
(regcache_raw_read_unsigned): New function.
* regcache.h (REG_UNAVAILABLE, REG_VALID): Replaced by shared
register_status enum.
|
|
Ref: https://sourceware.org/ml/gdb/2015-12/msg00014.html
Fixes the build in C++ mode with g++ 4.4:
gdb/btrace.h: In function ‘size_t VEC_btrace_insn_s_embedded_size(int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_alloc(int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_copy(VEC_btrace_insn_s*)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘VEC_btrace_insn_s* VEC_btrace_insn_s_merge(VEC_btrace_insn_s*, VEC_btrace_insn_s*)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/btrace.h: In function ‘int VEC_btrace_insn_s_reserve(VEC_btrace_insn_s**, int, const char*, unsigned int)’:
gdb/btrace.h:84: error: invalid access to non-static data member ‘VEC_btrace_insn_s::vec’ of NULL object
gdb/btrace.h:84: error: (perhaps the ‘offsetof’ macro was used incorrectly)
gdb/ChangeLog:
2015-12-16 Pedro Alves <palves@redhat.com>
* common/vec.h (vec_offset): New macro.
(DEF_VEC_ALLOC_FUNC_I, DEF_VEC_ALLOC_FUNC_O): Use it instead of
offsetof.
|
|
We currently throw exceptions from signal handlers (e.g., for
Quit/ctrl-c). But throwing C++ exceptions from signal handlers is
undefined. (That doesn't restore signal masks, like siglongjmp does,
and, because asynchronous signals can arrive at any instruction, we'd
have to build _everything_ with -fasync-unwind-tables to make it
reliable.) It happens to work on x86_64 GNU/Linux at least, but it's
likely broken on other ports.
Until we stop throwing from signal handlers, use setjmp/longjmp based
exceptions in C++ mode as well.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-exceptions.h (GDB_XCPT_SJMP, GDB_XCPT_TRY)
(GDB_XCPT_RAW_TRY, GDB_XCPT): Define.
Replace __cplusplus checks with GDB_XCPT checks throughout.
* common/common-exceptions.c: Replace __cplusplus checks with
GDB_XCPT checks throughout.
|
|
Cross building gdbserver for --host=x86_64-w64-mingw32 with gcc 4.8.4
20141219 (Fedora MinGW 4.8.4-1.fc20), I get:
src/gdb/gdbserver/tracepoint.c: In function 'cmd_qtdp':
src/gdb/gdbserver/tracepoint.c:2577:7: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Defined %stracepoint %d at 0x%s, "
^
src/gdb/gdbserver/tracepoint.c:2577:7: error: unknown conversion type character 'l' in format [-Werror=format=]
src/gdb/gdbserver/tracepoint.c:2577:7: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'stop_tracing':
src/gdb/gdbserver/tracepoint.c:3447:7: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Stopping the trace because "
^
src/gdb/gdbserver/tracepoint.c:3447:7: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'collect_data_at_tracepoint':
src/gdb/gdbserver/tracepoint.c:4651:3: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Making new traceframe for tracepoint %d at 0x%s, hit %" PRIu64,
^
src/gdb/gdbserver/tracepoint.c:4651:3: error: too many arguments for format [-Werror=format-extra-args]
src/gdb/gdbserver/tracepoint.c: In function 'collect_data_at_step':
src/gdb/gdbserver/tracepoint.c:4687:3: error: unknown conversion type character 'l' in format [-Werror=format=]
trace_debug ("Making new step traceframe for "
^
trace_debug is a macro that calls:
static void trace_vdebug (const char *, ...) ATTRIBUTE_PRINTF (1, 2);
The calls that fail checking use PRIu64, etc., like:
trace_debug ("Defined %stracepoint %d at 0x%s, "
"enabled %d step %" PRIu64 " pass %" PRIu64,
tpoint->type == fast_tracepoint ? "fast "
: tpoint->type == static_tracepoint ? "static " : "",
tpoint->number, paddress (tpoint->address), tpoint->enabled,
tpoint->step_count, tpoint->pass_count);
gnulib's stdio/printf module replacements may make %llu, etc. work on
mingw, instead of the MS-specific %I64u, and thus may make PRIu64
expand to %llu. However, gcc isn't aware of that, because libiberty's
ansidecl.h defines ATTRIBUTE_PRINTF as using attribute format(printf).
But, with that format, gcc checks for MS-style format strings (%I64u).
In order to have gcc expect gnu/standard formats, we need to use
gnu_printf format instead. Which version to use (printf/gnu_printf)
depends on msvcrt and mingw version, and so gnulib has a
configure-time check, and defines _GL_ATTRIBUTE_FORMAT_PRINTF
accordingly.
Since _GL_ATTRIBUTE_FORMAT_PRINTF is compatible with ATTRIBUTE_PRINTF,
the fix is simply to make use of the former.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-defs.h (ATTRIBUTE_PRINTF): Redefine in terms of
_GL_ATTRIBUTE_FORMAT_PRINTF after including ansidecl.h.
|
|
With some toolchains, building in C++ mode stumbles on many instances
of:
In file included from ../../src/gdb/../include/splay-tree.h:43:0,
from ../../src/gdb/dcache.c:26:
build-gnulib/import/inttypes.h:61:3: error: #error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
# error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
^
make: *** [dcache.o] Error 1
That's:
#if !(INT_MIN == INT32_MIN && INT_MAX == INT32_MAX)
# error "This file assumes that 'int' has exactly 32 bits. Please report your platform and compiler to <bug-gnulib@gnu.org>."
#endif
I see it when cross building for --host=x86_64-w64-mingw32 using
Fedora 20's g++ (gcc version 4.8.4 20141219 (Fedora MinGW
4.8.4-1.fc20)), Simon reports seeing this on several cross compilers
too.
The issue is that on some hosts that predate C++11, when using C++ one
must define __STDC_CONSTANT_MACROS/__STDC_LIMIT_MACROS to make visible
the definitions of INTMAX_C / INTMAX_MAX etc.
This was a C99 requirement that later C++11 -- the first to define
stdint.h -- removed, and then C11 removed it as well.
https://www.gnu.org/software/gnulib/manual/html_node/stdint_002eh.html
says that gnulib's stdint.h fixes this, but because we run gnulib's
configure tests with a C compiler, gnulib determines that mingw's
stdint.h is C99-compliant, and doesn't actually replace it. Actually,
even though configuring gnulib with a C++ compiler does result in
gnulib replacing stdint.h, the resulting replacement is broken for
mingw, because it defines uintptr_t incorrectly. I sent a gnulib
patch upstream to fix that, here:
https://lists.gnu.org/archive/html/bug-gnulib/2015-11/msg00004.html
but then even with that, gnulib still stumbles on other
configured-with-C++-compiler problems.
So for now, until gnulib + C++ is fixed upstream and then gdb's copy
is updated, which may take a while, I think it's best to keep
configuring gnulib in C, and define
__STDC_LIMIT_MACROS/__STDC_CONSTANT_MACROS ourselves, just like C99
intended.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* common/common-defs.h (__STDC_CONSTANT_MACROS)
(__STDC_LIMIT_MACROS): Define before including stdint.h.
|
|
This patch fixes C++ build errors like this:
/home/pedro/gdb/mygit/cxx-convertion/src/gdb/linux-tdep.c:1126:35: error: invalid conversion from ‘int’ to ‘filterflags’ [-fpermissive]
| COREFILTER_HUGETLB_PRIVATE);
^
This is a case of enums used as bit flags. Unlike "regular" enums,
these values are supposed to be or'ed together. However, in C++, the
type of "(ENUM1 | ENUM2)" is int, and you then can't assign an int to
an enum variable without a cast. That means that this:
enum foo_flags flags = 0;
if (...)
flags |= FOO_FLAG1;
if (...)
flags |= FOO_FLAG2;
... would have to be written as:
enum foo_flags flags = (enum foo_flags) 0;
if (...)
flags = (enum foo_flags) (flags | FOO_FLAG1);
if (...)
flags = (enum foo_flags) (flags | FOO_FLAG2);
which is ... ugly. Alternatively, we'd have to use an int for the
variable's type, which isn't ideal either.
This patch instead adds an "enum flags" class. "enum flags" are
exactly the enums where the values are bits that are meant to be ORed
together.
This allows writing code like the below, while with raw enums this
would fail to compile without casts to enum type at the assignments to
'f':
enum some_flag
{
flag_val1 = 1 << 1,
flag_val2 = 1 << 2,
flag_val3 = 1 << 3,
flag_val4 = 1 << 4,
};
DEF_ENUM_FLAGS_TYPE(enum some_flag, some_flags)
some_flags f = flag_val1 | flag_val2;
f |= flag_val3;
It's also possible to assign literal zero to an enum flags variable
(meaning, no flags), dispensing either adding an awkward explicit "no
value" value to the enumeration or the cast to assignments from 0.
For example:
some_flags f = 0;
f |= flag_val3 | flag_val4;
Note that literal integers other than zero do fail to compile:
some_flags f = 1; // error
C is still supported -- DEF_ENUM_FLAGS_TYPE is just a typedef in that
case.
gdb/ChangeLog:
2015-11-17 Pedro Alves <palves@redhat.com>
* btrace.h: Include common/enum-flags.h.
(btrace_insn_flags): Define.
(struct btrace_insn) <flags>: Change type.
(btrace_function_flags): Define.
(struct btrace_function) <flags>: Change type.
(btrace_thread_flags): Define.
(struct btrace_thread_info) <flags>: Change type.
* c-exp.y (token_flags): Rename to ...
(token_flag): ... this.
(token_flags): Define.
(struct token) <flags>: Change type.
* common/enum-flags.h: New file.
* compile/compile-c-types.c (convert_qualified): Change type of
'quals' local.
* compile/compile-internal.h: Include "common/enum-flags.h".
(gcc_qualifiers_flags): Define.
* completer.c (enum reg_completer_targets): Rename to ...
(enum reg_completer_target): ... this.
(reg_completer_targets): Define.
(reg_or_group_completer_1): Change type of 'targets' parameter.
* disasm.c (do_mixed_source_and_assembly_deprecated): Change type
of 'psl_flags' local.
(do_mixed_source_and_assembly): Change type of 'psl_flags' local.
* infrun.c: Include "common/enum-flags.h".
(enum step_over_what): Rename to ...
(enum step_over_what_flag): ... this.
(step_over_what): Change type.
(start_step_over): Change type of 'step_what' local.
(thread_still_needs_step_over): Now returns a step_over_what.
Adjust.
(keep_going_pass_signal): Change type of 'step_what' local.
* linux-tdep.c: Include "common/enum-flags.h".
(enum filterflags): Rename to ...
(enum filter_flag): ... this.
(filter_flags): Define.
(dump_mapping_p): Change type of 'filterflags' parameter.
(linux_find_memory_regions_full): Change type of 'filterflags'
local.
(linux_find_memory_regions_full): Pass the address of an unsigned
int to sscanf instead of the address of an enum.
* record-btrace.c (btrace_print_lines): Change type of local
'psl_flags'.
(btrace_call_history): Replace 'flags' parameter
with 'int_flags' parameter. Adjust.
(record_btrace_call_history, record_btrace_call_history_range)
(record_btrace_call_history_from): Rename 'flags' parameter to
'int_flags'. Use record_print_flags.
* record.h: Include "common/enum-flags.h".
(record_print_flags): Define.
* source.c: Include "common/enum-flags.h".
(print_source_lines_base, print_source_lines): Change type of
flags parameter.
* symtab.h: Include "common/enum-flags.h".
(enum print_source_lines_flags): Rename to ...
(enum print_source_lines_flag): ... this.
(print_source_lines_flags): Define.
(print_source_lines): Change prototype.
|
|
Fixes this in C++:
../../src/gdb/break-catch-sig.c: In function ‘int VEC_gdb_signal_type_iterate(const VEC_gdb_signal_type*, unsigned int, gdb_signal_type*)’:
../../src/gdb/common/vec.h:576:12: error: invalid conversion from ‘int’ to ‘gdb_signal_type {aka gdb_signal}’ [-fpermissive]
*ptr = 0; \
^
../../src/gdb/common/vec.h:417:1: note: in expansion of macro ‘DEF_VEC_FUNC_P’
DEF_VEC_FUNC_P(T) \
^
../../src/gdb/break-catch-sig.c:37:1: note: in expansion of macro ‘DEF_VEC_I’
DEF_VEC_I (gdb_signal_type);
^
I actually carried a different fix in the C++ branch that removed this
assignment and then adjusted all callers that depended on it. The
thinking was that this is for the case where we're returning false,
indicating end of iteration. But that results in a much larger and
tricker patch; looking back it seems quite pointless. I looked at the
history of GCC's C++ conversion and saw that they added this same cast
to their version of vec.h, FWIW. (GCC's vec.h is completely different
nowadays, having been converted to templates meanwhile.)
gdb/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* common/vec.h (DEF_VEC_FUNC_P) [iterate]: Cast 0 to type T.
|
|
Fixes, in C++ mode:
../../src/gdb/common/common-exceptions.c:23:69: error: invalid conversion from ‘int’ to ‘return_reason’ [-fpermissive]
const struct gdb_exception exception_none = { 0, GDB_NO_ERROR, NULL };
^
(I considered adding an enum value for '0', but the code and comments
around return_reason and its uses explain how 0 is special/internal,
so I'm leaving it be.)
gdb/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (exception_none): Add cast.
|
|
In C++, this:
try
{
break;
}
catch (..)
{}
is invalid. However, because our TRY/CATCH macros support it in C,
the C++ version of those macros support it too. To catch such
assumptions, this adds a (disabled) hack that maps TRY/CATCH to raw
C++ try/catch. Then it goes through all instances that building on
x86_64 GNU/Linux trips on, fixing them.
This isn't strictly necessary yet, but I think it's nicer to try to
keep the tree in a state where it's easier to eliminate the TRY/CATCH
macros.
gdb/ChangeLog:
2015-10-29 Pedro Alves <palves@redhat.com>
* dwarf2-frame-tailcall.c (dwarf2_tailcall_sniffer_first): Don't
assume that "break" breaks out of a TRY/CATCH.
* python/py-framefilter.c (py_print_single_arg): Don't assume
"continue" breaks out of a TRY/CATCH.
* python/py-value.c (valpy_binop_throw): New function, factored
out from ...
(valpy_binop): ... this.
(valpy_richcompare_throw): New function, factored
out from ...
(valpy_richcompare): ... this.
* solib.c (solib_read_symbols): Don't assume "break" breaks out
of a TRY/CATCH.
* common/common-exceptions.h [USE_RAW_CXX_TRY]
<TRY/CATCH/END_CATCH>: Define as 1-1 wrappers around try/catch.
|
|
Fixes a set of errors like:
../../src/gdb/symfile-debug.c: In function ‘int debug_qf_map_symtabs_matching_filename(objfile*, const char*, const char*, int (*)(symtab*, void*), void*)’:
../../src/gdb/symfile-debug.c:137:39: error: invalid conversion from ‘int (*)(symtab*, void*)’ to ‘const void*’ [-fpermissive]
host_address_to_string (callback),
^
Note this has to work with data and function pointers. In C++11 we
may perhaps do something a bit safer, but we're not there yet, and I
don't think it really matters. For now just always do a simple
C-style cast in host_address_to_string itself. No point in adding a
void * cast to each and every caller.
gdb/ChangeLog:
2015-10-27 Pedro Alves <palves@redhat.com>
* common/print-utils.c (host_address_to_string): Rename to ...
(host_address_to_string_1): ... this.
* common/print-utils.h (host_address_to_string): Reimplement as
wrapper around host_address_to_string_1.
* utils.c (gdb_print_host_address): Rename to ...
(gdb_print_host_address_1): ... this.
* utils.h (gdb_print_host_address): Reimplement as wrapper macro
around host_address_to_string_1.
|
|
gdb/ChangeLog:
* common/gdb_wait.h (W_STOPCODE): Define, moved here from
gdbserver/linux-low.c.
(WSETSTOP): Simplify.
gdb/gdbserver/ChangeLog:
* linux-low.c (W_STOPCODE): Moved to common/gdb_wait.h.
|
|
Nowadays, both aarch64 GDB and linux kernel assumes that address for
setting breakpoint should be 4-byte aligned. However that is not true
after we support multi-arch, because thumb instruction can be at 2-byte
aligned address. Patch http://lists.infradead.org/pipermail/linux-arm-kernel/2015-October/375141.html
to linux kernel is to teach kernel to handle 2-byte aligned address for
HW breakpoint, while this patch is to teach aarch64 GDB handle 2-byte
aligned address.
First of all, we call gdbarch_breakpoint_from_pc to get the instruction
length rather than using hard-coded 4. Secondly, in GDBserver, we set
length back to 2 if it is 3, because GDB encode 3 in it to indicate it
is a 32-bit thumb breakpoint. Then we relax the address alignment
check from 4-byte aligned to 2-byte aligned.
This patch enables some tests (such as gdb.base/break-idempotent.exp,
gdb.base/cond-eval-mode.exp, gdb.base/watchpoint-reuse-slot.exp,) and
fixes many fails (such as gdb.base/hbreak2.exp) when the program is
compiled in thumb mode on aarch64.
Regression tested on aarch64-linux, both native and gdbserver. This
is the last patch of multi-arch work.
gdb:
2015-10-15 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_insert_hw_breakpoint):
Call gdbarch_breakpoint_from_pc to instruction length.
(aarch64_linux_remove_hw_breakpoint): Likewise.
* common/common-regcache.h (regcache_register_size): Declare.
* nat/aarch64-linux-hw-point.c: Include "common-regcache.h".
(aarch64_point_is_aligned): Set alignment to 2 for breakpoint if
the process is 32bit, otherwise set alignment to 4.
(aarch64_handle_breakpoint): Update comments.
* regcache.c (regcache_register_size): New function.
gdb/gdbserver:
2015-10-15 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_insert_point): Set len to 2
if it is 3.
(aarch64_remove_point): Likewise.
* regcache.c (regcache_register_size): New function.
|