Age | Commit message (Collapse) | Author | Files | Lines |
|
Given this test program:
#include <wchar.h>
const wchar_t wide_str[] = L"wide string";
int
main (void)
{
return 0;
}
I observed this GDB behaviour:
$ gdb -q /tmp/printf-wchar_t
Reading symbols from /tmp/printf-wchar_t...
(gdb) start
Temporary breakpoint 1 at 0x40110a: file /tmp/printf-wchar_t.c, line 8.
Starting program: /tmp/printf-wchar_t
Temporary breakpoint 1, main () at /tmp/printf-wchar_t.c:8
25 return 0;
(gdb) printf "%ls\n", wide_str
(gdb)
Notice that the printf results in a blank line rather than the
expected 'wide string' output.
I tracked the problem down to printf_wide_c_string (in printcmd.c), in
this function we do this:
struct type *wctype = lookup_typename (current_language,
"wchar_t", NULL, 0);
int wcwidth = wctype->length ();
the problem here is that 'wchar_t' is a typedef. If we look at the
comment on type::length() we see this:
/* Note that if thistype is a TYPEDEF type, you have to call check_typedef.
But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
so you only have to call check_typedef once. Since value::allocate
calls check_typedef, X->type ()->length () is safe. */
What this means is that after calling lookup_typename we should call
check_typedef in order to ensure that the length of the typedef has
been setup correctly. We are not doing this in printf_wide_c_string,
and so wcwidth is incorrectly calculated as 0. This is what leads GDB
to print an empty string.
We can see in c_string_operation::evaluate (in c-lang.c) an example of
calling check_typedef specifically to fix this exact issue.
Initially I did fix this problem by adding a check_typedef call into
printf_wide_c_string, but then I figured why not move the
check_typedef call up into lookup_typename itself, that feels like it
should be harmless when looking up a non-typedef type, but will avoid
bugs like this when looking up a typedef. So that's what I did.
I can then remove the extra check_typedef call from c-lang.c, I don't
see any other places where we had extra check_typedef calls. This
doesn't mean we definitely had bugs -- so long as we never checked the
length, or, if we knew that check_typedef had already been called,
then we would be fine.
I don't see any test regressions after this change, and my new test
case is now passing.
Reviewed-By: Tom Tromey <tom@tromey.com>
|
|
History Of This Patch
=====================
This commit aims to address PR gdb/21699. There have now been a
couple of attempts to fix this issue. Simon originally posted two
patches back in 2021:
https://sourceware.org/pipermail/gdb-patches/2021-July/180894.html
https://sourceware.org/pipermail/gdb-patches/2021-July/180896.html
Before Pedro then posted a version of his own:
https://sourceware.org/pipermail/gdb-patches/2021-July/180970.html
After this the conversation halted. Then in 2023 I (Andrew) also took
a look at this bug and posted two versions:
https://sourceware.org/pipermail/gdb-patches/2023-April/198570.html
https://sourceware.org/pipermail/gdb-patches/2023-April/198680.html
The approach taken in my first patch was pretty similar to what Simon
originally posted back in 2021. My second attempt was only a slight
variation on the first.
Pedro then pointed out his older patch, and so we arrive at this
patch. The GDB changes here are mostly Pedro's work, but updated by
me (Andrew), any mistakes are mine.
The tests here are a combinations of everyone's work, and the commit
message is new, but copies bits from everyone's earlier work.
Problem Description
===================
Bug PR gdb/21699 makes the observation that using $_as_string with
GDB's printf can cause GDB to print unexpected data from the
inferior. The reproducer is pretty simple:
#include <stddef.h>
static char arena[100];
/* Override malloc() so value_coerce_to_target() gets a known
pointer, and we know we"ll see an error if $_as_string() gives
a string that isn't null terminated. */
void
*malloc (size_t size)
{
memset (arena, 'x', sizeof (arena));
if (size > sizeof (arena))
return NULL;
return arena;
}
int
main ()
{
return 0;
}
And then in a GDB session:
$ gdb -q test
Reading symbols from /tmp/test...
(gdb) start
Temporary breakpoint 1 at 0x4004c8: file test.c, line 17.
Starting program: /tmp/test
Temporary breakpoint 1, main () at test.c:17
17 return 0;
(gdb) printf "%s\n", $_as_string("hello")
"hello"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(gdb) quit
The problem above is caused by how value_cstring is used within
py-value.c, but once we understand the issue then it turns out that
value_cstring is used in an unexpected way in many places within GDB.
Within py-value.c we have a null-terminated C-style string. We then
pass a pointer to this string, along with the length of this
string (so not including the null-character) to value_cstring.
In value_cstring GDB allocates an array value of the given character
type, and copies in requested number of characters. However
value_cstring does not add a null-character of its own. This means
that the value created by calling value_cstring is only
null-terminated if the null-character is included in the passed in
length. In py-value.c this is not the case, and indeed, in most uses
of value_cstring, this is not the case.
When GDB tries to print one of these strings the value contents are
pushed to the inferior, and then read back as a C-style string, that
is, GDB reads inferior memory until it finds a null-terminator. For
the py-value.c case, no null-terminator is pushed into the inferior,
so GDB will continue reading inferior memory until a null-terminator
is found, with unpredictable results.
Patch Description
=================
The first thing this patch does is better define what the arguments
for the two function value_cstring and value_string should represent.
The comments in the header file are updated to describe whether the
length argument should, or should not, include a null-character.
Also, the data argument is changed to type gdb_byte. The functions as
they currently exist will handle wide-characters, in which case more
than one 'char' would be needed for each character. As such using
gdb_byte seems to make more sense.
To avoid adding casts throughout GDB, I've also added an overload that
still takes a 'char *', but asserts that the character type being used
is of size '1'.
The value_cstring function is now responsible for adding a null
character at the end of the string value it creates.
However, once we start looking at how value_cstring is used, we
realise there's another, related, problem. Not every language's
strings are null terminated. Fortran and Ada strings, for example,
are just an array of characters, GDB already has the function
value_string which can be used to create such values.
Consider this example using current GDB:
(gdb) set language ada
(gdb) p $_gdb_setting("arch")
$1 = (97, 117, 116, 111)
(gdb) ptype $
type = array (1 .. 4) of char
(gdb) p $_gdb_maint_setting("test-settings string")
$2 = (0)
(gdb) ptype $
type = array (1 .. 1) of char
This shows two problems, first, the $_gdb_setting and
$_gdb_maint_setting functions are calling value_cstring using the
builtin_char character, rather than a language appropriate type. In
the first call, the 'arch' case, the value_cstring call doesn't
include the null character, so the returned array only contains the
expected characters. But, in the $_gdb_maint_setting example we do
end up including the null-character, even though this is not expected
for Ada strings.
This commit adds a new language method language_defn::value_string,
this function takes a pointer and length and creates a language
appropriate value that represents the string. For C, C++, etc this
will be a null-terminated string (by calling value_cstring), and for
Fortran and Ada this can be a bounded array of characters with no null
terminator. Additionally, this new language_defn::value_string
function is responsible for selecting a language appropriate character
type.
After this commit the only calls to value_cstring are from the C
expression evaluator and from the default language_defn::value_string.
And the only calls to value_string are from Fortan, Ada, and ObjectC
related code.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=21699
Co-Authored-By: Simon Marchi <simon.marchi@efficios.com>
Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
Co-Authored-By: Pedro Alves <pedro@palves.net>
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
g++ 13.1.1 produces a -Werror=dangling-pointer=
In file included from ../../binutils-gdb/gdb/frame.h:75,
from ../../binutils-gdb/gdb/symtab.h:40,
from ../../binutils-gdb/gdb/language.c:33:
In member function ‘void intrusive_list<T, AsNode>::push_empty(T&) [with T = frame_info_ptr; AsNode = intrusive_base_node<frame_info_ptr>]’,
inlined from ‘void intrusive_list<T, AsNode>::push_back(reference) [with T = frame_info_ptr; AsNode = intrusive_base_node<frame_info_ptr>]’ at gdbsupport/intrusive_list.h:332:24,
inlined from ‘frame_info_ptr::frame_info_ptr(const frame_info_ptr&)’ at gdb/frame.h:241:26,
inlined from ‘CORE_ADDR skip_language_trampoline(frame_info_ptr, CORE_ADDR)’ at gdb/language.c:530:49:
gdbsupport/intrusive_list.h:415:12: error: storing the address of local variable ‘<anonymous>’ in ‘frame_info_ptr::frame_list.intrusive_list<frame_info_ptr>::m_back’ [-Werror=dangling-pointer=]
415 | m_back = &elem;
| ~~~~~~~^~~~~~~
gdb/language.c: In function ‘CORE_ADDR skip_language_trampoline(frame_info_ptr, CORE_ADDR)’:
gdb/language.c:530:49: note: ‘<anonymous>’ declared here
530 | CORE_ADDR real_pc = lang->skip_trampoline (frame, pc);
| ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
gdb/frame.h:359:41: note: ‘frame_info_ptr::frame_list’ declared here
359 | static intrusive_list<frame_info_ptr> frame_list;
| ^~~~~~~~~~
Each new frame_info_ptr is being pushed on a static frame list and g++
cannot see why that is safe in case the frame_info_ptr is created and
destroyed immediately when passed as value.
It isn't clear why only in this one place g++ sees the issue (probably
because it can inline enough code in this specific case).
Since passing the frame_info_ptr as const reference is cheaper, use
that as workaround for this warning.
PR build/30413
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30413
Tested-by: Kevin Buettner <kevinb@redhat.com>
Reviewed-by: Kevin Buettner <kevinb@redhat.com>
Reviewed-by: Tom Tromey <tom@tromey.com>
|
|
This removes deprecated_lval_hack and the VALUE_LVAL macro, replacing
all uses with a call to value::lval.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This turns the remaining value_contents functions -- value_contents,
value_contents_all, value_contents_for_printing, and
value_contents_for_printing_const -- into methods of value. It also
converts the static functions require_not_optimized_out and
require_available to be private methods.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This turns value_contents_raw, value_contents_writeable, and
value_contents_all_raw into methods on value. The remaining functions
will be changed later in the series; they were a bit trickier and so I
didn't include them in this patch.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This changes allocate_value to be a static "constructor" of value.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This changes the value_address and set_value_address functions to be
methods of value.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This changes value_type to be a method of value. Much of this patch
was written by script.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
struct compile_instance needs to be visible to users, since we use
std::unique<compile_instance>. language.c and c-lang.c currently
includes compile-internal.h for this reason, which kind of defeats the
purpose of having an "internal" header file.
Change-Id: Iedffe5f1173b3de7bdc1be533ee2a68e6f6c549f
Reviewed-By: Bruno Larsen <blarsen@redhat.com>
|
|
This commit splits the `set/show print elements' option into two. We
retain `set/show print elements' for controlling how many elements of an
array we print, but a new `set/show print characters' setting is added
which is used for controlling how many characters of a string are
printed.
The motivation behind this change is to allow users a finer level of
control over how data is printed, reflecting that, although strings can
be thought of as arrays of characters, users often want to treat these
two things differently.
For compatibility reasons by default the `set/show print characters'
option is set to `elements', which makes the limit for character strings
follow the setting of the `set/show print elements' option, as it used
to. Using `set print characters' with any other value makes the limit
independent from the `set/show print elements' setting, however it can
be restored to the default with the `set print characters elements'
command at any time.
A corresponding `-characters' option for the `print' command is added,
with the same semantics, i.e. one can use `elements' to make a given
`print' invocation follow the limit of elements, be it set with the
`-elements' option also given with the same invocation or taken from the
`set/show print elements' setting, for characters as well regardless of
the current setting of the `set/show print characters' option.
The GDB changes are all pretty straightforward, just changing references
to the old 'print_max' to use a new `get_print_max_chars' helper which
figures out which of the two of `print_max' and `print_max_chars' values
to use.
Likewise, the documentation is just updated to reference the new setting
where appropriate.
To make people's life easier the message shown by `show print elements'
now indicates if the setting also applies to character strings:
(gdb) set print characters elements
(gdb) show print elements
Limit on string chars or array elements to print is 200.
(gdb) set print characters unlimited
(gdb) show print elements
Limit on array elements to print is 200.
(gdb)
and the help text shows the dependency as well:
(gdb) help set print elements
Set limit on array elements to print.
"unlimited" causes there to be no limit.
This setting also applies to string chars when "print characters"
is set to "elements".
(gdb)
In the testsuite there are two minor updates, one to add `-characters'
to the list of completions now shown for the `print' command, and a bare
minimum pair of checks for the right handling of `set print characters'
and `show print characters', copied from the corresponding checks for
`set print elements' and `show print elements' respectively.
Co-Authored-By: Maciej W. Rozycki <macro@embecosm.com>
Approved-By: Simon Marchi <simon.marchi@efficios.com>
|
|
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
|
|
PR symtab/29105 shows a number of situations where symbol lookup can
result in the expansion of too many CUs.
What happens is that lookup_signed_typename will try to look up a type
like "signed int". In cooked_index_functions::expand_symtabs_matching,
when looping over languages, the C++ case will canonicalize this type
name to be "int" instead. Then this method will proceed to expand
every CU that has an entry for "int" -- i.e., nearly all of them. A
crucial component of this is that the caller, objfile::lookup_symbol,
does not do this canonicalization, so when it tries to find the symbol
for "signed int", it fails -- causing the loop to continue.
This patch fixes the problem by introducing name canonicalization for
C. The idea here is that, by making C and C++ agree on the canonical
name when a symbol name can have multiple spellings, we avoid the bad
behavior in objfile::lookup_symbol (and any other such code -- I don't
know if there is any).
Unlike C++, C only has a few situations where canonicalization is
needed. And, in particular, due to the lack of overloading (thus
avoiding any issues in linespec) and due to the way c-exp.y works, I
think that no canonicalization is needed during symbol lookup -- only
during symtab construction. This explains why lookup_name_info is not
touched.
The stabs reader is modified on a "best effort" basis.
The DWARF reader needed one small tweak in dwarf2_name to avoid a
regression in dw2-unusual-field-names.exp. I think this is adequately
explained by the comment, but basically this is a scenario that should
not occur in real code, only the gdb test suite.
lookup_signed_typename is simplified. It used to search for two
different type names, but now gdb can search just for the canonical
form.
gdb.dwarf2/enum-type.exp needed a small tweak, because the
canonicalizer turns "unsigned integer" into "unsigned int integer".
It seems better here to use the correct C type name.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29105
Tested-by: Simon Marchi <simark@simark.ca>
Reviewed-by: Andrew Burgess <aburgess@redhat.com>
|
|
PR exp/28359 points out that 'ptype/o' does not work when the current
language is "asm".
I tracked this down to a hard-coded list of languages in typeprint.c.
This patch replaces this list with a method on 'language_defn'
instead. If all languages are ever updated to have this feature, the
method could be removed; but in the meantime this lets each language
control what happens.
I looked at having each print_type method simply modify the flags
itself, but this doesn't work very well with the feature that disables
method-printing by default (but allows it via a flag).
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28359
Approved-By: Andrew Burgess <aburgess@redhat.com>
Approved-By: Keith Seitz <keiths@redhat.com>
|
|
Currently, every internal_error call must be passed __FILE__/__LINE__
explicitly, like:
internal_error (__FILE__, __LINE__, "foo %d", var);
The need to pass in explicit __FILE__/__LINE__ is there probably
because the function predates widespread and portable variadic macros
availability. We can use variadic macros nowadays, and in fact, we
already use them in several places, including the related
gdb_assert_not_reached.
So this patch renames the internal_error function to something else,
and then reimplements internal_error as a variadic macro that expands
__FILE__/__LINE__ itself.
The result is that we now should call internal_error like so:
internal_error ("foo %d", var);
Likewise for internal_warning.
The patch adjusts all calls sites. 99% of the adjustments were done
with a perl/sed script.
The non-mechanical changes are in gdbsupport/errors.h,
gdbsupport/gdb_assert.h, and gdb/gdbarch.py.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Change-Id: Ia6f372c11550ca876829e8fd85048f4502bdcf06
|
|
This renames c_printstr, removing a layer of indirection.
|
|
This renames c_emit_char, removing a layer of indirection.
|
|
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
|
|
Remove the macro, replace all uses with calls to type::length.
Change-Id: Ib9bdc954576860b21190886534c99103d6a47afb
|
|
Remove the macro, replace all uses by calls to type::target_type.
Change-Id: Ie51d3e1e22f94130176d6abd723255282bb6d1ed
|
|
Make an introduction of a new print setting that can be set by 'set
print nibbles [on|off]'. The default value if OFF, which can be changed
by user manually. Of course, 'show print nibbles' is also included in
the patch.
The new feature displays binary values by group, with four bits per
group. The motivation for this work is to enhance the readability of
binary values.
Here's a GDB session before this patch is applied.
(gdb) print var_a
$1 = 1230
(gdb) print/t var_a
$2 = 10011001110
With this patch applied, we can use the new print setting to display the
new form of the binary values.
(gdb) print var_a
$1 = 1230
(gdb) print/t var_a
$2 = 10011001110
(gdb) set print nibbles on
(gdb) print/t var_a
$3 = 0100 1100 1110
Tested on x86_64 openSUSE Tumbleweed.
|
|
The next patch will want to do language->print_type(type, ...), to
print a type in a given language, avoiding a dependency on the current
language. That doesn't work correctly currently, however, because
most language implementations of language_defn::print_type call
c_print_type without passing down the language. There are two
overloads of c_print_type, one that takes a language, and one that
does not. The one that does not uses the current language, defeating
the point of calling language->print_type()...
This commit removes the c_print_type overload that does not take a
language, and adjusts the codebase throughout to always pass down a
language. In most places, there's already an enum language handy.
language_defn::print_type implementations naturally pass down
this->la_language. In a couple spots, like in ada-typeprint.c and
rust-lang.c there's no enum language handy, but the code is written
for a specific language, so we just hardcode the language.
In gnuv3_print_method_ptr, I wasn't sure whether we could hardcode C++
here, and we don't have an enum language handy, so I made it use the
current language, just like today. Can always be improved later.
Change-Id: Ib54fab4cf0fd307bfd55bf1dd5056830096a653b
|
|
target_read_string takes a byte order parameter, but only uses this to
check whether a given character is zero. This is readily done without
requiring the parameter, so remove it.
|
|
This renames read_string to be an overload of target_read_string.
This makes it more consistent for the eventual merger with gdbserver.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the putc family of functions. This is done under the name
"gdb_putc". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
|
|
I noticed that host_hex_value is redundant, because gdbsupport already
has fromhex. This patch removes the former in favor of the latter.
Regression tested on x86-64 Fedora 34.
|
|
This moves the gdb-specific obstack code -- both extensions like
obconcat and obstack_strdup, and things like auto_obstack -- to
gdbsupport.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
The Rust compiler plans to change the encoding of a Rust 'char' type
to use DW_ATE_UTF. You can see the discussion here:
https://github.com/rust-lang/rust/pull/89887
However, this fails in gdb. I looked into this, and it turns out that
the handling of DW_ATE_UTF is currently fairly specific to C++. In
particular, the code here assumes the C++ type names, and it creates
an integer type.
This comes from commit 53e710acd ("GDB thinks char16_t and char32_t
are signed in C++"). The message says:
Both places need fixing. But since I couldn't tell why dwarf2read.c
needs to create a new type, I've made it use the per-arch built-in
types instead, so that the types are only created once per arch
instead of once per objfile. That seems to work fine.
... which is fine, but it seems to me that it's also correct to make a
new character type; and this approach is better because it preserves
the type name as well. This does use more memory, but first we
shouldn't be too concerned about the memory use of types coming from
debuginfo; and second, if we are, we should implement type interning
anyway.
Changing this code to use a character type revealed a couple of
oddities in the C/C++ handling of TYPE_CODE_CHAR. This patch fixes
these as well.
I filed PR rust/28637 for this issue, so that this patch can be
backported to the gdb 11 branch.
|
|
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
|
|
I noticed that some methods in language_defn could use
unique_xmalloc_ptr<char> rather than a plain 'char *'. This patch
implements this change, fixing up the fallout and changing
gdb_demangle to also return this type. In one spot, std::string is
used to simplify some related code, and in another, an auto_obstack is
used to avoid manual management.
Regression tested on x86-64 Fedora 34.
|
|
EVAL_SKIP was needed in the old expression implementation due to its
linearized tree structure. This is not needed in the new
implementation, because it is trivial to not evaluate a subexpression.
This patch removes the last vestiges of EVAL_SKIP.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* value.h (eval_skip_value): Don't declare.
* opencl-lang.c (eval_opencl_assign): Update.
* m2-lang.c (eval_op_m2_high, eval_op_m2_subscript): Update.
* f-lang.c (eval_op_f_abs, eval_op_f_mod, eval_op_f_ceil)
(eval_op_f_floor, eval_op_f_modulo, eval_op_f_cmplx): Remove.
* expression.h (enum noside) <EVAL_SKIP>: Remove.
* expop.h (typeof_operation::evaluate)
(decltype_operation::evaluate, unop_addr_operation::evaluate)
(unop_sizeof_operation::evaluate, assign_operation::evaluate)
(cxx_cast_operation::evaluate): Update.
* eval.c (eval_skip_value): Remove.
(eval_op_scope, eval_op_var_entry_value)
(eval_op_func_static_var, eval_op_string, eval_op_objc_selector)
(eval_op_concat, eval_op_ternop, eval_op_structop_struct)
(eval_op_structop_ptr, eval_op_member, eval_op_add, eval_op_sub)
(eval_op_binary, eval_op_subscript, eval_op_equal)
(eval_op_notequal, eval_op_less, eval_op_gtr, eval_op_geq)
(eval_op_leq, eval_op_repeat, eval_op_plus, eval_op_neg)
(eval_op_complement, eval_op_lognot, eval_op_ind)
(eval_op_memval, eval_op_preinc, eval_op_predec)
(eval_op_postinc, eval_op_postdec, eval_op_type)
(eval_binop_assign_modify, eval_op_objc_msgcall)
(eval_multi_subscript, logical_and_operation::evaluate)
(logical_or_operation::evaluate, array_operation::evaluate)
(operation::evaluate_for_cast)
(var_msym_value_operation::evaluate_for_cast)
(var_value_operation::evaluate_for_cast): Update.
* c-lang.c (c_string_operation::evaluate): Update.
* c-exp.h (objc_nsstring_operation::evaluate)
(objc_selector_operation::evaluate): Update.
* ada-lang.c (ada_assign_operation::evaluate)
(eval_ternop_in_range, ada_unop_neg, ada_unop_in_range)
(ada_atr_size): Update.
|
|
This removes union exp_element functions that either create such
elements or walk them. struct expression no longer holds
exp_elements. A couple of language_defn methods are also removed, as
they are obsolete.
Note that this patch also removes the print_expression code. The only
in-tree caller of this was from dump_prefix_expression, which is only
called when expression debugging is enabled. Implementing this would
involve a fair amount of code, and it seems to me that prefix dumping
is preferable anyway, as it is unambiguous. So, I have not
reimplemented this feature.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* value.h (evaluate_subexp_with_coercion): Don't declare.
* parse.c (exp_descriptor_standard): Remove.
(expr_builder::expr_builder, expr_builder::release): Update.
(expression::expression): Remove size_t parameter.
(expression::~expression): Simplify.
(expression::resize): Remove.
(write_exp_elt, write_exp_elt_opcode, write_exp_elt_sym)
(write_exp_elt_msym, write_exp_elt_block, write_exp_elt_objfile)
(write_exp_elt_longcst, write_exp_elt_floatcst)
(write_exp_elt_type, write_exp_elt_intern, write_exp_string)
(write_exp_string_vector, write_exp_bitstring): Remove.
* p-lang.h (class pascal_language) <opcode_print_table,
op_print_tab>: Remove.
* p-lang.c (pascal_language::op_print_tab): Remove.
* opencl-lang.c (class opencl_language) <opcode_print_table>:
Remove.
* objc-lang.c (objc_op_print_tab): Remove.
(class objc_language) <opcode_print_table>: Remove.
* m2-lang.h (class m2_language) <opcode_print_table,
op_print_tab>: Remove.
* m2-lang.c (m2_language::op_print_tab): Remove.
* language.h (struct language_defn) <post_parser, expression_ops,
opcode_print_table>: Remove.
* language.c (language_defn::expression_ops)
(auto_or_unknown_language::opcode_print_table): Remove.
* go-lang.h (class go_language) <opcode_print_table,
op_print_tab>: Remove.
* go-lang.c (go_language::op_print_tab): Remove.
* f-lang.h (class f_language) <opcode_print_table>: Remove
<op_print_tab>: Remove.
* f-lang.c (f_language::op_print_tab): Remove.
* expression.h (union exp_element): Remove.
(struct expression): Remove size_t parameter from constructor.
<resize>: Remove.
<first_opcode>: Update.
<nelts, elts>: Remove.
(EXP_ELEM_TO_BYTES, BYTES_TO_EXP_ELEM): Remove.
(evaluate_subexp_standard, print_expression, op_string)
(dump_raw_expression): Don't declare.
* expprint.c (print_expression, print_subexp)
(print_subexp_funcall, print_subexp_standard, op_string)
(dump_raw_expression, dump_subexp, dump_subexp_body)
(dump_subexp_body_funcall, dump_subexp_body_standard): Remove.
(dump_prefix_expression): Update.
* eval.c (evaluate_subexp): Remove.
(evaluate_expression, evaluate_type): Update.
(evaluate_subexpression_type): Remove.
(fetch_subexp_value): Remove "pc" parameter. Update.
(extract_field_op, evaluate_struct_tuple, evaluate_funcall)
(evaluate_subexp_standard, evaluate_subexp_for_address)
(evaluate_subexp_with_coercion, evaluate_subexp_for_sizeof)
(evaluate_subexp_for_cast): Remove.
(parse_and_eval_type): Update.
* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
* d-lang.c (d_op_print_tab): Remove.
(class d_language) <opcode_print_table>: Remove.
* c-lang.h (c_op_print_tab): Don't declare.
* c-lang.c (c_op_print_tab): Remove.
(class c_language, class cplus_language, class asm_language, class
minimal_language) <opcode_print_table>: Remove.
* breakpoint.c (update_watchpoint, watchpoint_check)
(watchpoint_exp_is_const, watch_command_1): Update.
* ax-gdb.h (union exp_element): Don't declare.
* ax-gdb.c (const_var_ref, const_expr, maybe_const_expr)
(gen_repeat, gen_sizeof, gen_expr_for_cast, gen_expr)
(gen_expr_binop_rest): Remove.
(gen_trace_for_expr, gen_eval_for_expr, gen_printf): Update.
* ada-lang.c (ada_op_print_tab): Remove.
(class ada_language) <post_parser, opcode_print_table>: Remove.
|
|
Now that the C parser has switched to the new style, there is no need
for the old C evaluation code. This affects some other languages that
were relying on the C code.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* go-lang.c (go_language::expression_ops): Don't declare.
* go-lang.h (class go_language) <expression_ops>: Remove.
* opencl-lang.c (evaluate_subexp_opencl, exp_descriptor_opencl):
Remove.
(class opencl_language) <expression_ops>: Remove.
* d-lang.c (class d_language) <expression_ops>: Remove.
* c-lang.h (evaluate_subexp_c, exp_descriptor_c): Don't declare.
* c-lang.c (evaluate_subexp_c, exp_descriptor_c): Remove.
(class c_language, class cplus_language, class asm_language)
(class minimal_language) <expression_ops>: Remove.
|
|
This adds the new file c-exp.h, where C operation classes will be
declared. The first such class, c_string_operation, is also added
here.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* c-lang.c (c_string_operation::evaluate): New method.
* c-exp.h: New file.
|
|
This changes language_defn::get_compile_context to return a
unique_ptr. This makes the ownership transfer clear.
gdb/ChangeLog
2021-02-05 Tom Tromey <tom@tromey.com>
* compile/compile-c-support.c (get_compile_context)
(c_get_compile_context, cplus_get_compile_context): Change return
type.
* language.c (language_defn::get_compile_instance): New method.
* language.h (language_defn::get_compile_instance): Change return
type. No longer inline.
* c-lang.c (c_language::get_compile_instance): Change return type.
(cplus_language::get_compile_instance): Change return type.
* c-lang.h (c_get_compile_context, cplus_get_compile_context):
Change return type.
* compile/compile.c (compile_to_object): Update.
|
|
... and update all users.
gdb/ChangeLog:
* gdbtypes.h (get_type_arch): Rename to...
(struct type) <arch>: ... this, update all users.
Change-Id: I0e3ef938a0afe798ac0da74a9976bbd1d082fc6f
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
Now that every use of the LA_EMIT_CHAR macro is within a language_defn
member function we can simply call the emitchar member function
directly instead of using the LA_EMIT_CHAR macro.
If we are ever inside a language object, for example, cplus_language,
while current_language points at something other than cplus_language
then this commit will result in a change in behaviour. However, I
believe if we did have such a difference then this would be a bug in
GDB. AS such I'm going to claim there _should_ be no user visible
changes from this commit.
gdb/ChangeLog:
* c-lang.c (language_defn::printchar): Call emitchar, not
LA_EMIT_CHAR.
* f-lang.h (f_language::printchar): Likewise.
* language.h (LA_EMIT_CHAR): Delete macro.
* rust-lang.c (rust_language::printchar): Call emitchar, not
LA_EMIT_CHAR.
|
|
This commit removes the global function c_printchar and moves the
implementation into language_defn::printchar.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* c-lang.c (c_printchar): Rename to...
(language_defn::printchar): ...this.
* c-lang.h (c_printchar): Delete declaration.
* language.c (language_defn::printchar): Delete this
implementation. Is now implemented in c-lang.c.
|
|
get_discrete_bounds currently has three possible return values (see its
current doc for details). It appears that for all callers, it would be
sufficient to have a boolean "worked" / "didn't work" return value.
Change the return type of get_discrete_bounds to bool and adjust all
callers. Doing so simplifies the following patch.
gdb/ChangeLog:
* gdbtypes.h (get_discrete_bounds): Return bool, adjust all
callers.
* gdbtypes.c (get_discrete_bounds): Return bool.
Change-Id: Ie51feee23c75f0cd7939742604282d745db59172
|
|
enum exp_opcode is created from all the .def files, but then each
language is required to implement its own op_name function to turn an
enum value to a string. This seemed over-complicated to me, and this
patch removes the per-language functions in favor of simply using the
.def names for all languages. Note that op_name is only used for
dumping expressions, which is a maintainer/debug feature.
Furthermore, I don't think there was any case where the .def name and
the string name differed.
gdb/ChangeLog
2020-11-30 Tom Tromey <tom@tromey.com>
* rust-lang.c (rust_op_name): Remove.
(exp_descriptor_rust): Update.
* parser-defs.h (op_name_standard): Don't declare.
(struct exp_descriptor) <op_name>: Remove.
* parse.c (exp_descriptor_standard): Update.
* opencl-lang.c (exp_descriptor_opencl): Update.
* m2-lang.c (m2_language::exp_descriptor_modula2): Update.
* f-lang.c (op_name_f): Remove.
(f_language::exp_descriptor_tab): Update.
* expression.h (op_name): Update.
* expprint.c (op_name): Rewrite.
(op_name_standard): Remove.
(dump_raw_expression, dump_subexp): Update.
* c-lang.c (exp_descriptor_c): Update.
* ax-gdb.c (gen_expr): Update.
* ada-lang.c (ada_op_name): Remove.
(ada_exp_descriptor): Update.
|
|
This changes a few functions in c-lang.c to add "const" to parameters
and return types. Tested by rebuilding.
gdb/ChangeLog
2020-11-13 Tom Tromey <tom@tromey.com>
* c-lang.c (convert_ucn, convert_octal, convert_hex)
(convert_escape, parse_one_string): Constify.
|
|
Consider the following GDB session:
$ gdb
(gdb) set language c
(gdb) ptype void
type = void
(gdb) set language fortran
(gdb) ptype void
No symbol table is loaded. Use the "file" command.
(gdb)
With no symbol file loaded GDB and the language set to C GDB knows
about the type void, while when the language is set to Fortran GDB
doesn't know about the void, why is that?
In f-lang.c, f_language::language_arch_info, we do have this line:
lai->primitive_type_vector [f_primitive_type_void]
= builtin->builtin_void;
where we add the void type to the list of primitive types that GDB
should always know about, so what's going wrong?
It turns out that the primitive types are stored in a C style array,
indexed by an enum, so Fortran uses `enum f_primitive_types'. The
array is allocated and populated in each languages language_arch_info
member function. The array is allocated with an extra entry at the
end which is left as a NULL value, and this indicates the end of the
array of types.
Unfortunately for Fortran, a type is not assigned for each element in
the enum. As a result the final populated array has gaps in it, gaps
which are initialised to NULL, and so every time we iterate over the
list (for Fortran) we stop early, and never reach the void type.
This has been the case since 2007 when this functionality was added to
GDB in commit cad351d11d6c3f6487cd.
Obviously I could just fix Fortran by ensuring that either the enum is
trimmed, or we create types for the missing types. However, I think a
better approach would be to move to C++ data structures and removed
the fixed enum indexing into the array approach.
After this commit the primitive types are pushed into a vector, and
GDB just iterates over the vector in the obvious way when it needs to
hunt for a type. After this commit all the currently defined
primitive types can be found when the language is set to Fortran, for
example:
$ gdb
(gdb) set language fortran
(gdb) ptype void
type = void
(gdb)
A new test checks this functionality.
I didn't see any other languages with similar issues, but I could have
missed something.
gdb/ChangeLog:
* ada-exp.y (find_primitive_type): Make parameter const.
* ada-lang.c (enum ada_primitive_types): Delete.
(ada_language::language_arch_info): Update.
* c-lang.c (enum c_primitive_types): Delete.
(c_language_arch_info): Update.
(enum cplus_primitive_types): Delete.
(cplus_language::language_arch_info): Update.
* d-lang.c (enum d_primitive_types): Delete.
(d_language::language_arch_info): Update.
* f-lang.c (enum f_primitive_types): Delete.
(f_language::language_arch_info): Update.
* go-lang.c (enum go_primitive_types): Delete.
(go_language::language_arch_info): Update.
* language.c (auto_or_unknown_language::language_arch_info):
Update.
(language_gdbarch_post_init): Use obstack_new, use array indexing.
(language_string_char_type): Add header comment, call function in
language_arch_info.
(language_bool_type): Likewise
(language_arch_info::bool_type): Define.
(language_lookup_primitive_type_1): Delete.
(language_lookup_primitive_type): Rewrite as a templated function
to call function in language_arch_info, then instantiate twice.
(language_arch_info::type_and_symbol::alloc_type_symbol): Define.
(language_arch_info::lookup_primitive_type_and_symbol): Define.
(language_arch_info::lookup_primitive_type): Define twice with
different signatures.
(language_arch_info::lookup_primitive_type_as_symbol): Define.
(language_lookup_primitive_type_as_symbol): Rewrite to call a
member function in language_arch_info.
* language.h (language_arch_info): Complete rewrite.
(language_lookup_primitive_type): Make templated.
* m2-lang.c (enum m2_primitive_types): Delete.
(m2_language::language_arch_info): Update.
* opencl-lang.c (OCL_P_TYPE): Delete.
(enum opencl_primitive_types): Delete.
(opencl_type_data): Delete.
(builtin_opencl_type): Delete.
(lookup_opencl_vector_type): Update.
(opencl_language::language_arch_info): Update, lots of content
moved from...
(build_opencl_types): ...here. This function is now deleted.
(_initialize_opencl_language): Delete.
* p-lang.c (enum pascal_primitive_types): Delete.
(pascal_language::language_arch_info): Update.
* rust-lang.c (enum rust_primitive_types): Delete.
(rust_language::language_arch_info): Update.
gdb/testsuite/ChangeLog:
* gdb.fortran/types.exp: Add more tests.
|
|
GDB already has a global symbol `demangle` (a boolean), having a
language method called `demangle` is not a good idea as we often want
to reference `demangle` the control variable inside `demangle` the
member function.
This commit renames `demangle` the member function to
`demangle_symbol`.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language::demangle): Rename to...
(ada_language::demangle_symbol): ...this.
* c-lang.c (cplus_language::demangle): Rename to...
(cplus_language::demangle_symbol): ...this.
* d-lang.c (d_language::demangle): Rename to...
(d_language::demangle_symbol): ...this.
* f-lang.c (f_language::demangle): Rename to...
(f_language::demangle_symbol): ...this.
* go-lang.c (go_language::demangle): Rename to...
(go_language::demangle_symbol): ...this.
* language.c (language_demangle): Update call to demangle_symbol.
(auto_or_unknown_language::demangle): Rename to...
(auto_or_unknown_language::demangle_symbol): ...this.
* language.h (language_defn::demangle): Rename to...
(language_defn::demangle_symbol): ...this.
* objc-lang.c (objc_language::demangle): Rename to...
(objc_language::demangle_symbol): ...this.
* rust-lang.c (rust_language::demangle): Rename to...
(rust_language::demangle_symbol): ...this.
|
|
The language_data type, from which language_defn inherits, is now
empty, and this commit removes it.
Each language is updated to no longer create and use a language_data
struct.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Delete.
(ada_language): Remove references to ada_language_data.
* c-lang.c (c_language_data): Delete.
(c_language): Remove references to c_language_data.
(cplus_language_data): Delete.
(cplus_language): Remove references to cplus_language_data.
(asm_language_data): Delete.
(asm_language): Remove references to asm_language_data.
(minimal_language_data): Delete.
(minimal_language): Remove references to minimal_language_data.
* d-lang.c (d_language_data): Delete.
(d_language): Remove references to d_language_data.
* f-lang.c (f_language_data): Delete.
(f_language): Remove references to f_language_data.
* go-lang.c (go_language_data): Delete.
(go_language): Remove references to go_language_data.
* language.c (unknown_language_data): Delete.
(unknown_language): Remove references to unknown_language_data.
(auto_language_data): Delete.
(auto_language): Remove references to auto_language_data.
* language.h (language_data): Delete struct.
(language_defn): No longer inherit from language_data.
* m2-lang.c (m2_language_data): Delete.
(m2_language): Remove references to m2_language_data.
* objc-lang.c (objc_language_data): Delete.
(objc_language): Remove references to objc_language_data.
* opencl-lang.c (opencl_language_data): Delete.
(opencl_language): Remove references to opencl_language_data.
* p-lang.c (pascal_language_data): Delete.
(pascal_language): Remove references to pascal_language_data.
* rust-lang.c (rust_language_data): Delete.
(rust_language): Remove references to rust_language_data.
|
|
Convert language_data::la_op_print_tab member variable to a virtual
method language_defn::opcode_print_table. I changed the name in order
to make it clearer (I hope) what the method does.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Remove la_op_print_tab
initializer.
(ada_language::opcode_print_table): New member function.
* c-lang.c (c_language_data): Remove la_op_print_tab initializer.
(c_language::opcode_print_table): New member function.
(cplus_language_data): Remove la_op_print_tab initializer.
(cplus_language::opcode_print_table): New member function.
(asm_language_data): Remove la_op_print_tab initializer.
(asm_language::opcode_print_table): New member function.
(minimal_language_data): Remove la_op_print_tab initializer.
(minimal_language::opcode_print_table): New member function.
* d-lang.c (d_language_data): Remove la_op_print_tab initializer.
(d_language::opcode_print_table): New member function.
* expprint.c (print_subexp_standard): Update call to
opcode_print_table.
(op_string): Likewise.
* f-lang.c (f_language_data): Remove la_op_print_tab initializer.
(f_language::opcode_print_table): New member function.
* go-lang.c (go_language_data): Remove la_op_print_tab
initializer.
(go_language::opcode_print_table): New member function.
* language.c (unknown_language_data): Remove la_op_print_tab
initializer.
(unknown_language::opcode_print_table): New member function.
(auto_language_data): Remove la_op_print_tab initializer.
(auto_language::opcode_print_table): New member function.
* language.h (language_data): Remove la_op_print_tab field.
(language_defn::opcode_print_table): Declare new member function.
* m2-lang.c (m2_language_data): Remove la_op_print_tab
initializer.
(m2_language::opcode_print_table): New member function.
* objc-lang.c (objc_language_data): Remove la_op_print_tab
initializer.
(objc_language::opcode_print_table): New member function.
* opencl-lang.c (opencl_language_data): Remove la_op_print_tab
initializer.
(opencl_language::opcode_print_table): New member function.
* p-lang.c (pascal_language_data): Remove la_op_print_tab
initializer.
(pascal_language::opcode_print_table): New member function.
* rust-lang.c (rust_language_data): Remove la_op_print_tab
initializer.
(rust_language::opcode_print_table): New member function.
|
|
Convert language_data::la_exp_desc member variable to a virtual
method language_defn::expression_ops. The change of names brings this
method more into line with the existing varobj_ops method, that also
returns a table of function pointers.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Remove la_exp_desc initializer.
(ada_language::expression_ops): New member function.
* c-lang.c (c_language_data): Remove la_exp_desc initializer.
(c_language::expression_ops): New member function.
(cplus_language_data): Remove la_exp_desc initializer.
(cplus_language::expression_ops): New member function.
(asm_language_data): Remove la_exp_desc initializer.
(asm_language::expression_ops): New member function.
(minimal_language_data): Remove la_exp_desc initializer.
(minimal_language::expression_ops): New member function.
* d-lang.c (d_language_data): Remove la_exp_desc initializer.
(d_language::expression_ops): New member function.
* eval.c (evaluate_subexp): Update call to expression_ops.
* expprint.c (print_subexp): Likewise.
(op_name): Likewise.
(dump_subexp_body): Likewise.
* f-lang.c (f_language_data): Remove la_exp_desc initializer.
(f_language::expression_ops): New member function.
* go-lang.c (go_language_data): Remove la_exp_desc initializer.
(go_language::expression_ops): New member function.
* language.c (language_defn::expression_ops): New function.
(unknown_language_data): Remove la_exp_desc initializer.
(auto_language_data): Likewise.
* language.h (language_data): Remove la_exp_desc field.
(language_defn::expression_ops): Declare new member function.
* m2-lang.c (m2_language_data): Remove la_exp_desc initializer.
(m2_language::expression_ops): New member function.
* objc-lang.c (objc_language_data): Remove la_exp_desc
initializer.
* opencl-lang.c (opencl_language_data): Remove la_exp_desc
initializer.
(opencl_language::expression_ops): New member function.
* p-lang.c (pascal_language_data): Remove la_exp_desc initializer.
* parse.c (operator_length): Update call to expression_ops.
(exp_iterate): Likewise.
* rust-lang.c (rust_language_data): Remove la_exp_desc
initializer.
(ruse_language::expression_ops): New member function.
|
|
Convert language_data::la_varobj_ops member variable to a virtual
method language_defn::varobj_ops.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Remove la_varobj_ops
initializer.
(ada_language::varobj_ops): New member function.
* c-lang.c (c_language_data): Remove la_varobj_ops
initializer.
(cplus_language_data): Likewise.
(cplus_language::varobj_ops): New member function.
(asm_language_data): Remove la_varobj_ops initializer.
(minimal_language_data): Likewise.
* d-lang.c (d_language_data): Likewise.
* f-lang.c (f_language_data): Likewise.
* go-lang.c (go_language_data): Likewise.
* language.c (language_defn::varobj_ops): New function.
(unknown_language_data): Remove la_varobj_ops
initializer.
(auto_language_data): Likewise.
* language.h (language_data): Remove la_varobj_ops field.
(language_defn::varobj_ops): Declare new member function.
* m2-lang.c (m2_language_data): Remove la_varobj_ops initializer.
* objc-lang.c (objc_language_data): Likewise.
* opencl-lang.c (opencl_language_data): Likewise.
* p-lang.c (pascal_language_data): Likewise.
* rust-lang.c (rust_language_data): Likewise.
* varobj.c (varobj_create): Update call to varobj_ops.
* varobj.h (default_varobj_ops): Delete define.
|