Age | Commit message (Collapse) | Author | Files | Lines |
|
In previous patch, "saved_item" is still a PyOjbect and iteration is
still performed over PyObject. This patch continues to decouple
iteration from python code, so it changes its type to "struct
varobj_item *", so that the iterator itself is independent of python.
V2:
- Call varobj_delete_iter in free_variable.
- Fix changelog entries.
- Use XNEW.
V3:
- Return NULL early in py_varobj_iter_next if gdb_python_initialized
is false.
gdb:
2014-06-12 Pedro Alves <pedro@codesourcery.com>
Yao Qi <yao@codesourcery.com>
* python/py-varobj.c (py_varobj_iter_next): Return NULL if
gdb_python_initialized is false. Move some code from varobj.c.
* varobj-iter.h (struct varobj_item): Moved from varobj.c.
* varobj.c: Move "varobj-iter.h" inclusion earlier.
(struct varobj_item): Moved to varobj-iter.h".
(varobj_clear_saved_item): New function.
(update_dynamic_varobj_children): Move python-related code to
py-varobj.c.
(free_variable): Call varobj_clear_saved_item and
varobj_iter_delete.
|
|
This patch generalizes varobj iterator, in a python-independent way.
Note varobj_item is still a typedef of PyObject, we can only focus on
API changes, and leave the data type changes to the next patch. As a
result, we include "varobj-iter.h" after the typedef of PyObject in
varobj.c, but it is an intermediate state. Finally, varobj-iter.h is
independent of PyObject.
This change is helpful to move some python-related code out of
varobj.c.
V2:
- Fix a missing cleanup.
- Fix typos.
- Use XNEW.
- Check against NULL explicitly.
- Update copyright year for new added files.
V3:
- Call PyGILState_Ensure before Py_XDECREF.
- Use CPYCHECKER_STEALS_REFERENCE_TO_ARG.
- Code indentation.
V4:
- use varobj_ensure_python_env instead of PyGILState_Ensure.
gdb:
2014-06-12 Pedro Alves <pedro@codesourcery.com>
Yao Qi <yao@codesourcery.com>
* Makefile.in (SUBDIR_PYTHON_OBS): Add "py-varobj.o".
(SUBDIR_PYTHON_SRCS): Add "python/py-varobj.c".
(HFILES_NO_SRCDIR): Add "varobj-iter.h".
(py-varobj.o): New rule.
* python/py-varobj.c: New file.
* python/python-internal.h (py_varobj_get_iterator): Declare.
* varobj-iter.h: New file.
* varobj.c: Include "varobj-iter.h"
(struct varobj) <child_iter>: Change its type from "PyObject *"
to "struct varobj_iter *".
<saved_item>: Likewise.
[HAVE_PYTHON] (varobj_ensure_python_env): Make it extern.
[HAVE_PYTHON] (varobj_get_iterator): New function.
(update_dynamic_varobj_children) [HAVE_PYTHON]: Move
python-specific code to python/py-varobj.c.
(install_visualizer): Call varobj_iter_delete instead of
Py_XDECREF.
* varobj.h (varobj_ensure_python_env): Declare.
|
|
Hi,
name and value pair is widely used in varobj.c. This patch is to add
a new struct varobj_item to represent them, so that the number of
function arguments can be reduced. Finally, the iteration is done on
'struct varobj_item' instead of PyObject after this patch series.
V2:
- Fix changelog entry.
- Fix one grammatical mistake.
gdb:
2014-06-12 Yao Qi <yao@codesourcery.com>
* varobj.c (struct varobj_item): New structure.
(create_child_with_value): Update declaration.
(varobj_add_child): Replace arguments 'name' and 'value' with
'item'. All callers updated.
(install_dynamic_child): Likewise.
(update_dynamic_varobj_children): Likewise.
(varobj_add_child): Likewise.
(create_child_with_value): Likewise.
|
|
gdb/ChangeLog:
* NEWS: Create a new section for the next release branch.
Rename the section of the current branch, now that it has
been cut.
|
|
Now that the GDB 7.8 branch has been created, we can
bump the version number.
gdb/ChangeLog:
GDB 7.8 branch created (173373c6f6388171d1d62a217fae90a052395be2):
* version.in: Bump version to 7.8.50.DATE-cvs.
|
|
Since target-async was turned on by default, debugging on Windows
using GDB+GDBserver sometimes hangs while waiting for a RSP reply.
The problem is a race in the gdb_select machinery.
This is what we see for a faulty next on the GDB side:
(gdb) n
infrun: clear_proceed_status_thread (Thread 4424)
infrun: proceed (addr=0xffffffff, signal=GDB_SIGNAL_DEFAULT, step=1)
(...)
infrun: resume (step=1, signal=GDB_SIGNAL_0), ...
Sending packet: $vCont;s:1148;c#5e...
*hang*
At this point, attaching a debugger to the hanging GDB confirms that
it is blocked, waiting for a socket event:
#6 0x757841d8 in WaitForMultipleObjects ()
from C:\Windows\syswow64\kernel32.dll
#7 0x004708e7 in gdb_select (n=469, readfds=0x88ca50 <gdb_notifier+784>,
writefds=0x88cb54 <gdb_notifier+1044>,
exceptfds=0x88cc58 <gdb_notifier+1304>, timeout=0x0)
at /[...]/gdb/mingw-hdep.c:172
#8 0x00527926 in gdb_wait_for_event (block=1)
at /[...]/gdb/event-loop.c:831
#9 0x00526ff1 in gdb_do_one_event ()
at /[...]/gdb/event-loop.c:403
However, on the GDBserver side, we see that GDBserver already sent a
T05 packet reply:
gdbserver: kernel event EXCEPTION_DEBUG_EVENT for pid=4968 tid=1148
EXCEPTION_SINGLE_STEP
Child Stopped with signal = 5
Writing resume reply for LWP 4968.4424:1
DEBUG: write_prim ($T0505:c8fe2800;04:a0fe2800;08:38164000;thread:1148;#f0)
-> 55
To recap, on Windows, 'select' only works with sockets, so we have a
wrapper, gdb_select, that uses the GDB serial abstraction to handle
sockets, consoles, pipes, and serial ports. Each serial descriptor
has a thread associated (we call those the select threads), and those
threads communicate with the main thread by means of standard Windows
events.
It basically goes like this: gdb_select first loops through all fds of
interest, calling their wait_handle hooks, which returns an event that
WaitForMultipleObjects can wait on. gdb_select then blocks in
WaitForMultipleObjects with all those event handles. The wait_handle
hook is responsible for arranging for the returned event to become set
once data is available. This is done by setting the descriptor's
helper thread running, which itself knows how to wait for data from
the type of handle it manages (sockets, pipes, consoles, files, etc.).
Once data arrives, the select thread sets the corresponding event
which unblocks WaitForMultipleObjects within gdb_select. However, the
wait_handle hook can also apply an optimization: if data is already
pending, then there's no need to set the thread running, and the
descriptors event can be set immediately. It's around this latter
aspect that lies the bug/race.
Adding some ad hoc debug logs to ser-mingw.c and mingw-hdep.c, we see
the following sequence of events, right after sending
"$vCont;s:1148;c#5e". Thread 1 is the main thread, and thread 2 is
the socket's helper/select thread. gdb_select was only passed one
descriptor to wait on, the remote target's socket.
net_windows_select_thread is the entry point of the select threads for
sockets.
#1 - thread 1: gdb_select: enter
#2 - thread 2: net_windows_select_thread: WaitForMultipleObjects blocking
gdb_select walked over the wait_handle hooks, and woke up the socket's
helper thread. The helper thread is now blocked waiting for socket
events.
#3 - thread 1: gdb_select: WaitForMultipleObjects polling (timeout=0ms)
#4 - thread 1: gdb_select: WaitForMultipleObjects returned 102 (WAIT_TIMEOUT)
There was no pending data available yet, and gdb_select was passed
timeout==0ms, and so WaitForMultipleObjects times out immediately.
#5 - thread 2: net_windows_select_thread: WaitForMultipleObjects returned 1
Just afterwards, socket data arrives, and thread 2 wakes up. Thread 2
calls WSAEnumNetworkEvents, which clears state->sock_event, and marks
the serial's read_event event, telling the main thread that data is
available.
#6 - thread 1: gdb_select: call serial_done_wait_handle on each serial
gdb_select stops all the helper/select threads.
#7 - thread 1: gdb_select: return 0 (WAIT_TIMEOUT)
gdb_select in the main thread returns to the caller.
Note that at this point, data is pending on the socket, the serial's
read_event is set, but the socket's sock_event event is not set, until
_further_ data arrives.
Now GDB does its thing and goes back to the event loop. That calls
gdb_select, but with timeout==INFINITE.
Again, gdb_select calls the socket serial's wait_handle hook. It
first clears its events, starting from a clean slate:
ResetEvent (state->base.read_event);
ResetEvent (state->base.except_event);
ResetEvent (state->base.stop_select);
That cleared read_event, which was previously set in #5 above. And
then it checks for pending events, in the sock_event event:
/* Check any pending events. This both avoids starting the thread
unnecessarily, and handles stray FD_READ events (see below). */
if (WaitForSingleObject (state->sock_event, 0) == WAIT_OBJECT_0)
{
That also fails because state->sock_event was cleared in #5 too...
So the wait_handle hook erroneously decides that it needs to start the
helper thread to wait for input:
#8 - thread 2: net_windows_select_thread: WaitForMultipleObjects blocking
#9 - thread 1: gdb_select: WaitForMultipleObjects blocking (INFINITE)
But, GDBserver already sent all it had to send, so both threads waits
forever...
At first I thought that net_windows_wait_handle shouldn't be resetting
state->base.read_event or state->base.except_event, but looking
deeper, the pipe and console wait_handle hooks reset all events too.
It actually makes sense that way -- consuming an event from different
threads is bad practice, and, we should always be able to query
pending state without looking at the state->sock_event from within
net_windows_wait_handle. The end result is much simpler, and makes
net_windows_select_thread look a lot like console_select_thread,
actually.
gdb/
2014-06-11 Pedro Alves <palves@redhat.com>
PR remote/17028
* ser-mingw.c (net_windows_socket_check_pending): New function.
(net_windows_select_thread): Ignore spurious wakeups. Use
net_windows_socket_check_pending.
(net_windows_wait_handle): Check for pending events with
ioctlsocket, through net_windows_socket_check_pending, instead of
checking the socket's event.
|
|
qualifier.
This is done to avoid errors when compiled with -Werror against Python-2.4
which did not have the const qualifier for the second argument of these
functions.
gdb/
* python/python-internal.h (gdb_PyObject_GetAttrString)
(gdb_PyObject_HasAttrString): New inline function definitions.
* py-value.c (get_field_flag): Remove the now unnecessary cast to
char * of the second argument to PyObject_GetAttrString.
|
|
I noticed that, when using 'set debug serial 1', the "write" traces
would always be NUL characters:
[
w \x00][\x00][\x00][\x00][\x00][etc]
This is due to a small thinko in the loop that output each character,
where we accidently used the loop boundary instead of the loop index
to index the character to be printed.
After this patch is applied, the output now becomes:
[
w $][v][C][o][n][t][?][#][4][9]
gdb/ChangeLog:
* serial.c (serial_write): Fix index of character to be printed
in call to serial_logchar when serial debug traces are enabled.
|
|
gdb/ChangeLog:
* gdbtypes (resolve_dynamic_range): Add function description.
|
|
This commit reorders various pieces of code to separate ANSI-standard
signals from other signals that need checking. Comments are added to
document this, and to document the ordering of the signals.
gdb/
2014-06-09 Gary Benson <gbenson@redhat.com>
* common/signals.c (gdb_signal_from_host): Reorder to separate
the always-available ANSI-standard signals from the signals that
require checking.
(do_gdb_signal_to_host): Likewise.
* proc-events.c (signal_table): Likewise.
gdb/testsuite/
2014-06-09 Gary Benson <gbenson@redhat.com>
* gdb.base/sigall.c [Functions to send signals]: Reorder to
separate the always-available ANSI-standard signals from the
signals that require checking.
(main): Likewise.
* gdb.reverse/sigall-reverse.c [Functions to send signals]:
Likewise.
(main): Likewise.
|
|
with Linux 2.6.32 and older version
https://sourceware.org/ml/gdb-patches/2014-04/msg00047.html
Got gdb.base/watch-vfork.exp: Watchpoint triggers after vfork (sw)
(timeout) with Linux 2.6.32 and older version.
The rootcause is after the test use "set can-use-hw-watchpoints 0" let GDB
doesn't use hardware breakpoint and set a watchpoint on "global", GDB
continue will keep single step inside function "vfork".
The Linux 2.6.32 and older version doesn't have commit
6580807da14c423f0d0a708108e6df6ebc8bc83d (get more info please goto
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=6580807da14c423f0d0a708108e6df6ebc8bc83d).
When the function "vfork" do syscall, the single step flag TIF_SINGLESTEP
will copy to child process.
Then GDB detach it, child process and parent process will be hanged.
So I make a patch that do a single step before detach. Then TIF_SINGLESTEP
of child process in old Linux kernel will be cleared before detach.
Child process in new Linux kernel will not be affected by this single step.
2014-06-08 Hui Zhu <hui@codesourcery.com>
* common/linux-ptrace.c (linux_disable_event_reporting): New
function.
* common/linux-ptrace.h (linux_disable_event_reporting): New
declaration.
* linux-nat.c (linux_child_follow_fork): Do a single step before
detach.
|
|
See the bug for further information.
|
|
|
|
* guile/guile-internal.h (gdbscm_guile_major_version): Declare.
(gdbscm_guile_minor_version, gdbscm_guile_micro_version): Declare.
(gdbscm_guile_version_is_at_least): Declare.
(gdbscm_scm_string_to_int): Declare.
* guile/guile.c (gdbscm_guile_major_version): New global.
(gdbscm_guile_minor_version, gdbscm_guile_micro_version): New globals.
(guile_datadir): New static global.
(gdbscm_guile_data_directory): New function.
(initialize_scheme_side): Update.
(misc_guile_functions): Add guile-data-directory.
(initialize_gdb_module): Fetch guile version number.
* guile/lib/gdb.scm: Remove call to add-to-load-path.
* guile/lib/gdb/init.scm (%initialize!): Ditto.
* guile/lib/gdb/boot.scm: Use guile-data-directory.
* guile/scm-exception.c (gdbscm_print_exception_with_stack): Fix
comments.
* guile/scm-string.c (gdbscm_scm_string_to_int): New function.
* guile/scm-utils.c (gdbscm_guile_version_is_at_least): New function.
* guile/scm-value.c (gdbscm_value_to_string): Only call
scm_port_conversion_strategy if Guile version >= 2.0.6.
doc/
* guile.texi (Guile Configuration): Document guile-data-directory.
|
|
|
|
The six signals SIGINT, SIGILL, SIGABRT, SIGFPE, SIGSEGV and SIGTERM
are ANSI-standard and thus guaranteed to be available. This patch
removes all preprocessor conditionals relating to these symbols.
gdb/
2014-06-06 Gary Benson <gbenson@redhat.com>
* common/signals.c: Remove preprocessor conditionals for
always-defined signals SIGINT, SIGILL, SIGABRT, SIGFPE,
SIGSEGV and SIGTERM.
* proc-events.c: Likewise.
gdb/testsuite/
2014-06-06 Gary Benson <gbenson@redhat.com>
* gdb.base/call-signals.c: Remove preprocessor conditionals
for always-defined signals SIGINT, SIGILL, SIGABRT, SIGFPE,
SIGSEGV and SIGTERM.
* gdb.base/sigall.c: Likewise.
* gdb.base/unwindonsignal.c: Likewise.
* gdb.reverse/sigall-reverse.c: Likewise.
|
|
Target sections added by the add-symbol-file-from-memory command are not
removed when the process exits. In fact, they are not removed, at all.
This causes GDB to crash in gdb.base/break-interp.exp.
Change the owner of those target sections to the object file generated in
symbol_file_add_from_memory and generalize the free_objfile observer in
symfile.c to remove target sections of any freed object file.
|
|
gdb/
2014-06-05 Ludovic Courtès <ludo@gnu.org>
* guile/scm-value.c (gdbscm_history_append_x): Use
'vlscm_get_value_smob_arg_unsafe' instead of
'vlscm_scm_to_value'.
gdb/testsuite/
2014-06-05 Ludovic Courtès <ludo@gnu.org>
* gdb.guile/scm-value.exp (test_value_in_inferior): Add test
"history-append! type error".
|
|
Original patch:
https://sourceware.org/ml/gdb-patches/2014-04/msg00552.html
New in v2:
* In remote.c:escape_buffer, pass '\\' to fputstrn_unfiltered/printchar to
make sure backslashes are escaped in remote debug output.
* Updated function documentation for printchar.
See updated ChangeLog below.
--------------------
The quoting in whatever goes in the event_channel of MI is little bit broken.
Link for the lazy:
https://sourceware.org/bugzilla/show_bug.cgi?id=15806
Here is an example of a =library-loaded event with an ill-named directory,
/tmp/how"are\you (the problem is present with every directory on Windows since
it uses backslashes as a path separator). The result will be the following:
=library-loaded,id="/tmp/how"are\\you/libexpat.so.1",...
The " between 'how' and 'are' should be escaped.
Another bad behavior is double escaping in =breakpoint-created, for example:
=breakpoint-created,bkpt={...,fullname="/tmp/how\\"are\\\\you/test.c",...}
The two backslashes before 'how' should be one and the four before 'you' should
be two.
The reason for this is that when sending something to an MI console, escaping
can take place at two different moments (the actual escaping work is always
done in the printchar function):
1. When generating the content, if ui_out_field_* functions are used. Here,
fields are automatically quoted with " and properly escaped. At least
mi_field_string does it, not sure about mi_field_fmt, I need to investigate
further.
2. When gdb_flush is called, to send the data in the buffer of the console to
the actual output (stdout). At this point, mi_console_raw_packet takes the
whole string in the buffer, quotes it, and escapes all occurences of the
quoting character and backslashes. The event_channel does not specify a quoting
character, so quotes are not escaped here, only backslashes.
The problem with =library-loaded is that it does use fprintf_unfiltered, which
doesn't do escaping (so, no #1). When gdb_flush is called, backslashes are
escaped (#2).
The problem with =breakpoint-created is that it first uses ui_out_field_*
functions to generate its output, so backslashes and quotes are escaped there
(#1). backslashes are escaped again in #2, leading to an overdose of
backslashes.
In retrospect, there is no way escaping can be done reliably in
mi_console_raw_packet for data that is already formatted, such as
event_channel. At this point, there is no way to differentiate quotes that
delimit field values from those that should be escaped. In the case of other MI
consoles, it is ok since mi_console_raw_packet receives one big string that
should be quoted and escaped as a whole.
So, first part of the fix: for the MI channels that specify no quoting
character, no escaping at all should be done in mi_console_raw_packet (that's
the change in printchar, thanks to Yuanhui Zhang for this). For those channels,
whoever generates the content is responsible for proper quoting and escaping.
This will fix the =breakpoint-created kind of problem.
Second part of the fix is to make =library-loaded generate content that is
properly escaped. For this, we use ui_out_field_* functions, instead of one big
fprintf_unfiltered. =library-unloaded suffered from the same problem so it is
modified as well. There might be other events that need fixing too, but that's
all I found with a quick scan. Those that use fprintf_unfiltered but whose sole
variable data is a %d are not critical, since it won't generate a " or a \.
Finally, a test has been fixed, as it was expecting an erroneous output.
Otherwise, all other tests that were previously passing still pass (x86-64
linux).
gdb/ChangeLog:
2014-06-02 Simon Marchi <simon.marchi@ericsson.com>
PR mi/15806
* utils.c (printchar): Don't escape at all if quoter is NUL.
Update function documentation to clarify effect of parameter
QUOTER.
* remote.c (escape_buffer): Pass '\\' as the quoter to
fputstrn_unfiltered.
* mi/mi-interp.c (mi_solib_loaded): Use ui_out_field_* functions to
generate the output.
(mi_solib_unloaded): Same.
gdb/testsuite/ChangeLog:
2014-06-02 Simon Marchi <simon.marchi@ericsson.com>
* gdb.mi/mi-breakpoint-changed.exp (test_insert_delete_modify): Fix
erroneous dprintf expected input.
|
|
The goal of this patch is to provide an easy way to make
--disable-werror the default when building binutils, or the parts
of binutils that need to get built when building GDB. In development
mode, we want to continue making -Werror the default with GCC.
But, when making releases, I think we want to make it as easy as
possible for regular users to successfully build from sources.
GDB already has this kind of feature to turn -Werror as well as
the use of the libmcheck library. As GDB Release Manager, I take
advantage of it to turn those off after having cut the branch.
I'd like to be able to do the same for the binutils bits. And
perhaps Tristan will want to do the same for his releases too
(not sure, binutils builders might be a little savvier than GDB
builders).
This patch introduces a new file, called development.sh, which
just sets a variable called $development. In our development branches
(Eg. "master"), it's set to true. But setting it to false would allow
us to change the default behavior of various development-related
features to be turned off; in this case, it turns off the use of
-Werror by default (use --enable-werror to turn it back on).
bfd/ChangeLog:
* development.sh: New file.
* warning.m4 (AM_BINUTILS_WARNINGS): Source bfd/development.sh.
Make -Werror the default with GCC only if DEVELOPMENT is true.
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add
$(srcdir)/development.sh.
* Makefile.in, configure: Regenerate.
binutils/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gas/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gold/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): New.
* Makefile.in, configure: Regenerate.
gprof/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
ld/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
opcodes/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gdb/ChangeLog:
* development.sh: Delete.
* Makefile.in (config.status): Adjust dependency on development.sh.
* configure.ac: Adjust development.sh source call.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
* configure.ac: Adjust development.sh source call.
* Makefile.in (config.status): Adjust dependency on development.sh.
* configure: Regenerate.
Tested on x86_64-linux by building two ways: One with DEVELOPMENT
set to true, and one with DEVELOPMENT set to false. In the first
case, I could see the use of -Werror, while it disappeared in
the second case.
|
|
Rename breakpoint-delete! to delete-breakpoint!.
* guile/scm-breakpoint.c (struct gdbscm_breakpoint_object): New members
is_scheme_bkpt, spec.
(bpscm_make_breakpoint_smob): Initialize new members.
(gdbscm_create_breakpoint_x): Split into two ...
(gdbscm_make_breakpoint, gdbscm_register_breakpoint_x): New functions.
(bpscm_breakpoint_deleted): Reset breakpoint number and stop function.
(scheme_function breakpoint_functions): Update.
* guile/lib/gdb.scm: Delete create-breakpoint!. Rename
breakpoint-delete! to delete-breakpoint!. Add make-breakpoint,
register-breakpoint!.
testsuite/
* gdb.guile/scm-breakpoint.exp: Update.
Add tests for breakpoint registration.
doc/
* guile.texi (Breakpoints In Guile): Update.
|
|
When debugging on LynxOS targets (and probably on SPU targets as well),
inserting a breakpoint and resuming the program's execution causes
GDBserver to crash.
The crash occurs while handling the Z0 packet sent by GDB to insert
our breakpoint, because z_type_supported calls
the_target->supports_z_point_type without checking that it is not NULL
This patch fixes the issue by making z_type_supported return false if
the_target->supports_z_point_type is NULL.
gdb/gdbserver/ChangeLog:
PR server/17023
* mem-break.c (z_type_supported): Return zero if
THE_TARGET->SUPPORTS_Z_POINT_TYPE is NULL.
Tested on ppx-lynx5.
|
|
It is valid in GNU C to have a VLA in a struct or union type, but gdb
did not handle this.
This patch adds support for these cases in the obvious way.
Built and regtested on x86-64 Fedora 20.
New tests included.
2014-06-04 Tom Tromey <tromey@redhat.com>
* ada-lang.c (ada_template_to_fixed_record_type_1): Use
value_from_contents_and_address_unresolved.
(ada_template_to_fixed_record_type_1): Likewise.
(ada_which_variant_applies): Likewise.
* value.h (value_from_contents_and_address_unresolved): Declare.
* value.c (value_from_contents_and_address_unresolved): New
function.
* gdbtypes.c (is_dynamic_type, resolve_dynamic_type)
<TYPE_CODE_STRUCT, TYPE_CODE_UNION>: New cases.
(resolve_dynamic_struct, resolve_dynamic_union): New functions.
2014-06-04 Tom Tromey <tromey@redhat.com>
* gdb.base/vla-datatypes.exp: Add tests for VLA-in-structure and
VLA-in-union.
* gdb.base/vla-datatypes.c (vla_factory): Add vla_struct,
inner_vla_struct, vla_union types. Initialize objects of those
types and compute their sizes.
|
|
I noticed that gdbtypes.c:is_dynamic_type has some unneeded "break"s.
This patch cleans up the function a bit, removing those and removing
the switch's default case so that the end of the function is a bit
clearer.
2014-06-04 Tom Tromey <tromey@redhat.com>
* gdbtypes.c (is_dynamic_type): Remove unneeded "break"s.
|
|
This constifies the "args" argument to the target_ops to_attach
method.
I updated all instances of the method. I could not compile all of
them but I hand-inspected them. In all cases either the argument is
ignored, or it is passed to parse_pid_to_attach. (linux-nat does some
extra stuff, but that one I built...)
If you want to try it on your host of choice, please do so.
The code in parse_pid_to_attach seems a little bogus to me. If there
is a platform with a broken strtoul, we have better methods for fixing
the issue now. However, I left the code as is since it is clearly ok
to do so.
Built and regtested on x86-64 Fedora 20.
2014-06-04 Tom Tromey <tromey@redhat.com>
* procfs.c (procfs_attach): Make "args" const.
* windows-nat.c (windows_attach): Make "args" const.
* nto-procfs.c (procfs_attach): Make "args" const.
* inf-ttrace.c (inf_ttrace_attach): Make "args" const.
* go32-nat.c (go32_attach): Make "args" const.
* gnu-nat.c (gnu_attach): Make "args" const.
* darwin-nat.c (darwin_attach): Make "args" const.
* inf-ptrace.c (inf_ptrace_attach): Make "args" const.
* linux-nat.c (linux_nat_attach): Make "args" const.
* remote.c (extended_remote_attach_1, extended_remote_attach):
Make "args" const.
* target.h (struct target_ops) <to_attach>: Make "args" const.
(find_default_attach): Likewise.
* utils.c (parse_pid_to_attach): Make "args" const.
* utils.h (parse_pid_to_attach): Update.
|
|
This converts to_thread_address_space to use TARGET_DEFAULT_FUNC.
This method was one of a handful not using the normal target
delegation approach. The only rationale here is consistency in the
target vector.
Built and regtested on x86-64 Fedora 20.
2014-06-04 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.c (default_thread_address_space): New function.
(target_thread_address_space): Simplify.
* target.h (struct target_ops) <to_thread_address_space>: Add
TARGET_DEFAULT_FUNC.
|
|
|
|
Add support for async command execution. This fixes the gdb.btrace tests.
* record-btrace.c: Include event-loop.h and inf-loop.h.
(record_btrace_resume_exec_dir)
(record_btrace_async_inferior_event_handler)
(record_btrace_handle_async_inferior_event): New.
(record_btrace_open): Create async event handler.
(record_btrace_close): Delete async event handler.
(record_btrace_resume): Set record_btrace_resume_exec_dir,
Mark async event handler.
(record_btrace_execution_direction): New.
(init_record_btrace_ops): Initialize to_execution_direction.
|
|
(gdbscm_make_parameter): Ditto.
|
|
* exec.c (exec_close_1): Call clear_section_table instead of
resize_section_table.
(clear_section_table): New function.
(resize_section_table): Make static. Rename arg num_added to
adjustment.
* exec.h (clear_section_table): Declare.
(resize_section_table): Delete.
* progspace.c (release_program_space): Call clear_section_table
instead of resize_section_table.
|
|
* NEWS (Python Scripting): Add entry about the new xmethods
feature.
doc/
* python.texi (Xmethods In Python, XMethod API)
(Writing an Xmethod): New nodes.
(Python API): New menu entries "Xmethods In Python",
"Xmethod API", "Writing an Xmethod".
|
|
* python/py-xmethods.c: New file.
* python/py-objfile.c (objfile_object): New field 'xmethods'.
(objfpy_dealloc): XDECREF on the new xmethods field.
(objfpy_new, objfile_to_objfile_object): Initialize xmethods
field.
(objfpy_get_xmethods): New function.
(objfile_getset): New entry 'xmethods'.
* python/py-progspace.c (pspace_object): New field 'xmethods'.
(pspy_dealloc): XDECREF on the new xmethods field.
(pspy_new, pspace_to_pspace_object): Initialize xmethods
field.
(pspy_get_xmethods): New function.
(pspace_getset): New entry 'xmethods'.
* python/python-internal.h: Add declarations for new functions.
* python/python.c (_initialize_python): Invoke
gdbpy_initialize_xmethods.
* python/lib/gdb/__init__.py (xmethods): New
attribute.
* python/lib/gdb/xmethod.py: New file.
* python/lib/gdb/command/xmethods.py: New file.
testuite/
* gdb.python/py-xmethods.cc: New testcase to test xmethods.
* gdb.python/py-xmethods.exp: New tests to test xmethods.
* gdb.python/py-xmethods.py: Python script supporting the
new testcase and tests.
|
|
|
|
* defs.h (enum lval_type): New enumerator "lval_xcallable".
* extension-priv.h (struct extension_language_ops): Add the
xmethod interface.
* extension.c (new_xmethod_worker, clone_xmethod_worker,
get_matching_xmethod_workers, get_xmethod_argtypes,
invoke_xmethod, free_xmethod_worker,
free_xmethod_worker_vec): New functions.
* extension.h: #include "common/vec.h".
New function declarations.
(struct xmethod_worker): New struct.
(VEC (xmethod_worker_ptr)): New vector type.
(xmethod_worker_ptr): New typedef.
(xmethod_worker_vec): Likewise.
* gdbtypes.c (gdbtypes_post_init): Initialize "xmethod" field of
builtin_type.
* gdbtypes.h (enum type_code): New enumerator TYPE_CODE_XMETHOD.
(struct builtin_type): New field "xmethod".
* valarith.c (value_ptradd): Assert that the value argument is not
lval_xcallable.
* valops.c (value_must_coerce_to_target): Return 0 for
lval_xcallable values.
* value.c (struct value): New field XM_WORKER in the field
LOCATION.
(value_address, value_raw_address): Return 0 for lval_xcallable
values.
(set_value_address): Assert that the value is not an
lval_xcallable.
(value_free): Free the associated xmethod worker when freeing
lval_xcallable values.
(set_value_component_location): Assert that the WHOLE value is not
lval_xcallable.
(value_of_xmethod, call_xmethod): New functions.
* value.h: Declare "struct xmethod_worker".
Declare new functions value_of_xmethod, call_xmethod.
|
|
with the following code...
12 Nested; -- break #1
13 return I; -- break #2
14 end;
(line 12 is a call to function Nested)
... we have noticed the following errorneous behavior on ppc-aix,
where, after having inserted a breakpoint at line 12 and line 13,
and continuing from the breakpoint at line 12, the program never
stops at line 13, running away until the program terminates:
% gdb -q func
(gdb) b func.adb:12
Breakpoint 1 at 0x10000a24: file func.adb, line 12.
(gdb) b func.adb:13
Breakpoint 2 at 0x10000a28: file func.adb, line 13.
(gdb) run
Starting program: /[...]/func
Breakpoint 1, func () at func.adb:12
12 Nested; -- break #1
(gdb) c
Continuing.
[Inferior 1 (process 4128872) exited with code 02]
When resuming from the first breakpoint, GDB first tries to step out
of that first breakpoint. We rely on software single-stepping on this
platform, and it just so happens that the address of the first
software single-step breakpoint is the same as the user's breakpoint
#2 (0x10000a28). So, with infrun and target traces turned on (but
uninteresting traces snip'ed off), the "continue" operation looks like
this:
(gdb) c
### First, we insert the user breakpoints (the second one is an internal
### breakpoint on __pthread_init). The first user breakpoint is not
### inserted as we need to step out of it first.
target_insert_breakpoint (0x0000000010000a28, xxx) = 0
target_insert_breakpoint (0x00000000d03f3800, xxx) = 0
### Then we proceed with the step-out-of-breakpoint...
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [process 15335610] at 0x10000a24
### That's when we insert the SSS breakpoints...
target_insert_breakpoint (0x0000000010000a28, xxx) = 0
target_insert_breakpoint (0x00000000100009ac, xxx) = 0
### ... then let the inferior resume...
target_resume (15335610, continue, 0)
infrun: wait_for_inferior ()
target_wait (-1, status, options={}) = 15335610, status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: target_wait (-1, status) =
infrun: 15335610 [process 15335610],
infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x100009ac
### At this point, we stopped at the second SSS breakpoint...
target_stopped_by_watchpoint () = 0
### We remove the SSS breakpoints...
target_remove_breakpoint (0x0000000010000a28, xxx) = 0
target_remove_breakpoint (0x00000000100009ac, xxx) = 0
target_stopped_by_watchpoint () = 0
### We find that we're not done, so we resume....
infrun: no stepping, continue
### And thus insert the user breakpoints again, except we're not
### inserting the second breakpoint?!?
target_insert_breakpoint (0x0000000010000a24, xxx) = 0
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 15335610] at 0x100009ac
target_resume (-1, continue, 0)
infrun: prepare_to_wait
target_wait (-1, status, options={}) = 15335610, status->kind = exited, status = 2
What happens is that the removal of the software single-step
breakpoints effectively removed the breakpoint instruction from
inferior memory. But because such breakpoints are inserted directly
as raw breakpoints rather than through the normal chain of
breakpoints, we fail to notice that one of the user breakpoints points
to the same address and that this user breakpoint is therefore
effectively un-inserted. When resuming after the single-step, GDB
thinks that the user breakpoint is still inserted and therefore does
not need to insert it again.
This patch teaches the insert and remove routines of both regular and
raw breakpoints to be aware of each other. Special care needs to be
applied in case the target supports evaluation of breakpoint
conditions or commands.
gdb/ChangeLog:
PR breakpoints/17000
* breakpoint.c (find_non_raw_software_breakpoint_inserted_here):
New function, extracted from software_breakpoint_inserted_here_p.
(software_breakpoint_inserted_here_p): Replace factored out code
by call to find_non_raw_software_breakpoint_inserted_here.
(bp_target_info_copy_insertion_state): New function.
(bkpt_insert_location): Handle the case of a single-step
breakpoint already inserted at the same address.
(bkpt_remove_location): Handle the case of a single-step
breakpoint still inserted at the same address.
(deprecated_insert_raw_breakpoint): Handle the case of non-raw
breakpoint already inserted at the same address.
(deprecated_remove_raw_breakpoint): Handle the case of a
non-raw breakpoint still inserted at the same address.
(find_single_step_breakpoint): New function, extracted from
single_step_breakpoint_inserted_here_p.
(find_single_step_breakpoint): New function,
factored out from single_step_breakpoint_inserted_here_p.
(single_step_breakpoint_inserted_here_p): Reimplement.
gdb/testsuite/ChangeLog:
PR breakpoints/17000
* gdb.base/sss-bp-on-user-bp.exp: Remove kfail.
* gdb.base/sss-bp-on-user-bp-2.exp: Remove kfail.
Tested on ppc-aix with AdaCore's testsuite. Tested on x86_64-linux,
(native and gdbserver) with the official testsuite. Also tested on
x86_64-linux through Pedro's branch enabling software single-stepping
on that platform (native and gdbserver).
|
|
The check for the source (or "from") directory snippet in listing
matching path substitution rules currently will not match anything
other than a direct match of the "from" field in a substitution rule,
resulting in the incorrect behavior below:
...
(gdb) set substitute-path /a/path /another/path
(gdb) show substitute-path
List of all source path substitution rules:
`/a/path' -> `/another/path'.
(gdb) show substitute-path /a/path/to/a/file.ext
Source path substitution rule matching `/a/path/to/a/file.ext':
(gdb) show substitute-path /a/path
Source path substitution rule matching `/a/path':
`/a/path' -> `/another/path'.
...
This change effects the following behavior by (sanely) checking
with the length of the "from" portion of a rule and ensuring that
the next character of the path considered for substitution is a path
delimiter (or NULL). With this change, the following behavior is
garnered:
...
(gdb) set substitute-path /a/path /another/path
(gdb) show substitute-path
List of all source path substitution rules:
`/a/path' -> `/another/path'.
(gdb) show substitute-path /a/path/to/a/file.ext
Source path substitution rule matching `/a/path/to/a/file.ext':
`/a/path' -> `/another/path'.
(gdb) show substitute-path /a/pathological/case/that/should/fail.err
Source path substitution rule matching `/a/pathological/case/that/should/fail.err':
(gdb)
Also included is a couple of tests added to subst.exp to verify
this behavior in the test suite.
gdb/ChangeLog:
* source.c (show_substitute_path_command): Fix display of matching
substitution rules.
gdb/testsuite/ChangeLog:
* gdb.ada/subst.exp: Add tests to verify partial path matching
output.
This was tested on x86_64 Linux.
|
|
gdb_demangle. This change was included in an RFC from last
March [1] but omitted from the eventual commit.
[1] https://sourceware.org/ml/gdb-patches/2013-03/msg00235.html
2014-06-03 Gary Benson <gbenson@redhat.com>
* gnu-v2-abi.c (gnuv2_value_rtti_type): Use gdb_demangle.
|
|
* Makefile.in (SUBDIR_GUILE_OBS): Add scm-param.o.
(SUBDIR_GUILE_SRCS): Add scm-param.c.
(scm-param.o): New rule.
* guile/guile-internal.h (gdbscm_gc_dup_argv): Declare.
(gdbscm_misc_error): Declare.
(gdbscm_canonicalize_command_name): Declare.
(gdbscm_scm_to_host_string): Declare.
(gdbscm_scm_from_host_string): Declare.
(gdbscm_initialize_parameters): Declare.
* guile/guile.c (initialize_gdb_module): Call
gdbscm_initialize_parameters.
* guile/lib/gdb.scm: Export parameter symbols.
* guile/scm-cmd.c (gdbscm_canonicalize_command_name): Renamed from
cmdscm_canonicalize_name and made public. All callers updated.
* guile/scm-exception.c (gdbscm_misc_error): New function.
* guile/scm-param.c: New file.
* guile/scm-string.c (gdbscm_scm_to_string): Add comments.
(gdbscm_scm_to_host_string): New function.
(gdbscm_scm_from_host_string): New function.
* scm-utils.c (gdbscm_gc_dup_argv): New function.
testsuite/
* gdb.guile/scm-parameter.exp: New file.
doc/
* guile.texi (Guile API): Add entry for Parameters In Guile.
(GDB Scheme Data Types): Mention <gdb:parameter> object.
(Parameters In Guile): New node.
|
|
* Makefile.in (SUBDIR_GUILE_OBS): Add scm-cmd.o.
(SUBDIR_GUILE_SRCS): Add scm-cmd.c.
(scm-cmd.o): New rule.
* guile/guile-internal.h (gdbscm_gc_xstrdup): Declare.
(gdbscm_user_error_p): Declare.
(gdbscm_parse_command_name): Declare.
(gdbscm_valid_command_class_p): Declare.
(gdbscm_initialize_commands): Declare.
* guile/guile.c (initialize_gdb_module): Call
gdbscm_initialize_commands.
* guile/lib/gdb.scm: Export command symbols.
* guile/lib/gdb/init.scm (%exception-keys): Add gdb:user-error.
(throw-user-error): New function.
* guile/scm-cmd.c: New file.
* guile/scm-exception.c (user_error_symbol): New static global.
(gdbscm_user_error_p): New function.
(gdbscm_initialize_exceptions): Set user_error_symbol.
* scm-utils.c (gdbscm_gc_xstrdup): New function.
testsuite/
* gdb.guile/scm-cmd.c: New file.
* gdb.guile/scm-cmd.exp: New file.
doc/
* guile.texi (Guile API): Add entry for Commands In Guile.
(Basic Guile) <parse-and-eval>: Add reference.
(Basic Guile) <string->argv>: Move definition to Commands In Guile.
(GDB Scheme Data Types): Mention <gdb:command> object.
(Commands In Guile): New node.
|
|
When using the multi-line feature, we don't want the gdb CLI to remove
comments from the command list, as this will remove things like
"#define".
* top.c (command_loop): Handle comments here...
(command_line_input): ... not here.
|
|
* Makefile.in (SUBDIR_GUILE_OBS): Add scm-progspace.o.
(SUBDIR_GUILE_SRCS): Add scm-progspace.c.
(scm-progspace.o): New rule.
* guile/guile-internal.h (pspace_smob): New typedef.
(psscm_pspace_smob_pretty_printers): Declare.
(psscm_pspace_smob_from_pspace): Declare.
(psscm_scm_from_pspace): Declare.
* guile/guile.c (initialize_gdb_module): Call
gdbscm_initialize_pspaces.
* guile/lib/gdb.scm: Export progspace symbols.
* guile/lib/gdb/printing.scm (prepend-pretty-printer!): Add progspace
support.
(append-pretty-printer!): Ditto.
* guile/scm-pretty-print.c (ppscm_find_pretty_printer_from_progspace):
Implement.
* guile/scm-progspace.c: New file.
doc/
* guile.texi (Guile API): Add entry for Progspaces In Guile.
(GDB Scheme Data Types): Mention <gdb:progspace> object.
(Progspaces In Guile): New node.
testsuite/
* gdb.guile/scm-pretty-print.exp: Add tests for objfile and progspace
pretty-printer lookup.
* gdb.guile/scm-pretty-print.scm (pp_s-printer): New function.
(make-pp_s-printer): Call it.
(make-pretty-printer-from-dict): New function.
(lookup-pretty-printer-maker-from-dict): New function.
(*pretty-printer*): Simplify.
(make-objfile-pp_s-printer): New function.
(install-objfile-pretty-printers!): New function.
(make-progspace-pp_s-printer): New function.
(install-progspace-pretty-printers!): New function.
* gdb.guile/scm-progspace.c: New file.
* gdb.guile/scm-progspace.exp: New file.
|
|
Power8 fuses addis,addi and addis,ld sequences when the target of the
addis is the same as the addi/ld. Thus
addis r12,r2,xxx@ha
addi r12,r12,xxx@l / ld r12,xxx@l(r12)
is faster than
addis r11,r2,xxx@ha
addi r12,r11,xxx@l / ld r12,xxx@l(r11)
So use the form that allows fusion in plt call and branch stubs.
bfd/
* elf64-ppc.c (ADDIS_R12_R2): Define.
(build_plt_stub): Support fusion on ELFv2 stub.
(ppc_build_one_stub): Likewise for plt branch stubs.
gold/
* powerpc.cc (addis_12_2): Define.
(Stub_table::do_write): Support fusion on ELFv2 stubs.
ld/testsuite/
* ld-powerpc/elfv2exe.d: Update for changed plt call stubs.
gdb/
* ppc64-tdep.c (ppc64_standard_linkage8): New.
(ppc64_skip_trampoline_code): Recognise ELFv2 stub supporting fusion.
|
|
* dwarf2read.c (struct dwarf2_per_objfile): New member
n_allocated_type_units.
(struct dwarf2_per_objfile) <tu_stats>: New member
nr_all_type_units_reallocs.
(create_signatured_type_table_from_index): Initialize
n_allocated_type_units
(create_all_type_units): Ditto.
(add_type_unit): Move up in file. New arg slot.
All callers updated. Increase space for all_type_units more
efficiently.
(fill_in_sig_entry_from_dwo_entry): Handle psymtabs.
(lookup_dwo_signatured_type): Handle skeletonless TUs.
(lookup_dwp_signatured_type): Ditto.
(init_tu_and_read_dwo_dies): New arg use_existing_cu.
All callers updated.
(build_type_psymtabs_1): Leave type_unit_groups as
NULL if no TUs present.
(print_tu_stats): New function.
(process_skeletonless_type_unit): New function.
(process_dwo_file_for_skeletonless_type_units): New
function.
(process_skeletonless_type_units): New function.
(dwarf2_build_psymtabs_hard): Handle skeletonless TUs.
Call print tu_stats if debugging enabled.
|
|
While the full fix for PR 15180 isn't in, it's best if we at least
make sure that GDB doesn't lose control when a breakpoint is set at
the same address as a dprintf.
gdb/
2014-06-02 Pedro Alves <palves@redhat.com>
* breakpoint.c (build_target_command_list): Don't build a command
list if we have any duplicate location that isn't a dprintf.
gdb/testsuite/
2014-06-02 Pedro Alves <palves@redhat.com>
* gdb.base/dprintf-bp-same-addr.c: New file.
* gdb.base/dprintf-bp-same-addr.exp: New file.
|
|
If some event happens to trigger at the same address as a dprintf-style
agent dprintf is installed, GDB will complain, like:
(gdb) continue
Continuing.
May only run agent-printf on the target
(gdb)
Such dprintfs are completely handled on the target side, so they can't
explain a stop, but GDB is currently putting then on the bpstat chain
anyway, because they currently unconditionally use bkpt_breakpoint_hit
as breakpoint_hit method.
gdb/
2014-06-02 Pedro Alves <palves@redhat.com>
* breakpoint.c (dprintf_breakpoint_hit): New function.
(initialize_breakpoint_ops): Install it as dprintf's
breakpoint_hit method.
|
|
At the time this function was written, there was no filename_ncmp,
only FILENAME_CMP. So, in order to do an n-cmp, we had to make a local
copy of the first n characters of our string and use that to perform
the comparison. This patch simplifies the function's implementation,
now that we have filename_ncmp.
gdb/ChangeLog:
* source.c (substitute_path_rule_matches): Simplify using
filename_ncmp instead of FILENAME_CMP.
Tested on x86_64-linux.
|
|
gdb/ChangeLog:
* source.c (substitute_path_rule_matches): Remove trailing spaces.
|
|
gdb/
2014-06-01 Ludovic Courtès <ludo@gnu.org>
* configure.ac: When Guile is available, check for the
availability of 'scm_new_smob'.
* configure, config.h.in: Regenerate.
* guile/guile-internal.h (scm_new_smob) [!HAVE_SCM_NEW_SMOB]: New
function.
|
|
https://sourceware.org/ml/gdb-patches/2014-05/msg00737.html
Currently a MEMORY_ERROR raised during unwinding a frame will cause the
unwind to stop with an error message, for example:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
Cannot access memory at address 0x2aaaaaab0000
However, frame #4 is marked as being the end of the stack unwind, so a
subsequent request for the backtrace looses the error message, such as:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
When fetching the backtrace, or requesting the stack depth using the MI
interface the situation is even worse, the first time a request is made
we encounter the memory error and so the MI returns an error instead of
the correct result, for example:
(gdb) -stack-info-depth
^error,msg="Cannot access memory at address 0x2aaaaaab0000"
Or,
(gdb) -stack-list-frames
^error,msg="Cannot access memory at address 0x2aaaaaab0000"
However, once one of these commands has been used gdb has, internally,
walked the stack and figured that out that frame #4 is the bottom of the
stack, so the second time an MI command is tried you'll get the "expected"
result:
(gdb) -stack-info-depth
^done,depth="5"
Or,
(gdb) -stack-list-frames
^done,stack=[frame={level="0", .. snip lots .. }]
After this patch the MEMORY_ERROR encountered during the frame unwind is
attached to frame #4 as the stop reason, and is displayed in the CLI each
time the backtrace is requested. In the MI, catching the error means that
the "expected" result is returned the first time the MI command is issued.
So, from the CLI the results of the backtrace will be:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
Backtrace stopped: Cannot access memory at address 0x2aaaaaab0000
Each and every time that the backtrace is requested, while the MI output
will similarly be consistently:
(gdb) -stack-info-depth
^done,depth="5"
Or,
(gdb) -stack-list-frames
^done,stack=[frame={level="0", .. snip lots .. }]
gdb/ChangeLog:
* frame.c (struct frame_info): Add stop_string field.
(get_prev_frame_always_1): Renamed from get_prev_frame_always.
(get_prev_frame_always): Old content moved into
get_prev_frame_always_1. Call get_prev_frame_always_1 inside
TRY_CATCH, handle MEMORY_ERROR exceptions.
(frame_stop_reason_string): New function definition.
* frame.h (unwind_stop_reason_to_string): Extend comment to
mention frame_stop_reason_string.
(frame_stop_reason_string): New function declaration.
* stack.c (frame_info): Switch to frame_stop_reason_string.
(backtrace_command_1): Switch to frame_stop_reason_string.
* unwind_stop_reason.def: Add UNWIND_MEMORY_ERROR.
(LAST_ENTRY): Changed to UNWIND_MEMORY_ERROR.
* guile/lib/gdb.scm: Add FRAME_UNWIND_MEMORY_ERROR to export list.
gdb/doc/ChangeLog:
* guile.texi (Frames In Guile): Mention FRAME_UNWIND_MEMORY_ERROR.
* python.texi (Frames In Python): Mention
gdb.FRAME_UNWIND_MEMORY_ERROR.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-invalid-stack-middle.exp: Update expected results.
* gdb.arch/amd64-invalid-stack-top.exp: Likewise.
|
|
https://sourceware.org/ml/gdb-patches/2014-05/msg00721.html
This function is confusingly named, the "frame_" in the name implies it
somehow is frame dependent, when in reality the function just converts an
'enum unwind_stop_reason' value to a string.
gdb/ChangeLog:
* frame.c (frame_stop_reason_string): Rename to ...
(unwind_stop_reason_to_string): this.
* frame.h (frame_stop_reason_string): Rename to ...
(unwind_stop_reason_to_string): this.
* stack.c (frame_info): Update call to frame_stop_reason_string.
(backtrace_command_1): Likewise.
* guile/scm-frame.c (gdbscm_unwind_stop_reason_string): Likewise.
* python/py-frame.c (gdbpy_frame_stop_reason_string): Likewise.
|