aboutsummaryrefslogtreecommitdiff
path: root/gas/config/tc-sparc.c
AgeCommit message (Expand)AuthorFilesLines
2017-08-23gas: enable PC-relative diff relocations on sparc64James Clarke1-1/+25
2017-05-19binutils: support for the SPARC M8 processorJose E. Marchesi1-1/+75
2017-04-25gas: sparc: fix relaxation of CALL instruction into branches in a.out targetsJose E. Marchesi1-2/+7
2017-02-23opcodes,gas: associate SPARC ASIs with an architecture level.Sheldon Lobo1-7/+46
2017-01-23Fix spelling mistakes and typos in the GAS sources.Nick Clifton1-2/+2
2017-01-02Update year range in copyright notice of all files.Alan Modra1-1/+1
2016-11-27Fix spelling in comments in C source files (gas)Ambrogino Modigliani1-1/+1
2016-11-25gas: fix CBCOND diagnostics for invalid immediate operands.Jose E. Marchesi1-2/+3
2016-11-22gas,opcodes: fix hardware capabilities bumping in the sparc assembler.Jose E. Marchesi1-58/+54
2016-11-15Fix SPARC relocations generated for the .eh_frame section.Nick Clifton1-1/+4
2016-09-14gas: improve architecture mismatch diagnostics in sparcJose E. Marchesi1-1/+1
2016-09-14gas: detect DCTI couples in sparcJose E. Marchesi1-11/+45
2016-08-04Fix generation of relocs for 32-bit Sparc Solaris targets.Stefan Trleman1-0/+16
2016-07-19sparc: make a field type bfd_reloc_code_real_typeTrevor Saunders1-1/+1
2016-07-19sparc: remove a sentinalTrevor Saunders1-16/+11
2016-06-17opcodes,gas: sparc: fix rdasr,wrasr,rdpr,wrpr,rdhpr,wrhpr insns.Jose E. Marchesi1-26/+25
2016-06-17opcodes,gas: adjust sparc insns and make GAS aware of itJose E. Marchesi1-15/+25
2016-06-17gas: sparc: fix collision of registers and pseudo-ops.Jose E. Marchesi1-141/+240
2016-05-13use XNEW and related macros moreTrevor Saunders1-4/+4
2016-04-14make a few variables staticTrevor Saunders1-1/+1
2016-04-07Allow integer contants to have a U suffix. Improve error reporting for missi...Nick Clifton1-0/+5
2016-04-01Constify moreAlan Modra1-2/+2
2016-03-31work around get_symbol_name () in sparc and ia64Trevor Saunders1-1/+1
2016-03-29make md_parse_option () take a const char *Trevor Saunders1-1/+1
2016-03-24gas: sparc: allow ASR registers in the 0..31 range in V9 and laterJose E. Marchesi1-16/+16
2016-03-22tc-sparc.c: get rid of wierd usage of strchr ()Trevor Saunders1-6/+13
2016-02-25Convert more variables to a constant form.Trevor Saunders1-13/+13
2016-01-01Copyright update for binutilsAlan Modra1-1/+1
2015-12-09sparc: support %dN and %qN syntax for FP registers.Jose E. Marchesi1-5/+11
2015-08-25Support for the sparc %pmcdper privileged register.Jose E. Marchesi1-0/+1
2015-08-21Allow symbol and label names to be enclosed in double quotes.Nick Clifton1-12/+9
2015-08-12Remove trailing spaces in gasH.J. Lu1-1/+1
2015-05-06gas: typo in comment fixed.Jose E. Marchesi1-1/+1
2015-05-06gas: support for the sparc %ncc condition codes register.Jose E. Marchesi1-2/+4
2015-01-02ChangeLog rotatation and copyright year updateAlan Modra1-1/+1
2014-11-04Don't use register keywordAlan Modra1-2/+2
2014-10-14sparc-aout and sparc-coff breakageAlan Modra1-0/+2
2014-10-09This is a series of patches that add support for the SPARC M7 cpu toJose E. Marchesi1-40/+110
2014-09-12gas: fix bumping to architectures >v9 in sparc64-* targets.Jose E. Marchesi1-9/+18
2014-07-04Update "configure.in" in comments and docoAlan Modra1-1/+1
2014-04-09gas TC_PARSE_CONS_EXPRESSION communication with TC_CONS_FIX_NEWAlan Modra1-12/+6
2014-03-19This patch adds support for the hyperprivileged registers %hstick_offsetJose E. Marchesi1-0/+2
2014-03-05Update copyright yearsAlan Modra1-1/+1
2013-08-23 PR binutils/15834Nick Clifton1-5/+2
2013-08-05gas/Eric Botcazou1-3/+4
2012-11-20Fix sparc bitness overrides in GAS. Noticed by Eric Botcazou.David S. Miller1-3/+11
2012-04-27Add support for sparc %cfr ASR register.David S. Miller1-0/+1
2012-04-27Add support for sparc pause instruction.David S. Miller1-5/+6
2012-04-27Add support for sparc compare-and-branch instructions.David S. Miller1-5/+25
2012-04-27Add support for SPARC T4 crypto instructions.David S. Miller1-3/+47
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
/* CTF dict creation.
   Copyright (C) 2019-2021 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <sys/param.h>
#include <string.h>
#include <unistd.h>

#ifndef EOVERFLOW
#define EOVERFLOW ERANGE
#endif

#ifndef roundup
#define roundup(x, y)  ((((x) + ((y) - 1)) / (y)) * (y))
#endif

/* The initial size of a dynamic type's vlen in members.  Arbitrary: the bigger
   this is, the less allocation needs to be done for small structure
   initialization, and the more memory is wasted for small structures during CTF
   construction.  No effect on generated CTF or ctf_open()ed CTF. */
#define INITIAL_VLEN 16

/* Make sure the ptrtab has enough space for at least one more type.

   We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
   at a time.  */

static int
ctf_grow_ptrtab (ctf_dict_t *fp)
{
  size_t new_ptrtab_len = fp->ctf_ptrtab_len;

  /* We allocate one more ptrtab entry than we need, for the initial zero,
     plus one because the caller will probably allocate a new type.  */

  if (fp->ctf_ptrtab == NULL)
    new_ptrtab_len = 1024;
  else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
    new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;

  if (new_ptrtab_len != fp->ctf_ptrtab_len)
    {
      uint32_t *new_ptrtab;

      if ((new_ptrtab = realloc (fp->ctf_ptrtab,
				 new_ptrtab_len * sizeof (uint32_t))) == NULL)
	return (ctf_set_errno (fp, ENOMEM));

      fp->ctf_ptrtab = new_ptrtab;
      memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
	      (new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
      fp->ctf_ptrtab_len = new_ptrtab_len;
    }
  return 0;
}

/* Make sure a vlen has enough space: expand it otherwise.  Unlike the ptrtab,
   which grows quite slowly, the vlen grows in big jumps because it is quite
   expensive to expand: the caller has to scan the old vlen for string refs
   first and remove them, then re-add them afterwards.  The initial size is
   more or less arbitrary.  */
static int
ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen)
{
  unsigned char *old = dtd->dtd_vlen;

  if (dtd->dtd_vlen_alloc > vlen)
    return 0;

  if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen,
				dtd->dtd_vlen_alloc * 2)) == NULL)
    {
      dtd->dtd_vlen = old;
      return (ctf_set_errno (fp, ENOMEM));
    }
  memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc);
  dtd->dtd_vlen_alloc *= 2;
  return 0;
}

/* To create an empty CTF dict, we just declare a zeroed header and call
   ctf_bufopen() on it.  If ctf_bufopen succeeds, we mark the new dict r/w and
   initialize the dynamic members.  We start assigning type IDs at 1 because
   type ID 0 is used as a sentinel and a not-found indicator.  */

ctf_dict_t *
ctf_create (int *errp)
{
  static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };

  ctf_dynhash_t *dthash;
  ctf_dynhash_t *dvhash;
  ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
  ctf_dynhash_t *objthash = NULL, *funchash = NULL;
  ctf_sect_t cts;
  ctf_dict_t *fp;

  libctf_init_debug();
  dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
			       NULL, NULL);
  if (dthash == NULL)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err;
    }

  dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			       NULL, NULL);
  if (dvhash == NULL)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err_dt;
    }

  structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				NULL, NULL);
  unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			       NULL, NULL);
  enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL);
  names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
			      NULL, NULL);
  objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				 free, NULL);
  funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
				 free, NULL);
  if (!structs || !unions || !enums || !names)
    {
      ctf_set_open_errno (errp, EAGAIN);
      goto err_dv;
    }

  cts.cts_name = _CTF_SECTION;
  cts.cts_data = &hdr;
  cts.cts_size = sizeof (hdr);
  cts.cts_entsize = 1;

  if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL)
    goto err_dv;

  fp->ctf_structs.ctn_writable = structs;
  fp->ctf_unions.ctn_writable = unions;
  fp->ctf_enums.ctn_writable = enums;
  fp->ctf_names.ctn_writable = names;
  fp->ctf_objthash = objthash;
  fp->ctf_funchash = funchash;
  fp->ctf_dthash = dthash;
  fp->ctf_dvhash = dvhash;
  fp->ctf_dtoldid = 0;
  fp->ctf_snapshots = 1;
  fp->ctf_snapshot_lu = 0;
  fp->ctf_flags |= LCTF_DIRTY;

  ctf_set_ctl_hashes (fp);
  ctf_setmodel (fp, CTF_MODEL_NATIVE);
  if (ctf_grow_ptrtab (fp) < 0)
    {
      ctf_set_open_errno (errp, ctf_errno (fp));
      ctf_dict_close (fp);
      return NULL;
    }

  return fp;

 err_dv:
  ctf_dynhash_destroy (structs);
  ctf_dynhash_destroy (unions);
  ctf_dynhash_destroy (enums);
  ctf_dynhash_destroy (names);
  ctf_dynhash_destroy (objthash);
  ctf_dynhash_destroy (funchash);
  ctf_dynhash_destroy (dvhash);
 err_dt:
  ctf_dynhash_destroy (dthash);
 err:
  return NULL;
}

/* Compatibility: just update the threshold for ctf_discard.  */
int
ctf_update (ctf_dict_t *fp)
{
  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  fp->ctf_dtoldid = fp->ctf_typemax;
  return 0;
}

ctf_names_t *
ctf_name_table (ctf_dict_t *fp, int kind)
{
  switch (kind)
    {
    case CTF_K_STRUCT:
      return &fp->ctf_structs;
    case CTF_K_UNION:
      return &fp->ctf_unions;
    case CTF_K_ENUM:
      return &fp->ctf_enums;
    default:
      return &fp->ctf_names;
    }
}

int
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
{
  const char *name;
  if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
			  dtd) < 0)
    {
      ctf_set_errno (fp, ENOMEM);
      return -1;
    }

  if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
      && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
    {
      if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable,
			      (char *) name, (void *) (uintptr_t)
			      dtd->dtd_type) < 0)
	{
	  ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
			      dtd->dtd_type);
	  ctf_set_errno (fp, ENOMEM);
	  return -1;
	}
    }
  ctf_list_append (&fp->ctf_dtdefs, dtd);
  return 0;
}

void
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
{
  int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
  int name_kind = kind;
  const char *name;

  ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);

  switch (kind)
    {
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen;
	size_t i;

	for (i = 0; i < vlen; i++)
	  ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name),
			      &memb[i].ctlm_name);
      }
      break;
    case CTF_K_ENUM:
      {
	ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
	size_t i;

	for (i = 0; i < vlen; i++)
	  ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name),
			      &en[i].cte_name);
      }
      break;
    case CTF_K_FORWARD:
      name_kind = dtd->dtd_data.ctt_type;
      break;
    }
  free (dtd->dtd_vlen);
  dtd->dtd_vlen_alloc = 0;

  if (dtd->dtd_data.ctt_name
      && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
      && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
    {
      ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable,
			  name);
      ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
    }

  ctf_list_delete (&fp->ctf_dtdefs, dtd);
  free (dtd);
}

ctf_dtdef_t *
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
{
  return (ctf_dtdef_t *)
    ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
}

ctf_dtdef_t *
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
{
  ctf_id_t idx;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return NULL;

  if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
    fp = fp->ctf_parent;

  idx = LCTF_TYPE_TO_INDEX(fp, id);

  if ((unsigned long) idx <= fp->ctf_typemax)
    return ctf_dtd_lookup (fp, id);
  return NULL;
}

int
ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
{
  if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
    {
      ctf_set_errno (fp, ENOMEM);
      return -1;
    }
  ctf_list_append (&fp->ctf_dvdefs, dvd);
  return 0;
}

void
ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
{
  ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
  free (dvd->dvd_name);

  ctf_list_delete (&fp->ctf_dvdefs, dvd);
  free (dvd);
}

ctf_dvdef_t *
ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
{
  return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
}

/* Discard all of the dynamic type definitions and variable definitions that
   have been added to the dict since the last call to ctf_update().  We locate
   such types by scanning the dtd list and deleting elements that have type IDs
   greater than ctf_dtoldid, which is set by ctf_update(), above, and by
   scanning the variable list and deleting elements that have update IDs equal
   to the current value of the last-update snapshot count (indicating that they
   were added after the most recent call to ctf_update()).  */
int
ctf_discard (ctf_dict_t *fp)
{
  ctf_snapshot_id_t last_update =
    { fp->ctf_dtoldid,
      fp->ctf_snapshot_lu + 1 };

  /* Update required?  */
  if (!(fp->ctf_flags & LCTF_DIRTY))
    return 0;

  return (ctf_rollback (fp, last_update));
}

ctf_snapshot_id_t
ctf_snapshot (ctf_dict_t *fp)
{
  ctf_snapshot_id_t snapid;
  snapid.dtd_id = fp->ctf_typemax;
  snapid.snapshot_id = fp->ctf_snapshots++;
  return snapid;
}

/* Like ctf_discard(), only discards everything after a particular ID.  */
int
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
{
  ctf_dtdef_t *dtd, *ntd;
  ctf_dvdef_t *dvd, *nvd;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (fp->ctf_snapshot_lu >= id.snapshot_id)
    return (ctf_set_errno (fp, ECTF_OVERROLLBACK));

  for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
    {
      int kind;
      const char *name;

      ntd = ctf_list_next (dtd);

      if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
	continue;

      kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
      if (kind == CTF_K_FORWARD)
	kind = dtd->dtd_data.ctt_type;

      if (dtd->dtd_data.ctt_name
	  && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
	  && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
	{
	  ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable,
			      name);
	  ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
	}

      ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
      ctf_dtd_delete (fp, dtd);
    }

  for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
    {
      nvd = ctf_list_next (dvd);

      if (dvd->dvd_snapshots <= id.snapshot_id)
	continue;

      ctf_dvd_delete (fp, dvd);
    }

  fp->ctf_typemax = id.dtd_id;
  fp->ctf_snapshots = id.snapshot_id;

  if (fp->ctf_snapshots == fp->ctf_snapshot_lu)
    fp->ctf_flags &= ~LCTF_DIRTY;

  return 0;
}

/* Note: vlen is the amount of space *allocated* for the vlen.  It may well not
   be the amount of space used (yet): the space used is declared in per-kind
   fashion in the dtd_data's info word.  */
static ctf_id_t
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
		 size_t vlen, ctf_dtdef_t **rp)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;

  if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
    return (ctf_set_errno (fp, EINVAL));

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
    return (ctf_set_errno (fp, ECTF_FULL));

  if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
    return (ctf_set_errno (fp, ECTF_FULL));

  /* Make sure ptrtab always grows to be big enough for all types.  */
  if (ctf_grow_ptrtab (fp) < 0)
      return CTF_ERR;				/* errno is set for us. */

  if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  dtd->dtd_vlen_alloc = vlen;
  if (vlen > 0)
    {
      if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL)
	goto oom;
    }
  else
    dtd->dtd_vlen = NULL;

  type = ++fp->ctf_typemax;
  type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));

  dtd->dtd_data.ctt_name = ctf_str_add_pending (fp, name,
						&dtd->dtd_data.ctt_name);
  dtd->dtd_type = type;

  if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
    goto oom;

  if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
    goto err;					/* errno is set for us.  */

  fp->ctf_flags |= LCTF_DIRTY;

  *rp = dtd;
  return type;

 oom:
  ctf_set_errno (fp, EAGAIN);
 err:
  free (dtd->dtd_vlen);
  free (dtd);
  return CTF_ERR;
}

/* When encoding integer sizes, we want to convert a byte count in the range
   1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc).  The clp2() function
   is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.  */
static size_t
clp2 (size_t x)
{
  x--;

  x |= (x >> 1);
  x |= (x >> 2);
  x |= (x >> 4);
  x |= (x >> 8);
  x |= (x >> 16);

  return (x + 1);
}

ctf_id_t
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
		 const char *name, const ctf_encoding_t *ep, uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  uint32_t encoding;

  if (ep == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if (name == NULL || name[0] == '\0')
    return (ctf_set_errno (fp, ECTF_NONAME));

  if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT))
    return -1;					/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t),
			       &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
  dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
				 / CHAR_BIT);
  switch (kind)
    {
    case CTF_K_INTEGER:
      encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
      break;
    case CTF_K_FLOAT:
      encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
      break;
    }
  memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding));

  return type;
}

ctf_id_t
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;
  int child = fp->ctf_flags & LCTF_CHILD;

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
  dtd->dtd_data.ctt_type = (uint32_t) ref;

  if (kind != CTF_K_POINTER)
    return type;

  /* If we are adding a pointer, update the ptrtab, pointing at this type from
     the type it points to.  Note that ctf_typemax is at this point one higher
     than we want to check against, because it's just been incremented for the
     addition of this type.  The pptrtab is lazily-updated as needed, so is not
     touched here.  */

  uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
  uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);

  if (LCTF_TYPE_ISCHILD (fp, ref) == child
      && ref_idx < fp->ctf_typemax)
    fp->ctf_ptrtab[ref_idx] = type_idx;

  return type;
}

ctf_id_t
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
	       const ctf_encoding_t *ep)
{
  ctf_dtdef_t *dtd;
  ctf_slice_t slice;
  ctf_id_t resolved_ref = ref;
  ctf_id_t type;
  int kind;
  const ctf_type_t *tp;
  ctf_dict_t *tmp = fp;

  if (ep == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
    return (ctf_set_errno (fp, ECTF_SLICEOVERFLOW));

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
    return CTF_ERR;		/* errno is set for us.  */

  /* Make sure we ultimately point to an integral type.  We also allow slices to
     point to the unimplemented type, for now, because the compiler can emit
     such slices, though they're not very much use.  */

  resolved_ref = ctf_type_resolve_unsliced (tmp, ref);
  kind = ctf_type_kind_unsliced (tmp, resolved_ref);

  if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
      (kind != CTF_K_ENUM)
      && (ref != 0))
    return (ctf_set_errno (fp, ECTF_NOTINTFP));

  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE,
			       sizeof (ctf_slice_t), &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  memset (&slice, 0, sizeof (ctf_slice_t));

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
  dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
				 / CHAR_BIT);
  slice.cts_type = (uint32_t) ref;
  slice.cts_bits = ep->cte_bits;
  slice.cts_offset = ep->cte_offset;
  memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t));

  return type;
}

ctf_id_t
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
		 const char *name, const ctf_encoding_t *ep)
{
  return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
}

ctf_id_t
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
	       const char *name, const ctf_encoding_t *ep)
{
  return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
}

ctf_id_t
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
}

ctf_id_t
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
{
  ctf_dtdef_t *dtd;
  ctf_array_t cta;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;

  if (arp == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if (arp->ctr_contents != 0
      && ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  tmp = fp;
  if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
    {
      ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
		    _("ctf_add_array: index type %lx is incomplete"),
		    arp->ctr_contents);
      return (ctf_set_errno (fp, ECTF_INCOMPLETE));
    }

  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY,
			       sizeof (ctf_array_t), &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  memset (&cta, 0, sizeof (ctf_array_t));

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
  dtd->dtd_data.ctt_size = 0;
  cta.cta_contents = (uint32_t) arp->ctr_contents;
  cta.cta_index = (uint32_t) arp->ctr_index;
  cta.cta_nelems = arp->ctr_nelems;
  memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t));

  return type;
}

int
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
  ctf_array_t *vlen;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL
      || LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
    return (ctf_set_errno (fp, ECTF_BADID));

  vlen = (ctf_array_t *) dtd->dtd_vlen;
  fp->ctf_flags |= LCTF_DIRTY;
  vlen->cta_contents = (uint32_t) arp->ctr_contents;
  vlen->cta_index = (uint32_t) arp->ctr_index;
  vlen->cta_nelems = arp->ctr_nelems;

  return 0;
}

ctf_id_t
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
		  const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  uint32_t vlen;
  uint32_t *vdat;
  ctf_dict_t *tmp = fp;
  size_t initial_vlen;
  size_t i;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
      || (ctc->ctc_argc != 0 && argv == NULL))
    return (ctf_set_errno (fp, EINVAL));

  vlen = ctc->ctc_argc;
  if (ctc->ctc_flags & CTF_FUNC_VARARG)
    vlen++;	       /* Add trailing zero to indicate varargs (see below).  */

  if (ctc->ctc_return != 0
      && ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
    return CTF_ERR;				/* errno is set for us.  */

  if (vlen > CTF_MAX_VLEN)
    return (ctf_set_errno (fp, EOVERFLOW));

  /* One word extra allocated for padding for 4-byte alignment if need be.
     Not reflected in vlen: we don't want to copy anything into it, and
     it's in addition to (e.g.) the trailing 0 indicating varargs.  */

  initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1)));
  if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
			       initial_vlen, &dtd)) == CTF_ERR)
    return CTF_ERR;				/* errno is set for us.  */

  vdat = (uint32_t *) dtd->dtd_vlen;

  for (i = 0; i < ctc->ctc_argc; i++)
    {
      tmp = fp;
      if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
	return CTF_ERR;				/* errno is set for us.  */
      vdat[i] = (uint32_t) argv[i];
    }

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
  dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;

  if (ctc->ctc_flags & CTF_FUNC_VARARG)
    vdat[vlen - 1] = 0;		   /* Add trailing zero to indicate varargs.  */

  return type;
}

ctf_id_t
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
		      size_t size)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;
  size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;

  /* Promote root-visible forwards to structs.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
				    initial_vlen, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  /* Forwards won't have any vlen yet.  */
  if (dtd->dtd_vlen_alloc == 0)
    {
      if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
	return (ctf_set_errno (fp, ENOMEM));
      dtd->dtd_vlen_alloc = initial_vlen;
    }

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);
  dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
  dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
  dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);

  return type;
}

ctf_id_t
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  return (ctf_add_struct_sized (fp, flag, name, 0));
}

ctf_id_t
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
		     size_t size)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;
  size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;

  /* Promote root-visible forwards to unions.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
				    initial_vlen, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us */

  /* Forwards won't have any vlen yet.  */
  if (dtd->dtd_vlen_alloc == 0)
    {
      if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
	return (ctf_set_errno (fp, ENOMEM));
      dtd->dtd_vlen_alloc = initial_vlen;
    }

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);
  dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
  dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
  dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);

  return type;
}

ctf_id_t
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  return (ctf_add_union_sized (fp, flag, name, 0));
}

ctf_id_t
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;
  size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN;

  /* Promote root-visible forwards to enums.  */
  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);

  if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
    dtd = ctf_dtd_lookup (fp, type);
  else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
				    initial_vlen, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  /* Forwards won't have any vlen yet.  */
  if (dtd->dtd_vlen_alloc == 0)
    {
      if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
	return (ctf_set_errno (fp, ENOMEM));
      dtd->dtd_vlen_alloc = initial_vlen;
    }

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
  dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;

  return type;
}

ctf_id_t
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
		      const ctf_encoding_t *ep)
{
  ctf_id_t type = 0;

  /* First, create the enum if need be, using most of the same machinery as
     ctf_add_enum(), to ensure that we do not allow things past that are not
     enums or forwards to them.  (This includes other slices: you cannot slice a
     slice, which would be a useless thing to do anyway.)  */

  if (name != NULL)
    type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);

  if (type != 0)
    {
      if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
	  (ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
	return (ctf_set_errno (fp, ECTF_NOTINTFP));
    }
  else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  /* Now attach a suitable slice to it.  */

  return ctf_add_slice (fp, flag, type, ep);
}

ctf_id_t
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
		 uint32_t kind)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type = 0;

  if (!ctf_forwardable_kind (kind))
    return (ctf_set_errno (fp, ECTF_NOTSUE));

  if (name == NULL || name[0] == '\0')
    return (ctf_set_errno (fp, ECTF_NONAME));

  /* If the type is already defined or exists as a forward tag, just
     return the ctf_id_t of the existing definition.  */

  type = ctf_lookup_by_rawname (fp, kind, name);

  if (type)
    return type;

  if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
  dtd->dtd_data.ctt_type = kind;

  return type;
}

ctf_id_t
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
		 ctf_id_t ref)
{
  ctf_dtdef_t *dtd;
  ctf_id_t type;
  ctf_dict_t *tmp = fp;

  if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
    return (ctf_set_errno (fp, EINVAL));

  if (name == NULL || name[0] == '\0')
    return (ctf_set_errno (fp, ECTF_NONAME));

  if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
    return CTF_ERR;		/* errno is set for us.  */

  if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0,
			       &dtd)) == CTF_ERR)
    return CTF_ERR;		/* errno is set for us.  */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
  dtd->dtd_data.ctt_type = (uint32_t) ref;

  return type;
}

ctf_id_t
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
}

ctf_id_t
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
}

ctf_id_t
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
{
  return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
}

int
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
		    int value)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
  unsigned char *old_vlen;
  ctf_enum_t *en;
  size_t i;

  uint32_t kind, vlen, root;

  if (name == NULL)
    return (ctf_set_errno (fp, EINVAL));

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL)
    return (ctf_set_errno (fp, ECTF_BADID));

  kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
  vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

  if (kind != CTF_K_ENUM)
    return (ctf_set_errno (fp, ECTF_NOTENUM));

  if (vlen == CTF_MAX_VLEN)
    return (ctf_set_errno (fp, ECTF_DTFULL));

  old_vlen = dtd->dtd_vlen;
  if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0)
    return -1;					/* errno is set for us.  */
  en = (ctf_enum_t *) dtd->dtd_vlen;

  if (dtd->dtd_vlen != old_vlen)
    {
      ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;

      /* Remove pending refs in the old vlen region and reapply them.  */

      for (i = 0; i < vlen; i++)
	ctf_str_move_pending (fp, &en[i].cte_name, move);
    }

  for (i = 0; i < vlen; i++)
    if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
      return (ctf_set_errno (fp, ECTF_DUPLICATE));

  en[i].cte_name = ctf_str_add_pending (fp, name, &en[i].cte_name);
  en[i].cte_value = value;

  if (en[i].cte_name == 0 && name != NULL && name[0] != '\0')
    return -1;					/* errno is set for us. */

  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);

  fp->ctf_flags |= LCTF_DIRTY;

  return 0;
}

int
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
		       ctf_id_t type, unsigned long bit_offset)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);

  ssize_t msize, malign, ssize;
  uint32_t kind, vlen, root;
  size_t i;
  int is_incomplete = 0;
  unsigned char *old_vlen;
  ctf_lmember_t *memb;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (dtd == NULL)
    return (ctf_set_errno (fp, ECTF_BADID));

  if (name != NULL && name[0] == '\0')
    name = NULL;

  kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
  vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);

  if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
    return (ctf_set_errno (fp, ECTF_NOTSOU));

  if (vlen == CTF_MAX_VLEN)
    return (ctf_set_errno (fp, ECTF_DTFULL));

  old_vlen = dtd->dtd_vlen;
  if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0)
    return -1;					/* errno is set for us.  */
  memb = (ctf_lmember_t *) dtd->dtd_vlen;

  if (dtd->dtd_vlen != old_vlen)
    {
      ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;

      /* Remove pending refs in the old vlen region and reapply them.  */

      for (i = 0; i < vlen; i++)
	ctf_str_move_pending (fp, &memb[i].ctlm_name, move);
    }

  if (name != NULL)
    {
      for (i = 0; i < vlen; i++)
	if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0)
	  return (ctf_set_errno (fp, ECTF_DUPLICATE));
    }

  if ((msize = ctf_type_size (fp, type)) < 0 ||
      (malign = ctf_type_align (fp, type)) < 0)
    {
      /* The unimplemented type, and any type that resolves to it, has no size
	 and no alignment: it can correspond to any number of compiler-inserted
	 types.  We allow incomplete types through since they are routinely
	 added to the ends of structures, and can even be added elsewhere in
	 structures by the deduplicator.  They are assumed to be zero-size with
	 no alignment: this is often wrong, but problems can be avoided in this
	 case by explicitly specifying the size of the structure via the _sized
	 functions.  The deduplicator always does this.  */

      msize = 0;
      malign = 0;
      if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
	ctf_set_errno (fp, 0);
      else if (ctf_errno (fp) == ECTF_INCOMPLETE)
	is_incomplete = 1;
      else
	return -1;		/* errno is set for us.  */
    }

  memb[vlen].ctlm_name = ctf_str_add_pending (fp, name, &memb[vlen].ctlm_name);
  memb[vlen].ctlm_type = type;
  if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0')
    return -1;			/* errno is set for us.  */

  if (kind == CTF_K_STRUCT && vlen != 0)
    {
      if (bit_offset == (unsigned long) - 1)
	{
	  /* Natural alignment.  */

	  ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type);
	  size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]);

	  ctf_encoding_t linfo;
	  ssize_t lsize;

	  /* Propagate any error from ctf_type_resolve.  If the last member was
	     of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
	     cannot insert right after such a member without explicit offset
	     specification, because its alignment and size is not known.  */
	  if (ltype == CTF_ERR)
	    return -1;	/* errno is set for us.  */

	  if (is_incomplete)
	    {
	      ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
			    _("ctf_add_member_offset: cannot add member %s of "
			      "incomplete type %lx to struct %lx without "
			      "specifying explicit offset\n"),
			    name ? name : _("(unnamed member)"), type, souid);
	      return (ctf_set_errno (fp, ECTF_INCOMPLETE));
	    }

	  if (ctf_type_encoding (fp, ltype, &linfo) == 0)
	    off += linfo.cte_bits;
	  else if ((lsize = ctf_type_size (fp, ltype)) > 0)
	    off += lsize * CHAR_BIT;
	  else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE)
	    {
	      const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name);

	      ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
			    _("ctf_add_member_offset: cannot add member %s of "
			      "type %lx to struct %lx without specifying "
			      "explicit offset after member %s of type %lx, "
			      "which is an incomplete type\n"),
			    name ? name : _("(unnamed member)"), type, souid,
			    lname ? lname : _("(unnamed member)"), ltype);
	      return -1;			/* errno is set for us.  */
	    }

	  /* Round up the offset of the end of the last member to
	     the next byte boundary, convert 'off' to bytes, and
	     then round it up again to the next multiple of the
	     alignment required by the new member.  Finally,
	     convert back to bits and store the result in
	     dmd_offset.  Technically we could do more efficient
	     packing if the new member is a bit-field, but we're
	     the "compiler" and ANSI says we can do as we choose.  */

	  off = roundup (off, CHAR_BIT) / CHAR_BIT;
	  off = roundup (off, MAX (malign, 1));
	  memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT);
	  memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT);
	  ssize = off + msize;
	}
      else
	{
	  /* Specified offset in bits.  */

	  memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset);
	  memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset);
	  ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
	  ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
	}
    }
  else
    {
      memb[vlen].ctlm_offsethi = 0;
      memb[vlen].ctlm_offsetlo = 0;
      ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
      ssize = MAX (ssize, msize);
    }

  dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
  dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
  dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
  dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);

  fp->ctf_flags |= LCTF_DIRTY;
  return 0;
}

int
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
			ctf_id_t type, unsigned long bit_offset,
			const ctf_encoding_t encoding)
{
  ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
  int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
  int otype = type;

  if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
    return (ctf_set_errno (fp, ECTF_NOTINTFP));

  if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
    return -1;			/* errno is set for us.  */

  return ctf_add_member_offset (fp, souid, name, type, bit_offset);
}

int
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
		ctf_id_t type)
{
  return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
}

int
ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
{
  ctf_dvdef_t *dvd;
  ctf_dict_t *tmp = fp;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctf_dvd_lookup (fp, name) != NULL)
    return (ctf_set_errno (fp, ECTF_DUPLICATE));

  if (ctf_lookup_by_id (&tmp, ref) == NULL)
    return -1;			/* errno is set for us.  */

  /* Make sure this type is representable.  */
  if ((ctf_type_resolve (fp, ref) == CTF_ERR)
      && (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
    return -1;

  if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
    return (ctf_set_errno (fp, EAGAIN));

  if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
    {
      free (dvd);
      return (ctf_set_errno (fp, EAGAIN));
    }
  dvd->dvd_type = ref;
  dvd->dvd_snapshots = fp->ctf_snapshots;

  if (ctf_dvd_insert (fp, dvd) < 0)
    {
      free (dvd->dvd_name);
      free (dvd);
      return -1;			/* errno is set for us.  */
    }

  fp->ctf_flags |= LCTF_DIRTY;
  return 0;
}

int
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
{
  ctf_dict_t *tmp = fp;
  char *dupname;
  ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;

  if (!(fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (fp, ECTF_RDONLY));

  if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL ||
      ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL)
    return (ctf_set_errno (fp, ECTF_DUPLICATE));

  if (ctf_lookup_by_id (&tmp, id) == NULL)
    return -1;                                  /* errno is set for us.  */

  if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
    return (ctf_set_errno (fp, ECTF_NOTFUNC));

  if ((dupname = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));

  if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
    {
      free (dupname);
      return (ctf_set_errno (fp, ENOMEM));
    }
  return 0;
}

int
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
{
  return (ctf_add_funcobjt_sym (fp, 0, name, id));
}

int
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
{
  return (ctf_add_funcobjt_sym (fp, 1, name, id));
}

typedef struct ctf_bundle
{
  ctf_dict_t *ctb_dict;		/* CTF dict handle.  */
  ctf_id_t ctb_type;		/* CTF type identifier.  */
  ctf_dtdef_t *ctb_dtd;		/* CTF dynamic type definition (if any).  */
} ctf_bundle_t;

static int
enumcmp (const char *name, int value, void *arg)
{
  ctf_bundle_t *ctb = arg;
  int bvalue;

  if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
    {
      ctf_err_warn (ctb->ctb_dict, 0, 0,
		    _("conflict due to enum %s iteration error"), name);
      return 1;
    }
  if (value != bvalue)
    {
      ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
		    _("conflict due to enum value change: %i versus %i"),
		    value, bvalue);
      return 1;
    }
  return 0;
}

static int
enumadd (const char *name, int value, void *arg)
{
  ctf_bundle_t *ctb = arg;

  return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
			      name, value) < 0);
}

static int
membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
	 void *arg)
{
  ctf_bundle_t *ctb = arg;
  ctf_membinfo_t ctm;

  /* Don't check nameless members (e.g. anonymous structs/unions) against each
     other.  */
  if (name[0] == 0)
    return 0;

  if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
    {
      ctf_err_warn (ctb->ctb_dict, 0, 0,
		    _("conflict due to struct member %s iteration error"),
		    name);
      return 1;
    }
  if (ctm.ctm_offset != offset)
    {
      ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
		    _("conflict due to struct member %s offset change: "
		      "%lx versus %lx"),
		    name, ctm.ctm_offset, offset);
      return 1;
    }
  return 0;
}

/* Record the correspondence between a source and ctf_add_type()-added
   destination type: both types are translated into parent type IDs if need be,
   so they relate to the actual dictionary they are in.  Outside controlled
   circumstances (like linking) it is probably not useful to do more than
   compare these pointers, since there is nothing stopping the user closing the
   source dict whenever they want to.

   Our OOM handling here is just to not do anything, because this is called deep
   enough in the call stack that doing anything useful is painfully difficult:
   the worst consequence if we do OOM is a bit of type duplication anyway.  */

static void
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
		      ctf_dict_t *dst_fp, ctf_id_t dst_type)
{
  if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
    src_fp = src_fp->ctf_parent;

  src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);

  if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent)
    dst_fp = dst_fp->ctf_parent;

  dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type);

  if (dst_fp->ctf_link_type_mapping == NULL)
    {
      ctf_hash_fun f = ctf_hash_type_key;
      ctf_hash_eq_fun e = ctf_hash_eq_type_key;

      if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
							       NULL)) == NULL)
	return;
    }

  ctf_link_type_key_t *key;
  key = calloc (1, sizeof (struct ctf_link_type_key));
  if (!key)
    return;

  key->cltk_fp = src_fp;
  key->cltk_idx = src_type;

  /* No OOM checking needed, because if this doesn't work the worst we'll do is
     add a few more duplicate types (which will probably run out of memory
     anyway).  */
  ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
		      (void *) (uintptr_t) dst_type);
}

/* Look up a type mapping: return 0 if none.  The DST_FP is modified to point to
   the parent if need be.  The ID returned is from the dst_fp's perspective.  */
static ctf_id_t
ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
{
  ctf_link_type_key_t key;
  ctf_dict_t *target_fp = *dst_fp;
  ctf_id_t dst_type = 0;

  if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
    src_fp = src_fp->ctf_parent;

  src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
  key.cltk_fp = src_fp;
  key.cltk_idx = src_type;

  if (target_fp->ctf_link_type_mapping)
    dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
					       &key);

  if (dst_type != 0)
    {
      dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
				     target_fp->ctf_parent != NULL);
      *dst_fp = target_fp;
      return dst_type;
    }

  if (target_fp->ctf_parent)
    target_fp = target_fp->ctf_parent;
  else
    return 0;

  if (target_fp->ctf_link_type_mapping)
    dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
					       &key);

  if (dst_type)
    dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
				   target_fp->ctf_parent != NULL);

  *dst_fp = target_fp;
  return dst_type;
}

/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
   to a dynamic destination dictionary.  This routine operates recursively by
   following the source type's links and embedded member types.  If the
   destination dict already contains a named type which has the same attributes,
   then we succeed and return this type but no changes occur.  */
static ctf_id_t
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
		       ctf_dict_t *proc_tracking_fp)
{
  ctf_id_t dst_type = CTF_ERR;
  uint32_t dst_kind = CTF_K_UNKNOWN;
  ctf_dict_t *tmp_fp = dst_fp;
  ctf_id_t tmp;

  const char *name;
  uint32_t kind, forward_kind, flag, vlen;

  const ctf_type_t *src_tp, *dst_tp;
  ctf_bundle_t src, dst;
  ctf_encoding_t src_en, dst_en;
  ctf_arinfo_t src_ar, dst_ar;

  ctf_funcinfo_t ctc;

  ctf_id_t orig_src_type = src_type;

  if (!(dst_fp->ctf_flags & LCTF_RDWR))
    return (ctf_set_errno (dst_fp, ECTF_RDONLY));

  if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
    return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

  if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
      && (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
    return (ctf_set_errno (dst_fp, ECTF_NONREPRESENTABLE));

  name = ctf_strptr (src_fp, src_tp->ctt_name);
  kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
  flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
  vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);

  /* If this is a type we are currently in the middle of adding, hand it
     straight back.  (This lets us handle self-referential structures without
     considering forwards and empty structures the same as their completed
     forms.)  */

  tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);

  if (tmp != 0)
    {
      if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
			      (void *) (uintptr_t) src_type))
	return tmp;

      /* If this type has already been added from this dictionary, and is the
	 same kind and (if a struct or union) has the same number of members,
	 hand it straight back.  */

      if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
	{
	  if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
	      || kind == CTF_K_ENUM)
	    {
	      if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
		if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
		  return tmp;
	    }
	  else
	    return tmp;
	}
    }

  forward_kind = kind;
  if (kind == CTF_K_FORWARD)
    forward_kind = src_tp->ctt_type;

  /* If the source type has a name and is a root type (visible at the top-level
     scope), lookup the name in the destination dictionary and verify that it is
     of the same kind before we do anything else.  */

  if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
      && (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
    {
      dst_type = tmp;
      dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
    }

  /* If an identically named dst_type exists, fail with ECTF_CONFLICT
     unless dst_type is a forward declaration and src_type is a struct,
     union, or enum (i.e. the definition of the previous forward decl).

     We also allow addition in the opposite order (addition of a forward when a
     struct, union, or enum already exists), which is a NOP and returns the
     already-present struct, union, or enum.  */

  if (dst_type != CTF_ERR && dst_kind != kind)
    {
      if (kind == CTF_K_FORWARD
	  && (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
	      || dst_kind == CTF_K_UNION))
	{
	  ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
	  return dst_type;
	}

      if (dst_kind != CTF_K_FORWARD
	  || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
	      && kind != CTF_K_UNION))
	{
	  ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			_("ctf_add_type: conflict for type %s: "
			  "kinds differ, new: %i; old (ID %lx): %i"),
			name, kind, dst_type, dst_kind);
	  return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	}
    }

  /* We take special action for an integer, float, or slice since it is
     described not only by its name but also its encoding.  For integers,
     bit-fields exploit this degeneracy.  */

  if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
    {
      if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
	return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

      if (dst_type != CTF_ERR)
	{
	  ctf_dict_t *fp = dst_fp;

	  if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
	    return CTF_ERR;

	  if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
	    return CTF_ERR;			/* errno set for us.  */

	  if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
	    {
	      /* The type that we found in the hash is also root-visible.  If
		 the two types match then use the existing one; otherwise,
		 declare a conflict.  Note: slices are not certain to match
		 even if there is no conflict: we must check the contained type
		 too.  */

	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
		{
		  if (kind != CTF_K_SLICE)
		    {
		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
		      return dst_type;
		    }
		}
	      else
		  {
		    return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
		  }
	    }
	  else
	    {
	      /* We found a non-root-visible type in the hash.  If its encoding
		 is the same, we can reuse it, unless it is a slice.  */

	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
		{
		  if (kind != CTF_K_SLICE)
		    {
		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
		      return dst_type;
		    }
		}
	    }
	}
    }

  src.ctb_dict = src_fp;
  src.ctb_type = src_type;
  src.ctb_dtd = NULL;

  dst.ctb_dict = dst_fp;
  dst.ctb_type = dst_type;
  dst.ctb_dtd = NULL;

  /* Now perform kind-specific processing.  If dst_type is CTF_ERR, then we add
     a new type with the same properties as src_type to dst_fp.  If dst_type is
     not CTF_ERR, then we verify that dst_type has the same attributes as
     src_type.  We recurse for embedded references.  Before we start, we note
     that we are processing this type, to prevent infinite recursion: we do not
     re-process any type that appears in this list.  The list is emptied
     wholesale at the end of processing everything in this recursive stack.  */

  if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
			  (void *) (uintptr_t) src_type, (void *) 1) < 0)
    return ctf_set_errno (dst_fp, ENOMEM);

  switch (kind)
    {
    case CTF_K_INTEGER:
      /*  If we found a match we will have either returned it or declared a
	  conflict.  */
      dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
      break;

    case CTF_K_FLOAT:
      /* If we found a match we will have either returned it or declared a
       conflict.  */
      dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
      break;

    case CTF_K_SLICE:
      /* We have checked for conflicting encodings: now try to add the
	 contained type.  */
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
      break;

    case CTF_K_POINTER:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
      break;

    case CTF_K_ARRAY:
      if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
	return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));

      src_ar.ctr_contents =
	ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
			       proc_tracking_fp);
      src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
						src_ar.ctr_index,
						proc_tracking_fp);
      src_ar.ctr_nelems = src_ar.ctr_nelems;

      if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      if (dst_type != CTF_ERR)
	{
	  if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
	    return CTF_ERR;			/* errno is set for us.  */

	  if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
	    {
	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			    _("conflict for type %s against ID %lx: array info "
			      "differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
			    name, dst_type, src_ar.ctr_contents,
			    src_ar.ctr_index, src_ar.ctr_nelems,
			    dst_ar.ctr_contents, dst_ar.ctr_index,
			    dst_ar.ctr_nelems);
	      return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	    }
	}
      else
	dst_type = ctf_add_array (dst_fp, flag, &src_ar);
      break;

    case CTF_K_FUNCTION:
      ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
					      src_tp->ctt_type,
					      proc_tracking_fp);
      ctc.ctc_argc = 0;
      ctc.ctc_flags = 0;

      if (ctc.ctc_return == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
      break;

    case CTF_K_STRUCT:
    case CTF_K_UNION:
      {
	ctf_next_t *i = NULL;
	ssize_t offset;
	const char *membname;
	ctf_id_t src_membtype;

	/* Technically to match a struct or union we need to check both
	   ways (src members vs. dst, dst members vs. src) but we make
	   this more optimal by only checking src vs. dst and comparing
	   the total size of the structure (which we must do anyway)
	   which covers the possibility of dst members not in src.
	   This optimization can be defeated for unions, but is so
	   pathological as to render it irrelevant for our purposes.  */

	if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
	    && dst_kind != CTF_K_FORWARD)
	  {
	    if (ctf_type_size (src_fp, src_type) !=
		ctf_type_size (dst_fp, dst_type))
	      {
		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			      _("conflict for type %s against ID %lx: union "
				"size differs, old %li, new %li"), name,
			      dst_type, (long) ctf_type_size (src_fp, src_type),
			      (long) ctf_type_size (dst_fp, dst_type));
		return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	      }

	    if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
	      {
		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			      _("conflict for type %s against ID %lx: members "
				"differ, see above"), name, dst_type);
		return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	      }

	    break;
	  }

	dst_type = ctf_add_struct_sized (dst_fp, flag, name,
					 ctf_type_size (src_fp, src_type));
	if (dst_type == CTF_ERR)
	  return CTF_ERR;			/* errno is set for us.  */

	/* Pre-emptively add this struct to the type mapping so that
	   structures that refer to themselves work.  */
	ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);

	while ((offset = ctf_member_next (src_fp, src_type, &i, &membname,
					  &src_membtype, 0)) >= 0)
	  {
	    ctf_dict_t *dst = dst_fp;
	    ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst);

	    if (dst_membtype == 0)
	      {
		dst_membtype = ctf_add_type_internal (dst_fp, src_fp,
						      src_membtype,
						      proc_tracking_fp);
		if (dst_membtype == CTF_ERR)
		  {
		    if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
		      {
			ctf_next_destroy (i);
			break;
		      }
		  }
	      }

	    if (ctf_add_member_offset (dst_fp, dst_type, membname,
				       dst_membtype, offset) < 0)
	      {
		ctf_next_destroy (i);
		break;
	      }
	  }
	if (ctf_errno (src_fp) != ECTF_NEXT_END)
	  return CTF_ERR;			/* errno is set for us.  */
	break;
      }

    case CTF_K_ENUM:
      if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
	  && dst_kind != CTF_K_FORWARD)
	{
	  if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
	      || ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
	    {
	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
			    _("conflict for enum %s against ID %lx: members "
			      "differ, see above"), name, dst_type);
	      return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
	    }
	}
      else
	{
	  dst_type = ctf_add_enum (dst_fp, flag, name);
	  if ((dst.ctb_type = dst_type) == CTF_ERR
	      || ctf_enum_iter (src_fp, src_type, enumadd, &dst))
	    return CTF_ERR;			/* errno is set for us */
	}
      break;

    case CTF_K_FORWARD:
      if (dst_type == CTF_ERR)
	  dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
      break;

    case CTF_K_TYPEDEF:
      src_type = ctf_type_reference (src_fp, src_type);
      src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
					proc_tracking_fp);

      if (src_type == CTF_ERR)
	return CTF_ERR;				/* errno is set for us.  */

      /* If dst_type is not CTF_ERR at this point, we should check if
	 ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
	 ECTF_CONFLICT.  However, this causes problems with bitness typedefs
	 that vary based on things like if 32-bit then pid_t is int otherwise
	 long.  We therefore omit this check and assume that if the identically
	 named typedef already exists in dst_fp, it is correct or
	 equivalent.  */

      if (dst_type == CTF_ERR)
	  dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);

      break;

    default:
      return (ctf_set_errno (dst_fp, ECTF_CORRUPT));
    }

  if (dst_type != CTF_ERR)
    ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
  return dst_type;
}

ctf_id_t
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
{
  ctf_id_t id;

  if (!src_fp->ctf_add_processing)
    src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
						     ctf_hash_eq_integer,
						     NULL, NULL);

  /* We store the hash on the source, because it contains only source type IDs:
     but callers will invariably expect errors to appear on the dest.  */
  if (!src_fp->ctf_add_processing)
    return (ctf_set_errno (dst_fp, ENOMEM));

  id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
  ctf_dynhash_empty (src_fp->ctf_add_processing);

  return id;
}