aboutsummaryrefslogtreecommitdiff
path: root/config/mh-ppcpic
AgeCommit message (Expand)AuthorFilesLines
1999-05-0319990502 sourceware importbinu_ss_19990502Richard Henderson1-0/+1
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/* Target-dependent code for SPARC.

   Copyright (C) 2003-2024 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "arch-utils.h"
#include "dis-asm.h"
#include "dwarf2.h"
#include "dwarf2/frame.h"
#include "extract-store-integer.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "symtab.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "target.h"
#include "target-descriptions.h"
#include "value.h"

#include "sparc-tdep.h"
#include "sparc-ravenscar-thread.h"
#include <algorithm>

struct regset;

/* This file implements the SPARC 32-bit ABI as defined by the section
   "Low-Level System Information" of the SPARC Compliance Definition
   (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC.  The SCD
   lists changes with respect to the original 32-bit psABI as defined
   in the "System V ABI, SPARC Processor Supplement".

   Note that if we talk about SunOS, we mean SunOS 4.x, which was
   BSD-based, which is sometimes (retroactively?) referred to as
   Solaris 1.x.  If we talk about Solaris we mean Solaris 2.x and
   above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
   suffering from severe version number inflation).  Solaris 2.x is
   also known as SunOS 5.x, since that's what uname(1) says.  Solaris
   2.x is SVR4-based.  */

/* Please use the sparc32_-prefix for 32-bit specific code, the
   sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
   code that can handle both.  The 64-bit specific code lives in
   sparc64-tdep.c; don't add any here.  */

/* The stack pointer is offset from the stack frame by a BIAS of 2047
   (0x7ff) for 64-bit code.  BIAS is likely to be defined on SPARC
   hosts, so undefine it first.  */
#undef BIAS
#define BIAS 2047

/* Macros to extract fields from SPARC instructions.  */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_RD(i) (((i) >> 25) & 0x1f)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_RS2(i) ((i) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
/* Sign extension macros.  */
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
/* Macros to identify some instructions.  */
/* RETURN (RETT in V8) */
#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))

/* Fetch the instruction at PC.  Instructions are always big-endian
   even if the processor operates in little-endian mode.  */

unsigned long
sparc_fetch_instruction (CORE_ADDR pc)
{
  gdb_byte buf[4];
  unsigned long insn;
  int i;

  /* If we can't read the instruction at PC, return zero.  */
  if (target_read_memory (pc, buf, sizeof (buf)))
    return 0;

  insn = 0;
  for (i = 0; i < sizeof (buf); i++)
    insn = (insn << 8) | buf[i];
  return insn;
}


/* Return non-zero if the instruction corresponding to PC is an "unimp"
   instruction.  */

static int
sparc_is_unimp_insn (CORE_ADDR pc)
{
  const unsigned long insn = sparc_fetch_instruction (pc);
  
  return ((insn & 0xc1c00000) == 0);
}

/* Return non-zero if the instruction corresponding to PC is an
   "annulled" branch, i.e. the annul bit is set.  */

int
sparc_is_annulled_branch_insn (CORE_ADDR pc)
{
  /* The branch instructions featuring an annul bit can be identified
     by the following bit patterns:

     OP=0
      OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
      OP2=2: Branch on Integer Condition Codes (Bcc).
      OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
      OP2=6: Branch on FP Condition Codes (FBcc).
      OP2=3 && Bit28=0:
	     Branch on Integer Register with Prediction (BPr).

     This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
     coprocessor branch instructions (Op2=7).  */

  const unsigned long insn = sparc_fetch_instruction (pc);
  const unsigned op2 = X_OP2 (insn);

  if ((X_OP (insn) == 0)
      && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
	  || ((op2 == 3) && ((insn & 0x10000000) == 0))))
    return X_A (insn);
  else
    return 0;
}

/* OpenBSD/sparc includes StackGhost, which according to the author's
   website http://stackghost.cerias.purdue.edu "... transparently and
   automatically protects applications' stack frames; more
   specifically, it guards the return pointers.  The protection
   mechanisms require no application source or binary modification and
   imposes only a negligible performance penalty."

   The same website provides the following description of how
   StackGhost works:

   "StackGhost interfaces with the kernel trap handler that would
   normally write out registers to the stack and the handler that
   would read them back in.  By XORing a cookie into the
   return-address saved in the user stack when it is actually written
   to the stack, and then XOR it out when the return-address is pulled
   from the stack, StackGhost can cause attacker corrupted return
   pointers to behave in a manner the attacker cannot predict.
   StackGhost can also use several unused bits in the return pointer
   to detect a smashed return pointer and abort the process."

   For GDB this means that whenever we're reading %i7 from a stack
   frame's window save area, we'll have to XOR the cookie.

   More information on StackGuard can be found on in:

   Mike Frantzen and Mike Shuey.  "StackGhost: Hardware Facilitated
   Stack Protection."  2001.  Published in USENIX Security Symposium
   '01.  */

/* Fetch StackGhost Per-Process XOR cookie.  */

ULONGEST
sparc_fetch_wcookie (struct gdbarch *gdbarch)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct target_ops *ops = current_inferior ()->top_target ();
  gdb_byte buf[8];
  int len;

  len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
  if (len == -1)
    return 0;

  /* We should have either an 32-bit or an 64-bit cookie.  */
  gdb_assert (len == 4 || len == 8);

  return extract_unsigned_integer (buf, len, byte_order);
}


/* The functions on this page are intended to be used to classify
   function arguments.  */

/* Check whether TYPE is "Integral or Pointer".  */

static int
sparc_integral_or_pointer_p (const struct type *type)
{
  int len = type->length ();

  switch (type->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      /* We have byte, half-word, word and extended-word/doubleword
	 integral types.  The doubleword is an extension to the
	 original 32-bit ABI by the SCD 2.4.x.  */
      return (len == 1 || len == 2 || len == 4 || len == 8);
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      /* Allow either 32-bit or 64-bit pointers.  */
      return (len == 4 || len == 8);
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Floating".  */

static int
sparc_floating_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_FLT:
      {
	int len = type->length ();
	return (len == 4 || len == 8 || len == 16);
      }
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Complex Floating".  */

static int
sparc_complex_floating_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_COMPLEX:
      {
	int len = type->length ();
	return (len == 8 || len == 16 || len == 32);
      }
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Structure or Union".

   In terms of Ada subprogram calls, arrays are treated the same as
   struct and union types.  So this function also returns non-zero
   for array types.  */

static int
sparc_structure_or_union_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      return 1;
    default:
      break;
    }

  return 0;
}

/* Return true if TYPE is returned by memory, false if returned by
   register.  */

static bool
sparc_structure_return_p (const struct type *type)
{
  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    {
      /* Float vectors are always returned by memory.  */
      if (sparc_floating_p (check_typedef (type->target_type ())))
	return true;
      /* Integer vectors are returned by memory if the vector size
	 is greater than 8 bytes long.  */
      return (type->length () > 8);
    }

  if (sparc_floating_p (type))
    {
      /* Floating point types are passed by register for size 4 and
	 8 bytes, and by memory for size 16 bytes.  */
      return (type->length () == 16);
    }

  /* Other than that, only aggregates of all sizes get returned by
     memory.  */
  return sparc_structure_or_union_p (type);
}

/* Return true if arguments of the given TYPE are passed by
   memory; false if returned by register.  */

static bool
sparc_arg_by_memory_p (const struct type *type)
{
  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    {
      /* Float vectors are always passed by memory.  */
      if (sparc_floating_p (check_typedef (type->target_type ())))
	return true;
      /* Integer vectors are passed by memory if the vector size
	 is greater than 8 bytes long.  */
      return (type->length () > 8);
    }

  /* Floats are passed by register for size 4 and 8 bytes, and by memory
     for size 16 bytes.  */
  if (sparc_floating_p (type))
    return (type->length () == 16);

  /* Complex floats and aggregates of all sizes are passed by memory.  */
  if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
    return true;

  /* Everything else gets passed by register.  */
  return false;
}

/* Register information.  */
#define SPARC32_FPU_REGISTERS                             \
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",         \
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",   \
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
#define SPARC32_CP0_REGISTERS \
  "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"

static const char * const sparc_core_register_names[] = {
  SPARC_CORE_REGISTERS
};
static const char * const sparc32_fpu_register_names[] = {
  SPARC32_FPU_REGISTERS
};
static const char * const sparc32_cp0_register_names[] = {
  SPARC32_CP0_REGISTERS
};

static const char * const sparc32_register_names[] =
{
  SPARC_CORE_REGISTERS,
  SPARC32_FPU_REGISTERS,
  SPARC32_CP0_REGISTERS
};

/* Total number of registers.  */
#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)

/* We provide the aliases %d0..%d30 for the floating registers as
   "pseudo" registers.  */

static const char * const sparc32_pseudo_register_names[] =
{
  "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
  "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
};

/* Total number of pseudo registers.  */
#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)

/* Return the name of pseudo register REGNUM.  */

static const char *
sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  gdb_assert (regnum < SPARC32_NUM_PSEUDO_REGS);
  return sparc32_pseudo_register_names[regnum];
}

/* Return the name of register REGNUM.  */

static const char *
sparc32_register_name (struct gdbarch *gdbarch, int regnum)
{
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, regnum);

  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    return sparc32_register_names[regnum];

  return sparc32_pseudo_register_name (gdbarch, regnum);
}

/* Construct types for ISA-specific registers.  */

static struct type *
sparc_psr_type (struct gdbarch *gdbarch)
{
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);

  if (!tdep->sparc_psr_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
      append_flags_type_flag (type, 5, "ET");
      append_flags_type_flag (type, 6, "PS");
      append_flags_type_flag (type, 7, "S");
      append_flags_type_flag (type, 12, "EF");
      append_flags_type_flag (type, 13, "EC");

      tdep->sparc_psr_type = type;
    }

  return tdep->sparc_psr_type;
}

static struct type *
sparc_fsr_type (struct gdbarch *gdbarch)
{
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);

  if (!tdep->sparc_fsr_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
      append_flags_type_flag (type, 0, "NXA");
      append_flags_type_flag (type, 1, "DZA");
      append_flags_type_flag (type, 2, "UFA");
      append_flags_type_flag (type, 3, "OFA");
      append_flags_type_flag (type, 4, "NVA");
      append_flags_type_flag (type, 5, "NXC");
      append_flags_type_flag (type, 6, "DZC");
      append_flags_type_flag (type, 7, "UFC");
      append_flags_type_flag (type, 8, "OFC");
      append_flags_type_flag (type, 9, "NVC");
      append_flags_type_flag (type, 22, "NS");
      append_flags_type_flag (type, 23, "NXM");
      append_flags_type_flag (type, 24, "DZM");
      append_flags_type_flag (type, 25, "UFM");
      append_flags_type_flag (type, 26, "OFM");
      append_flags_type_flag (type, 27, "NVM");

      tdep->sparc_fsr_type = type;
    }

  return tdep->sparc_fsr_type;
}

/* Return the GDB type object for the "standard" data type of data in
   pseudo register REGNUM.  */

static struct type *
sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
    return builtin_type (gdbarch)->builtin_double;

  internal_error (_("sparc32_pseudo_register_type: bad register number %d"),
		  regnum);
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  */

static struct type *
sparc32_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_type (gdbarch, regnum);

  if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
    return builtin_type (gdbarch)->builtin_float;

  if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;

  if (regnum == SPARC32_PSR_REGNUM)
    return sparc_psr_type (gdbarch);

  if (regnum == SPARC32_FSR_REGNUM)
    return sparc_fsr_type (gdbarch);

  if (regnum >= gdbarch_num_regs (gdbarch))
    return sparc32_pseudo_register_type (gdbarch, regnum);

  return builtin_type (gdbarch)->builtin_int32;
}

static enum register_status
sparc32_pseudo_register_read (struct gdbarch *gdbarch,
			      readable_regcache *regcache,
			      int regnum, gdb_byte *buf)
{
  enum register_status status;

  regnum -= gdbarch_num_regs (gdbarch);
  gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);

  regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
  status = regcache->raw_read (regnum, buf);
  if (status == REG_VALID)
    status = regcache->raw_read (regnum + 1, buf + 4);
  return status;
}

static void
sparc32_pseudo_register_write (struct gdbarch *gdbarch,
			       struct regcache *regcache,
			       int regnum, const gdb_byte *buf)
{
  regnum -= gdbarch_num_regs (gdbarch);
  gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);

  regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
  regcache->raw_write (regnum, buf);
  regcache->raw_write (regnum + 1, buf + 4);
}

/* Implement the stack_frame_destroyed_p gdbarch method.  */

int
sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  /* This function must return true if we are one instruction after an
     instruction that destroyed the stack frame of the current
     function.  The SPARC instructions used to restore the callers
     stack frame are RESTORE and RETURN/RETT.

     Of these RETURN/RETT is a branch instruction and thus we return
     true if we are in its delay slot.

     RESTORE is almost always found in the delay slot of a branch
     instruction that transfers control to the caller, such as JMPL.
     Thus the next instruction is in the caller frame and we don't
     need to do anything about it.  */

  unsigned int insn = sparc_fetch_instruction (pc - 4);

  return X_RETTURN (insn);
}


static CORE_ADDR
sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
{
  /* The ABI requires double-word alignment.  */
  return address & ~0x7;
}

static CORE_ADDR
sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
			 CORE_ADDR funcaddr,
			 struct value **args, int nargs,
			 struct type *value_type,
			 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
			 struct regcache *regcache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  *bp_addr = sp - 4;
  *real_pc = funcaddr;

  if (using_struct_return (gdbarch, NULL, value_type))
    {
      gdb_byte buf[4];

      /* This is an UNIMP instruction.  */
      store_unsigned_integer (buf, 4, byte_order,
			      value_type->length () & 0x1fff);
      write_memory (sp - 8, buf, 4);
      return sp - 8;
    }

  return sp - 4;
}

static CORE_ADDR
sparc32_store_arguments (struct regcache *regcache, int nargs,
			 struct value **args, CORE_ADDR sp,
			 function_call_return_method return_method,
			 CORE_ADDR struct_addr)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* Number of words in the "parameter array".  */
  int num_elements = 0;
  int element = 0;
  int i;

  for (i = 0; i < nargs; i++)
    {
      struct type *type = args[i]->type ();
      int len = type->length ();

      if (sparc_arg_by_memory_p (type))
	{
	  /* Structure, Union and Quad-Precision Arguments.  */
	  sp -= len;

	  /* Use doubleword alignment for these values.  That's always
	     correct, and wasting a few bytes shouldn't be a problem.  */
	  sp &= ~0x7;

	  write_memory (sp, args[i]->contents ().data (), len);
	  args[i] = value_from_pointer (lookup_pointer_type (type), sp);
	  num_elements++;
	}
      else if (sparc_floating_p (type))
	{
	  /* Floating arguments.  */
	  gdb_assert (len == 4 || len == 8);
	  num_elements += (len / 4);
	}
      else
	{
	  /* Arguments passed via the General Purpose Registers.  */
	  num_elements += ((len + 3) / 4);
	}
    }

  /* Always allocate at least six words.  */
  sp -= std::max (6, num_elements) * 4;

  /* The psABI says that "Software convention requires space for the
     struct/union return value pointer, even if the word is unused."  */
  sp -= 4;

  /* The psABI says that "Although software convention and the
     operating system require every stack frame to be doubleword
     aligned."  */
  sp &= ~0x7;

  for (i = 0; i < nargs; i++)
    {
      const bfd_byte *valbuf = args[i]->contents ().data ();
      struct type *type = args[i]->type ();
      int len = type->length ();
      gdb_byte buf[4];

      if (len < 4)
	{
	  memset (buf, 0, 4 - len);
	  memcpy (buf + 4 - len, valbuf, len);
	  valbuf = buf;
	  len = 4;
	}

      gdb_assert (len == 4 || len == 8);

      if (element < 6)
	{
	  int regnum = SPARC_O0_REGNUM + element;

	  regcache->cooked_write (regnum, valbuf);
	  if (len > 4 && element < 5)
	    regcache->cooked_write (regnum + 1, valbuf + 4);
	}

      /* Always store the argument in memory.  */
      write_memory (sp + 4 + element * 4, valbuf, len);
      element += len / 4;
    }

  gdb_assert (element == num_elements);

  if (return_method == return_method_struct)
    {
      gdb_byte buf[4];

      store_unsigned_integer (buf, 4, byte_order, struct_addr);
      write_memory (sp, buf, 4);
    }

  return sp;
}

static CORE_ADDR
sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			 struct regcache *regcache, CORE_ADDR bp_addr,
			 int nargs, struct value **args, CORE_ADDR sp,
			 function_call_return_method return_method,
			 CORE_ADDR struct_addr)
{
  CORE_ADDR call_pc = (return_method == return_method_struct
		       ? (bp_addr - 12) : (bp_addr - 8));

  /* Set return address.  */
  regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);

  /* Set up function arguments.  */
  sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
				struct_addr);

  /* Allocate the 16-word window save area.  */
  sp -= 16 * 4;

  /* Stack should be doubleword aligned at this point.  */
  gdb_assert (sp % 8 == 0);

  /* Finally, update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);

  return sp;
}


/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.  */
constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };

typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;


/* Allocate and initialize a frame cache.  */

static struct sparc_frame_cache *
sparc_alloc_frame_cache (void)
{
  struct sparc_frame_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->frameless_p = 1;
  cache->frame_offset = 0;
  cache->saved_regs_mask = 0;
  cache->copied_regs_mask = 0;
  cache->struct_return_p = 0;

  return cache;
}

/* GCC generates several well-known sequences of instructions at the beginning
   of each function prologue when compiling with -fstack-check.  If one of
   such sequences starts at START_PC, then return the address of the
   instruction immediately past this sequence.  Otherwise, return START_PC.  */
   
static CORE_ADDR
sparc_skip_stack_check (const CORE_ADDR start_pc)
{
  CORE_ADDR pc = start_pc;
  unsigned long insn;
  int probing_loop = 0;

  /* With GCC, all stack checking sequences begin with the same two
     instructions, plus an optional one in the case of a probing loop:

	 sethi <some immediate>, %g1
	 sub %sp, %g1, %g1

     or:

	 sethi <some immediate>, %g1
	 sethi <some immediate>, %g4
	 sub %sp, %g1, %g1

     or:

	 sethi <some immediate>, %g1
	 sub %sp, %g1, %g1
	 sethi <some immediate>, %g4

     If the optional instruction is found (setting g4), assume that a
     probing loop will follow.  */

  /* sethi <some immediate>, %g1 */
  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;
  if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
    return start_pc;

  /* optional: sethi <some immediate>, %g4 */
  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
    {
      probing_loop = 1;
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
    }

  /* sub %sp, %g1, %g1 */
  if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
	&& X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
    return start_pc;

  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;

  /* optional: sethi <some immediate>, %g4 */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
    {
      probing_loop = 1;
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
    }

  /* First possible sequence:
	 [first two instructions above]
	 clr [%g1 - some immediate]  */

  /* clr [%g1 - some immediate]  */
  if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
      && X_RS1 (insn) == 1 && X_RD (insn) == 0)
    {
      /* Valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* Second possible sequence: A small number of probes.
	 [first two instructions above]
	 clr [%g1]
	 add   %g1, -<some immediate>, %g1
	 clr [%g1]
	 [repeat the two instructions above any (small) number of times]
	 clr [%g1 - some immediate]  */

  /* clr [%g1] */
  else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
      && X_RS1 (insn) == 1 && X_RD (insn) == 0)
    {
      while (1)
	{
	  /* add %g1, -<some immediate>, %g1 */
	  insn = sparc_fetch_instruction (pc);
	  pc = pc + 4;
	  if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
		&& X_RS1 (insn) == 1 && X_RD (insn) == 1))
	    break;

	  /* clr [%g1] */
	  insn = sparc_fetch_instruction (pc);
	  pc = pc + 4;
	  if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
		&& X_RD (insn) == 0 && X_RS1 (insn) == 1))
	    return start_pc;
	}

      /* clr [%g1 - some immediate] */
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
	    && X_RS1 (insn) == 1 && X_RD (insn) == 0))
	return start_pc;

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }
  
  /* Third sequence: A probing loop.
	 [first three instructions above]
	 sub  %g1, %g4, %g4
	 cmp  %g1, %g4
	 be  <disp>
	 add  %g1, -<some immediate>, %g1
	 ba  <disp>
	 clr  [%g1]

     And an optional last probe for the remainder:

	 clr [%g4 - some immediate]  */

  if (probing_loop)
    {
      /* sub  %g1, %g4, %g4 */
      if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
	    && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
	return start_pc;

      /* cmp  %g1, %g4 */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
	    && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
	return start_pc;

      /* be  <disp> */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
	return start_pc;

      /* add  %g1, -<some immediate>, %g1 */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
	    && X_RS1 (insn) == 1 && X_RD (insn) == 1))
	return start_pc;

      /* ba  <disp> */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
	return start_pc;

      /* clr  [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
	    && X_RD (insn) == 0 && X_RS1 (insn) == 1
	    && (!X_I(insn) || X_SIMM13 (insn) == 0)))
	return start_pc;

      /* We found a valid stack-check sequence, return the new PC.  */

      /* optional: clr [%g4 - some immediate]  */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
	    && X_RS1 (insn) == 4 && X_RD (insn) == 0))
	return pc - 4;
      else
	return pc;
    }

  /* No stack check code in our prologue, return the start_pc.  */
  return start_pc;
}

/* Record the effect of a SAVE instruction on CACHE.  */

void
sparc_record_save_insn (struct sparc_frame_cache *cache)
{
  /* The frame is set up.  */
  cache->frameless_p = 0;

  /* The frame pointer contains the CFA.  */
  cache->frame_offset = 0;

  /* The `local' and `in' registers are all saved.  */
  cache->saved_regs_mask = 0xffff;

  /* The `out' registers are all renamed.  */
  cache->copied_regs_mask = 0xff;
}

/* Do a full analysis of the prologue at PC and update CACHE accordingly.
   Bail out early if CURRENT_PC is reached.  Return the address where
   the analysis stopped.

   We handle both the traditional register window model and the single
   register window (aka flat) model.  */

CORE_ADDR
sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
			CORE_ADDR current_pc, struct sparc_frame_cache *cache)
{
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
  unsigned long insn;
  int offset = 0;
  int dest = -1;

  pc = sparc_skip_stack_check (pc);

  if (current_pc <= pc)
    return current_pc;

  /* We have to handle to "Procedure Linkage Table" (PLT) special.  On
     SPARC the linker usually defines a symbol (typically
     _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
     This symbol makes us end up here with PC pointing at the start of
     the PLT and CURRENT_PC probably pointing at a PLT entry.  If we
     would do our normal prologue analysis, we would probably conclude
     that we've got a frame when in reality we don't, since the
     dynamic linker patches up the first PLT with some code that
     starts with a SAVE instruction.  Patch up PC such that it points
     at the start of our PLT entry.  */
  if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
    pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);

  insn = sparc_fetch_instruction (pc);

  /* Recognize store insns and record their sources.  */
  while (X_OP (insn) == 3
	 && (X_OP3 (insn) == 0x4     /* stw */
	     || X_OP3 (insn) == 0x7  /* std */
	     || X_OP3 (insn) == 0xe) /* stx */
	 && X_RS1 (insn) == SPARC_SP_REGNUM)
    {
      int regnum = X_RD (insn);

      /* Recognize stores into the corresponding stack slots.  */
      if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
	  && ((X_I (insn)
	       && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
				      ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
				      : (regnum - SPARC_L0_REGNUM) * 4))
	      || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
	{
	  cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
	  if (X_OP3 (insn) == 0x7)
	    cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
	}

      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Recognize a SETHI insn and record its destination.  */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
    {
      dest = X_RD (insn);
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Allow for an arithmetic operation on DEST or %g1.  */
  if (X_OP (insn) == 2 && X_I (insn)
      && (X_RD (insn) == 1 || X_RD (insn) == dest))
    {
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Check for the SAVE instruction that sets up the frame.  */
  if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
    {
      sparc_record_save_insn (cache);
      offset += 4;
      return pc + offset;
    }

  /* Check for an arithmetic operation on %sp.  */
  if (X_OP (insn) == 2
      && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
      && X_RS1 (insn) == SPARC_SP_REGNUM
      && X_RD (insn) == SPARC_SP_REGNUM)
    {
      if (X_I (insn))
	{
	  cache->frame_offset = X_SIMM13 (insn);
	  if (X_OP3 (insn) == 0)
	    cache->frame_offset = -cache->frame_offset;
	}
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);

      /* Check for an arithmetic operation that sets up the frame.  */
      if (X_OP (insn) == 2
	  && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
	  && X_RS1 (insn) == SPARC_SP_REGNUM
	  && X_RD (insn) == SPARC_FP_REGNUM)
	{
	  cache->frameless_p = 0;
	  cache->frame_offset = 0;
	  /* We could check that the amount subtracted to %sp above is the
	     same as the one added here, but this seems superfluous.  */
	  cache->copied_regs_mask |= 0x40;
	  offset += 4;

	  insn = sparc_fetch_instruction (pc + offset);
	}

      /* Check for a move (or) operation that copies the return register.  */
      if (X_OP (insn) == 2
	  && X_OP3 (insn) == 0x2
	  && !X_I (insn)
	  && X_RS1 (insn) == SPARC_G0_REGNUM
	  && X_RS2 (insn) == SPARC_O7_REGNUM
	  && X_RD (insn) == SPARC_I7_REGNUM)
	{
	   cache->copied_regs_mask |= 0x80;
	   offset += 4;
	}

      return pc + offset;
    }

  return pc;
}

/* Return PC of first real instruction of the function starting at
   START_PC.  */

static CORE_ADDR
sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  CORE_ADDR func_addr;
  struct sparc_frame_cache cache;

  /* This is the preferred method, find the end of the prologue by
     using the debugging information.  */

  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
	return std::max (start_pc, post_prologue_pc);
    }

  start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);

  /* The psABI says that "Although the first 6 words of arguments
     reside in registers, the standard stack frame reserves space for
     them.".  It also suggests that a function may use that space to
     "write incoming arguments 0 to 5" into that space, and that's
     indeed what GCC seems to be doing.  In that case GCC will
     generate debug information that points to the stack slots instead
     of the registers, so we should consider the instructions that
     write out these incoming arguments onto the stack.  */

  while (1)
    {
      unsigned long insn = sparc_fetch_instruction (start_pc);

      /* Recognize instructions that store incoming arguments into the
	 corresponding stack slots.  */
      if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
	  && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
	{
	  int regnum = X_RD (insn);

	  /* Case of arguments still in %o[0..5].  */
	  if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
	      && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
	    {
	      start_pc += 4;
	      continue;
	    }

	  /* Case of arguments copied into %i[0..5].  */
	  if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
	      && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
	    {
	      start_pc += 4;
	      continue;
	    }
	}

      break;
    }

  return start_pc;
}

/* Normal frames.  */

struct sparc_frame_cache *
sparc_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache;

  if (*this_cache)
    return (struct sparc_frame_cache *) *this_cache;

  cache = sparc_alloc_frame_cache ();
  *this_cache = cache;

  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
    sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
			    get_frame_pc (this_frame), cache);

  if (cache->frameless_p)
    {
      /* This function is frameless, so %fp (%i6) holds the frame
	 pointer for our calling frame.  Use %sp (%o6) as this frame's
	 base address.  */
      cache->base =
	get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
    }
  else
    {
      /* For normal frames, %fp (%i6) holds the frame pointer, the
	 base address for the current stack frame.  */
      cache->base =
	get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
    }

  cache->base += cache->frame_offset;

  if (cache->base & 1)
    cache->base += BIAS;

  return cache;
}

static int
sparc32_struct_return_from_sym (struct symbol *sym)
{
  struct type *type = check_typedef (sym->type ());
  enum type_code code = type->code ();

  if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
    {
      type = check_typedef (type->target_type ());
      if (sparc_structure_or_union_p (type)
	  || (sparc_floating_p (type) && type->length () == 16))
	return 1;
    }

  return 0;
}

struct sparc_frame_cache *
sparc32_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache;
  struct symbol *sym;

  if (*this_cache)
    return (struct sparc_frame_cache *) *this_cache;

  cache = sparc_frame_cache (this_frame, this_cache);

  sym = find_pc_function (cache->pc);
  if (sym)
    {
      cache->struct_return_p = sparc32_struct_return_from_sym (sym);
    }
  else
    {
      /* There is no debugging information for this function to
	 help us determine whether this function returns a struct
	 or not.  So we rely on another heuristic which is to check
	 the instruction at the return address and see if this is
	 an "unimp" instruction.  If it is, then it is a struct-return
	 function.  */
      CORE_ADDR pc;
      int regnum =
	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;

      pc = get_frame_register_unsigned (this_frame, regnum) + 8;
      if (sparc_is_unimp_insn (pc))
	cache->struct_return_p = 1;
    }

  return cache;
}

static void
sparc32_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
		       struct frame_id *this_id)
{
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->base, cache->pc);
}

static struct value *
sparc32_frame_prev_register (const frame_info_ptr &this_frame,
			     void **this_cache, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
    {
      CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;

      /* If this functions has a Structure, Union or Quad-Precision
	 return value, we have to skip the UNIMP instruction that encodes
	 the size of the structure.  */
      if (cache->struct_return_p)
	pc += 4;

      regnum =
	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
      pc += get_frame_register_unsigned (this_frame, regnum) + 8;
      return frame_unwind_got_constant (this_frame, regnum, pc);
    }

  /* Handle StackGhost.  */
  {
    ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);

    if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
      {
	CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
	ULONGEST i7;

	/* Read the value in from memory.  */
	i7 = get_frame_memory_unsigned (this_frame, addr, 4);
	return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
      }
  }

  /* The previous frame's `local' and `in' registers may have been saved
     in the register save area.  */
  if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
      && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
    {
      CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;

      return frame_unwind_got_memory (this_frame, regnum, addr);
    }

  /* The previous frame's `out' registers may be accessible as the current
     frame's `in' registers.  */
  if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
      && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
    regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind sparc32_frame_unwind =
{
  "sparc32 prologue",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  sparc32_frame_this_id,
  sparc32_frame_prev_register,
  NULL,
  default_frame_sniffer
};


static CORE_ADDR
sparc32_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base sparc32_frame_base =
{
  &sparc32_frame_unwind,
  sparc32_frame_base_address,
  sparc32_frame_base_address,
  sparc32_frame_base_address
};

static struct frame_id
sparc_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
{
  CORE_ADDR sp;

  sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
  if (sp & 1)
    sp += BIAS;
  return frame_id_build (sp, get_frame_pc (this_frame));
}


/* Extract a function return value of TYPE from REGCACHE, and copy
   that into VALBUF.  */

static void
sparc32_extract_return_value (struct type *type, struct regcache *regcache,
			      gdb_byte *valbuf)
{
  int len = type->length ();
  gdb_byte buf[32];

  gdb_assert (!sparc_structure_return_p (type));

  if (sparc_floating_p (type) || sparc_complex_floating_p (type)
      || type->code () == TYPE_CODE_ARRAY)
    {
      /* Floating return values.  */
      regcache->cooked_read (SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
      if (len > 8)
	{
	  regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
	  regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
	}
      if (len > 16)
	{
	  regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
	  regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
	  regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
	  regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
	}
      memcpy (valbuf, buf, len);
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      regcache->cooked_read (SPARC_O0_REGNUM, buf);
      if (len > 4)
	{
	  regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
	  gdb_assert (len == 8);
	  memcpy (valbuf, buf, 8);
	}
      else
	{
	  /* Just stripping off any unused bytes should preserve the
	     signed-ness just fine.  */
	  memcpy (valbuf, buf + 4 - len, len);
	}
    }
}

/* Store the function return value of type TYPE from VALBUF into
   REGCACHE.  */

static void
sparc32_store_return_value (struct type *type, struct regcache *regcache,
			    const gdb_byte *valbuf)
{
  int len = type->length ();
  gdb_byte buf[32];

  gdb_assert (!sparc_structure_return_p (type));

  if (sparc_floating_p (type) || sparc_complex_floating_p (type))
    {
      /* Floating return values.  */
      memcpy (buf, valbuf, len);
      regcache->cooked_write (SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
      if (len > 8)
	{
	  regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
	  regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
	}
      if (len > 16)
	{
	  regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
	  regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
	  regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
	  regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
	}
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      if (len > 4)
	{
	  gdb_assert (len == 8);
	  memcpy (buf, valbuf, 8);
	  regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
	}
      else
	{
	  /* ??? Do we need to do any sign-extension here?  */
	  memcpy (buf + 4 - len, valbuf, len);
	}
      regcache->cooked_write (SPARC_O0_REGNUM, buf);
    }
}

static enum return_value_convention
sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
		      struct type *type, struct regcache *regcache,
		      struct value **read_value, const gdb_byte *writebuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The psABI says that "...every stack frame reserves the word at
     %fp+64.  If a function returns a structure, union, or
     quad-precision value, this word should hold the address of the
     object into which the return value should be copied."  This
     guarantees that we can always find the return value, not just
     before the function returns.  */

  if (sparc_structure_return_p (type))
    {
      ULONGEST sp;
      CORE_ADDR addr;

      if (read_value != nullptr)
	{
	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
	  *read_value = value_at_non_lval (type, addr);
	}
      if (writebuf)
	{
	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
	  write_memory (addr, writebuf, type->length ());
	}

      return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
    }

  if (read_value != nullptr)
    {
      *read_value = value::allocate (type);
      gdb_byte *readbuf = (*read_value)->contents_raw ().data ();
      sparc32_extract_return_value (type, regcache, readbuf);
    }
  if (writebuf)
    sparc32_store_return_value (type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

static int
sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
{
  return (sparc_structure_or_union_p (type)
	  || (sparc_floating_p (type) && type->length () == 16)
	  || sparc_complex_floating_p (type));
}

static int
sparc32_dwarf2_struct_return_p (const frame_info_ptr &this_frame)
{
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct symbol *sym = find_pc_function (pc);

  if (sym)
    return sparc32_struct_return_from_sym (sym);
  return 0;
}

static void
sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			       struct dwarf2_frame_state_reg *reg,
			       const frame_info_ptr &this_frame)
{
  int off;

  switch (regnum)
    {
    case SPARC_G0_REGNUM:
      /* Since %g0 is always zero, there is no point in saving it, and
	 people will be inclined omit it from the CFI.  Make sure we
	 don't warn about that.  */
      reg->how = DWARF2_FRAME_REG_SAME_VALUE;
      break;
    case SPARC_SP_REGNUM:
      reg->how = DWARF2_FRAME_REG_CFA;
      break;
    case SPARC32_PC_REGNUM:
    case SPARC32_NPC_REGNUM:
      reg->how = DWARF2_FRAME_REG_RA_OFFSET;
      off = 8;
      if (sparc32_dwarf2_struct_return_p (this_frame))
	off += 4;
      if (regnum == SPARC32_NPC_REGNUM)
	off += 4;
      reg->loc.offset = off;
      break;
    }
}

/* Implement the execute_dwarf_cfa_vendor_op method.  */

static bool
sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
				   struct dwarf2_frame_state *fs)
{
  /* Only DW_CFA_GNU_window_save is expected on SPARC.  */
  if (op != DW_CFA_GNU_window_save)
    return false;

  uint64_t reg;
  int size = register_size (gdbarch, 0);

  fs->regs.alloc_regs (32);
  for (reg = 8; reg < 16; reg++)
    {
      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
      fs->regs.reg[reg].loc.reg = reg + 16;
    }
  for (reg = 16; reg < 32; reg++)
    {
      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
      fs->regs.reg[reg].loc.offset = (reg - 16) * size;
    }

  return true;
}


/* The SPARC Architecture doesn't have hardware single-step support,
   and most operating systems don't implement it either, so we provide
   software single-step mechanism.  */

static CORE_ADDR
sparc_analyze_control_transfer (struct regcache *regcache,
				CORE_ADDR pc, CORE_ADDR *npc)
{
  unsigned long insn = sparc_fetch_instruction (pc);
  int conditional_p = X_COND (insn) & 0x7;
  int branch_p = 0, fused_p = 0;
  long offset = 0;			/* Must be signed for sign-extend.  */

  if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
    {
      if ((insn & 0x10000000) == 0)
	{
	  /* Branch on Integer Register with Prediction (BPr).  */
	  branch_p = 1;
	  conditional_p = 1;
	}
      else
	{
	  /* Compare and Branch  */
	  branch_p = 1;
	  fused_p = 1;
	  offset = 4 * X_DISP10 (insn);
	}
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
    {
      /* Branch on Floating-Point Condition Codes (FBfcc).  */
      branch_p = 1;
      offset = 4 * X_DISP22 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
    {
      /* Branch on Floating-Point Condition Codes with Prediction
	 (FBPfcc).  */
      branch_p = 1;
      offset = 4 * X_DISP19 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
    {
      /* Branch on Integer Condition Codes (Bicc).  */
      branch_p = 1;
      offset = 4 * X_DISP22 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
    {
      /* Branch on Integer Condition Codes with Prediction (BPcc).  */
      branch_p = 1;
      offset = 4 * X_DISP19 (insn);
    }
  else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
    {
      frame_info_ptr frame = get_current_frame ();

      /* Trap instruction (TRAP).  */
      gdbarch *arch = regcache->arch ();
      sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);
      return tdep->step_trap (frame, insn);
    }

  /* FIXME: Handle DONE and RETRY instructions.  */

  if (branch_p)
    {
      if (fused_p)
	{
	  /* Fused compare-and-branch instructions are non-delayed,
	     and do not have an annulling capability.  So we need to
	     always set a breakpoint on both the NPC and the branch
	     target address.  */
	  gdb_assert (offset != 0);
	  return pc + offset;
	}
      else if (conditional_p)
	{
	  /* For conditional branches, return nPC + 4 iff the annul
	     bit is 1.  */
	  return (X_A (insn) ? *npc + 4 : 0);
	}
      else
	{
	  /* For unconditional branches, return the target if its
	     specified condition is "always" and return nPC + 4 if the
	     condition is "never".  If the annul bit is 1, set *NPC to
	     zero.  */
	  if (X_COND (insn) == 0x0)
	    pc = *npc, offset = 4;
	  if (X_A (insn))
	    *npc = 0;

	  return pc + offset;
	}
    }

  return 0;
}

static CORE_ADDR
sparc_step_trap (const frame_info_ptr &frame, unsigned long insn)
{
  return 0;
}

static std::vector<CORE_ADDR>
sparc_software_single_step (struct regcache *regcache)
{
  struct gdbarch *arch = regcache->arch ();
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);
  CORE_ADDR npc, nnpc;

  CORE_ADDR pc, orig_npc;
  std::vector<CORE_ADDR> next_pcs;

  pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
  orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);

  /* Analyze the instruction at PC.  */
  nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
  if (npc != 0)
    next_pcs.push_back (npc);

  if (nnpc != 0)
    next_pcs.push_back (nnpc);

  /* Assert that we have set at least one breakpoint, and that
     they're not set at the same spot - unless we're going
     from here straight to NULL, i.e. a call or jump to 0.  */
  gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
  gdb_assert (nnpc != npc || orig_npc == 0);

  return next_pcs;
}

static void
sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  gdbarch *arch = regcache->arch ();
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);

  regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
  regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
}


/* Iterate over core file register note sections.  */

static void
sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
				    iterate_over_regset_sections_cb *cb,
				    void *cb_data,
				    const struct regcache *regcache)
{
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);

  cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
      cb_data);
  cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
      NULL, cb_data);
}


static int
validate_tdesc_registers (const struct target_desc *tdesc,
			  struct tdesc_arch_data *tdesc_data,
			  const char *feature_name,
			  const char * const register_names[],
			  unsigned int registers_num,
			  unsigned int reg_start)
{
  int valid_p = 1;
  const struct tdesc_feature *feature;

  feature = tdesc_find_feature (tdesc, feature_name);
  if (feature == NULL)
    return 0;

  for (unsigned int i = 0; i < registers_num; i++)
    valid_p &= tdesc_numbered_register (feature, tdesc_data,
					reg_start + i,
					register_names[i]);

  return valid_p;
}

static struct gdbarch *
sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  const struct target_desc *tdesc = info.target_desc;
  int valid_p = 1;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  gdbarch *gdbarch
    = gdbarch_alloc (&info, gdbarch_tdep_up (new sparc_gdbarch_tdep));
  sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);

  tdep->pc_regnum = SPARC32_PC_REGNUM;
  tdep->npc_regnum = SPARC32_NPC_REGNUM;
  tdep->step_trap = sparc_step_trap;
  tdep->fpu_register_names = sparc32_fpu_register_names;
  tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
  tdep->cp0_register_names = sparc32_cp0_register_names;
  tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);

  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);

  set_gdbarch_wchar_bit (gdbarch, 16);
  set_gdbarch_wchar_signed (gdbarch, 1);

  set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
  set_gdbarch_register_name (gdbarch, sparc32_register_name);
  set_gdbarch_register_type (gdbarch, sparc32_register_type);
  set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
  set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
  set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
  set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
  set_gdbarch_deprecated_pseudo_register_write (gdbarch,
						sparc32_pseudo_register_write);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
  set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
  set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */

  /* Call dummy code.  */
  set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
  set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);

  set_gdbarch_return_value_as_value (gdbarch, sparc32_return_value);
  set_gdbarch_stabs_argument_has_addr
    (gdbarch, sparc32_stabs_argument_has_addr);

  set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       sparc_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       sparc_breakpoint::bp_from_kind);

  set_gdbarch_frame_args_skip (gdbarch, 8);

  set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
  set_gdbarch_write_pc (gdbarch, sparc_write_pc);

  set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);

  frame_base_set_default (gdbarch, &sparc32_frame_base);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
  /* Register DWARF vendor CFI handler.  */
  set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
					   sparc_execute_dwarf_cfa_vendor_op);
  /* FIXME: kettenis/20050423: Don't enable the unwinder until the
     StackGhost issues have been resolved.  */

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);

  if (tdesc_has_registers (tdesc))
    {
      tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();

      /* Validate that the descriptor provides the mandatory registers
	 and allocate their numbers. */
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.cpu",
					   sparc_core_register_names,
					   ARRAY_SIZE (sparc_core_register_names),
					   SPARC_G0_REGNUM);
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.fpu",
					   tdep->fpu_register_names,
					   tdep->fpu_registers_num,
					   SPARC_F0_REGNUM);
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.cp0",
					   tdep->cp0_register_names,
					   tdep->cp0_registers_num,
					   SPARC_F0_REGNUM
					   + tdep->fpu_registers_num);
      if (!valid_p)
	return NULL;

      /* Target description may have changed. */
      info.tdesc_data = tdesc_data.get ();
      tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
    }

  /* If we have register sets, enable the generic core file support.  */
  if (tdep->gregset)
    set_gdbarch_iterate_over_regset_sections
      (gdbarch, sparc_iterate_over_regset_sections);

  register_sparc_ravenscar_ops (gdbarch);

  return gdbarch;
}

/* Helper functions for dealing with register windows.  */

void
sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int offset = 0;
  gdb_byte buf[8];
  int i;

  /* This function calls functions that depend on the global current thread.  */
  gdb_assert (regcache->ptid () == inferior_ptid);

  if (sp & 1)
    {
      /* Registers are 64-bit.  */
      sp += BIAS;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    {
	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
		  store_unsigned_integer (buf + offset, 8, byte_order,
					  i7 ^ wcookie);
		}

	      regcache->raw_supply (i, buf);
	    }
	}
    }
  else
    {
      /* Registers are 32-bit.  Toss any sign-extension of the stack
	 pointer.  */
      sp &= 0xffffffffUL;

      /* Clear out the top half of the temporary buffer, and put the
	 register value in the bottom half if we're in 64-bit mode.  */
      if (gdbarch_ptr_bit (regcache->arch ()) == 64)
	{
	  memset (buf, 0, 4);
	  offset = 4;
	}

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    {
	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
				  buf + offset, 4);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
		  store_unsigned_integer (buf + offset, 4, byte_order,
					  i7 ^ wcookie);
		}

	      regcache->raw_supply (i, buf);
	    }
	}
    }
}

void
sparc_collect_rwindow (const struct regcache *regcache,
		       CORE_ADDR sp, int regnum)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int offset = 0;
  gdb_byte buf[8];
  int i;

  /* This function calls functions that depend on the global current thread.  */
  gdb_assert (regcache->ptid () == inferior_ptid);

  if (sp & 1)
    {
      /* Registers are 64-bit.  */
      sp += BIAS;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
	    {
	      regcache->raw_collect (i, buf);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
		  store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
		}

	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
	    }
	}
    }
  else
    {
      /* Registers are 32-bit.  Toss any sign-extension of the stack
	 pointer.  */
      sp &= 0xffffffffUL;

      /* Only use the bottom half if we're in 64-bit mode.  */
      if (gdbarch_ptr_bit (regcache->arch ()) == 64)
	offset = 4;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
	    {
	      regcache->raw_collect (i, buf);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
		  store_unsigned_integer (buf + offset, 4, byte_order,
					  i7 ^ wcookie);
		}

	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
				   buf + offset, 4);
	    }
	}
    }
}

/* Helper functions for dealing with register sets.  */

void
sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
			struct regcache *regcache,
			int regnum, const void *gregs)
{
  const gdb_byte *regs = (const gdb_byte *) gregs;
  int i;

  if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);

  if (regnum == SPARC32_PC_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);

  if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);

  if (regnum == SPARC32_Y_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);

  if (regnum == SPARC_G0_REGNUM || regnum == -1)
    regcache->raw_supply_zeroed (SPARC_G0_REGNUM);

  if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
    {
      int offset = gregmap->r_g1_offset;

      for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache->raw_supply (i, regs + offset);
	  offset += 4;
	}
    }

  if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
    {
      /* Not all of the register set variants include Locals and
	 Inputs.  For those that don't, we read them off the stack.  */
      if (gregmap->r_l0_offset == -1)
	{
	  ULONGEST sp;

	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  sparc_supply_rwindow (regcache, sp, regnum);
	}
      else
	{
	  int offset = gregmap->r_l0_offset;

	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	    {
	      if (regnum == i || regnum == -1)
		regcache->raw_supply (i, regs + offset);
	      offset += 4;
	    }
	}
    }
}

void
sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
			 const struct regcache *regcache,
			 int regnum, void *gregs)
{
  gdb_byte *regs = (gdb_byte *) gregs;
  int i;

  if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);

  if (regnum == SPARC32_PC_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);

  if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);

  if (regnum == SPARC32_Y_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);

  if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
    {
      int offset = gregmap->r_g1_offset;

      /* %g0 is always zero.  */
      for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache->raw_collect (i, regs + offset);
	  offset += 4;
	}
    }

  if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
    {
      /* Not all of the register set variants include Locals and
	 Inputs.  For those that don't, we read them off the stack.  */
      if (gregmap->r_l0_offset != -1)
	{
	  int offset = gregmap->r_l0_offset;

	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	    {
	      if (regnum == i || regnum == -1)
		regcache->raw_collect (i, regs + offset);
	      offset += 4;
	    }
	}
    }
}

void
sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
			 struct regcache *regcache,
			 int regnum, const void *fpregs)
{
  const gdb_byte *regs = (const gdb_byte *) fpregs;
  int i;

  for (i = 0; i < 32; i++)
    {
      if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
	regcache->raw_supply (SPARC_F0_REGNUM + i,
			      regs + fpregmap->r_f0_offset + (i * 4));
    }

  if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
}

void
sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
			  const struct regcache *regcache,
			  int regnum, void *fpregs)
{
  gdb_byte *regs = (gdb_byte *) fpregs;
  int i;

  for (i = 0; i < 32; i++)
    {
      if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
	regcache->raw_collect (SPARC_F0_REGNUM + i,
			       regs + fpregmap->r_f0_offset + (i * 4));
    }

  if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_FSR_REGNUM,
			   regs + fpregmap->r_fsr_offset);
}


/* SunOS 4.  */

/* From <machine/reg.h>.  */
const struct sparc_gregmap sparc32_sunos4_gregmap =
{
  0 * 4,			/* %psr */
  1 * 4,			/* %pc */
  2 * 4,			/* %npc */
  3 * 4,			/* %y */
  -1,				/* %wim */
  -1,				/* %tbr */
  4 * 4,			/* %g1 */
  -1				/* %l0 */
};

const struct sparc_fpregmap sparc32_sunos4_fpregmap =
{
  0 * 4,			/* %f0 */
  33 * 4,			/* %fsr */
};

const struct sparc_fpregmap sparc32_bsd_fpregmap =
{
  0 * 4,			/* %f0 */
  32 * 4,			/* %fsr */
};

void _initialize_sparc_tdep ();
void
_initialize_sparc_tdep ()
{
  gdbarch_register (bfd_arch_sparc, sparc32_gdbarch_init);
}