aboutsummaryrefslogtreecommitdiff
path: root/config.sub
AgeCommit message (Expand)AuthorFilesLines
2008-12-18 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-4/+6
2008-12-02 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-4/+12
2008-04-14 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-3/+10
2008-03-12 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-4/+8
2008-01-23 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-1/+5
2008-01-07 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-5/+5
2007-12-05 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-2/+30
2007-08-29* config.sub, config.guess: Update from upstream sources.Nick Clifton1-6/+2
2007-08-29* config.sub: Add support for cr16 target.Nick Clifton1-1/+5
2007-06-06 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-5/+10
2007-02-052007-02-05 Dave Brolley <brolley@redhat.com>Dave Brolley1-0/+2
2006-12-11 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-3/+6
2006-09-26 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-6/+10
2006-08-15 [ ChangeLog ]Thiemo Seufer1-0/+4
2006-05-14 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-4/+7
2006-05-12 * config.sub, config.guess: Update from upstream sources.Ben Elliston1-17/+16
2006-01-16Sync top level config files from the master config repositoryNick Clifton1-11/+24
2005-12-12 Rename ms1 to mt, part 1Nathan Sidwell1-3/+9
2005-12-05toplevel:Paolo Bonzini1-1/+9
2005-07-142005-07-14 Kelley Cook <kcook@gcc.gnu.org>Kelley Cook1-20/+25
2005-06-02* config.sub: Add cases for the Renesas m32c. (This patch has beenJim Blandy1-0/+5
2005-04-292005-04-29 Paolo Bonzini <bonzini@gnu.org>Paolo Bonzini1-6/+9
2005-01-192005-01-17 Kelley Cook <kcook@gcc.gnu.org>Kelley Cook1-6/+10
2004-11-162004-11-15 Kelley Cook <kcook@gcc.gnu.org>DJ Delorie1-1/+8
2004-09-04Import latest version from master repository.Nick Clifton1-19/+29
2004-07-07Undo accidental commit whilst adding crx-elf portNick Clifton1-4/+0
2004-07-07Add new port: crx-elfNick Clifton1-0/+4
2004-02-19Index: ChangeLogAndrew Cagney1-8/+56
2003-08-08Add MSP430 variantsNick Clifton1-2/+2
2003-06-142003-06-14 H.J. Lu <hongjiu.lu@intel.com>H.J. Lu1-7/+6
2003-06-122003-06-12 H.J. Lu <hongjiu.lu@intel.com>H.J. Lu1-4/+10
2003-05-132003-05-13 Andreas Jaeger <aj@suse.de>Andreas Jaeger1-2/+5
2003-02-19import latest versionsAlan Modra1-6/+22
2003-01-08[ ChangeLog ]Chris Demetriou1-16/+19
2002-09-12Import chnages from master config repository.Nick Clifton1-8/+8
2002-08-23Import config.guess and config.sub.Andrew Cagney1-20/+30
2002-07-172002-07-16 Chris Demetriou <cgd@broadcom.com>Chris Demetriou1-14/+31
2002-06-182002-06-18 Dave Brolley <brolley@redhat.com>Dave Brolley1-2/+2
2002-05-28Add DLX targetNick Clifton1-2/+2
2002-05-22* config.guess: Update to 2002-05-22 version.Jason Thorpe1-3/+3
2002-04-30 * config.guess: Updated to 2002-04-26's version.Mark Mitchell1-6/+6
2002-02-242002-02-23 Daniel Jacobowitz <drow@mvista.com>Daniel Jacobowitz1-40/+33
2002-02-01 * config.guess: Import from master sources, rev 1.229.Ben Elliston1-4/+14
2002-01-162002-01-16 H.J. Lu (hjl@gnu.org)H.J. Lu1-5/+11
2001-12-18 * config.sub: Import latest version.Alan Modra1-5/+19
2001-11-26 * config.sub: Update to version 1.232 on subversion.Geoffrey Keating1-12/+20
2001-09-28 * config.sub, config.guess: Import latest from subversions.Hans-Peter Nilsson1-4/+6
2001-09-15 * config.sub: Reverted the earlier change, this version is not theThiemo Seufer1-9/+1
2001-09-14 /bfd/ChangeLogThiemo Seufer1-1/+9
2001-08-312001-08-30 Eric Christopher <echristo@redhat.com>Eric Christopher1-3/+3
' href='#n563'>563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/* Target-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "regcache.h"
#include "value.h"
#include "osabi.h"
#include "regset.h"
#include "solib-svr4.h"
#include "solib.h"
#include "solist.h"
#include "ppc-tdep.h"
#include "ppc64-tdep.h"
#include "ppc-linux-tdep.h"
#include "arch/ppc-linux-common.h"
#include "arch/ppc-linux-tdesc.h"
#include "glibc-tdep.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "tramp-frame.h"
#include "observable.h"
#include "auxv.h"
#include "elf/common.h"
#include "elf/ppc64.h"
#include "arch-utils.h"
#include "xml-syscall.h"
#include "linux-tdep.h"
#include "linux-record.h"
#include "record-full.h"
#include "infrun.h"

#include "stap-probe.h"
#include "ax.h"
#include "ax-gdb.h"
#include "cli/cli-utils.h"
#include "parser-defs.h"
#include "user-regs.h"
#include <ctype.h>
#include "elf-bfd.h"

#include "features/rs6000/powerpc-32l.c"
#include "features/rs6000/powerpc-altivec32l.c"
#include "features/rs6000/powerpc-vsx32l.c"
#include "features/rs6000/powerpc-isa205-32l.c"
#include "features/rs6000/powerpc-isa205-altivec32l.c"
#include "features/rs6000/powerpc-isa205-vsx32l.c"
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c"
#include "features/rs6000/powerpc-isa207-vsx32l.c"
#include "features/rs6000/powerpc-isa207-htm-vsx32l.c"
#include "features/rs6000/powerpc-64l.c"
#include "features/rs6000/powerpc-altivec64l.c"
#include "features/rs6000/powerpc-vsx64l.c"
#include "features/rs6000/powerpc-isa205-64l.c"
#include "features/rs6000/powerpc-isa205-altivec64l.c"
#include "features/rs6000/powerpc-isa205-vsx64l.c"
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c"
#include "features/rs6000/powerpc-isa207-vsx64l.c"
#include "features/rs6000/powerpc-isa207-htm-vsx64l.c"
#include "features/rs6000/powerpc-e500l.c"

/* Shared library operations for PowerPC-Linux.  */
static struct target_so_ops powerpc_so_ops;

/* The syscall's XML filename for PPC and PPC64.  */
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"

/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
   in much the same fashion as memory_remove_breakpoint in mem-break.c,
   but is careful not to write back the previous contents if the code
   in question has changed in between inserting the breakpoint and
   removing it.

   Here is the problem that we're trying to solve...

   Once upon a time, before introducing this function to remove
   breakpoints from the inferior, setting a breakpoint on a shared
   library function prior to running the program would not work
   properly.  In order to understand the problem, it is first
   necessary to understand a little bit about dynamic linking on
   this platform.

   A call to a shared library function is accomplished via a bl
   (branch-and-link) instruction whose branch target is an entry
   in the procedure linkage table (PLT).  The PLT in the object
   file is uninitialized.  To gdb, prior to running the program, the
   entries in the PLT are all zeros.

   Once the program starts running, the shared libraries are loaded
   and the procedure linkage table is initialized, but the entries in
   the table are not (necessarily) resolved.  Once a function is
   actually called, the code in the PLT is hit and the function is
   resolved.  In order to better illustrate this, an example is in
   order; the following example is from the gdb testsuite.
	    
	We start the program shmain.

	    [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
	    [...]

	We place two breakpoints, one on shr1 and the other on main.

	    (gdb) b shr1
	    Breakpoint 1 at 0x100409d4
	    (gdb) b main
	    Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.

	Examine the instruction (and the immediatly following instruction)
	upon which the breakpoint was placed.  Note that the PLT entry
	for shr1 contains zeros.

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      .long 0x0
	    0x100409d8 <shr1+4>:    .long 0x0

	Now run 'til main.

	    (gdb) r
	    Starting program: gdb.base/shmain 
	    Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.

	    Breakpoint 2, main ()
		at gdb.base/shmain.c:44
	    44        g = 1;

	Examine the PLT again.  Note that the loading of the shared
	library has initialized the PLT to code which loads a constant
	(which I think is an index into the GOT) into r11 and then
	branchs a short distance to the code which actually does the
	resolving.

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      li      r11,4
	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
	    (gdb) c
	    Continuing.

	    Breakpoint 1, shr1 (x=1)
		at gdb.base/shr1.c:19
	    19        l = 1;

	Now we've hit the breakpoint at shr1.  (The breakpoint was
	reset from the PLT entry to the actual shr1 function after the
	shared library was loaded.) Note that the PLT entry has been
	resolved to contain a branch that takes us directly to shr1.
	(The real one, not the PLT entry.)

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      b       0xffaf76c <shr1>
	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>

   The thing to note here is that the PLT entry for shr1 has been
   changed twice.

   Now the problem should be obvious.  GDB places a breakpoint (a
   trap instruction) on the zero value of the PLT entry for shr1.
   Later on, after the shared library had been loaded and the PLT
   initialized, GDB gets a signal indicating this fact and attempts
   (as it always does when it stops) to remove all the breakpoints.

   The breakpoint removal was causing the former contents (a zero
   word) to be written back to the now initialized PLT entry thus
   destroying a portion of the initialization that had occurred only a
   short time ago.  When execution continued, the zero word would be
   executed as an instruction an illegal instruction trap was
   generated instead.  (0 is not a legal instruction.)

   The fix for this problem was fairly straightforward.  The function
   memory_remove_breakpoint from mem-break.c was copied to this file,
   modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
   In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
   function.

   The differences between ppc_linux_memory_remove_breakpoint () and
   memory_remove_breakpoint () are minor.  All that the former does
   that the latter does not is check to make sure that the breakpoint
   location actually contains a breakpoint (trap instruction) prior
   to attempting to write back the old contents.  If it does contain
   a trap instruction, we allow the old contents to be written back.
   Otherwise, we silently do nothing.

   The big question is whether memory_remove_breakpoint () should be
   changed to have the same functionality.  The downside is that more
   traffic is generated for remote targets since we'll have an extra
   fetch of a memory word each time a breakpoint is removed.

   For the time being, we'll leave this self-modifying-code-friendly
   version in ppc-linux-tdep.c, but it ought to be migrated somewhere
   else in the event that some other platform has similar needs with
   regard to removing breakpoints in some potentially self modifying
   code.  */
static int
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
				    struct bp_target_info *bp_tgt)
{
  CORE_ADDR addr = bp_tgt->reqstd_address;
  const unsigned char *bp;
  int val;
  int bplen;
  gdb_byte old_contents[BREAKPOINT_MAX];

  /* Determine appropriate breakpoint contents and size for this address.  */
  bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);

  /* Make sure we see the memory breakpoints.  */
  scoped_restore restore_memory
    = make_scoped_restore_show_memory_breakpoints (1);
  val = target_read_memory (addr, old_contents, bplen);

  /* If our breakpoint is no longer at the address, this means that the
     program modified the code on us, so it is wrong to put back the
     old value.  */
  if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
    val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);

  return val;
}

/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
   than the 32 bit SYSV R4 ABI structure return convention - all
   structures, no matter their size, are put in memory.  Vectors,
   which were added later, do get returned in a register though.  */

static enum return_value_convention
ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
			struct type *valtype, struct regcache *regcache,
			gdb_byte *readbuf, const gdb_byte *writebuf)
{  
  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
      && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
	   && TYPE_VECTOR (valtype)))
    return RETURN_VALUE_STRUCT_CONVENTION;
  else
    return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
				      readbuf, writebuf);
}

/* PLT stub in an executable.  */
static const struct ppc_insn_pattern powerpc32_plt_stub[] =
  {
    { 0xffff0000, 0x3d600000, 0 },	/* lis   r11, xxxx	 */
    { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* PLT stubs in a shared library or PIE.
   The first variant is used when the PLT entry is within +/-32k of
   the GOT pointer (r30).  */
static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
  {
    { 0xffff0000, 0x817e0000, 0 },	/* lwz   r11, xxxx(r30)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* The second variant is used when the PLT entry is more than +/-32k
   from the GOT pointer (r30).  */
static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
  {
    { 0xffff0000, 0x3d7e0000, 0 },	/* addis r11, r30, xxxx  */
    { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* The max number of insns we check using ppc_insns_match_pattern.  */
#define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)

/* Check if PC is in PLT stub.  For non-secure PLT, stub is in .plt
   section.  For secure PLT, stub is in .text and we need to check
   instruction patterns.  */

static int
powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
  struct bound_minimal_symbol sym;

  /* Check whether PC is in the dynamic linker.  This also checks
     whether it is in the .plt section, used by non-PIC executables.  */
  if (svr4_in_dynsym_resolve_code (pc))
    return 1;

  /* Check if we are in the resolver.  */
  sym = lookup_minimal_symbol_by_pc (pc);
  if (sym.minsym != NULL
      && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
	  || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
		     "__glink_PLTresolve") == 0))
    return 1;

  return 0;
}

/* Follow PLT stub to actual routine.

   When the execution direction is EXEC_REVERSE, scan backward to
   check whether we are in the middle of a PLT stub.  Currently,
   we only look-behind at most 4 instructions (the max length of a PLT
   stub sequence.  */

static CORE_ADDR
ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR target = 0;
  int scan_limit, i;

  scan_limit = 1;
  /* When reverse-debugging, scan backward to check whether we are
     in the middle of trampoline code.  */
  if (execution_direction == EXEC_REVERSE)
    scan_limit = 4;	/* At most 4 instructions.  */

  for (i = 0; i < scan_limit; i++)
    {
      if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
	{
	  /* Calculate PLT entry address from
	     lis   r11, xxxx
	     lwz   r11, xxxx(r11).  */
	  target = ((ppc_insn_d_field (insnbuf[0]) << 16)
		    + ppc_insn_d_field (insnbuf[1]));
	}
      else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
	       && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
					   insnbuf))
	{
	  /* Calculate PLT entry address from
	     lwz   r11, xxxx(r30).  */
	  target = (ppc_insn_d_field (insnbuf[0])
		    + get_frame_register_unsigned (frame,
						   tdep->ppc_gp0_regnum + 30));
	}
      else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
					insnbuf))
	{
	  /* Calculate PLT entry address from
	     addis r11, r30, xxxx
	     lwz   r11, xxxx(r11).  */
	  target = ((ppc_insn_d_field (insnbuf[0]) << 16)
		    + ppc_insn_d_field (insnbuf[1])
		    + get_frame_register_unsigned (frame,
						   tdep->ppc_gp0_regnum + 30));
	}
      else
	{
	  /* Scan backward one more instruction if it doesn't match.  */
	  pc -= 4;
	  continue;
	}

      target = read_memory_unsigned_integer (target, 4, byte_order);
      return target;
    }

  return 0;
}

/* Wrappers to handle Linux-only registers.  */

static void
ppc_linux_supply_gregset (const struct regset *regset,
			  struct regcache *regcache,
			  int regnum, const void *gregs, size_t len)
{
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;

  ppc_supply_gregset (regset, regcache, regnum, gregs, len);

  if (ppc_linux_trap_reg_p (regcache->arch ()))
    {
      /* "orig_r3" is stored 2 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
	ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
			offsets->pc_offset + 2 * offsets->gpr_size,
			offsets->gpr_size);

      /* "trap" is stored 8 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
	ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
			offsets->pc_offset + 8 * offsets->gpr_size,
			offsets->gpr_size);
    }
}

static void
ppc_linux_collect_gregset (const struct regset *regset,
			   const struct regcache *regcache,
			   int regnum, void *gregs, size_t len)
{
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;

  /* Clear areas in the linux gregset not written elsewhere.  */
  if (regnum == -1)
    memset (gregs, 0, len);

  ppc_collect_gregset (regset, regcache, regnum, gregs, len);

  if (ppc_linux_trap_reg_p (regcache->arch ()))
    {
      /* "orig_r3" is stored 2 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
	ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
			 offsets->pc_offset + 2 * offsets->gpr_size,
			 offsets->gpr_size);

      /* "trap" is stored 8 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
	ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
			 offsets->pc_offset + 8 * offsets->gpr_size,
			 offsets->gpr_size);
    }
}

/* Regset descriptions.  */
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
  {
    /* General-purpose registers.  */
    /* .r0_offset = */ 0,
    /* .gpr_size = */ 4,
    /* .xr_size = */ 4,
    /* .pc_offset = */ 128,
    /* .ps_offset = */ 132,
    /* .cr_offset = */ 152,
    /* .lr_offset = */ 144,
    /* .ctr_offset = */ 140,
    /* .xer_offset = */ 148,
    /* .mq_offset = */ 156,

    /* Floating-point registers.  */
    /* .f0_offset = */ 0,
    /* .fpscr_offset = */ 256,
    /* .fpscr_size = */ 8
  };

static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
  {
    /* General-purpose registers.  */
    /* .r0_offset = */ 0,
    /* .gpr_size = */ 8,
    /* .xr_size = */ 8,
    /* .pc_offset = */ 256,
    /* .ps_offset = */ 264,
    /* .cr_offset = */ 304,
    /* .lr_offset = */ 288,
    /* .ctr_offset = */ 280,
    /* .xer_offset = */ 296,
    /* .mq_offset = */ 312,

    /* Floating-point registers.  */
    /* .f0_offset = */ 0,
    /* .fpscr_offset = */ 256,
    /* .fpscr_size = */ 8
  };

static const struct regset ppc32_linux_gregset = {
  &ppc32_linux_reg_offsets,
  ppc_linux_supply_gregset,
  ppc_linux_collect_gregset
};

static const struct regset ppc64_linux_gregset = {
  &ppc64_linux_reg_offsets,
  ppc_linux_supply_gregset,
  ppc_linux_collect_gregset
};

static const struct regset ppc32_linux_fpregset = {
  &ppc32_linux_reg_offsets,
  ppc_supply_fpregset,
  ppc_collect_fpregset
};

static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
  {
      { 32, PPC_VR0_REGNUM, 16 },
      { 1, PPC_VSCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_VRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
  {
      { 32, PPC_VR0_REGNUM, 16 },
      { 1, REGCACHE_MAP_SKIP, 12},
      { 1, PPC_VSCR_REGNUM, 4 },
      { 1, PPC_VRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regset ppc32_le_linux_vrregset = {
  ppc32_le_linux_vrregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc32_be_linux_vrregset = {
  ppc32_be_linux_vrregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regcache_map_entry ppc32_linux_vsxregmap[] =
  {
      { 32, PPC_VSR0_UPPER_REGNUM, 8 },
      { 0 }
  };

static const struct regset ppc32_linux_vsxregset = {
  ppc32_linux_vsxregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Program Priorty Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_ppr[] =
  {
      { 1, PPC_PPR_REGNUM, 8 },
      { 0 }
  };

/* Program Priorty Register regset.  */

const struct regset ppc32_linux_pprregset = {
  ppc32_regmap_ppr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Data Stream Control Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_dscr[] =
  {
      { 1, PPC_DSCR_REGNUM, 8 },
      { 0 }
  };

/* Data Stream Control Register regset.  */

const struct regset ppc32_linux_dscrregset = {
  ppc32_regmap_dscr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Target Address Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_tar[] =
  {
      { 1, PPC_TAR_REGNUM, 8 },
      { 0 }
  };

/* Target Address Register regset.  */

const struct regset ppc32_linux_tarregset = {
  ppc32_regmap_tar,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Event-Based Branching regmap.  */

static const struct regcache_map_entry ppc32_regmap_ebb[] =
  {
      { 1, PPC_EBBRR_REGNUM, 8 },
      { 1, PPC_EBBHR_REGNUM, 8 },
      { 1, PPC_BESCR_REGNUM, 8 },
      { 0 }
  };

/* Event-Based Branching regset.  */

const struct regset ppc32_linux_ebbregset = {
  ppc32_regmap_ebb,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Performance Monitoring Unit regmap.  */

static const struct regcache_map_entry ppc32_regmap_pmu[] =
  {
      { 1, PPC_SIAR_REGNUM, 8 },
      { 1, PPC_SDAR_REGNUM, 8 },
      { 1, PPC_SIER_REGNUM, 8 },
      { 1, PPC_MMCR2_REGNUM, 8 },
      { 1, PPC_MMCR0_REGNUM, 8 },
      { 0 }
  };

/* Performance Monitoring Unit regset.  */

const struct regset ppc32_linux_pmuregset = {
  ppc32_regmap_pmu,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory special-purpose register regmap.  */

static const struct regcache_map_entry ppc32_regmap_tm_spr[] =
  {
      { 1, PPC_TFHAR_REGNUM, 8 },
      { 1, PPC_TEXASR_REGNUM, 8 },
      { 1, PPC_TFIAR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory special-purpose register regset.  */

const struct regset ppc32_linux_tm_sprregset = {
  ppc32_regmap_tm_spr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Regmaps for the Hardware Transactional Memory checkpointed
   general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit
   little endian targets.  The ptrace and core file buffers for 64-bit
   targets use 8-byte fields for the 4-byte registers, and the
   position of the register in the fields depends on the endianess.
   The 32-bit regmap is the same for both endian types because the
   fields are all 4-byte long.

   The layout of checkpointed GPR regset is the same as a regular
   struct pt_regs, but we skip all registers that are not actually
   checkpointed by the processor (e.g. msr, nip), except when
   generating a core file.  The 64-bit regset is 48 * 8 bytes long.
   In some 64-bit kernels, the regset for a 32-bit inferior has the
   same length, but all the registers are squeezed in the first half
   (48 * 4 bytes).  The pt_regs struct calls the regular cr ccr, but
   we use ccr for "checkpointed condition register".  Note that CR
   (condition register) field 0 is not checkpointed, but the kernel
   returns all 4 bytes.  The skipped registers should not be touched
   when writing the regset to the inferior (with
   PTRACE_SETREGSET).  */

static const struct regcache_map_entry ppc32_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 4 },
      { 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3.  */
      { 1, PPC_CCTR_REGNUM, 4 },
      { 1, PPC_CLR_REGNUM, 4 },
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, PPC_CCR_REGNUM, 4 },
      { 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest.  */
      { 0 }
  };

static const struct regcache_map_entry ppc64_le_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 8 },
      { 3, REGCACHE_MAP_SKIP, 8 },
      { 1, PPC_CCTR_REGNUM, 8 },
      { 1, PPC_CLR_REGNUM, 8 },
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding.  */
      { 1, PPC_CCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */
      { 9, REGCACHE_MAP_SKIP, 8},
      { 0 }
  };

static const struct regcache_map_entry ppc64_be_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 8 },
      { 3, REGCACHE_MAP_SKIP, 8 },
      { 1, PPC_CCTR_REGNUM, 8 },
      { 1, PPC_CLR_REGNUM, 8 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding.  */
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */
      { 1, PPC_CCR_REGNUM, 4 },
      { 9, REGCACHE_MAP_SKIP, 8},
      { 0 }
  };

/* Regsets for the Hardware Transactional Memory checkpointed
   general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit
   little endian targets.

   Some 64-bit kernels generate a checkpointed gpr note section with
   48*8 bytes for a 32-bit thread, of which only 48*4 are actually
   used, so we set the variable size flag in the corresponding regset
   to accept this case.  */

static const struct regset ppc32_linux_cgprregset = {
  ppc32_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset,
  REGSET_VARIABLE_SIZE
};

static const struct regset ppc64_be_linux_cgprregset = {
  ppc64_be_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc64_le_linux_cgprregset = {
  ppc64_le_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed floating-point regmap.  */

static const struct regcache_map_entry ppc32_regmap_cfpr[] =
  {
      { 32, PPC_CF0_REGNUM, 8 },
      { 1, PPC_CFPSCR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed floating-point regset.  */

const struct regset ppc32_linux_cfprregset = {
  ppc32_regmap_cfpr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Regmaps for the Hardware Transactional Memory checkpointed vector
   regsets, for big and little endian targets.  The position of the
   4-byte VSCR in its 16-byte field depends on the endianess.  */

static const struct regcache_map_entry ppc32_le_regmap_cvmx[] =
  {
      { 32, PPC_CVR0_REGNUM, 16 },
      { 1, PPC_CVSCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_CVRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regcache_map_entry ppc32_be_regmap_cvmx[] =
  {
      { 32, PPC_CVR0_REGNUM, 16 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_CVSCR_REGNUM, 4 },
      { 1, PPC_CVRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12},
      { 0 }
  };

/* Hardware Transactional Memory checkpointed vector regsets, for little
   and big endian targets.  */

static const struct regset ppc32_le_linux_cvmxregset = {
  ppc32_le_regmap_cvmx,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc32_be_linux_cvmxregset = {
  ppc32_be_regmap_cvmx,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed vector-scalar regmap.  */

static const struct regcache_map_entry ppc32_regmap_cvsx[] =
  {
      { 32, PPC_CVSR0_UPPER_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed vector-scalar regset.  */

const struct regset ppc32_linux_cvsxregset = {
  ppc32_regmap_cvsx,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Program Priority Register
   regmap.  */

static const struct regcache_map_entry ppc32_regmap_cppr[] =
  {
      { 1, PPC_CPPR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Program Priority Register
   regset.  */

const struct regset ppc32_linux_cpprregset = {
  ppc32_regmap_cppr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Data Stream Control
   Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_cdscr[] =
  {
      { 1, PPC_CDSCR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Data Stream Control
   Register regset.  */

const struct regset ppc32_linux_cdscrregset = {
  ppc32_regmap_cdscr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Target Address Register
   regmap.  */

static const struct regcache_map_entry ppc32_regmap_ctar[] =
  {
      { 1, PPC_CTAR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Target Address Register
   regset.  */

const struct regset ppc32_linux_ctarregset = {
  ppc32_regmap_ctar,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset *
ppc_linux_gregset (int wordsize)
{
  return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
}

const struct regset *
ppc_linux_fpregset (void)
{
  return &ppc32_linux_fpregset;
}

const struct regset *
ppc_linux_vrregset (struct gdbarch *gdbarch)
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    return &ppc32_be_linux_vrregset;
  else
    return &ppc32_le_linux_vrregset;
}

const struct regset *
ppc_linux_vsxregset (void)
{
  return &ppc32_linux_vsxregset;
}

const struct regset *
ppc_linux_cgprregset (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (tdep->wordsize == 4)
    {
      return &ppc32_linux_cgprregset;
    }
  else
    {
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	return &ppc64_be_linux_cgprregset;
      else
	return &ppc64_le_linux_cgprregset;
    }
}

const struct regset *
ppc_linux_cvmxregset (struct gdbarch *gdbarch)
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    return &ppc32_be_linux_cvmxregset;
  else
    return &ppc32_le_linux_cvmxregset;
}

/* Collect function used to generate the core note for the
   checkpointed GPR regset.  Here, we don't want to skip the
   "checkpointed" NIP and MSR, so that the note section we generate is
   similar to the one generated by the kernel.  To avoid having to
   define additional registers in GDB which are not actually
   checkpointed in the architecture, we copy TFHAR to the checkpointed
   NIP slot, which is what the kernel does, and copy the regular MSR
   to the checkpointed MSR slot, which will have a similar value in
   most cases.  */

static void
ppc_linux_collect_core_cpgrregset (const struct regset *regset,
				   const struct regcache *regcache,
				   int regnum, void *buf, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);

  /* We collect the checkpointed GPRs already defined in the regular
     regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR
     slots.  */
  cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len);

  /* Check that we are collecting all the registers, which should be
     the case when generating a core file.  */
  if (regnum != -1)
    return;

  /* PT_NIP and PT_MSR are 32 and 33 for powerpc.  Don't redefine
     these symbols since this file can run on clients in other
     architectures where they can already be defined to other
     values.  */
  int pt_offset = 32;

  /* Check that our buffer is long enough to hold two slots at
     pt_offset * wordsize, one for NIP and one for MSR.  */
  gdb_assert ((pt_offset + 2) * tdep->wordsize <= len);

  /* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is
     4-bytes long.  We use raw_collect_integer which handles
     differences in the sizes for the source and destination buffers
     for both endian modes.  */
  (regcache->raw_collect_integer
   (PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
    tdep->wordsize, false));

  pt_offset = 33;

  (regcache->raw_collect_integer
   (PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
    tdep->wordsize, false));
}

/* Iterate over supported core file register note sections. */

static void
ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
					iterate_over_regset_sections_cb *cb,
					void *cb_data,
					const struct regcache *regcache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int have_altivec = tdep->ppc_vr0_regnum != -1;
  int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
  int have_ppr = tdep->ppc_ppr_regnum != -1;
  int have_dscr = tdep->ppc_dscr_regnum != -1;
  int have_tar = tdep->ppc_tar_regnum != -1;

  if (tdep->wordsize == 4)
    cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
  else
    cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data);

  cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data);

  if (have_altivec)
    {
      const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
      cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET,
	  vrregset, "ppc Altivec", cb_data);
    }

  if (have_vsx)
    cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET,
	&ppc32_linux_vsxregset, "POWER7 VSX", cb_data);

  if (have_ppr)
    cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET,
	PPC_LINUX_SIZEOF_PPRREGSET,
	&ppc32_linux_pprregset, "Priority Program Register", cb_data);

  if (have_dscr)
    cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET,
	PPC_LINUX_SIZEOF_DSCRREGSET,
	&ppc32_linux_dscrregset, "Data Stream Control Register",
	cb_data);

  if (have_tar)
    cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET,
	PPC_LINUX_SIZEOF_TARREGSET,
	&ppc32_linux_tarregset, "Target Address Register", cb_data);

  /* EBB registers are unavailable when ptrace returns ENODATA.  Check
     availability when generating a core file (regcache != NULL).  */
  if (tdep->have_ebb)
    if (regcache == NULL
	|| REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM))
      cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET,
	  PPC_LINUX_SIZEOF_EBBREGSET,
	  &ppc32_linux_ebbregset, "Event-based Branching Registers",
	  cb_data);

  if (tdep->ppc_mmcr0_regnum != -1)
    cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET,
	PPC_LINUX_SIZEOF_PMUREGSET,
	&ppc32_linux_pmuregset, "Performance Monitor Registers",
	cb_data);

  if (tdep->have_htm_spr)
    cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET,
	PPC_LINUX_SIZEOF_TM_SPRREGSET,
	&ppc32_linux_tm_sprregset,
	"Hardware Transactional Memory Special Purpose Registers",
	cb_data);

  /* Checkpointed registers can be unavailable, don't call back if
     we are generating a core file.  */

  if (tdep->have_htm_core)
    {
      /* Only generate the checkpointed GPR core note if we also have
	 access to the HTM SPRs, because we need TFHAR to fill the
	 "checkpointed" NIP slot.  We can read a core file without it
	 since GDB is not aware of this NIP as a visible register.  */
      if (regcache == NULL ||
	  (REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM)
	   && tdep->have_htm_spr))
	{
	  int cgpr_size = (tdep->wordsize == 4?
			   PPC32_LINUX_SIZEOF_CGPRREGSET
			   : PPC64_LINUX_SIZEOF_CGPRREGSET);

	  const struct regset *cgprregset =
	    ppc_linux_cgprregset (gdbarch);

	  if (regcache != NULL)
	    {
	      struct regset core_cgprregset = *cgprregset;

	      core_cgprregset.collect_regset
		= ppc_linux_collect_core_cpgrregset;

	      cb (".reg-ppc-tm-cgpr",
		  cgpr_size, cgpr_size,
		  &core_cgprregset,
		  "Checkpointed General Purpose Registers", cb_data);
	    }
	  else
	    {
	      cb (".reg-ppc-tm-cgpr",
		  cgpr_size, cgpr_size,
		  cgprregset,
		  "Checkpointed General Purpose Registers", cb_data);
	    }
	}
    }

  if (tdep->have_htm_fpu)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM))
	cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET,
	    PPC_LINUX_SIZEOF_CFPRREGSET,
	    &ppc32_linux_cfprregset,
	    "Checkpointed Floating Point Registers", cb_data);
    }

  if (tdep->have_htm_altivec)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM))
	{
	  const struct regset *cvmxregset =
	    ppc_linux_cvmxregset (gdbarch);

	  cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET,
	      PPC_LINUX_SIZEOF_CVMXREGSET,
	      cvmxregset,
	      "Checkpointed Altivec (VMX) Registers", cb_data);
	}
    }

  if (tdep->have_htm_vsx)
    {
      if (regcache == NULL ||
	  (REG_VALID
	   == regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM)))
	cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET,
	    PPC_LINUX_SIZEOF_CVSXREGSET,
	    &ppc32_linux_cvsxregset,
	    "Checkpointed VSX Registers", cb_data);
    }

  if (tdep->ppc_cppr_regnum != -1)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM))
	cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET,
	    PPC_LINUX_SIZEOF_CPPRREGSET,
	    &ppc32_linux_cpprregset,
	    "Checkpointed Priority Program Register", cb_data);
    }

  if (tdep->ppc_cdscr_regnum != -1)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM))
	cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET,
	    PPC_LINUX_SIZEOF_CDSCRREGSET,
	    &ppc32_linux_cdscrregset,
	    "Checkpointed Data Stream Control Register", cb_data);
    }

  if (tdep->ppc_ctar_regnum)
    {
      if ( regcache == NULL ||
	   REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM))
	cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET,
	    PPC_LINUX_SIZEOF_CTARREGSET,
	    &ppc32_linux_ctarregset,
	    "Checkpointed Target Address Register", cb_data);
    }
}

static void
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
			  struct trad_frame_cache *this_cache,
			  CORE_ADDR func, LONGEST offset,
			  int bias)
{
  CORE_ADDR base;
  CORE_ADDR regs;
  CORE_ADDR gpregs;
  CORE_ADDR fpregs;
  int i;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  base = get_frame_register_unsigned (this_frame,
				      gdbarch_sp_regnum (gdbarch));
  if (bias > 0 && get_frame_pc (this_frame) != func)
    /* See below, some signal trampolines increment the stack as their
       first instruction, need to compensate for that.  */
    base -= bias;

  /* Find the address of the register buffer pointer.  */
  regs = base + offset;
  /* Use that to find the address of the corresponding register
     buffers.  */
  gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
  fpregs = gpregs + 48 * tdep->wordsize;

  /* General purpose.  */
  for (i = 0; i < 32; i++)
    {
      int regnum = i + tdep->ppc_gp0_regnum;
      trad_frame_set_reg_addr (this_cache,
			       regnum, gpregs + i * tdep->wordsize);
    }
  trad_frame_set_reg_addr (this_cache,
			   gdbarch_pc_regnum (gdbarch),
			   gpregs + 32 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
			   gpregs + 35 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
			   gpregs + 36 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
			   gpregs + 37 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
			   gpregs + 38 * tdep->wordsize);

  if (ppc_linux_trap_reg_p (gdbarch))
    {
      trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
			       gpregs + 34 * tdep->wordsize);
      trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
			       gpregs + 40 * tdep->wordsize);
    }

  if (ppc_floating_point_unit_p (gdbarch))
    {
      /* Floating point registers.  */
      for (i = 0; i < 32; i++)
	{
	  int regnum = i + gdbarch_fp0_regnum (gdbarch);
	  trad_frame_set_reg_addr (this_cache, regnum,
				   fpregs + i * tdep->wordsize);
	}
      trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
                         fpregs + 32 * tdep->wordsize);
    }
  trad_frame_set_id (this_cache, frame_id_build (base, func));
}

static void
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
				  struct frame_info *this_frame,
				  struct trad_frame_cache *this_cache,
				  CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0xd0 /* Offset to ucontext_t.  */
			    + 0x30 /* Offset to .reg.  */,
			    0);
}

static void
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
				  struct frame_info *this_frame,
				  struct trad_frame_cache *this_cache,
				  CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x80 /* Offset to ucontext_t.  */
			    + 0xe0 /* Offset to .reg.  */,
			    128);
}

static void
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
				   struct frame_info *this_frame,
				   struct trad_frame_cache *this_cache,
				   CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x40 /* Offset to ucontext_t.  */
			    + 0x1c /* Offset to .reg.  */,
			    0);
}

static void
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
				   struct frame_info *this_frame,
				   struct trad_frame_cache *this_cache,
				   CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x80 /* Offset to struct sigcontext.  */
			    + 0x38 /* Offset to .reg.  */,
			    128);
}

static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc32_linux_sigaction_cache_init
};
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  {
    { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
    { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc64_linux_sigaction_cache_init
};
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc32_linux_sighandler_cache_init
};
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
    { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc64_linux_sighandler_cache_init
};

/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable.  */
int
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
{
  /* If we do not have a target description with registers, then
     the special registers will not be included in the register set.  */
  if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return 0;

  /* If we do, then it is safe to check the size.  */
  return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
         && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
}

/* Return the current system call's number present in the
   r0 register.  When the function fails, it returns -1.  */
static LONGEST
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
			      thread_info *thread)
{
  struct regcache *regcache = get_thread_regcache (thread);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Make sure we're in a 32- or 64-bit machine */
  gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);

  /* The content of a register */
  gdb::byte_vector buf (tdep->wordsize);

  /* Getting the system call number from the register.
     When dealing with PowerPC architecture, this information
     is stored at 0th register.  */
  regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ());

  return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
}

/* PPC process record-replay */

static struct linux_record_tdep ppc_linux_record_tdep;
static struct linux_record_tdep ppc64_linux_record_tdep;

/* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
   syscall ids into a canonical set of syscall ids used by process
   record.  (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
   Return -1 if this system call is not supported by process record.
   Otherwise, return the syscall number for preocess reocrd of given
   SYSCALL.  */

static enum gdb_syscall
ppc_canonicalize_syscall (int syscall)
{
  int result = -1;

  if (syscall <= 165)
    result = syscall;
  else if (syscall >= 167 && syscall <= 190)	/* Skip query_module 166 */
    result = syscall + 1;
  else if (syscall >= 192 && syscall <= 197)	/* mmap2 */
    result = syscall;
  else if (syscall == 208)			/* tkill */
    result = gdb_sys_tkill;
  else if (syscall >= 207 && syscall <= 220)	/* gettid */
    result = syscall + 224 - 207;
  else if (syscall >= 234 && syscall <= 239)	/* exit_group */
    result = syscall + 252 - 234;
  else if (syscall >= 240 && syscall <= 248)	/* timer_create */
    result = syscall += 259 - 240;
  else if (syscall >= 250 && syscall <= 251)	/* tgkill */
    result = syscall + 270 - 250;
  else if (syscall == 336)
    result = gdb_sys_recv;
  else if (syscall == 337)
    result = gdb_sys_recvfrom;
  else if (syscall == 342)
    result = gdb_sys_recvmsg;

  return (enum gdb_syscall) result;
}

/* Record registers which might be clobbered during system call.
   Return 0 if successful.  */

static int
ppc_linux_syscall_record (struct regcache *regcache)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST scnum;
  enum gdb_syscall syscall_gdb;
  int ret;

  regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
  syscall_gdb = ppc_canonicalize_syscall (scnum);

  if (syscall_gdb < 0)
    {
      printf_unfiltered (_("Process record and replay target doesn't "
			   "support syscall number %d\n"), (int) scnum);
      return 0;
    }

  if (syscall_gdb == gdb_sys_sigreturn
      || syscall_gdb == gdb_sys_rt_sigreturn)
   {
     int i, j;
     int regsets[] = { tdep->ppc_gp0_regnum,
		       tdep->ppc_fp0_regnum,
		       tdep->ppc_vr0_regnum,
		       tdep->ppc_vsr0_upper_regnum };

     for (j = 0; j < 4; j++)
       {
	 if (regsets[j] == -1)
	   continue;
	 for (i = 0; i < 32; i++)
	   {
	     if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
	       return -1;
	   }
       }

     if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
       return -1;

     return 0;
   }

  if (tdep->wordsize == 8)
    ret = record_linux_system_call (syscall_gdb, regcache,
				    &ppc64_linux_record_tdep);
  else
    ret = record_linux_system_call (syscall_gdb, regcache,
				    &ppc_linux_record_tdep);

  if (ret != 0)
    return ret;

  /* Record registers clobbered during syscall.  */
  for (int i = 3; i <= 12; i++)
    {
      if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
	return -1;
    }
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
    return -1;

  return 0;
}

/* Record registers which might be clobbered during signal handling.
   Return 0 if successful.  */

static int
ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
			 enum gdb_signal signal)
{
  /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
	 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
	 arch/powerpc/include/asm/ptrace.h
     for details.  */
  const int SIGNAL_FRAMESIZE = 128;
  const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
  ULONGEST sp;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  for (i = 3; i <= 12; i++)
    {
      if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
	return -1;
    }

  if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
    return -1;
  if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
    return -1;

  /* Record the change in the stack.
     frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE  */
  regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
  sp -= SIGNAL_FRAMESIZE;
  sp -= sizeof_rt_sigframe;

  if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
    return -1;

  if (record_full_arch_list_add_end ())
    return -1;

  return 0;
}

static void
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = regcache->arch ();

  regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);

  /* Set special TRAP register to -1 to prevent the kernel from
     messing with the PC we just installed, if we happen to be
     within an interrupted system call that the kernel wants to
     restart.

     Note that after we return from the dummy call, the TRAP and
     ORIG_R3 registers will be automatically restored, and the
     kernel continues to restart the system call at this point.  */
  if (ppc_linux_trap_reg_p (gdbarch))
    regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
}

static const struct target_desc *
ppc_linux_core_read_description (struct gdbarch *gdbarch,
				 struct target_ops *target,
				 bfd *abfd)
{
  struct ppc_linux_features features = ppc_linux_no_features;
  asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
  asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
  asection *section = bfd_get_section_by_name (abfd, ".reg");
  asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr");
  asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr");
  asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar");
  asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu");
  asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr");

  if (! section)
    return NULL;

  switch (bfd_section_size (section))
    {
    case 48 * 4:
      features.wordsize = 4;
      break;
    case 48 * 8:
      features.wordsize = 8;
      break;
    default:
      return NULL;
    }

  if (altivec)
    features.altivec = true;

  if (vsx)
    features.vsx = true;

  CORE_ADDR hwcap = linux_get_hwcap (target);

  features.isa205 = ppc_linux_has_isa205 (hwcap);

  if (ppr && dscr)
    {
      features.ppr_dscr = true;

      /* We don't require the EBB note section to be present in the
	 core file to select isa207 because these registers could have
	 been unavailable when the core file was created.  They will
	 be in the tdep but will show as unavailable.  */
      if (tar && pmu)
	{
	  features.isa207 = true;
	  if (htmspr)
	    features.htm = true;
	}
    }

  return ppc_linux_match_description (features);
}


/* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
   gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */

static void
ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
  elf_symbol_type *elf_sym = (elf_symbol_type *)sym;

  /* If the symbol is marked as having a local entry point, set a target
     flag in the msymbol.  We currently only support local entry point
     offsets of 8 bytes, which is the only entry point offset ever used
     by current compilers.  If/when other offsets are ever used, we will
     have to use additional target flag bits to store them.  */
  switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
    {
    default:
      break;
    case 8:
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
      break;
    }
}

/* Implementation of `gdbarch_skip_entrypoint', as defined in
   gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */

static CORE_ADDR
ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct bound_minimal_symbol fun;
  int local_entry_offset = 0;

  fun = lookup_minimal_symbol_by_pc (pc);
  if (fun.minsym == NULL)
    return pc;

  /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
     offset values are encoded.  */
  if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
    local_entry_offset = 8;

  if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
      && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
    return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;

  return pc;
}

/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

static int
ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return (*s == 'i' /* Literal number.  */
	  || (isdigit (*s) && s[1] == '('
	      && isdigit (s[2])) /* Displacement.  */
	  || (*s == '(' && isdigit (s[1])) /* Register indirection.  */
	  || isdigit (*s)); /* Register value.  */
}

/* Implementation of `gdbarch_stap_parse_special_token', as defined in
   gdbarch.h.  */

static int
ppc_stap_parse_special_token (struct gdbarch *gdbarch,
			      struct stap_parse_info *p)
{
  if (isdigit (*p->arg))
    {
      /* This temporary pointer is needed because we have to do a lookahead.
	  We could be dealing with a register displacement, and in such case
	  we would not need to do anything.  */
      const char *s = p->arg;
      char *regname;
      int len;
      struct stoken str;

      while (isdigit (*s))
	++s;

      if (*s == '(')
	{
	  /* It is a register displacement indeed.  Returning 0 means we are
	     deferring the treatment of this case to the generic parser.  */
	  return 0;
	}

      len = s - p->arg;
      regname = (char *) alloca (len + 2);
      regname[0] = 'r';

      strncpy (regname + 1, p->arg, len);
      ++len;
      regname[len] = '\0';

      if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       regname, p->saved_arg);

      write_exp_elt_opcode (&p->pstate, OP_REGISTER);
      str.ptr = regname;
      str.length = len;
      write_exp_string (&p->pstate, str);
      write_exp_elt_opcode (&p->pstate, OP_REGISTER);

      p->arg = s;
    }
  else
    {
      /* All the other tokens should be handled correctly by the generic
	 parser.  */
      return 0;
    }

  return 1;
}

/* Initialize linux_record_tdep if not initialized yet.
   WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
   Sizes of data structures are initialized accordingly.  */

static void
ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
			    int wordsize)
{
  /* Simply return if it had been initialized.  */
  if (record_tdep->size_pointer != 0)
    return;

  /* These values are the size of the type that will be used in a system
     call.  They are obtained from Linux Kernel source.  */

  if (wordsize == 8)
    {
      record_tdep->size_pointer = 8;
      record_tdep->size__old_kernel_stat = 32;
      record_tdep->size_tms = 32;
      record_tdep->size_loff_t = 8;
      record_tdep->size_flock = 32;
      record_tdep->size_oldold_utsname = 45;
      record_tdep->size_ustat = 32;
      record_tdep->size_old_sigaction = 32;
      record_tdep->size_old_sigset_t = 8;
      record_tdep->size_rlimit = 16;
      record_tdep->size_rusage = 144;
      record_tdep->size_timeval = 16;
      record_tdep->size_timezone = 8;
      record_tdep->size_old_gid_t = 4;
      record_tdep->size_old_uid_t = 4;
      record_tdep->size_fd_set = 128;
      record_tdep->size_old_dirent = 280;
      record_tdep->size_statfs = 120;
      record_tdep->size_statfs64 = 120;
      record_tdep->size_sockaddr = 16;
      record_tdep->size_int = 4;
      record_tdep->size_long = 8;
      record_tdep->size_ulong = 8;
      record_tdep->size_msghdr = 56;
      record_tdep->size_itimerval = 32;
      record_tdep->size_stat = 144;
      record_tdep->size_old_utsname = 325;
      record_tdep->size_sysinfo = 112;
      record_tdep->size_msqid_ds = 120;
      record_tdep->size_shmid_ds = 112;
      record_tdep->size_new_utsname = 390;
      record_tdep->size_timex = 208;
      record_tdep->size_mem_dqinfo = 24;
      record_tdep->size_if_dqblk = 72;
      record_tdep->size_fs_quota_stat = 80;
      record_tdep->size_timespec = 16;
      record_tdep->size_pollfd = 8;
      record_tdep->size_NFS_FHSIZE = 32;
      record_tdep->size_knfsd_fh = 132;
      record_tdep->size_TASK_COMM_LEN = 16;
      record_tdep->size_sigaction = 32;
      record_tdep->size_sigset_t = 8;
      record_tdep->size_siginfo_t = 128;
      record_tdep->size_cap_user_data_t = 8;
      record_tdep->size_stack_t = 24;
      record_tdep->size_off_t = 8;
      record_tdep->size_stat64 = 104;
      record_tdep->size_gid_t = 4;
      record_tdep->size_uid_t = 4;
      record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */
      record_tdep->size_flock64 = 32;
      record_tdep->size_io_event = 32;
      record_tdep->size_iocb = 64;
      record_tdep->size_epoll_event = 16;
      record_tdep->size_itimerspec = 32;
      record_tdep->size_mq_attr = 64;
      record_tdep->size_termios = 44;
      record_tdep->size_pid_t = 4;
      record_tdep->size_winsize = 8;
      record_tdep->size_serial_struct = 72;
      record_tdep->size_serial_icounter_struct = 80;
      record_tdep->size_size_t = 8;
      record_tdep->size_iovec = 16;
      record_tdep->size_time_t = 8;
    }
  else if (wordsize == 4)
    {
      record_tdep->size_pointer = 4;
      record_tdep->size__old_kernel_stat = 32;
      record_tdep->size_tms = 16;
      record_tdep->size_loff_t = 8;
      record_tdep->size_flock = 16;
      record_tdep->size_oldold_utsname = 45;
      record_tdep->size_ustat = 20;
      record_tdep->size_old_sigaction = 16;
      record_tdep->size_old_sigset_t = 4;
      record_tdep->size_rlimit = 8;
      record_tdep->size_rusage = 72;
      record_tdep->size_timeval = 8;
      record_tdep->size_timezone = 8;
      record_tdep->size_old_gid_t = 4;
      record_tdep->size_old_uid_t = 4;
      record_tdep->size_fd_set = 128;
      record_tdep->size_old_dirent = 268;
      record_tdep->size_statfs = 64;
      record_tdep->size_statfs64 = 88;
      record_tdep->size_sockaddr = 16;
      record_tdep->size_int = 4;
      record_tdep->size_long = 4;
      record_tdep->size_ulong = 4;
      record_tdep->size_msghdr = 28;
      record_tdep->size_itimerval = 16;
      record_tdep->size_stat = 88;
      record_tdep->size_old_utsname = 325;
      record_tdep->size_sysinfo = 64;
      record_tdep->size_msqid_ds = 68;
      record_tdep->size_shmid_ds = 60;
      record_tdep->size_new_utsname = 390;
      record_tdep->size_timex = 128;
      record_tdep->size_mem_dqinfo = 24;
      record_tdep->size_if_dqblk = 72;
      record_tdep->size_fs_quota_stat = 80;
      record_tdep->size_timespec = 8;
      record_tdep->size_pollfd = 8;
      record_tdep->size_NFS_FHSIZE = 32;
      record_tdep->size_knfsd_fh = 132;
      record_tdep->size_TASK_COMM_LEN = 16;
      record_tdep->size_sigaction = 20;
      record_tdep->size_sigset_t = 8;
      record_tdep->size_siginfo_t = 128;
      record_tdep->size_cap_user_data_t = 4;
      record_tdep->size_stack_t = 12;
      record_tdep->size_off_t = 4;
      record_tdep->size_stat64 = 104;
      record_tdep->size_gid_t = 4;
      record_tdep->size_uid_t = 4;
      record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */
      record_tdep->size_flock64 = 32;
      record_tdep->size_io_event = 32;
      record_tdep->size_iocb = 64;
      record_tdep->size_epoll_event = 16;
      record_tdep->size_itimerspec = 16;
      record_tdep->size_mq_attr = 32;
      record_tdep->size_termios = 44;
      record_tdep->size_pid_t = 4;
      record_tdep->size_winsize = 8;
      record_tdep->size_serial_struct = 60;
      record_tdep->size_serial_icounter_struct = 80;
      record_tdep->size_size_t = 4;
      record_tdep->size_iovec = 8;
      record_tdep->size_time_t = 4;
    }
  else
    internal_error (__FILE__, __LINE__, _("unexpected wordsize"));

  /* These values are the second argument of system call "sys_fcntl"
     and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
  record_tdep->fcntl_F_GETLK = 5;
  record_tdep->fcntl_F_GETLK64 = 12;
  record_tdep->fcntl_F_SETLK64 = 13;
  record_tdep->fcntl_F_SETLKW64 = 14;

  record_tdep->arg1 = PPC_R0_REGNUM + 3;
  record_tdep->arg2 = PPC_R0_REGNUM + 4;
  record_tdep->arg3 = PPC_R0_REGNUM + 5;
  record_tdep->arg4 = PPC_R0_REGNUM + 6;
  record_tdep->arg5 = PPC_R0_REGNUM + 7;
  record_tdep->arg6 = PPC_R0_REGNUM + 8;

  /* These values are the second argument of system call "sys_ioctl".
     They are obtained from Linux Kernel source.
     See arch/powerpc/include/uapi/asm/ioctls.h.  */
  record_tdep->ioctl_TCGETS = 0x403c7413;
  record_tdep->ioctl_TCSETS = 0x803c7414;
  record_tdep->ioctl_TCSETSW = 0x803c7415;
  record_tdep->ioctl_TCSETSF = 0x803c7416;
  record_tdep->ioctl_TCGETA = 0x40147417;
  record_tdep->ioctl_TCSETA = 0x80147418;
  record_tdep->ioctl_TCSETAW = 0x80147419;
  record_tdep->ioctl_TCSETAF = 0x8014741c;
  record_tdep->ioctl_TCSBRK = 0x2000741d;
  record_tdep->ioctl_TCXONC = 0x2000741e;
  record_tdep->ioctl_TCFLSH = 0x2000741f;
  record_tdep->ioctl_TIOCEXCL = 0x540c;
  record_tdep->ioctl_TIOCNXCL = 0x540d;
  record_tdep->ioctl_TIOCSCTTY = 0x540e;
  record_tdep->ioctl_TIOCGPGRP = 0x40047477;
  record_tdep->ioctl_TIOCSPGRP = 0x80047476;
  record_tdep->ioctl_TIOCOUTQ = 0x40047473;
  record_tdep->ioctl_TIOCSTI = 0x5412;
  record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
  record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
  record_tdep->ioctl_TIOCMGET = 0x5415;
  record_tdep->ioctl_TIOCMBIS = 0x5416;
  record_tdep->ioctl_TIOCMBIC = 0x5417;
  record_tdep->ioctl_TIOCMSET = 0x5418;
  record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
  record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
  record_tdep->ioctl_FIONREAD = 0x4004667f;
  record_tdep->ioctl_TIOCINQ = 0x4004667f;
  record_tdep->ioctl_TIOCLINUX = 0x541c;
  record_tdep->ioctl_TIOCCONS = 0x541d;
  record_tdep->ioctl_TIOCGSERIAL = 0x541e;
  record_tdep->ioctl_TIOCSSERIAL = 0x541f;
  record_tdep->ioctl_TIOCPKT = 0x5420;
  record_tdep->ioctl_FIONBIO = 0x8004667e;
  record_tdep->ioctl_TIOCNOTTY = 0x5422;
  record_tdep->ioctl_TIOCSETD = 0x5423;
  record_tdep->ioctl_TIOCGETD = 0x5424;
  record_tdep->ioctl_TCSBRKP = 0x5425;
  record_tdep->ioctl_TIOCSBRK = 0x5427;
  record_tdep->ioctl_TIOCCBRK = 0x5428;
  record_tdep->ioctl_TIOCGSID = 0x5429;
  record_tdep->ioctl_TIOCGPTN = 0x40045430;
  record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
  record_tdep->ioctl_FIONCLEX = 0x20006602;
  record_tdep->ioctl_FIOCLEX = 0x20006601;
  record_tdep->ioctl_FIOASYNC = 0x8004667d;
  record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
  record_tdep->ioctl_TIOCSERGWILD = 0x5454;
  record_tdep->ioctl_TIOCSERSWILD = 0x5455;
  record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
  record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
  record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
  record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
  record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
  record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
  record_tdep->ioctl_TIOCMIWAIT = 0x545c;
  record_tdep->ioctl_TIOCGICOUNT = 0x545d;
  record_tdep->ioctl_FIOQSIZE = 0x40086680;
}

/* Return a floating-point format for a floating-point variable of
   length LEN in bits.  If non-NULL, NAME is the name of its type.
   If no suitable type is found, return NULL.  */

const struct floatformat **
ppc_floatformat_for_type (struct gdbarch *gdbarch,
                          const char *name, int len)
{
  if (len == 128 && name)
    {
      if (strcmp (name, "__float128") == 0
	  || strcmp (name, "_Float128") == 0
	  || strcmp (name, "_Float64x") == 0
	  || strcmp (name, "complex _Float128") == 0
	  || strcmp (name, "complex _Float64x") == 0)
	return floatformats_ia64_quad;

      if (strcmp (name, "__ibm128") == 0)
	return floatformats_ibm_long_double;
    }

  return default_floatformat_for_type (gdbarch, name, len);
}

static void
ppc_linux_init_abi (struct gdbarch_info info,
                    struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct tdesc_arch_data *tdesc_data = info.tdesc_data;
  static const char *const stap_integer_prefixes[] = { "i", NULL };
  static const char *const stap_register_indirection_prefixes[] = { "(",
								    NULL };
  static const char *const stap_register_indirection_suffixes[] = { ")",
								    NULL };

  linux_init_abi (info, gdbarch);

  /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
     128-bit, they can be either IBM long double or IEEE quad long double.
     The 64-bit long double case will be detected automatically using
     the size specified in debug info.  We use a .gnu.attribute flag
     to distinguish between the IBM long double and IEEE quad cases.  */
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
    set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
  else
    set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);

  /* Support for floating-point data type variants.  */
  set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);

  /* Handle inferior calls during interrupted system calls.  */
  set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);

  /* Get the syscall number from the arch's register.  */
  set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);

  /* SystemTap functions.  */
  set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
					  stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
					  stap_register_indirection_suffixes);
  set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
  set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
  set_gdbarch_stap_parse_special_token (gdbarch,
					ppc_stap_parse_special_token);

  if (tdep->wordsize == 4)
    {
      /* Until November 2001, gcc did not comply with the 32 bit SysV
	 R4 ABI requirement that structures less than or equal to 8
	 bytes should be returned in registers.  Instead GCC was using
	 the AIX/PowerOpen ABI - everything returned in memory
	 (well ignoring vectors that is).  When this was corrected, it
	 wasn't fixed for GNU/Linux native platform.  Use the
	 PowerOpen struct convention.  */
      set_gdbarch_return_value (gdbarch, ppc_linux_return_value);

      set_gdbarch_memory_remove_breakpoint (gdbarch,
                                            ppc_linux_memory_remove_breakpoint);

      /* Shared library handling.  */
      set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
      set_solib_svr4_fetch_link_map_offsets
        (gdbarch, svr4_ilp32_fetch_link_map_offsets);

      /* Setting the correct XML syscall filename.  */
      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);

      /* Trampolines.  */
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc32_linux_sigaction_tramp_frame);
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc32_linux_sighandler_tramp_frame);

      /* BFD target for core files.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
      else
	set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");

      if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
	{
	  powerpc_so_ops = svr4_so_ops;
	  /* Override dynamic resolve function.  */
	  powerpc_so_ops.in_dynsym_resolve_code =
	    powerpc_linux_in_dynsym_resolve_code;
	}
      set_solib_ops (gdbarch, &powerpc_so_ops);

      set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
    }
  
  if (tdep->wordsize == 8)
    {
      if (tdep->elf_abi == POWERPC_ELF_V1)
	{
	  /* Handle PPC GNU/Linux 64-bit function pointers (which are really
	     function descriptors).  */
	  set_gdbarch_convert_from_func_ptr_addr
	    (gdbarch, ppc64_convert_from_func_ptr_addr);

	  set_gdbarch_elf_make_msymbol_special
	    (gdbarch, ppc64_elf_make_msymbol_special);
	}
      else
	{
	  set_gdbarch_elf_make_msymbol_special
	    (gdbarch, ppc_elfv2_elf_make_msymbol_special);

	  set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
	}

      /* Shared library handling.  */
      set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
      set_solib_svr4_fetch_link_map_offsets
        (gdbarch, svr4_lp64_fetch_link_map_offsets);

      /* Setting the correct XML syscall filename.  */
      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);

      /* Trampolines.  */
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc64_linux_sigaction_tramp_frame);
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc64_linux_sighandler_tramp_frame);

      /* BFD target for core files.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
      else
	set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
    }

  set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
  set_gdbarch_iterate_over_regset_sections (gdbarch,
					    ppc_linux_iterate_over_regset_sections);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
                                             svr4_fetch_objfile_link_map);

  if (tdesc_data)
    {
      const struct tdesc_feature *feature;

      /* If we have target-described registers, then we can safely
         reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
	 (whether they are described or not).  */
      gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
      set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);

      /* If they are present, then assign them to the reserved number.  */
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.power.linux");
      if (feature != NULL)
	{
	  tdesc_numbered_register (feature, tdesc_data,
				   PPC_ORIG_R3_REGNUM, "orig_r3");
	  tdesc_numbered_register (feature, tdesc_data,
				   PPC_TRAP_REGNUM, "trap");
	}
    }

  set_gdbarch_displaced_step_location (gdbarch,
				       linux_displaced_step_location);

  /* Support reverse debugging.  */
  set_gdbarch_process_record (gdbarch, ppc_process_record);
  set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
  tdep->ppc_syscall_record = ppc_linux_syscall_record;

  ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
  ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
}

void
_initialize_ppc_linux_tdep (void)
{
  /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
     64-bit PowerPC, and the older rs6k.  */
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);
  gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);

  /* Initialize the Linux target descriptions.  */
  initialize_tdesc_powerpc_32l ();
  initialize_tdesc_powerpc_altivec32l ();
  initialize_tdesc_powerpc_vsx32l ();
  initialize_tdesc_powerpc_isa205_32l ();
  initialize_tdesc_powerpc_isa205_altivec32l ();
  initialize_tdesc_powerpc_isa205_vsx32l ();
  initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l ();
  initialize_tdesc_powerpc_isa207_vsx32l ();
  initialize_tdesc_powerpc_isa207_htm_vsx32l ();
  initialize_tdesc_powerpc_64l ();
  initialize_tdesc_powerpc_altivec64l ();
  initialize_tdesc_powerpc_vsx64l ();
  initialize_tdesc_powerpc_isa205_64l ();
  initialize_tdesc_powerpc_isa205_altivec64l ();
  initialize_tdesc_powerpc_isa205_vsx64l ();
  initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l ();
  initialize_tdesc_powerpc_isa207_vsx64l ();
  initialize_tdesc_powerpc_isa207_htm_vsx64l ();
  initialize_tdesc_powerpc_e500l ();
}