aboutsummaryrefslogtreecommitdiff
path: root/bfd/i386linux.c
AgeCommit message (Expand)AuthorFilesLines
2014-05-02bfd target vector rationalisationAlan Modra1-1/+1
2014-03-05Update copyright yearsAlan Modra1-3/+1
2013-02-10 * i386linux.c (linux_link_hash_table_create): Allocate tableAlan Modra1-6/+1
2012-07-13 * aix386-core.c: Remove use of PTR and PARAMS macros.Nick Clifton1-66/+36
2011-06-13 * linker.c (bfd_link_hash_traverse): Follow warning symbol link.Alan Modra1-4/+1
2009-10-02include/aout/Alan Modra1-2/+1
2009-09-02update copyright datesAlan Modra1-1/+1
2008-02-15include/Alan Modra1-6/+6
2007-07-03Switch sources over to use the GPL version 3Nick Clifton1-15/+16
2007-04-26bfd/Alan Modra1-2/+2
2006-09-16* bfd-in.h (STRING_AND_COMMA): New macro. Takes one constant string as itsNick Clifton1-6/+3
2006-06-01 * stabs.c (_bfd_link_section_stabs): Use bfd_make_section*_with_flagsAlan Modra1-2/+1
2006-03-16 PR 2434Alan Modra1-3/+4
2005-05-04Update the address and phone number of the FSF organization in the GPL noticesNick Clifton1-1/+1
2005-05-04Update the FSF address in the copyright/GPL noticeNick Clifton1-1/+1
2005-03-03update copyright datesAlan Modra1-2/+2
2004-06-24bfd/Alan Modra1-6/+6
2003-11-30 * ChangeLog: Fix typos.Kazu Hirata1-1/+1
2003-06-25Correct spelling of "relocatable".Alan Modra1-1/+1
2003-03-13(BYTES_IN_WORD): Don't define.Nick Clifton1-2/+1
2002-11-30s/boolean/bfd_boolean/ s/true/TRUE/ s/false/FALSE/. SimplifyAlan Modra1-49/+49
2002-06-07Replace bfd_alloc/bfd_malloc + memset with bfd_zalloc/bfd_zmallocAlan Modra1-2/+1
2002-03-28 * linker.c (link_action): Ignore duplicate warning syms.Alan Modra1-1/+4
2001-10-02 * version.h: New file.Alan Modra1-1/+5
2001-09-18Touches most files in bfd/, so likely will be blamed for everything..Alan Modra1-23/+26
2001-03-08Update copyright noticesNick Clifton1-1/+1
1999-07-11 * Many files: Changes to avoid gcc warnings: Add ATTRIBUTE_UNUSEDIan Lance Taylor1-2/+3
1999-05-0319990502 sourceware importbinu_ss_19990502Richard Henderson1-0/+767
/a> 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
/* Target-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "infrun.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "target-float.h"
#include "value.h"
#include "parser-defs.h"
#include "osabi.h"
#include "infcall.h"
#include "sim-regno.h"
#include "gdb/sim-ppc.h"
#include "reggroups.h"
#include "dwarf2/frame.h"
#include "target-descriptions.h"
#include "user-regs.h"
#include "record-full.h"
#include "auxv.h"

#include "coff/internal.h"	/* for libcoff.h */
#include "libcoff.h"		/* for xcoff_data */
#include "coff/xcoff.h"
#include "libxcoff.h"

#include "elf-bfd.h"
#include "elf/ppc.h"
#include "elf/ppc64.h"

#include "solib-svr4.h"
#include "ppc-tdep.h"
#include "ppc-ravenscar-thread.h"

#include "dis-asm.h"

#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"

#include "ax.h"
#include "ax-gdb.h"
#include <algorithm>

#include "features/rs6000/powerpc-32.c"
#include "features/rs6000/powerpc-altivec32.c"
#include "features/rs6000/powerpc-vsx32.c"
#include "features/rs6000/powerpc-403.c"
#include "features/rs6000/powerpc-403gc.c"
#include "features/rs6000/powerpc-405.c"
#include "features/rs6000/powerpc-505.c"
#include "features/rs6000/powerpc-601.c"
#include "features/rs6000/powerpc-602.c"
#include "features/rs6000/powerpc-603.c"
#include "features/rs6000/powerpc-604.c"
#include "features/rs6000/powerpc-64.c"
#include "features/rs6000/powerpc-altivec64.c"
#include "features/rs6000/powerpc-vsx64.c"
#include "features/rs6000/powerpc-7400.c"
#include "features/rs6000/powerpc-750.c"
#include "features/rs6000/powerpc-860.c"
#include "features/rs6000/powerpc-e500.c"
#include "features/rs6000/rs6000.c"

/* Determine if regnum is an SPE pseudo-register.  */
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_ev0_regnum \
    && (regnum) < (tdep)->ppc_ev0_regnum + 32)

/* Determine if regnum is a decimal float pseudo-register.  */
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_dl0_regnum \
    && (regnum) < (tdep)->ppc_dl0_regnum + 16)

/* Determine if regnum is a "vX" alias for the raw "vrX" vector
   registers.  */
#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
    (tdep)->ppc_v0_alias_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_v0_alias_regnum \
    && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)

/* Determine if regnum is a POWER7 VSX register.  */
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_vsr0_regnum \
    && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)

/* Determine if regnum is a POWER7 Extended FP register.  */
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_efpr0_regnum \
    && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)

/* Determine if regnum is a checkpointed decimal float
   pseudo-register.  */
#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_cdl0_regnum \
    && (regnum) < (tdep)->ppc_cdl0_regnum + 16)

/* Determine if regnum is a Checkpointed POWER7 VSX register.  */
#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_cvsr0_regnum \
    && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)

/* Determine if regnum is a Checkpointed POWER7 Extended FP register.  */
#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
    && (regnum) >= (tdep)->ppc_cefpr0_regnum \
    && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)

/* Holds the current set of options to be passed to the disassembler.  */
static char *powerpc_disassembler_options;

/* The list of available "set powerpc ..." and "show powerpc ..."
   commands.  */
static struct cmd_list_element *setpowerpccmdlist = NULL;
static struct cmd_list_element *showpowerpccmdlist = NULL;

static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;

/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
static const char *const powerpc_vector_strings[] =
{
  "auto",
  "generic",
  "altivec",
  "spe",
  NULL
};

/* A variable that can be configured by the user.  */
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
static const char *powerpc_vector_abi_string = "auto";

/* To be used by skip_prologue.  */

struct rs6000_framedata
  {
    int offset;			/* total size of frame --- the distance
				   by which we decrement sp to allocate
				   the frame */
    int saved_gpr;		/* smallest # of saved gpr */
    unsigned int gpr_mask;	/* Each bit is an individual saved GPR.  */
    int saved_fpr;		/* smallest # of saved fpr */
    int saved_vr;               /* smallest # of saved vr */
    int saved_ev;               /* smallest # of saved ev */
    int alloca_reg;		/* alloca register number (frame ptr) */
    char frameless;		/* true if frameless functions.  */
    char nosavedpc;		/* true if pc not saved.  */
    char used_bl;		/* true if link register clobbered */
    int gpr_offset;		/* offset of saved gprs from prev sp */
    int fpr_offset;		/* offset of saved fprs from prev sp */
    int vr_offset;              /* offset of saved vrs from prev sp */
    int ev_offset;              /* offset of saved evs from prev sp */
    int lr_offset;		/* offset of saved lr */
    int lr_register;		/* register of saved lr, if trustworthy */
    int cr_offset;		/* offset of saved cr */
    int vrsave_offset;          /* offset of saved vrsave register */
  };


/* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
int
vsx_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep->ppc_vsr0_regnum < 0)
    return 0;
  else
    return (regno >= tdep->ppc_vsr0_upper_regnum && regno
	    <= tdep->ppc_vsr0_upper_regnum + 31);
}

/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
int
altivec_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
    return 0;
  else
    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
}


/* Return true if REGNO is an SPE register, false otherwise.  */
int
spe_register_p (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  
  /* Is it a reference to EV0 -- EV31, and do we have those?  */
  if (IS_SPE_PSEUDOREG (tdep, regno))
    return 1;

  /* Is it a reference to one of the raw upper GPR halves?  */
  if (tdep->ppc_ev0_upper_regnum >= 0
      && tdep->ppc_ev0_upper_regnum <= regno
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    return 1;

  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
  if (tdep->ppc_acc_regnum >= 0
      && tdep->ppc_acc_regnum == regno)
    return 1;

  /* Is it a reference to the SPE floating-point status and control register,
     and do we have that?  */
  if (tdep->ppc_spefscr_regnum >= 0
      && tdep->ppc_spefscr_regnum == regno)
    return 1;

  return 0;
}


/* Return non-zero if the architecture described by GDBARCH has
   floating-point registers (f0 --- f31 and fpscr).  */
int
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_fp0_regnum >= 0
          && tdep->ppc_fpscr_regnum >= 0);
}

/* Return non-zero if the architecture described by GDBARCH has
   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
int
ppc_altivec_support_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_vr0_regnum >= 0
          && tdep->ppc_vrsave_regnum >= 0);
}

/* Check that TABLE[GDB_REGNO] is not already initialized, and then
   set it to SIM_REGNO.

   This is a helper function for init_sim_regno_table, constructing
   the table mapping GDB register numbers to sim register numbers; we
   initialize every element in that table to -1 before we start
   filling it in.  */
static void
set_sim_regno (int *table, int gdb_regno, int sim_regno)
{
  /* Make sure we don't try to assign any given GDB register a sim
     register number more than once.  */
  gdb_assert (table[gdb_regno] == -1);
  table[gdb_regno] = sim_regno;
}


/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
   numbers to simulator register numbers, based on the values placed
   in the ARCH->tdep->ppc_foo_regnum members.  */
static void
init_sim_regno_table (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int total_regs = gdbarch_num_regs (arch);
  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
  int i;
  static const char *const segment_regs[] = {
    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
  };

  /* Presume that all registers not explicitly mentioned below are
     unavailable from the sim.  */
  for (i = 0; i < total_regs; i++)
    sim_regno[i] = -1;

  /* General-purpose registers.  */
  for (i = 0; i < ppc_num_gprs; i++)
    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
  
  /* Floating-point registers.  */
  if (tdep->ppc_fp0_regnum >= 0)
    for (i = 0; i < ppc_num_fprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_fp0_regnum + i,
                     sim_ppc_f0_regnum + i);
  if (tdep->ppc_fpscr_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);

  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);

  /* Segment registers.  */
  for (i = 0; i < ppc_num_srs; i++)
    {
      int gdb_regno;

      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
      if (gdb_regno >= 0)
	set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
    }

  /* Altivec registers.  */
  if (tdep->ppc_vr0_regnum >= 0)
    {
      for (i = 0; i < ppc_num_vrs; i++)
        set_sim_regno (sim_regno,
                       tdep->ppc_vr0_regnum + i,
                       sim_ppc_vr0_regnum + i);

      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
         we can treat this more like the other cases.  */
      set_sim_regno (sim_regno,
                     tdep->ppc_vr0_regnum + ppc_num_vrs,
                     sim_ppc_vscr_regnum);
    }
  /* vsave is a special-purpose register, so the code below handles it.  */

  /* SPE APU (E500) registers.  */
  if (tdep->ppc_ev0_upper_regnum >= 0)
    for (i = 0; i < ppc_num_gprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_ev0_upper_regnum + i,
                     sim_ppc_rh0_regnum + i);
  if (tdep->ppc_acc_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
  /* spefscr is a special-purpose register, so the code below handles it.  */

#ifdef WITH_PPC_SIM
  /* Now handle all special-purpose registers.  Verify that they
     haven't mistakenly been assigned numbers by any of the above
     code.  */
  for (i = 0; i < sim_ppc_num_sprs; i++)
    {
      const char *spr_name = sim_spr_register_name (i);
      int gdb_regno = -1;

      if (spr_name != NULL)
	gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);

      if (gdb_regno != -1)
	set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
    }
#endif

  /* Drop the initialized array into place.  */
  tdep->sim_regno = sim_regno;
}


/* Given a GDB register number REG, return the corresponding SIM
   register number.  */
static int
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int sim_regno;

  if (tdep->sim_regno == NULL)
    init_sim_regno_table (gdbarch);

  gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
  sim_regno = tdep->sim_regno[reg];

  if (sim_regno >= 0)
    return sim_regno;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}



/* Register set support functions.  */

/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
   Write the register to REGCACHE.  */

void
ppc_supply_reg (struct regcache *regcache, int regnum, 
		const gdb_byte *regs, size_t offset, int regsize)
{
  if (regnum != -1 && offset != -1)
    {
      if (regsize > 4)
	{
	  struct gdbarch *gdbarch = regcache->arch ();
	  int gdb_regsize = register_size (gdbarch, regnum);
	  if (gdb_regsize < regsize
	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	    offset += regsize - gdb_regsize;
	}
      regcache->raw_supply (regnum, regs + offset);
    }
}

/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
   in a field REGSIZE wide.  Zero pad as necessary.  */

void
ppc_collect_reg (const struct regcache *regcache, int regnum,
		 gdb_byte *regs, size_t offset, int regsize)
{
  if (regnum != -1 && offset != -1)
    {
      if (regsize > 4)
	{
	  struct gdbarch *gdbarch = regcache->arch ();
	  int gdb_regsize = register_size (gdbarch, regnum);
	  if (gdb_regsize < regsize)
	    {
	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		{
		  memset (regs + offset, 0, regsize - gdb_regsize);
		  offset += regsize - gdb_regsize;
		}
	      else
		memset (regs + offset + regsize - gdb_regsize, 0,
			regsize - gdb_regsize);
	    }
	}
      regcache->raw_collect (regnum, regs + offset);
    }
}
    
static int
ppc_greg_offset (struct gdbarch *gdbarch,
		 struct gdbarch_tdep *tdep,
		 const struct ppc_reg_offsets *offsets,
		 int regnum,
		 int *regsize)
{
  *regsize = offsets->gpr_size;
  if (regnum >= tdep->ppc_gp0_regnum
      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
    return (offsets->r0_offset
	    + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);

  if (regnum == gdbarch_pc_regnum (gdbarch))
    return offsets->pc_offset;

  if (regnum == tdep->ppc_ps_regnum)
    return offsets->ps_offset;

  if (regnum == tdep->ppc_lr_regnum)
    return offsets->lr_offset;

  if (regnum == tdep->ppc_ctr_regnum)
    return offsets->ctr_offset;

  *regsize = offsets->xr_size;
  if (regnum == tdep->ppc_cr_regnum)
    return offsets->cr_offset;

  if (regnum == tdep->ppc_xer_regnum)
    return offsets->xer_offset;

  if (regnum == tdep->ppc_mq_regnum)
    return offsets->mq_offset;

  return -1;
}

static int
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
		  const struct ppc_reg_offsets *offsets,
		  int regnum)
{
  if (regnum >= tdep->ppc_fp0_regnum
      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;

  if (regnum == tdep->ppc_fpscr_regnum)
    return offsets->fpscr_offset;

  return -1;
}

/* Supply register REGNUM in the general-purpose register set REGSET
   from the buffer specified by GREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *gregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;
  size_t offset;
  int regsize;

  if (regnum == -1)
    {
      int i;
      int gpr_size = offsets->gpr_size;

      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   i++, offset += gpr_size)
	ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
			gpr_size);

      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
		      (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
		      (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
		      (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
		      (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
		      (const gdb_byte *) gregs, offsets->cr_offset,
		      offsets->xr_size);
      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
		      (const gdb_byte *) gregs, offsets->xer_offset,
		      offsets->xr_size);
      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
		      (const gdb_byte *) gregs, offsets->mq_offset,
		      offsets->xr_size);
      return;
    }

  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
  ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
}

/* Supply register REGNUM in the floating-point register set REGSET
   from the buffer specified by FPREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_floating_point_unit_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = (const struct ppc_reg_offsets *) regset->regmap;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
	   i++, offset += 8)
	ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);

      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
		      (const gdb_byte *) fpregs, offsets->fpscr_offset,
		      offsets->fpscr_size);
      return;
    }

  offset = ppc_fpreg_offset (tdep, offsets, regnum);
  ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
		  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}

/* Collect register REGNUM in the general-purpose register set
   REGSET from register cache REGCACHE into the buffer specified by
   GREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_gregset (const struct regset *regset,
		     const struct regcache *regcache,
		     int regnum, void *gregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;
  size_t offset;
  int regsize;

  if (regnum == -1)
    {
      int i;
      int gpr_size = offsets->gpr_size;

      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   i++, offset += gpr_size)
	ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);

      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
		       (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
		       (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
		       (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
		       (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
		       (gdb_byte *) gregs, offsets->cr_offset,
		       offsets->xr_size);
      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
		       (gdb_byte *) gregs, offsets->xer_offset,
		       offsets->xr_size);
      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
		       (gdb_byte *) gregs, offsets->mq_offset,
		       offsets->xr_size);
      return;
    }

  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
  ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
}

/* Collect register REGNUM in the floating-point register set
   REGSET from register cache REGCACHE into the buffer specified by
   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_fpregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep;
  const struct ppc_reg_offsets *offsets;
  size_t offset;

  if (!ppc_floating_point_unit_p (gdbarch))
    return;

  tdep = gdbarch_tdep (gdbarch);
  offsets = (const struct ppc_reg_offsets *) regset->regmap;
  if (regnum == -1)
    {
      int i;

      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
	   i++, offset += 8)
	ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);

      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
		       (gdb_byte *) fpregs, offsets->fpscr_offset,
		       offsets->fpscr_size);
      return;
    }

  offset = ppc_fpreg_offset (tdep, offsets, regnum);
  ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
		   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
}

static int
insn_changes_sp_or_jumps (unsigned long insn)
{
  int opcode = (insn >> 26) & 0x03f;
  int sd = (insn >> 21) & 0x01f;
  int a = (insn >> 16) & 0x01f;
  int subcode = (insn >> 1) & 0x3ff;

  /* Changes the stack pointer.  */

  /* NOTE: There are many ways to change the value of a given register.
           The ways below are those used when the register is R1, the SP,
           in a funtion's epilogue.  */

  if (opcode == 31 && subcode == 444 && a == 1)
    return 1;  /* mr R1,Rn */
  if (opcode == 14 && sd == 1)
    return 1;  /* addi R1,Rn,simm */
  if (opcode == 58 && sd == 1)
    return 1;  /* ld R1,ds(Rn) */

  /* Transfers control.  */

  if (opcode == 18)
    return 1;  /* b */
  if (opcode == 16)
    return 1;  /* bc */
  if (opcode == 19 && subcode == 16)
    return 1;  /* bclr */
  if (opcode == 19 && subcode == 528)
    return 1;  /* bcctr */

  return 0;
}

/* Return true if we are in the function's epilogue, i.e. after the
   instruction that destroyed the function's stack frame.

   1) scan forward from the point of execution:
       a) If you find an instruction that modifies the stack pointer
          or transfers control (except a return), execution is not in
          an epilogue, return.
       b) Stop scanning if you find a return instruction or reach the
          end of the function or reach the hard limit for the size of
          an epilogue.
   2) scan backward from the point of execution:
        a) If you find an instruction that modifies the stack pointer,
            execution *is* in an epilogue, return.
        b) Stop scanning if you reach an instruction that transfers
           control or the beginning of the function or reach the hard
           limit for the size of an epilogue.  */

static int
rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
				     struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  bfd_byte insn_buf[PPC_INSN_SIZE];
  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
  unsigned long insn;

  /* Find the search limits based on function boundaries and hard limit.  */

  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
    return 0;

  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
  if (epilogue_start < func_start) epilogue_start = func_start;

  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
  if (epilogue_end > func_end) epilogue_end = func_end;

  /* Scan forward until next 'blr'.  */

  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
    {
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
        return 0;
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
      if (insn == 0x4e800020)
        break;
      /* Assume a bctr is a tail call unless it points strictly within
	 this function.  */
      if (insn == 0x4e800420)
	{
	  CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
						       tdep->ppc_ctr_regnum);
	  if (ctr > func_start && ctr < func_end)
	    return 0;
	  else
	    break;
	}
      if (insn_changes_sp_or_jumps (insn))
        return 0;
    }

  /* Scan backward until adjustment to stack pointer (R1).  */

  for (scan_pc = pc - PPC_INSN_SIZE;
       scan_pc >= epilogue_start;
       scan_pc -= PPC_INSN_SIZE)
    {
      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
        return 0;
      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
      if (insn_changes_sp_or_jumps (insn))
        return 1;
    }

  return 0;
}

/* Implement the stack_frame_destroyed_p gdbarch method.  */

static int
rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  return rs6000_in_function_epilogue_frame_p (get_current_frame (),
					      gdbarch, pc);
}

/* Get the ith function argument for the current function.  */
static CORE_ADDR
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
			       struct type *type)
{
  return get_frame_register_unsigned (frame, 3 + argi);
}

/* Sequence of bytes for breakpoint instruction.  */

constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };

typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
  rs6000_breakpoint;

/* Instruction masks for displaced stepping.  */
#define BRANCH_MASK 0xfc000000
#define BP_MASK 0xFC0007FE
#define B_INSN 0x48000000
#define BC_INSN 0x40000000
#define BXL_INSN 0x4c000000
#define BP_INSN 0x7C000008

/* Instruction masks used during single-stepping of atomic
   sequences.  */
#define LOAD_AND_RESERVE_MASK 0xfc0007fe
#define LWARX_INSTRUCTION 0x7c000028
#define LDARX_INSTRUCTION 0x7c0000A8
#define LBARX_INSTRUCTION 0x7c000068
#define LHARX_INSTRUCTION 0x7c0000e8
#define LQARX_INSTRUCTION 0x7c000228
#define STORE_CONDITIONAL_MASK 0xfc0007ff
#define STWCX_INSTRUCTION 0x7c00012d
#define STDCX_INSTRUCTION 0x7c0001ad
#define STBCX_INSTRUCTION 0x7c00056d
#define STHCX_INSTRUCTION 0x7c0005ad
#define STQCX_INSTRUCTION 0x7c00016d

/* Check if insn is one of the Load And Reserve instructions used for atomic
   sequences.  */
#define IS_LOAD_AND_RESERVE_INSN(insn)	((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
					 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
					 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
					 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
					 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
/* Check if insn is one of the Store Conditional instructions used for atomic
   sequences.  */
#define IS_STORE_CONDITIONAL_INSN(insn)	((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
					 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
					 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
					 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
					 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)

typedef buf_displaced_step_closure ppc_displaced_step_closure;

/* We can't displaced step atomic sequences.  */

static displaced_step_closure_up
ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
			      CORE_ADDR from, CORE_ADDR to,
			      struct regcache *regs)
{
  size_t len = gdbarch_max_insn_length (gdbarch);
  std::unique_ptr<ppc_displaced_step_closure> closure
    (new ppc_displaced_step_closure (len));
  gdb_byte *buf = closure->buf.data ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int insn;

  read_memory (from, buf, len);

  insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);

  /* Assume all atomic sequences start with a Load and Reserve instruction.  */
  if (IS_LOAD_AND_RESERVE_INSN (insn))
    {
      if (debug_displaced)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "displaced: can't displaced step "
			      "atomic sequence at %s\n",
			      paddress (gdbarch, from));
	}

      return NULL;
    }

  write_memory (to, buf, len);

  if (debug_displaced)
    {
      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
                          paddress (gdbarch, from), paddress (gdbarch, to));
      displaced_step_dump_bytes (gdb_stdlog, buf, len);
    }

  /* This is a work around for a problem with g++ 4.8.  */
  return displaced_step_closure_up (closure.release ());
}

/* Fix up the state of registers and memory after having single-stepped
   a displaced instruction.  */
static void
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
			  struct displaced_step_closure *closure_,
			  CORE_ADDR from, CORE_ADDR to,
			  struct regcache *regs)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* Our closure is a copy of the instruction.  */
  ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
  ULONGEST insn  = extract_unsigned_integer (closure->buf.data (),
					     PPC_INSN_SIZE, byte_order);
  ULONGEST opcode = 0;
  /* Offset for non PC-relative instructions.  */
  LONGEST offset = PPC_INSN_SIZE;

  opcode = insn & BRANCH_MASK;

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog,
			"displaced: (ppc) fixup (%s, %s)\n",
			paddress (gdbarch, from), paddress (gdbarch, to));


  /* Handle PC-relative branch instructions.  */
  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
    {
      ULONGEST current_pc;

      /* Read the current PC value after the instruction has been executed
	 in a displaced location.  Calculate the offset to be applied to the
	 original PC value before the displaced stepping.  */
      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
				      &current_pc);
      offset = current_pc - to;

      if (opcode != BXL_INSN)
	{
	  /* Check for AA bit indicating whether this is an absolute
	     addressing or PC-relative (1: absolute, 0: relative).  */
	  if (!(insn & 0x2))
	    {
	      /* PC-relative addressing is being used in the branch.  */
	      if (debug_displaced)
		fprintf_unfiltered
		  (gdb_stdlog,
		   "displaced: (ppc) branch instruction: %s\n"
		   "displaced: (ppc) adjusted PC from %s to %s\n",
		   paddress (gdbarch, insn), paddress (gdbarch, current_pc),
		   paddress (gdbarch, from + offset));

	      regcache_cooked_write_unsigned (regs,
					      gdbarch_pc_regnum (gdbarch),
					      from + offset);
	    }
	}
      else
	{
	  /* If we're here, it means we have a branch to LR or CTR.  If the
	     branch was taken, the offset is probably greater than 4 (the next
	     instruction), so it's safe to assume that an offset of 4 means we
	     did not take the branch.  */
	  if (offset == PPC_INSN_SIZE)
	    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
					    from + PPC_INSN_SIZE);
	}

      /* Check for LK bit indicating whether we should set the link
	 register to point to the next instruction
	 (1: Set, 0: Don't set).  */
      if (insn & 0x1)
	{
	  /* Link register needs to be set to the next instruction's PC.  */
	  regcache_cooked_write_unsigned (regs,
					  gdbarch_tdep (gdbarch)->ppc_lr_regnum,
					  from + PPC_INSN_SIZE);
	  if (debug_displaced)
		fprintf_unfiltered (gdb_stdlog,
				    "displaced: (ppc) adjusted LR to %s\n",
				    paddress (gdbarch, from + PPC_INSN_SIZE));

	}
    }
  /* Check for breakpoints in the inferior.  If we've found one, place the PC
     right at the breakpoint instruction.  */
  else if ((insn & BP_MASK) == BP_INSN)
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
  else
  /* Handle any other instructions that do not fit in the categories above.  */
    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
				    from + offset);
}

/* Always use hardware single-stepping to execute the
   displaced instruction.  */
static int
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
				  struct displaced_step_closure *closure)
{
  return 1;
}

/* Checks for an atomic sequence of instructions beginning with a
   Load And Reserve instruction and ending with a Store Conditional
   instruction.  If such a sequence is found, attempt to step through it.
   A breakpoint is placed at the end of the sequence.  */
std::vector<CORE_ADDR>
ppc_deal_with_atomic_sequence (struct regcache *regcache)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR pc = regcache_read_pc (regcache);
  CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
  CORE_ADDR loc = pc;
  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
  int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
  int bc_insn_count = 0; /* Conditional branch instruction count.  */

  /* Assume all atomic sequences start with a Load And Reserve instruction.  */
  if (!IS_LOAD_AND_RESERVE_INSN (insn))
    return {};

  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      loc += PPC_INSN_SIZE;
      insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);

      /* Assume that there is at most one conditional branch in the atomic
         sequence.  If a conditional branch is found, put a breakpoint in 
         its destination address.  */
      if ((insn & BRANCH_MASK) == BC_INSN)
        {
          int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
          int absolute = insn & 2;

          if (bc_insn_count >= 1)
            return {}; /* More than one conditional branch found, fallback
                          to the standard single-step code.  */
 
	  if (absolute)
	    breaks[1] = immediate;
	  else
	    breaks[1] = loc + immediate;

	  bc_insn_count++;
	  last_breakpoint++;
        }

      if (IS_STORE_CONDITIONAL_INSN (insn))
        break;
    }

  /* Assume that the atomic sequence ends with a Store Conditional
     instruction.  */
  if (!IS_STORE_CONDITIONAL_INSN (insn))
    return {};

  closing_insn = loc;
  loc += PPC_INSN_SIZE;

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) anywhere in sequence.  */
  if (last_breakpoint
      && (breaks[1] == breaks[0]
	  || (breaks[1] >= pc && breaks[1] <= closing_insn)))
    last_breakpoint = 0;

  std::vector<CORE_ADDR> next_pcs;

  for (index = 0; index <= last_breakpoint; index++)
    next_pcs.push_back (breaks[index]);

  return next_pcs;
}


#define SIGNED_SHORT(x) 						\
  ((sizeof (short) == 2)						\
   ? ((int)(short)(x))							\
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))

#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)

/* Limit the number of skipped non-prologue instructions, as the examining
   of the prologue is expensive.  */
static int max_skip_non_prologue_insns = 10;

/* Return nonzero if the given instruction OP can be part of the prologue
   of a function and saves a parameter on the stack.  FRAMEP should be
   set if one of the previous instructions in the function has set the
   Frame Pointer.  */

static int
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
{
  /* Move parameters from argument registers to temporary register.  */
  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
    {
      /* Rx must be scratch register r0.  */
      const int rx_regno = (op >> 16) & 31;
      /* Ry: Only r3 - r10 are used for parameter passing.  */
      const int ry_regno = GET_SRC_REG (op);

      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
        {
          *r0_contains_arg = 1;
          return 1;
        }
      else
        return 0;
    }

  /* Save a General Purpose Register on stack.  */

  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
    {
      /* Rx: Only r3 - r10 are used for parameter passing.  */
      const int rx_regno = GET_SRC_REG (op);

      return (rx_regno >= 3 && rx_regno <= 10);
    }
           
  /* Save a General Purpose Register on stack via the Frame Pointer.  */

  if (framep &&
      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
    {
      /* Rx: Usually, only r3 - r10 are used for parameter passing.
         However, the compiler sometimes uses r0 to hold an argument.  */
      const int rx_regno = GET_SRC_REG (op);

      return ((rx_regno >= 3 && rx_regno <= 10)
              || (rx_regno == 0 && *r0_contains_arg));
    }

  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  /* Not an insn that saves a parameter on stack.  */
  return 0;
}

/* Assuming that INSN is a "bl" instruction located at PC, return
   nonzero if the destination of the branch is a "blrl" instruction.
   
   This sequence is sometimes found in certain function prologues.
   It allows the function to load the LR register with a value that
   they can use to access PIC data using PC-relative offsets.  */

static int
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
{
  CORE_ADDR dest;
  int immediate;
  int absolute;
  int dest_insn;

  absolute = (int) ((insn >> 1) & 1);
  immediate = ((insn & ~3) << 6) >> 6;
  if (absolute)
    dest = immediate;
  else
    dest = pc + immediate;

  dest_insn = read_memory_integer (dest, 4, byte_order);
  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
    return 1;

  return 0;
}

/* Return true if OP is a stw or std instruction with
   register operands RS and RA and any immediate offset.

   If WITH_UPDATE is true, also return true if OP is
   a stwu or stdu instruction with the same operands.

   Return false otherwise.
   */
static bool
store_insn_p (unsigned long op, unsigned long rs,
	      unsigned long ra, bool with_update)
{
  rs = rs << 21;
  ra = ra << 16;

  if (/* std RS, SIMM(RA) */
      ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
      /* stw RS, SIMM(RA) */
      ((op & 0xffff0000) == (rs | ra | 0x90000000)))
    return true;

  if (with_update)
    {
      if (/* stdu RS, SIMM(RA) */
	  ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
	  /* stwu RS, SIMM(RA) */
	  ((op & 0xffff0000) == (rs | ra | 0x94000000)))
	return true;
    }

  return false;
}

/* Masks for decoding a branch-and-link (bl) instruction.

   BL_MASK and BL_INSTRUCTION are used in combination with each other.
   The former is anded with the opcode in question; if the result of
   this masking operation is equal to BL_INSTRUCTION, then the opcode in
   question is a ``bl'' instruction.
   
   BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
   the branch displacement.  */

#define BL_MASK 0xfc000001
#define BL_INSTRUCTION 0x48000001
#define BL_DISPLACEMENT_MASK 0x03fffffc

static unsigned long
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  unsigned long op;

  /* Fetch the instruction and convert it to an integer.  */
  if (target_read_memory (pc, buf, 4))
    return 0;
  op = extract_unsigned_integer (buf, 4, byte_order);

  return op;
}

/* GCC generates several well-known sequences of instructions at the begining
   of each function prologue when compiling with -fstack-check.  If one of
   such sequences starts at START_PC, then return the address of the
   instruction immediately past this sequence.  Otherwise, return START_PC.  */
   
static CORE_ADDR
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
{
  CORE_ADDR pc = start_pc;
  unsigned long op = rs6000_fetch_instruction (gdbarch, pc);

  /* First possible sequence: A small number of probes.
         stw 0, -<some immediate>(1)
         [repeat this instruction any (small) number of times].  */
  
  if ((op & 0xffff0000) == 0x90010000)
    {
      while ((op & 0xffff0000) == 0x90010000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (gdbarch, pc);
        }
      return pc;
    }

  /* Second sequence: A probing loop.
         addi 12,1,-<some immediate>
         lis 0,-<some immediate>
         [possibly ori 0,0,<some immediate>]
         add 0,12,0
         cmpw 0,12,0
         beq 0,<disp>
         addi 12,12,-<some immediate>
         stw 0,0(12)
         b <disp>
         [possibly one last probe: stw 0,<some immediate>(12)].  */

  while (1)
    {
      /* addi 12,1,-<some immediate> */
      if ((op & 0xffff0000) != 0x39810000)
        break;

      /* lis 0,-<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xffff0000) != 0x3c000000)
        break;

      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      /* [possibly ori 0,0,<some immediate>] */
      if ((op & 0xffff0000) == 0x60000000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (gdbarch, pc);
        }
      /* add 0,12,0 */
      if (op != 0x7c0c0214)
        break;

      /* cmpw 0,12,0 */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if (op != 0x7c0c0000)
        break;

      /* beq 0,<disp> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xff9f0001) != 0x41820000)
        break;

      /* addi 12,12,-<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xffff0000) != 0x398c0000)
        break;

      /* stw 0,0(12) */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if (op != 0x900c0000)
        break;

      /* b <disp> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xfc000001) != 0x48000000)
        break;

      /* [possibly one last probe: stw 0,<some immediate>(12)].  */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xffff0000) == 0x900c0000)
        {
          pc = pc + 4;
          op = rs6000_fetch_instruction (gdbarch, pc);
        }

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* Third sequence: No probe; instead, a comparison between the stack size
     limit (saved in a run-time global variable) and the current stack
     pointer:

        addi 0,1,-<some immediate>
        lis 12,__gnat_stack_limit@ha
        lwz 12,__gnat_stack_limit@l(12)
        twllt 0,12

     or, with a small variant in the case of a bigger stack frame:
        addis 0,1,<some immediate>
        addic 0,0,-<some immediate>
        lis 12,__gnat_stack_limit@ha
        lwz 12,__gnat_stack_limit@l(12)
        twllt 0,12
  */
  while (1)
    {
      /* addi 0,1,-<some immediate> */
      if ((op & 0xffff0000) != 0x38010000)
        {
          /* small stack frame variant not recognized; try the
             big stack frame variant: */

          /* addis 0,1,<some immediate> */
          if ((op & 0xffff0000) != 0x3c010000)
            break;

          /* addic 0,0,-<some immediate> */
          pc = pc + 4;
          op = rs6000_fetch_instruction (gdbarch, pc);
          if ((op & 0xffff0000) != 0x30000000)
            break;
        }

      /* lis 12,<some immediate> */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xffff0000) != 0x3d800000)
        break;
      
      /* lwz 12,<some immediate>(12) */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xffff0000) != 0x818c0000)
        break;

      /* twllt 0,12 */
      pc = pc + 4;
      op = rs6000_fetch_instruction (gdbarch, pc);
      if ((op & 0xfffffffe) != 0x7c406008)
        break;

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* No stack check code in our prologue, return the start_pc.  */
  return start_pc;
}

/* return pc value after skipping a function prologue and also return
   information about a function frame.

   in struct rs6000_framedata fdata:
   - frameless is TRUE, if function does not have a frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - offset is the initial size of this stack frame --- the amount by
   which we decrement the sp to allocate the frame.
   - saved_gpr is the number of the first saved gpr.
   - saved_fpr is the number of the first saved fpr.
   - saved_vr is the number of the first saved vr.
   - saved_ev is the number of the first saved ev.
   - alloca_reg is the number of the register used for alloca() handling.
   Otherwise -1.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - vr_offset is the offset of the first saved vr from the previous frame.
   - ev_offset is the offset of the first saved ev from the previous frame.
   - lr_offset is the offset of the saved lr
   - cr_offset is the offset of the saved cr
   - vrsave_offset is the offset of the saved vrsave register.  */

static CORE_ADDR
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
	       struct rs6000_framedata *fdata)
{
  CORE_ADDR orig_pc = pc;
  CORE_ADDR last_prologue_pc = pc;
  CORE_ADDR li_found_pc = 0;
  gdb_byte buf[4];
  unsigned long op;
  long offset = 0;
  long alloca_reg_offset = 0;
  long vr_saved_offset = 0;
  int lr_reg = -1;
  int cr_reg = -1;
  int vr_reg = -1;
  int ev_reg = -1;
  long ev_offset = 0;
  int vrsave_reg = -1;
  int reg;
  int framep = 0;
  int minimal_toc_loaded = 0;
  int prev_insn_was_prologue_insn = 1;
  int num_skip_non_prologue_insns = 0;
  int r0_contains_arg = 0;
  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  memset (fdata, 0, sizeof (struct rs6000_framedata));
  fdata->saved_gpr = -1;
  fdata->saved_fpr = -1;
  fdata->saved_vr = -1;
  fdata->saved_ev = -1;
  fdata->alloca_reg = -1;
  fdata->frameless = 1;
  fdata->nosavedpc = 1;
  fdata->lr_register = -1;

  pc = rs6000_skip_stack_check (gdbarch, pc);
  if (pc >= lim_pc)
    pc = lim_pc;

  for (;; pc += 4)
    {
      /* Sometimes it isn't clear if an instruction is a prologue
         instruction or not.  When we encounter one of these ambiguous
	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
	 Otherwise, we'll assume that it really is a prologue instruction.  */
      if (prev_insn_was_prologue_insn)
	last_prologue_pc = pc;

      /* Stop scanning if we've hit the limit.  */
      if (pc >= lim_pc)
	break;

      prev_insn_was_prologue_insn = 1;

      /* Fetch the instruction and convert it to an integer.  */
      if (target_read_memory (pc, buf, 4))
	break;
      op = extract_unsigned_integer (buf, 4, byte_order);

      if ((op & 0xfc1fffff) == 0x7c0802a6)
	{			/* mflr Rx */
	  /* Since shared library / PIC code, which needs to get its
	     address at runtime, can appear to save more than one link
	     register vis:

	     *INDENT-OFF*
	     stwu r1,-304(r1)
	     mflr r3
	     bl 0xff570d0 (blrl)
	     stw r30,296(r1)
	     mflr r30
	     stw r31,300(r1)
	     stw r3,308(r1);
	     ...
	     *INDENT-ON*

	     remember just the first one, but skip over additional
	     ones.  */
	  if (lr_reg == -1)
	    lr_reg = (op & 0x03e00000) >> 21;
          if (lr_reg == 0)
            r0_contains_arg = 0;
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c000026)
	{			/* mfcr Rx */
	  cr_reg = (op & 0x03e00000) >> 21;
          if (cr_reg == 0)
            r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xfc1f0000) == 0xd8010000)
	{			/* stfd Rx,NUM(r1) */
	  reg = GET_SRC_REG (op);
	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
	    {
	      fdata->saved_fpr = reg;
	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
	{

	  reg = GET_SRC_REG (op);
	  if ((op & 0xfc1f0000) == 0xbc010000)
	    fdata->gpr_mask |= ~((1U << reg) - 1);
	  else
	    fdata->gpr_mask |= 1U << reg;
	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
	    {
	      fdata->saved_gpr = reg;
	      if ((op & 0xfc1f0003) == 0xf8010000)
		op &= ~3UL;
	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3c4c0000
	       || (op & 0xffff0000) == 0x3c400000
	       || (op & 0xffff0000) == 0x38420000)
	{
	  /* .	0:	addis 2,12,.TOC.-0b@ha
	     .		addi 2,2,.TOC.-0b@l
	     or
	     .		lis 2,.TOC.@ha
	     .		addi 2,2,.TOC.@l
	     used by ELFv2 global entry points to set up r2.  */
	  continue;
	}
      else if (op == 0x60000000)
        {
	  /* nop */
	  /* Allow nops in the prologue, but do not consider them to
	     be part of the prologue unless followed by other prologue
	     instructions.  */
	  prev_insn_was_prologue_insn = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3c000000)
	{			/* addis 0,0,NUM, used for >= 32k frames */
	  fdata->offset = (op & 0x0000ffff) << 16;
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
	{			/* ori 0,0,NUM, 2nd half of >= 32k frames */
	  fdata->offset |= (op & 0x0000ffff);
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if (lr_reg >= 0 &&
	       ((store_insn_p (op, lr_reg, 1, true)) ||
		(framep &&
		 (store_insn_p (op, lr_reg,
				fdata->alloca_reg - tdep->ppc_gp0_regnum,
				false)))))
	{
	  if (store_insn_p (op, lr_reg, 1, true))
	    fdata->lr_offset = offset;
	  else /* LR save through frame pointer. */
	    fdata->lr_offset = alloca_reg_offset;

	  fdata->nosavedpc = 0;
	  /* Invalidate lr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  lr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
	      (op & 0xfc000000) == 0x90000000)		/* stw */
	    {
	      /* Does not update r1, so add displacement to lr_offset.  */
	      fdata->lr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if (cr_reg >= 0 &&
	       (store_insn_p (op, cr_reg, 1, true)))
	{
	  fdata->cr_offset = offset;
	  /* Invalidate cr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  cr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||
	      (op & 0xfc000000) == 0x90000000)
	    {
	      /* Does not update r1, so add displacement to cr_offset.  */
	      fdata->cr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
	{
	  /* bcl 20,xx,.+4 is used to get the current PC, with or without
	     prediction bits.  If the LR has already been saved, we can
	     skip it.  */
	  continue;
	}
      else if (op == 0x48000005)
	{			/* bl .+4 used in 
				   -mrelocatable */
	  fdata->used_bl = 1;
	  continue;

	}
      else if (op == 0x48000004)
	{			/* b .+4 (xlc) */
	  break;

	}
      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
						      in V.4 -mminimal-toc */
	       (op & 0xffff0000) == 0x3bde0000)
	{			/* addi 30,30,foo@l */
	  continue;

	}
      else if ((op & 0xfc000001) == 0x48000001)
	{			/* bl foo, 
				   to save fprs???  */

	  fdata->frameless = 0;

	  /* If the return address has already been saved, we can skip
	     calls to blrl (for PIC).  */
          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
	    {
	      fdata->used_bl = 1;
	      continue;
	    }

	  /* Don't skip over the subroutine call if it is not within
	     the first three instructions of the prologue and either
	     we have no line table information or the line info tells
	     us that the subroutine call is not part of the line
	     associated with the prologue.  */
	  if ((pc - orig_pc) > 8)
	    {
	      struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
	      struct symtab_and_line this_sal = find_pc_line (pc, 0);

	      if ((prologue_sal.line == 0)
		  || (prologue_sal.line != this_sal.line))
		break;
	    }

	  op = read_memory_integer (pc + 4, 4, byte_order);

	  /* At this point, make sure this is not a trampoline
	     function (a function that simply calls another functions,
	     and nothing else).  If the next is not a nop, this branch
	     was part of the function prologue.  */

	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
	    break;		/* Don't skip over 
				   this branch.  */

	  fdata->used_bl = 1;
	  continue;
	}
      /* update stack pointer */
      else if ((op & 0xfc1f0000) == 0x94010000)
	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f07fa) == 0x7c01016a)
	{		/* stwux rX,r1,rY  || stdux rX,r1,rY */
	  /* No way to figure out what r1 is going to be.  */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f0003) == 0xf8010001)
	{			/* stdu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op & ~3UL);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xffff0000) == 0x38210000)
 	{			/* addi r1,r1,SIMM */
 	  fdata->frameless = 0;
 	  fdata->offset += SIGNED_SHORT (op);
 	  offset = fdata->offset;
 	  continue;
 	}
      /* Load up minimal toc pointer.  Do not treat an epilogue restore
	 of r31 as a minimal TOC load.  */
      else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,...  */
	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,...  */
	       && !framep
	       && !minimal_toc_loaded)
	{
	  minimal_toc_loaded = 1;
	  continue;

	  /* move parameters from argument registers to local variable
             registers */
 	}
      else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) <= 10) &&
               ((long) ((op >> 16) & 31)
		>= fdata->saved_gpr)) /* Rx: local var reg */
	{
	  continue;

	  /* store parameters in stack */
	}
      /* Move parameters from argument registers to temporary register.  */
      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
        {
	  continue;

	  /* Set up frame pointer */
	}
      else if (op == 0x603d0000)       /* oril r29, r1, 0x0 */
	{
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
	  alloca_reg_offset = offset;
	  continue;

	  /* Another way to set up the frame pointer.  */
	}
      else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
	       || op == 0x7c3f0b78)
	{			/* mr r31, r1 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
	  alloca_reg_offset = offset;
	  continue;

	  /* Another way to set up the frame pointer.  */
	}
      else if ((op & 0xfc1fffff) == 0x38010000)
	{			/* addi rX, r1, 0x0 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
			       + ((op & ~0x38010000) >> 21));
	  alloca_reg_offset = offset;
	  continue;
	}
      /* AltiVec related instructions.  */
      /* Store the vrsave register (spr 256) in another register for
	 later manipulation, or load a register into the vrsave
	 register.  2 instructions are used: mfvrsave and
	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
	 and mtspr SPR256, Rn.  */
      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
	{
          vrsave_reg = GET_SRC_REG (op);
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
        {
          continue;
        }
      /* Store the register where vrsave was saved to onto the stack:
         rS is the register where vrsave was stored in a previous
	 instruction.  */
      /* 100100 sssss 00001 dddddddd dddddddd */
      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
        {
          if (vrsave_reg == GET_SRC_REG (op))
	    {
	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
	      vrsave_reg = -1;
	    }
          continue;
        }
      /* Compute the new value of vrsave, by modifying the register
         where vrsave was saved to.  */
      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
	{
	  continue;
	}
      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
	 in a pair of insns to save the vector registers on the
	 stack.  */
      /* 001110 00000 00000 iiii iiii iiii iiii  */
      /* 001110 01110 00000 iiii iiii iiii iiii  */
      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
	{
          if ((op & 0xffff0000) == 0x38000000)
            r0_contains_arg = 0;
	  li_found_pc = pc;
	  vr_saved_offset = SIGNED_SHORT (op);

          /* This insn by itself is not part of the prologue, unless
             if part of the pair of insns mentioned above.  So do not
             record this insn as part of the prologue yet.  */
          prev_insn_was_prologue_insn = 0;
	}
      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
      /* 011111 sssss 11111 00000 00111001110 */
      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
        {
	  if (pc == (li_found_pc + 4))
	    {
	      vr_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
		{
		  fdata->saved_vr = vr_reg;
		  fdata->vr_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      vr_reg = -1;
	      li_found_pc = 0;
	    }
	}
      /* End AltiVec related instructions.  */

      /* Start BookE related instructions.  */
      /* Store gen register S at (r31+uimm).
         Any register less than r13 is volatile, so we don't care.  */
      /* 000100 sssss 11111 iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
	{
          if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
	    {
              unsigned int imm;
	      ev_reg = GET_SRC_REG (op);
              imm = (op >> 11) & 0x1f;
	      ev_offset = imm * 8;
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
		  fdata->saved_ev = ev_reg;
		  fdata->ev_offset = ev_offset + offset;
		}
	    }
          continue;
        }
      /* Store gen register rS at (r1+rB).  */
      /* 000100 sssss 00001 bbbbb 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
	{
          if (pc == (li_found_pc + 4))
            {
              ev_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
                 it has a lower number than others previously seen,
                 reupdate the frame info.  */
              /* We know the contents of rB from the previous instruction.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
                  fdata->saved_ev = ev_reg;
                  fdata->ev_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      ev_reg = -1;
	      li_found_pc = 0;
            }
          continue;
        }
      /* Store gen register r31 at (rA+uimm).  */
      /* 000100 11111 aaaaa iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
        {
          /* Wwe know that the source register is 31 already, but
             it can't hurt to compute it.  */
	  ev_reg = GET_SRC_REG (op);
          ev_offset = ((op >> 11) & 0x1f) * 8;
	  /* If this is the first vector reg to be saved, or if
	     it has a lower number than others previously seen,
	     reupdate the frame info.  */
	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
	    {
	      fdata->saved_ev = ev_reg;
	      fdata->ev_offset = ev_offset + offset;
	    }

	  continue;
      	}
      /* Store gen register S at (r31+r0).
         Store param on stack when offset from SP bigger than 4 bytes.  */
      /* 000100 sssss 11111 00000 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
	{
          if (pc == (li_found_pc + 4))
            {
              if ((op & 0x03e00000) >= 0x01a00000)
		{
		  ev_reg = GET_SRC_REG (op);
		  /* If this is the first vector reg to be saved, or if
		     it has a lower number than others previously seen,
		     reupdate the frame info.  */
                  /* We know the contents of r0 from the previous
                     instruction.  */
		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		    {
		      fdata->saved_ev = ev_reg;
		      fdata->ev_offset = vr_saved_offset + offset;
		    }
		  ev_reg = -1;
		}
	      vr_saved_offset = -1;
	      li_found_pc = 0;
	      continue;
            }
	}
      /* End BookE related instructions.  */

      else
	{
	  /* Not a recognized prologue instruction.
	     Handle optimizer code motions into the prologue by continuing
	     the search if we have no valid frame yet or if the return
	     address is not yet saved in the frame.  Also skip instructions
	     if some of the GPRs expected to be saved are not yet saved.  */
	  if (fdata->frameless == 0 && fdata->nosavedpc == 0
	      && fdata->saved_gpr != -1)
	    {
	      unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);

	      if ((fdata->gpr_mask & all_mask) == all_mask)
		break;
	    }

	  if (op == 0x4e800020		/* blr */
	      || op == 0x4e800420)	/* bctr */
	    /* Do not scan past epilogue in frameless functions or
	       trampolines.  */
	    break;
	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
	    /* Never skip branches.  */
	    break;

	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
	    /* Do not scan too many insns, scanning insns is expensive with
	       remote targets.  */
	    break;

	  /* Continue scanning.  */
	  prev_insn_was_prologue_insn = 0;
	  continue;
	}
    }

#if 0
/* I have problems with skipping over __main() that I need to address
 * sometime.  Previously, I used to use misc_function_vector which
 * didn't work as well as I wanted to be.  -MGO */

  /* If the first thing after skipping a prolog is a branch to a function,
     this might be a call to an initializer in main(), introduced by gcc2.
     We'd like to skip over it as well.  Fortunately, xlc does some extra
     work before calling a function right after a prologue, thus we can
     single out such gcc2 behaviour.  */


  if ((op & 0xfc000001) == 0x48000001)
    {				/* bl foo, an initializer function?  */
      op = read_memory_integer (pc + 4, 4, byte_order);

      if (op == 0x4def7b82)
	{			/* cror 0xf, 0xf, 0xf (nop) */

	  /* Check and see if we are in main.  If so, skip over this
	     initializer function as well.  */

	  tmp = find_pc_misc_function (pc);
	  if (tmp >= 0
	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
	    return pc + 8;
	}
    }
#endif /* 0 */

  if (pc == lim_pc && lr_reg >= 0)
    fdata->lr_register = lr_reg;

  fdata->offset = -fdata->offset;
  return last_prologue_pc;
}

static CORE_ADDR
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct rs6000_framedata frame;
  CORE_ADDR limit_pc, func_addr, func_end_addr = 0;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return std::max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
    limit_pc = pc + 100;          /* Magic.  */

  /* Do not allow limit_pc to be past the function end, if we know
     where that end is...  */
  if (func_end_addr && limit_pc > func_end_addr)
    limit_pc = func_end_addr;

  pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
  return pc;
}

/* When compiling for EABI, some versions of GCC emit a call to __eabi
   in the prologue of main().

   The function below examines the code pointed at by PC and checks to
   see if it corresponds to a call to __eabi.  If so, it returns the
   address of the instruction following that call.  Otherwise, it simply
   returns PC.  */

static CORE_ADDR
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  unsigned long op;

  if (target_read_memory (pc, buf, 4))
    return pc;
  op = extract_unsigned_integer (buf, 4, byte_order);

  if ((op & BL_MASK) == BL_INSTRUCTION)
    {
      CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
      CORE_ADDR call_dest = pc + 4 + displ;
      struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);

      /* We check for ___eabi (three leading underscores) in addition
         to __eabi in case the GCC option "-fleading-underscore" was
	 used to compile the program.  */
      if (s.minsym != NULL
          && s.minsym->linkage_name () != NULL
	  && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
	      || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
	pc += 4;
    }
  return pc;
}

/* All the ABI's require 16 byte alignment.  */
static CORE_ADDR
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return (addr & -16);
}

/* Return whether handle_inferior_event() should proceed through code
   starting at PC in function NAME when stepping.

   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
   handle memory references that are too distant to fit in instructions
   generated by the compiler.  For example, if 'foo' in the following
   instruction:

     lwz r9,foo(r2)

   is greater than 32767, the linker might replace the lwz with a branch to
   somewhere in @FIX1 that does the load in 2 instructions and then branches
   back to where execution should continue.

   GDB should silently step over @FIX code, just like AIX dbx does.
   Unfortunately, the linker uses the "b" instruction for the
   branches, meaning that the link register doesn't get set.
   Therefore, GDB's usual step_over_function () mechanism won't work.

   Instead, use the gdbarch_skip_trampoline_code and
   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
   @FIX code.  */

static int
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
				   CORE_ADDR pc, const char *name)
{
  return name && startswith (name, "@FIX");
}

/* Skip code that the user doesn't want to see when stepping:

   1. Indirect function calls use a piece of trampoline code to do context
   switching, i.e. to set the new TOC table.  Skip such code if we are on
   its first instruction (as when we have single-stepped to here).

   2. Skip shared library trampoline code (which is different from
   indirect function call trampolines).

   3. Skip bigtoc fixup code.

   Result is desired PC to step until, or NULL if we are not in
   code that should be skipped.  */

static CORE_ADDR
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int ii, op;
  int rel;
  CORE_ADDR solib_target_pc;
  struct bound_minimal_symbol msymbol;

  static unsigned trampoline_code[] =
  {
    0x800b0000,			/*     l   r0,0x0(r11)  */
    0x90410014,			/*    st   r2,0x14(r1)  */
    0x7c0903a6,			/* mtctr   r0           */
    0x804b0004,			/*     l   r2,0x4(r11)  */
    0x816b0008,			/*     l  r11,0x8(r11)  */
    0x4e800420,			/*  bctr                */
    0x4e800020,			/*    br                */
    0
  };

  /* Check for bigtoc fixup code.  */
  msymbol = lookup_minimal_symbol_by_pc (pc);
  if (msymbol.minsym
      && rs6000_in_solib_return_trampoline (gdbarch, pc,
					    msymbol.minsym->linkage_name ()))
    {
      /* Double-check that the third instruction from PC is relative "b".  */
      op = read_memory_integer (pc + 8, 4, byte_order);
      if ((op & 0xfc000003) == 0x48000000)
	{
	  /* Extract bits 6-29 as a signed 24-bit relative word address and
	     add it to the containing PC.  */
	  rel = ((int)(op << 6) >> 6);
	  return pc + 8 + rel;
	}
    }

  /* If pc is in a shared library trampoline, return its target.  */
  solib_target_pc = find_solib_trampoline_target (frame, pc);
  if (solib_target_pc)
    return solib_target_pc;

  for (ii = 0; trampoline_code[ii]; ++ii)
    {
      op = read_memory_integer (pc + (ii * 4), 4, byte_order);
      if (op != trampoline_code[ii])
	return 0;
    }
  ii = get_frame_register_unsigned (frame, 11);	/* r11 holds destination
						   addr.  */
  pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
  return pc;
}

/* ISA-specific vector types.  */

static struct type *
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->ppc_builtin_type_vec64)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec64
	{
	  int64_t uint64;
	  float v2_float[2];
	  int32_t v2_int32[2];
	  int16_t v4_int16[4];
	  int8_t v8_int8[8];
	};
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
      append_composite_type_field (t, "uint64", bt->builtin_int64);
      append_composite_type_field (t, "v2_float",
				   init_vector_type (bt->builtin_float, 2));
      append_composite_type_field (t, "v2_int32",
				   init_vector_type (bt->builtin_int32, 2));
      append_composite_type_field (t, "v4_int16",
				   init_vector_type (bt->builtin_int16, 4));
      append_composite_type_field (t, "v8_int8",
				   init_vector_type (bt->builtin_int8, 8));

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "ppc_builtin_type_vec64";
      tdep->ppc_builtin_type_vec64 = t;
    }

  return tdep->ppc_builtin_type_vec64;
}

/* Vector 128 type.  */

static struct type *
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->ppc_builtin_type_vec128)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this

	 type = union __ppc_builtin_type_vec128 {
	     uint128_t uint128;
	     double v2_double[2];
	     float v4_float[4];
	     int32_t v4_int32[4];
	     int16_t v8_int16[8];
	     int8_t v16_int8[16];
	 }
      */

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
      append_composite_type_field (t, "uint128", bt->builtin_uint128);
      append_composite_type_field (t, "v2_double",
				   init_vector_type (bt->builtin_double, 2));
      append_composite_type_field (t, "v4_float",
				   init_vector_type (bt->builtin_float, 4));
      append_composite_type_field (t, "v4_int32",
				   init_vector_type (bt->builtin_int32, 4));
      append_composite_type_field (t, "v8_int16",
				   init_vector_type (bt->builtin_int16, 8));
      append_composite_type_field (t, "v16_int8",
				   init_vector_type (bt->builtin_int8, 16));

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "ppc_builtin_type_vec128";
      tdep->ppc_builtin_type_vec128 = t;
    }

  return tdep->ppc_builtin_type_vec128;
}

/* Return the name of register number REGNO, or the empty string if it
   is an anonymous register.  */

static const char *
rs6000_register_name (struct gdbarch *gdbarch, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* The upper half "registers" have names in the XML description,
     but we present only the low GPRs and the full 64-bit registers
     to the user.  */
  if (tdep->ppc_ev0_upper_regnum >= 0
      && tdep->ppc_ev0_upper_regnum <= regno
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    return "";

  /* Hide the upper halves of the vs0~vs31 registers.  */
  if (tdep->ppc_vsr0_regnum >= 0
      && tdep->ppc_vsr0_upper_regnum <= regno
      && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
    return "";

  /* Hide the upper halves of the cvs0~cvs31 registers.  */
  if (PPC_CVSR0_UPPER_REGNUM <= regno
      && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
    return "";

  /* Check if the SPE pseudo registers are available.  */
  if (IS_SPE_PSEUDOREG (tdep, regno))
    {
      static const char *const spe_regnames[] = {
	"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
	"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
	"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
	"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
      };
      return spe_regnames[regno - tdep->ppc_ev0_regnum];
    }

  /* Check if the decimal128 pseudo-registers are available.  */
  if (IS_DFP_PSEUDOREG (tdep, regno))
    {
      static const char *const dfp128_regnames[] = {
	"dl0", "dl1", "dl2", "dl3",
	"dl4", "dl5", "dl6", "dl7",
	"dl8", "dl9", "dl10", "dl11",
	"dl12", "dl13", "dl14", "dl15"
      };
      return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
    }

  /* Check if this is a vX alias for a raw vrX vector register.  */
  if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
    {
      static const char *const vector_alias_regnames[] = {
	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
	"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
	"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
      };
      return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
    }

  /* Check if this is a VSX pseudo-register.  */
  if (IS_VSX_PSEUDOREG (tdep, regno))
    {
      static const char *const vsx_regnames[] = {
	"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
	"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
	"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
	"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
	"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
	"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
	"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
	"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
	"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
      };
      return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
    }

  /* Check if the this is a Extended FP pseudo-register.  */
  if (IS_EFP_PSEUDOREG (tdep, regno))
    {
      static const char *const efpr_regnames[] = {
	"f32", "f33", "f34", "f35", "f36", "f37", "f38",
	"f39", "f40", "f41", "f42", "f43", "f44", "f45",
	"f46", "f47", "f48", "f49", "f50", "f51",
	"f52", "f53", "f54", "f55", "f56", "f57",
	"f58", "f59", "f60", "f61", "f62", "f63"
      };
      return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
    }

  /* Check if this is a Checkpointed DFP pseudo-register.  */
  if (IS_CDFP_PSEUDOREG (tdep, regno))
    {
      static const char *const cdfp128_regnames[] = {
	"cdl0", "cdl1", "cdl2", "cdl3",
	"cdl4", "cdl5", "cdl6", "cdl7",
	"cdl8", "cdl9", "cdl10", "cdl11",
	"cdl12", "cdl13", "cdl14", "cdl15"
      };
      return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
    }

  /* Check if this is a Checkpointed VSX pseudo-register.  */
  if (IS_CVSX_PSEUDOREG (tdep, regno))
    {
      static const char *const cvsx_regnames[] = {
	"cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
	"cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
	"cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
	"cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
	"cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
	"cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
	"cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
	"cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
	"cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
      };
      return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
    }

  /* Check if the this is a Checkpointed Extended FP pseudo-register.  */
  if (IS_CEFP_PSEUDOREG (tdep, regno))
    {
      static const char *const cefpr_regnames[] = {
	"cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
	"cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
	"cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
	"cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
	"cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
      };
      return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
    }

  return tdesc_register_name (gdbarch, regno);
}

/* Return the GDB type object for the "standard" data type of data in
   register N.  */

static struct type *
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* These are the e500 pseudo-registers.  */
  if (IS_SPE_PSEUDOREG (tdep, regnum))
    return rs6000_builtin_type_vec64 (gdbarch);
  else if (IS_DFP_PSEUDOREG (tdep, regnum)
	   || IS_CDFP_PSEUDOREG (tdep, regnum))
    /* PPC decimal128 pseudo-registers.  */
    return builtin_type (gdbarch)->builtin_declong;
  else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
    return gdbarch_register_type (gdbarch,
				  tdep->ppc_vr0_regnum
				  + (regnum
				     - tdep->ppc_v0_alias_regnum));
  else if (IS_VSX_PSEUDOREG (tdep, regnum)
	   || IS_CVSX_PSEUDOREG (tdep, regnum))
    /* POWER7 VSX pseudo-registers.  */
    return rs6000_builtin_type_vec128 (gdbarch);
  else if (IS_EFP_PSEUDOREG (tdep, regnum)
	   || IS_CEFP_PSEUDOREG (tdep, regnum))
    /* POWER7 Extended FP pseudo-registers.  */
    return builtin_type (gdbarch)->builtin_double;
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_type: "
		      "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, regnum), regnum);
}

/* Check if REGNUM is a member of REGGROUP.  We only need to handle
   the vX aliases for the vector registers by always returning false
   to avoid duplicated information in "info register vector/all",
   since the raw vrX registers will already show in these cases.  For
   other pseudo-registers we use the default membership function.  */

static int
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				   struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
    return 0;
  else
    return default_register_reggroup_p (gdbarch, regnum, group);
}

/* The register format for RS/6000 floating point registers is always
   double, we need a conversion if the memory format is float.  */

static int
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
			   struct type *type)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_fp0_regnum >= 0
	  && regnum >= tdep->ppc_fp0_regnum
	  && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
	  && type->code () == TYPE_CODE_FLT
	  && TYPE_LENGTH (type)
	     != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
}

static int
rs6000_register_to_value (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          gdb_byte *to,
			  int *optimizedp, int *unavailablep)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte from[PPC_MAX_REGISTER_SIZE];
  
  gdb_assert (type->code () == TYPE_CODE_FLT);

  if (!get_frame_register_bytes (frame, regnum, 0,
				 register_size (gdbarch, regnum),
				 from, optimizedp, unavailablep))
    return 0;

  target_float_convert (from, builtin_type (gdbarch)->builtin_double,
			to, type);
  *optimizedp = *unavailablep = 0;
  return 1;
}

static void
rs6000_value_to_register (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          const gdb_byte *from)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  gdb_byte to[PPC_MAX_REGISTER_SIZE];

  gdb_assert (type->code () == TYPE_CODE_FLT);

  target_float_convert (from, type,
			to, builtin_type (gdbarch)->builtin_double);
  put_frame_register (frame, regnum, to);
}

 /* The type of a function that moves the value of REG between CACHE
    or BUF --- in either direction.  */
typedef enum register_status (*move_ev_register_func) (struct regcache *,
						       int, void *);

/* Move SPE vector register values between a 64-bit buffer and the two
   32-bit raw register halves in a regcache.  This function handles
   both splitting a 64-bit value into two 32-bit halves, and joining
   two halves into a whole 64-bit value, depending on the function
   passed as the MOVE argument.

   EV_REG must be the number of an SPE evN vector register --- a
   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
   64-bit buffer.

   Call MOVE once for each 32-bit half of that register, passing
   REGCACHE, the number of the raw register corresponding to that
   half, and the address of the appropriate half of BUFFER.

   For example, passing 'regcache_raw_read' as the MOVE function will
   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
   'regcache_raw_supply' will supply the contents of BUFFER to the
   appropriate pair of raw registers in REGCACHE.

   You may need to cast away some 'const' qualifiers when passing
   MOVE, since this function can't tell at compile-time which of
   REGCACHE or BUFFER is acting as the source of the data.  If C had
   co-variant type qualifiers, ...  */

static enum register_status
e500_move_ev_register (move_ev_register_func move,
		       struct regcache *regcache, int ev_reg, void *buffer)
{
  struct gdbarch *arch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
  int reg_index;
  gdb_byte *byte_buffer = (gdb_byte *) buffer;
  enum register_status status;

  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));

  reg_index = ev_reg - tdep->ppc_ev0_regnum;

  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
    {
      status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
		     byte_buffer);
      if (status == REG_VALID)
	status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
		       byte_buffer + 4);
    }
  else
    {
      status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
      if (status == REG_VALID)
	status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
		       byte_buffer + 4);
    }

  return status;
}

static enum register_status
do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
{
  regcache->raw_write (regnum, (const gdb_byte *) buffer);

  return REG_VALID;
}

static enum register_status
e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
			   int ev_reg, gdb_byte *buffer)
{
  struct gdbarch *arch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int reg_index;
  enum register_status status;

  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));

  reg_index = ev_reg - tdep->ppc_ev0_regnum;

  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
    {
      status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
				   buffer);
      if (status == REG_VALID)
	status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
				     buffer + 4);
    }
  else
    {
      status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
      if (status == REG_VALID)
	status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
				     buffer + 4);
    }

  return status;

}

static void
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  e500_move_ev_register (do_regcache_raw_write, regcache,
			 reg_nr, (void *) buffer);
}

/* Read method for DFP pseudo-registers.  */
static enum register_status
dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, fp0;
  enum register_status status;

  if (IS_DFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_dl0_regnum;
      fp0 = PPC_F0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cdl0_regnum;
      fp0 = PPC_CF0_REGNUM;
    }

  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Read two FP registers to form a whole dl register.  */
      status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
      if (status == REG_VALID)
	status = regcache->raw_read (fp0 + 2 * reg_index + 1,
				     buffer + 8);
    }
  else
    {
      status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
      if (status == REG_VALID)
	status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
    }

  return status;
}

/* Write method for DFP pseudo-registers.  */
static void
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, fp0;

  if (IS_DFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_dl0_regnum;
      fp0 = PPC_F0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cdl0_regnum;
      fp0 = PPC_CF0_REGNUM;
    }

  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Write each half of the dl register into a separate
	 FP register.  */
      regcache->raw_write (fp0 + 2 * reg_index, buffer);
      regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
    }
  else
    {
      regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
      regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
    }
}

/* Read method for the vX aliases for the raw vrX registers.  */

static enum register_status
v_alias_pseudo_register_read (struct gdbarch *gdbarch,
			      readable_regcache *regcache, int reg_nr,
			      gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));

  return regcache->raw_read (tdep->ppc_vr0_regnum
			     + (reg_nr - tdep->ppc_v0_alias_regnum),
			     buffer);
}

/* Write method for the vX aliases for the raw vrX registers.  */

static void
v_alias_pseudo_register_write (struct gdbarch *gdbarch,
			       struct regcache *regcache,
			       int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));

  regcache->raw_write (tdep->ppc_vr0_regnum
		       + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
}

/* Read method for POWER7 VSX pseudo-registers.  */
static enum register_status
vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0, fp0, vsr0_upper;
  enum register_status status;

  if (IS_VSX_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_vsr0_regnum;
      vr0 = PPC_VR0_REGNUM;
      fp0 = PPC_F0_REGNUM;
      vsr0_upper = PPC_VSR0_UPPER_REGNUM;
    }
  else
    {
      gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
      vr0 = PPC_CVR0_REGNUM;
      fp0 = PPC_CF0_REGNUM;
      vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
    }

  /* Read the portion that overlaps the VMX registers.  */
  if (reg_index > 31)
    status = regcache->raw_read (vr0 + reg_index - 32, buffer);
  else
    /* Read the portion that overlaps the FPR registers.  */
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      {
	status = regcache->raw_read (fp0 + reg_index, buffer);
	if (status == REG_VALID)
	  status = regcache->raw_read (vsr0_upper + reg_index,
				       buffer + 8);
      }
    else
      {
	status = regcache->raw_read (fp0 + reg_index, buffer + 8);
	if (status == REG_VALID)
	  status = regcache->raw_read (vsr0_upper + reg_index, buffer);
      }

  return status;
}

/* Write method for POWER7 VSX pseudo-registers.  */
static void
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0, fp0, vsr0_upper;

  if (IS_VSX_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_vsr0_regnum;
      vr0 = PPC_VR0_REGNUM;
      fp0 = PPC_F0_REGNUM;
      vsr0_upper = PPC_VSR0_UPPER_REGNUM;
    }
  else
    {
      gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
      vr0 = PPC_CVR0_REGNUM;
      fp0 = PPC_CF0_REGNUM;
      vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
    }

  /* Write the portion that overlaps the VMX registers.  */
  if (reg_index > 31)
    regcache->raw_write (vr0 + reg_index - 32, buffer);
  else
    /* Write the portion that overlaps the FPR registers.  */
    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
      {
	regcache->raw_write (fp0 + reg_index, buffer);
	regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
      }
    else
      {
	regcache->raw_write (fp0 + reg_index, buffer + 8);
	regcache->raw_write (vsr0_upper + reg_index, buffer);
      }
}

/* Read method for POWER7 Extended FP pseudo-registers.  */
static enum register_status
efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0;

  if (IS_EFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_efpr0_regnum;
      vr0 = PPC_VR0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
      vr0 = PPC_CVR0_REGNUM;
    }

  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;

  /* Read the portion that overlaps the VMX register.  */
  return regcache->raw_read_part (vr0 + reg_index, offset,
				  register_size (gdbarch, reg_nr),
				  buffer);
}

/* Write method for POWER7 Extended FP pseudo-registers.  */
static void
efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0;
  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;

  if (IS_EFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_efpr0_regnum;
      vr0 = PPC_VR0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
      vr0 = PPC_CVR0_REGNUM;

      /* The call to raw_write_part fails silently if the initial read
	 of the read-update-write sequence returns an invalid status,
	 so we check this manually and throw an error if needed.  */
      regcache->raw_update (vr0 + reg_index);
      if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
	error (_("Cannot write to the checkpointed EFP register, "
		 "the corresponding vector register is unavailable."));
    }

  /* Write the portion that overlaps the VMX register.  */
  regcache->raw_write_part (vr0 + reg_index, offset,
			    register_size (gdbarch, reg_nr), buffer);
}

static enum register_status
rs6000_pseudo_register_read (struct gdbarch *gdbarch,
			     readable_regcache *regcache,
			     int reg_nr, gdb_byte *buffer)
{
  struct gdbarch *regcache_arch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);

  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
    return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
    return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
    return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
					 buffer);
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
    return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
    return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_read: "
		    "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

static void
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
			      struct regcache *regcache,
			      int reg_nr, const gdb_byte *buffer)
{
  struct gdbarch *regcache_arch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);

  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
    e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
    dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
    v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
    vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
    efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_write: "
		    "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

/* Set the register mask in AX with the registers that form the DFP or
   checkpointed DFP pseudo-register REG_NR.  */

static void
dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				struct agent_expr *ax, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, fp0;

  if (IS_DFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_dl0_regnum;
      fp0 = PPC_F0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cdl0_regnum;
      fp0 = PPC_CF0_REGNUM;
    }

  ax_reg_mask (ax, fp0 + 2 * reg_index);
  ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
}

/* Set the register mask in AX with the raw vector register that
   corresponds to its REG_NR alias.  */

static void
v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
				 struct agent_expr *ax, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));

  ax_reg_mask (ax, tdep->ppc_vr0_regnum
	       + (reg_nr - tdep->ppc_v0_alias_regnum));
}

/* Set the register mask in AX with the registers that form the VSX or
   checkpointed VSX pseudo-register REG_NR.  */

static void
vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				struct agent_expr *ax, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0, fp0, vsr0_upper;

  if (IS_VSX_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_vsr0_regnum;
      vr0 = PPC_VR0_REGNUM;
      fp0 = PPC_F0_REGNUM;
      vsr0_upper = PPC_VSR0_UPPER_REGNUM;
    }
  else
    {
      gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
      vr0 = PPC_CVR0_REGNUM;
      fp0 = PPC_CF0_REGNUM;
      vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
    }

  if (reg_index > 31)
    {
      ax_reg_mask (ax, vr0 + reg_index - 32);
    }
  else
    {
      ax_reg_mask (ax, fp0 + reg_index);
      ax_reg_mask (ax, vsr0_upper + reg_index);
    }
}

/* Set the register mask in AX with the register that corresponds to
   the EFP or checkpointed EFP pseudo-register REG_NR.  */

static void
efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				struct agent_expr *ax, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int reg_index, vr0;

  if (IS_EFP_PSEUDOREG (tdep, reg_nr))
    {
      reg_index = reg_nr - tdep->ppc_efpr0_regnum;
      vr0 = PPC_VR0_REGNUM;
    }
  else
    {
      gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));

      reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
      vr0 = PPC_CVR0_REGNUM;
    }

  ax_reg_mask (ax, vr0 + reg_index);
}

static int
rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				   struct agent_expr *ax, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
    {
      int reg_index = reg_nr - tdep->ppc_ev0_regnum;
      ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
      ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
    }
  else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
    {
      dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
    }
  else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
    {
      v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
    }
  else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
    {
      vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
    }
  else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
    {
      efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("rs6000_pseudo_register_collect: "
		    "called on unexpected register '%s' (%d)"),
		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
  return 0;
}


static void
rs6000_gen_return_address (struct gdbarch *gdbarch,
			   struct agent_expr *ax, struct axs_value *value,
			   CORE_ADDR scope)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
  value->kind = axs_lvalue_register;
  value->u.reg = tdep->ppc_lr_regnum;
}


/* Convert a DBX STABS register number to a GDB register number.  */
static int
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (77 <= num && num <= 108)
    return tdep->ppc_vr0_regnum + (num - 77);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_upper_regnum + (num - 1200);
  else
    switch (num)
      {
      case 64: 
        return tdep->ppc_mq_regnum;
      case 65:
        return tdep->ppc_lr_regnum;
      case 66: 
        return tdep->ppc_ctr_regnum;
      case 76: 
        return tdep->ppc_xer_regnum;
      case 109:
        return tdep->ppc_vrsave_regnum;
      case 110:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 111:
        return tdep->ppc_acc_regnum;
      case 112:
        return tdep->ppc_spefscr_regnum;
      default: 
        return num;
      }
}


/* Convert a Dwarf 2 register number to a GDB register number.  */
static int
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (1124 <= num && num < 1124 + 32)
    return tdep->ppc_vr0_regnum + (num - 1124);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_upper_regnum + (num - 1200);
  else
    switch (num)
      {
      case 64:
	return tdep->ppc_cr_regnum;
      case 67:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 99:
        return tdep->ppc_acc_regnum;
      case 100:
        return tdep->ppc_mq_regnum;
      case 101:
        return tdep->ppc_xer_regnum;
      case 108:
        return tdep->ppc_lr_regnum;
      case 109:
        return tdep->ppc_ctr_regnum;
      case 356:
        return tdep->ppc_vrsave_regnum;
      case 612:
        return tdep->ppc_spefscr_regnum;
      default:
        return num;
      }
}

/* Translate a .eh_frame register to DWARF register, or adjust a
   .debug_frame register.  */

static int
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
{
  /* GCC releases before 3.4 use GCC internal register numbering in
     .debug_frame (and .debug_info, et cetera).  The numbering is
     different from the standard SysV numbering for everything except
     for GPRs and FPRs.  We can not detect this problem in most cases
     - to get accurate debug info for variables living in lr, ctr, v0,
     et cetera, use a newer version of GCC.  But we must detect
     one important case - lr is in column 65 in .debug_frame output,
     instead of 108.

     GCC 3.4, and the "hammer" branch, have a related problem.  They
     record lr register saves in .debug_frame as 108, but still record
     the return column as 65.  We fix that up too.

     We can do this because 65 is assigned to fpsr, and GCC never
     generates debug info referring to it.  To add support for
     handwritten debug info that restores fpsr, we would need to add a
     producer version check to this.  */
  if (!eh_frame_p)
    {
      if (num == 65)
	return 108;
      else
	return num;
    }

  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
     internal register numbering; translate that to the standard DWARF2
     register numbering.  */
  if (0 <= num && num <= 63)	/* r0-r31,fp0-fp31 */
    return num;
  else if (68 <= num && num <= 75) /* cr0-cr8 */
    return num - 68 + 86;
  else if (77 <= num && num <= 108) /* vr0-vr31 */
    return num - 77 + 1124;
  else
    switch (num)
      {
      case 64: /* mq */
	return 100;
      case 65: /* lr */
	return 108;
      case 66: /* ctr */
	return 109;
      case 76: /* xer */
	return 101;
      case 109: /* vrsave */
	return 356;
      case 110: /* vscr */
	return 67;
      case 111: /* spe_acc */
	return 99;
      case 112: /* spefscr */
	return 612;
      default:
	return num;
      }
}


/* Handling the various POWER/PowerPC variants.  */

/* Information about a particular processor variant.  */

struct ppc_variant
  {
    /* Name of this variant.  */
    const char *name;

    /* English description of the variant.  */
    const char *description;

    /* bfd_arch_info.arch corresponding to variant.  */
    enum bfd_architecture arch;

    /* bfd_arch_info.mach corresponding to variant.  */
    unsigned long mach;

    /* Target description for this variant.  */
    struct target_desc **tdesc;
  };

static struct ppc_variant variants[] =
{
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
   bfd_mach_ppc, &tdesc_powerpc_altivec32},
  {"power", "POWER user-level", bfd_arch_rs6000,
   bfd_mach_rs6k, &tdesc_rs6000},
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
   bfd_mach_ppc_403, &tdesc_powerpc_403},
  {"405", "IBM PowerPC 405", bfd_arch_powerpc,
   bfd_mach_ppc_405, &tdesc_powerpc_405},
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
   bfd_mach_ppc_601, &tdesc_powerpc_601},
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
   bfd_mach_ppc_602, &tdesc_powerpc_602},
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
   bfd_mach_ppc_603, &tdesc_powerpc_603},
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
   604, &tdesc_powerpc_604},
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
   bfd_mach_ppc_505, &tdesc_powerpc_505},
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
   bfd_mach_ppc_860, &tdesc_powerpc_860},
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
   bfd_mach_ppc_750, &tdesc_powerpc_750},
  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
   bfd_mach_ppc_e500, &tdesc_powerpc_e500},

  /* 64-bit */
  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
   bfd_mach_ppc64, &tdesc_powerpc_altivec64},
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
   bfd_mach_ppc_620, &tdesc_powerpc_64},
  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
   bfd_mach_ppc_630, &tdesc_powerpc_64},
  {"a35", "PowerPC A35", bfd_arch_powerpc,
   bfd_mach_ppc_a35, &tdesc_powerpc_64},
  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},

  /* FIXME: I haven't checked the register sets of the following.  */
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
   bfd_mach_rs6k_rs1, &tdesc_rs6000},
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
   bfd_mach_rs6k_rsc, &tdesc_rs6000},
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
   bfd_mach_rs6k_rs2, &tdesc_rs6000},

  {0, 0, (enum bfd_architecture) 0, 0, 0}
};

/* Return the variant corresponding to architecture ARCH and machine number
   MACH.  If no such variant exists, return null.  */

static const struct ppc_variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
  const struct ppc_variant *v;

  for (v = variants; v->name; v++)
    if (arch == v->arch && mach == v->mach)
      return v;

  return NULL;
}



struct rs6000_frame_cache
{
  CORE_ADDR base;
  CORE_ADDR initial_sp;
  struct trad_frame_saved_reg *saved_regs;

  /* Set BASE_P to true if this frame cache is properly initialized.
     Otherwise set to false because some registers or memory cannot
     collected.  */
  int base_p;
  /* Cache PC for building unavailable frame.  */
  CORE_ADDR pc;
};

static struct rs6000_frame_cache *
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct rs6000_frame_cache *cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct rs6000_framedata fdata;
  int wordsize = tdep->wordsize;
  CORE_ADDR func = 0, pc = 0;

  if ((*this_cache) != NULL)
    return (struct rs6000_frame_cache *) (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
  (*this_cache) = cache;
  cache->pc = 0;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  try
    {
      func = get_frame_func (this_frame);
      cache->pc = func;
      pc = get_frame_pc (this_frame);
      skip_prologue (gdbarch, func, pc, &fdata);

      /* Figure out the parent's stack pointer.  */

      /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
	 address of the current frame.  Things might be easier if the
	 ->frame pointed to the outer-most address of the frame.  In
	 the mean time, the address of the prev frame is used as the
	 base address of this frame.  */
      cache->base = get_frame_register_unsigned
	(this_frame, gdbarch_sp_regnum (gdbarch));
    }
  catch (const gdb_exception_error &ex)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw;
      return (struct rs6000_frame_cache *) (*this_cache);
    }

  /* If the function appears to be frameless, check a couple of likely
     indicators that we have simply failed to find the frame setup.
     Two common cases of this are missing symbols (i.e.
     get_frame_func returns the wrong address or 0), and assembly
     stubs which have a fast exit path but set up a frame on the slow
     path.

     If the LR appears to return to this function, then presume that
     we have an ABI compliant frame that we failed to find.  */
  if (fdata.frameless && fdata.lr_offset == 0)
    {
      CORE_ADDR saved_lr;
      int make_frame = 0;

      saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
      if (func == 0 && saved_lr == pc)
	make_frame = 1;
      else if (func != 0)
	{
	  CORE_ADDR saved_func = get_pc_function_start (saved_lr);
	  if (func == saved_func)
	    make_frame = 1;
	}

      if (make_frame)
	{
	  fdata.frameless = 0;
	  fdata.lr_offset = tdep->lr_frame_offset;
	}
    }

  if (!fdata.frameless)
    {
      /* Frameless really means stackless.  */
      ULONGEST backchain;

      if (safe_read_memory_unsigned_integer (cache->base, wordsize,
					     byte_order, &backchain))
        cache->base = (CORE_ADDR) backchain;
    }

  trad_frame_set_value (cache->saved_regs,
			gdbarch_sp_regnum (gdbarch), cache->base);

  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
     All fpr's from saved_fpr to fp31 are saved.  */

  if (fdata.saved_fpr >= 0)
    {
      int i;
      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;

      /* If skip_prologue says floating-point registers were saved,
         but the current architecture has no floating-point registers,
         then that's strange.  But we have no indices to even record
         the addresses under, so we just ignore it.  */
      if (ppc_floating_point_unit_p (gdbarch))
        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
          {
            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
            fpr_addr += 8;
          }
    }

  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
     All gpr's from saved_gpr to gpr31 are saved (except during the
     prologue).  */

  if (fdata.saved_gpr >= 0)
    {
      int i;
      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
	{
	  if (fdata.gpr_mask & (1U << i))
	    cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
	  gpr_addr += wordsize;
	}
    }

  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
     All vr's from saved_vr to vr31 are saved.  */
  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
    {
      if (fdata.saved_vr >= 0)
	{
	  int i;
	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
	  for (i = fdata.saved_vr; i < 32; i++)
	    {
	      cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
	    }
	}
    }

  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
     All vr's from saved_ev to ev31 are saved. ?????  */
  if (tdep->ppc_ev0_regnum != -1)
    {
      if (fdata.saved_ev >= 0)
	{
	  int i;
	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
	  CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);

	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
	    {
	      cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
	      cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
	    }
	}
    }

  /* If != 0, fdata.cr_offset is the offset from the frame that
     holds the CR.  */
  if (fdata.cr_offset != 0)
    cache->saved_regs[tdep->ppc_cr_regnum].addr
      = cache->base + fdata.cr_offset;

  /* If != 0, fdata.lr_offset is the offset from the frame that
     holds the LR.  */
  if (fdata.lr_offset != 0)
    cache->saved_regs[tdep->ppc_lr_regnum].addr
      = cache->base + fdata.lr_offset;
  else if (fdata.lr_register != -1)
    cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
  /* The PC is found in the link register.  */
  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
    cache->saved_regs[tdep->ppc_lr_regnum];

  /* If != 0, fdata.vrsave_offset is the offset from the frame that
     holds the VRSAVE.  */
  if (fdata.vrsave_offset != 0)
    cache->saved_regs[tdep->ppc_vrsave_regnum].addr
      = cache->base + fdata.vrsave_offset;

  if (fdata.alloca_reg < 0)
    /* If no alloca register used, then fi->frame is the value of the
       %sp for this frame, and it is good enough.  */
    cache->initial_sp
      = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
  else
    cache->initial_sp
      = get_frame_register_unsigned (this_frame, fdata.alloca_reg);

  cache->base_p = 1;
  return cache;
}

static void
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
		      struct frame_id *this_id)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);

  if (!info->base_p)
    {
      (*this_id) = frame_id_build_unavailable_stack (info->pc);
      return;
    }

  /* This marks the outermost frame.  */
  if (info->base == 0)
    return;

  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
rs6000_frame_prev_register (struct frame_info *this_frame,
			    void **this_cache, int regnum)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static const struct frame_unwind rs6000_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  rs6000_frame_this_id,
  rs6000_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Allocate and initialize a frame cache for an epilogue frame.
   SP is restored and prev-PC is stored in LR.  */

static struct rs6000_frame_cache *
rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct rs6000_frame_cache *cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (*this_cache)
    return (struct rs6000_frame_cache *) *this_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  try
    {
      /* At this point the stack looks as if we just entered the
	 function, and the return address is stored in LR.  */
      CORE_ADDR sp, lr;

      sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
      lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);

      cache->base = sp;
      cache->initial_sp = sp;

      trad_frame_set_value (cache->saved_regs,
			    gdbarch_pc_regnum (gdbarch), lr);
    }
  catch (const gdb_exception_error &ex)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw;
    }

  return cache;
}

/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
   Return the frame ID of an epilogue frame.  */

static void
rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
			       void **this_cache, struct frame_id *this_id)
{
  CORE_ADDR pc;
  struct rs6000_frame_cache *info =
    rs6000_epilogue_frame_cache (this_frame, this_cache);

  pc = get_frame_func (this_frame);
  if (info->base == 0)
    (*this_id) = frame_id_build_unavailable_stack (pc);
  else
    (*this_id) = frame_id_build (info->base, pc);
}

/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
   Return the register value of REGNUM in previous frame.  */

static struct value *
rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
				     void **this_cache, int regnum)
{
  struct rs6000_frame_cache *info =
    rs6000_epilogue_frame_cache (this_frame, this_cache);
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
   Check whether this an epilogue frame.  */

static int
rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
			       struct frame_info *this_frame,
			       void **this_prologue_cache)
{
  if (frame_relative_level (this_frame) == 0)
    return rs6000_in_function_epilogue_frame_p (this_frame,
						get_frame_arch (this_frame),
						get_frame_pc (this_frame));
  else
    return 0;
}

/* Frame unwinder for epilogue frame.  This is required for reverse step-over
   a function without debug information.  */

static const struct frame_unwind rs6000_epilogue_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
  NULL,
  rs6000_epilogue_frame_sniffer
};


static CORE_ADDR
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
							this_cache);
  return info->initial_sp;
}

static const struct frame_base rs6000_frame_base = {
  &rs6000_frame_unwind,
  rs6000_frame_base_address,
  rs6000_frame_base_address,
  rs6000_frame_base_address
};

static const struct frame_base *
rs6000_frame_base_sniffer (struct frame_info *this_frame)
{
  return &rs6000_frame_base;
}

/* DWARF-2 frame support.  Used to handle the detection of
  clobbered registers during function calls.  */

static void
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			    struct dwarf2_frame_state_reg *reg,
			    struct frame_info *this_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* PPC32 and PPC64 ABI's are the same regarding volatile and
     non-volatile registers.  We will use the same code for both.  */

  /* Call-saved GP registers.  */
  if ((regnum >= tdep->ppc_gp0_regnum + 14
      && regnum <= tdep->ppc_gp0_regnum + 31)
      || (regnum == tdep->ppc_gp0_regnum + 1))
    reg->how = DWARF2_FRAME_REG_SAME_VALUE;

  /* Call-clobbered GP registers.  */
  if ((regnum >= tdep->ppc_gp0_regnum + 3
      && regnum <= tdep->ppc_gp0_regnum + 12)
      || (regnum == tdep->ppc_gp0_regnum))
    reg->how = DWARF2_FRAME_REG_UNDEFINED;

  /* Deal with FP registers, if supported.  */
  if (tdep->ppc_fp0_regnum >= 0)
    {
      /* Call-saved FP registers.  */
      if ((regnum >= tdep->ppc_fp0_regnum + 14
	  && regnum <= tdep->ppc_fp0_regnum + 31))
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered FP registers.  */
      if ((regnum >= tdep->ppc_fp0_regnum
	  && regnum <= tdep->ppc_fp0_regnum + 13))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;
    }

  /* Deal with ALTIVEC registers, if supported.  */
  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
    {
      /* Call-saved Altivec registers.  */
      if ((regnum >= tdep->ppc_vr0_regnum + 20
	  && regnum <= tdep->ppc_vr0_regnum + 31)
	  || regnum == tdep->ppc_vrsave_regnum)
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered Altivec registers.  */
      if ((regnum >= tdep->ppc_vr0_regnum
	  && regnum <= tdep->ppc_vr0_regnum + 19))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;
    }

  /* Handle PC register and Stack Pointer correctly.  */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_RA;
  else if (regnum == gdbarch_sp_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_CFA;
}


/* Return true if a .gnu_attributes section exists in BFD and it
   indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
   section exists in BFD and it indicates that SPE extensions are in
   use.  Check the .gnu.attributes section first, as the binary might be
   compiled for SPE, but not actually using SPE instructions.  */

static int
bfd_uses_spe_extensions (bfd *abfd)
{
  asection *sect;
  gdb_byte *contents = NULL;
  bfd_size_type size;
  gdb_byte *ptr;
  int success = 0;

  if (!abfd)
    return 0;

#ifdef HAVE_ELF
  /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
     could be using the SPE vector abi without actually using any spe
     bits whatsoever.  But it's close enough for now.  */
  int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
					     Tag_GNU_Power_ABI_Vector);
  if (vector_abi == 3)
    return 1;
#endif

  sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
  if (!sect)
    return 0;

  size = bfd_section_size (sect);
  contents = (gdb_byte *) xmalloc (size);
  if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
    {
      xfree (contents);
      return 0;
    }

  /* Parse the .PPC.EMB.apuinfo section.  The layout is as follows:

     struct {
       uint32 name_len;
       uint32 data_len;
       uint32 type;
       char name[name_len rounded up to 4-byte alignment];
       char data[data_len];
     };

     Technically, there's only supposed to be one such structure in a
     given apuinfo section, but the linker is not always vigilant about
     merging apuinfo sections from input files.  Just go ahead and parse
     them all, exiting early when we discover the binary uses SPE
     insns.

     It's not specified in what endianness the information in this
     section is stored.  Assume that it's the endianness of the BFD.  */
  ptr = contents;
  while (1)
    {
      unsigned int name_len;
      unsigned int data_len;
      unsigned int type;

      /* If we can't read the first three fields, we're done.  */
      if (size < 12)
	break;

      name_len = bfd_get_32 (abfd, ptr);
      name_len = (name_len + 3) & ~3U; /* Round to 4 bytes.  */
      data_len = bfd_get_32 (abfd, ptr + 4);
      type = bfd_get_32 (abfd, ptr + 8);
      ptr += 12;

      /* The name must be "APUinfo\0".  */
      if (name_len != 8
	  && strcmp ((const char *) ptr, "APUinfo") != 0)
	break;
      ptr += name_len;

      /* The type must be 2.  */
      if (type != 2)
	break;

      /* The data is stored as a series of uint32.  The upper half of
	 each uint32 indicates the particular APU used and the lower
	 half indicates the revision of that APU.  We just care about
	 the upper half.  */

      /* Not 4-byte quantities.  */
      if (data_len & 3U)
	break;

      while (data_len)
	{
	  unsigned int apuinfo = bfd_get_32 (abfd, ptr);
	  unsigned int apu = apuinfo >> 16;
	  ptr += 4;
	  data_len -= 4;

	  /* The SPE APU is 0x100; the SPEFP APU is 0x101.  Accept
	     either.  */
	  if (apu == 0x100 || apu == 0x101)
	    {
	      success = 1;
	      data_len = 0;
	    }
	}

      if (success)
	break;
    }

  xfree (contents);
  return success;
}

/* These are macros for parsing instruction fields (I.1.6.28)  */

#define PPC_FIELD(value, from, len) \
	(((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
#define PPC_SEXT(v, bs) \
	((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
	  ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
	 - ((CORE_ADDR) 1 << ((bs) - 1)))
#define PPC_OP6(insn)	PPC_FIELD (insn, 0, 6)
#define PPC_EXTOP(insn)	PPC_FIELD (insn, 21, 10)
#define PPC_RT(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_RS(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_RA(insn)	PPC_FIELD (insn, 11, 5)
#define PPC_RB(insn)	PPC_FIELD (insn, 16, 5)
#define PPC_NB(insn)	PPC_FIELD (insn, 16, 5)
#define PPC_VRT(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_FRT(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_SPR(insn)	(PPC_FIELD (insn, 11, 5) \
			| (PPC_FIELD (insn, 16, 5) << 5))
#define PPC_BO(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_T(insn)	PPC_FIELD (insn, 6, 5)
#define PPC_D(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
#define PPC_DS(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
#define PPC_DQ(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
#define PPC_BIT(insn,n)	((insn & (1 << (31 - (n)))) ? 1 : 0)
#define PPC_OE(insn)	PPC_BIT (insn, 21)
#define PPC_RC(insn)	PPC_BIT (insn, 31)
#define PPC_Rc(insn)	PPC_BIT (insn, 21)
#define PPC_LK(insn)	PPC_BIT (insn, 31)
#define PPC_TX(insn)	PPC_BIT (insn, 31)
#define PPC_LEV(insn)	PPC_FIELD (insn, 20, 7)

#define PPC_XT(insn)	((PPC_TX (insn) << 5) | PPC_T (insn))
#define PPC_XER_NB(xer)	(xer & 0x7f)

/* Record Vector-Scalar Registers.
   For VSR less than 32, it's represented by an FPR and an VSR-upper register.
   Otherwise, it's just a VR register.  Record them accordingly.  */

static int
ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
{
  if (vsr < 0 || vsr >= 64)
    return -1;

  if (vsr >= 32)
    {
      if (tdep->ppc_vr0_regnum >= 0)
	record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
    }
  else
    {
      if (tdep->ppc_fp0_regnum >= 0)
	record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
      if (tdep->ppc_vsr0_upper_regnum >= 0)
	record_full_arch_list_add_reg (regcache,
				       tdep->ppc_vsr0_upper_regnum + vsr);
    }

  return 0;
}

/* Parse and record instructions primary opcode-4 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
			CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_FIELD (insn, 21, 11);
  int vra = PPC_FIELD (insn, 11, 5);

  switch (ext & 0x3f)
    {
    case 32:		/* Vector Multiply-High-Add Signed Halfword Saturate */
    case 33:		/* Vector Multiply-High-Round-Add Signed Halfword Saturate */
    case 39:		/* Vector Multiply-Sum Unsigned Halfword Saturate */
    case 41:		/* Vector Multiply-Sum Signed Halfword Saturate */
      record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
      /* FALL-THROUGH */
    case 42:		/* Vector Select */
    case 43:		/* Vector Permute */
    case 59:		/* Vector Permute Right-indexed */
    case 44:		/* Vector Shift Left Double by Octet Immediate */
    case 45:		/* Vector Permute and Exclusive-OR */
    case 60:		/* Vector Add Extended Unsigned Quadword Modulo */
    case 61:		/* Vector Add Extended & write Carry Unsigned Quadword */
    case 62:		/* Vector Subtract Extended Unsigned Quadword Modulo */
    case 63:		/* Vector Subtract Extended & write Carry Unsigned Quadword */
    case 34:		/* Vector Multiply-Low-Add Unsigned Halfword Modulo */
    case 35:		/* Vector Multiply-Sum Unsigned Doubleword Modulo */
    case 36:		/* Vector Multiply-Sum Unsigned Byte Modulo */
    case 37:		/* Vector Multiply-Sum Mixed Byte Modulo */
    case 38:		/* Vector Multiply-Sum Unsigned Halfword Modulo */
    case 40:		/* Vector Multiply-Sum Signed Halfword Modulo */
    case 46:		/* Vector Multiply-Add Single-Precision */
    case 47:		/* Vector Negative Multiply-Subtract Single-Precision */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      return 0;

    case 48:		/* Multiply-Add High Doubleword */
    case 49:		/* Multiply-Add High Doubleword Unsigned */
    case 51:		/* Multiply-Add Low Doubleword */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;
    }

  switch ((ext & 0x1ff))
    {
    case 385:
      if (vra != 0	/* Decimal Convert To Signed Quadword */
	  && vra != 2	/* Decimal Convert From Signed Quadword */
	  && vra != 4	/* Decimal Convert To Zoned */
	  && vra != 5	/* Decimal Convert To National */
	  && vra != 6	/* Decimal Convert From Zoned */
	  && vra != 7	/* Decimal Convert From National */
	  && vra != 31)	/* Decimal Set Sign */
	break;
      /* Fall through.  */
			/* 5.16 Decimal Integer Arithmetic Instructions */
    case 1:		/* Decimal Add Modulo */
    case 65:		/* Decimal Subtract Modulo */

    case 193:		/* Decimal Shift */
    case 129:		/* Decimal Unsigned Shift */
    case 449:		/* Decimal Shift and Round */

    case 257:		/* Decimal Truncate */
    case 321:		/* Decimal Unsigned Truncate */

      /* Bit-21 should be set.  */
      if (!PPC_BIT (insn, 21))
	break;

      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;
    }

  /* Bit-21 is used for RC */
  switch (ext & 0x3ff)
    {
    case 6:		/* Vector Compare Equal To Unsigned Byte */
    case 70:		/* Vector Compare Equal To Unsigned Halfword */
    case 134:		/* Vector Compare Equal To Unsigned Word */
    case 199:		/* Vector Compare Equal To Unsigned Doubleword */
    case 774:		/* Vector Compare Greater Than Signed Byte */
    case 838:		/* Vector Compare Greater Than Signed Halfword */
    case 902:		/* Vector Compare Greater Than Signed Word */
    case 967:		/* Vector Compare Greater Than Signed Doubleword */
    case 518:		/* Vector Compare Greater Than Unsigned Byte */
    case 646:		/* Vector Compare Greater Than Unsigned Word */
    case 582:		/* Vector Compare Greater Than Unsigned Halfword */
    case 711:		/* Vector Compare Greater Than Unsigned Doubleword */
    case 966:		/* Vector Compare Bounds Single-Precision */
    case 198:		/* Vector Compare Equal To Single-Precision */
    case 454:		/* Vector Compare Greater Than or Equal To Single-Precision */
    case 710:		/* Vector Compare Greater Than Single-Precision */
    case 7:		/* Vector Compare Not Equal Byte */
    case 71:		/* Vector Compare Not Equal Halfword */
    case 135:		/* Vector Compare Not Equal Word */
    case 263:		/* Vector Compare Not Equal or Zero Byte */
    case 327:		/* Vector Compare Not Equal or Zero Halfword */
    case 391:		/* Vector Compare Not Equal or Zero Word */
      if (PPC_Rc (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      return 0;
    }

  if (ext  == 1538)
    {
      switch (vra)
	{
	case 0:		/* Vector Count Leading Zero Least-Significant Bits
			   Byte */
	case 1:		/* Vector Count Trailing Zero Least-Significant Bits
			   Byte */
	  record_full_arch_list_add_reg (regcache,
					 tdep->ppc_gp0_regnum + PPC_RT (insn));
	  return 0;

	case 6:		/* Vector Negate Word */
	case 7:		/* Vector Negate Doubleword */
	case 8:		/* Vector Parity Byte Word */
	case 9:		/* Vector Parity Byte Doubleword */
	case 10:	/* Vector Parity Byte Quadword */
	case 16:	/* Vector Extend Sign Byte To Word */
	case 17:	/* Vector Extend Sign Halfword To Word */
	case 24:	/* Vector Extend Sign Byte To Doubleword */
	case 25:	/* Vector Extend Sign Halfword To Doubleword */
	case 26:	/* Vector Extend Sign Word To Doubleword */
	case 28:	/* Vector Count Trailing Zeros Byte */
	case 29:	/* Vector Count Trailing Zeros Halfword */
	case 30:	/* Vector Count Trailing Zeros Word */
	case 31:	/* Vector Count Trailing Zeros Doubleword */
	  record_full_arch_list_add_reg (regcache,
					 tdep->ppc_vr0_regnum + PPC_VRT (insn));
	  return 0;
	}
    }

  switch (ext)
    {
    case 142:		/* Vector Pack Unsigned Halfword Unsigned Saturate */
    case 206:		/* Vector Pack Unsigned Word Unsigned Saturate */
    case 270:		/* Vector Pack Signed Halfword Unsigned Saturate */
    case 334:		/* Vector Pack Signed Word Unsigned Saturate */
    case 398:		/* Vector Pack Signed Halfword Signed Saturate */
    case 462:		/* Vector Pack Signed Word Signed Saturate */
    case 1230:		/* Vector Pack Unsigned Doubleword Unsigned Saturate */
    case 1358:		/* Vector Pack Signed Doubleword Unsigned Saturate */
    case 1486:		/* Vector Pack Signed Doubleword Signed Saturate */
    case 512:		/* Vector Add Unsigned Byte Saturate */
    case 576:		/* Vector Add Unsigned Halfword Saturate */
    case 640:		/* Vector Add Unsigned Word Saturate */
    case 768:		/* Vector Add Signed Byte Saturate */
    case 832:		/* Vector Add Signed Halfword Saturate */
    case 896:		/* Vector Add Signed Word Saturate */
    case 1536:		/* Vector Subtract Unsigned Byte Saturate */
    case 1600:		/* Vector Subtract Unsigned Halfword Saturate */
    case 1664:		/* Vector Subtract Unsigned Word Saturate */
    case 1792:		/* Vector Subtract Signed Byte Saturate */
    case 1856:		/* Vector Subtract Signed Halfword Saturate */
    case 1920:		/* Vector Subtract Signed Word Saturate */

    case 1544:		/* Vector Sum across Quarter Unsigned Byte Saturate */
    case 1800:		/* Vector Sum across Quarter Signed Byte Saturate */
    case 1608:		/* Vector Sum across Quarter Signed Halfword Saturate */
    case 1672:		/* Vector Sum across Half Signed Word Saturate */
    case 1928:		/* Vector Sum across Signed Word Saturate */
    case 970:		/* Vector Convert To Signed Fixed-Point Word Saturate */
    case 906:		/* Vector Convert To Unsigned Fixed-Point Word Saturate */
      record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
      /* FALL-THROUGH */
    case 12:		/* Vector Merge High Byte */
    case 14:		/* Vector Pack Unsigned Halfword Unsigned Modulo */
    case 76:		/* Vector Merge High Halfword */
    case 78:		/* Vector Pack Unsigned Word Unsigned Modulo */
    case 140:		/* Vector Merge High Word */
    case 268:		/* Vector Merge Low Byte */
    case 332:		/* Vector Merge Low Halfword */
    case 396:		/* Vector Merge Low Word */
    case 526:		/* Vector Unpack High Signed Byte */
    case 590:		/* Vector Unpack High Signed Halfword */
    case 654:		/* Vector Unpack Low Signed Byte */
    case 718:		/* Vector Unpack Low Signed Halfword */
    case 782:		/* Vector Pack Pixel */
    case 846:		/* Vector Unpack High Pixel */
    case 974:		/* Vector Unpack Low Pixel */
    case 1102:		/* Vector Pack Unsigned Doubleword Unsigned Modulo */
    case 1614:		/* Vector Unpack High Signed Word */
    case 1676:		/* Vector Merge Odd Word */
    case 1742:		/* Vector Unpack Low Signed Word */
    case 1932:		/* Vector Merge Even Word */
    case 524:		/* Vector Splat Byte */
    case 588:		/* Vector Splat Halfword */
    case 652:		/* Vector Splat Word */
    case 780:		/* Vector Splat Immediate Signed Byte */
    case 844:		/* Vector Splat Immediate Signed Halfword */
    case 908:		/* Vector Splat Immediate Signed Word */
    case 452:		/* Vector Shift Left */
    case 708:		/* Vector Shift Right */
    case 1036:		/* Vector Shift Left by Octet */
    case 1100:		/* Vector Shift Right by Octet */
    case 0:		/* Vector Add Unsigned Byte Modulo */
    case 64:		/* Vector Add Unsigned Halfword Modulo */
    case 128:		/* Vector Add Unsigned Word Modulo */
    case 192:		/* Vector Add Unsigned Doubleword Modulo */
    case 256:		/* Vector Add Unsigned Quadword Modulo */
    case 320:		/* Vector Add & write Carry Unsigned Quadword */
    case 384:		/* Vector Add and Write Carry-Out Unsigned Word */
    case 8:		/* Vector Multiply Odd Unsigned Byte */
    case 72:		/* Vector Multiply Odd Unsigned Halfword */
    case 136:		/* Vector Multiply Odd Unsigned Word */
    case 264:		/* Vector Multiply Odd Signed Byte */
    case 328:		/* Vector Multiply Odd Signed Halfword */
    case 392:		/* Vector Multiply Odd Signed Word */
    case 520:		/* Vector Multiply Even Unsigned Byte */
    case 584:		/* Vector Multiply Even Unsigned Halfword */
    case 648:		/* Vector Multiply Even Unsigned Word */
    case 776:		/* Vector Multiply Even Signed Byte */
    case 840:		/* Vector Multiply Even Signed Halfword */
    case 904:		/* Vector Multiply Even Signed Word */
    case 137:		/* Vector Multiply Unsigned Word Modulo */
    case 1024:		/* Vector Subtract Unsigned Byte Modulo */
    case 1088:		/* Vector Subtract Unsigned Halfword Modulo */
    case 1152:		/* Vector Subtract Unsigned Word Modulo */
    case 1216:		/* Vector Subtract Unsigned Doubleword Modulo */
    case 1280:		/* Vector Subtract Unsigned Quadword Modulo */
    case 1344:		/* Vector Subtract & write Carry Unsigned Quadword */
    case 1408:		/* Vector Subtract and Write Carry-Out Unsigned Word */
    case 1282:		/* Vector Average Signed Byte */
    case 1346:		/* Vector Average Signed Halfword */
    case 1410:		/* Vector Average Signed Word */
    case 1026:		/* Vector Average Unsigned Byte */
    case 1090:		/* Vector Average Unsigned Halfword */
    case 1154:		/* Vector Average Unsigned Word */
    case 258:		/* Vector Maximum Signed Byte */
    case 322:		/* Vector Maximum Signed Halfword */
    case 386:		/* Vector Maximum Signed Word */
    case 450:		/* Vector Maximum Signed Doubleword */
    case 2:		/* Vector Maximum Unsigned Byte */
    case 66:		/* Vector Maximum Unsigned Halfword */
    case 130:		/* Vector Maximum Unsigned Word */
    case 194:		/* Vector Maximum Unsigned Doubleword */
    case 770:		/* Vector Minimum Signed Byte */
    case 834:		/* Vector Minimum Signed Halfword */
    case 898:		/* Vector Minimum Signed Word */
    case 962:		/* Vector Minimum Signed Doubleword */
    case 514:		/* Vector Minimum Unsigned Byte */
    case 578:		/* Vector Minimum Unsigned Halfword */
    case 642:		/* Vector Minimum Unsigned Word */
    case 706:		/* Vector Minimum Unsigned Doubleword */
    case 1028:		/* Vector Logical AND */
    case 1668:		/* Vector Logical Equivalent */
    case 1092:		/* Vector Logical AND with Complement */
    case 1412:		/* Vector Logical NAND */
    case 1348:		/* Vector Logical OR with Complement */
    case 1156:		/* Vector Logical OR */
    case 1284:		/* Vector Logical NOR */
    case 1220:		/* Vector Logical XOR */
    case 4:		/* Vector Rotate Left Byte */
    case 132:		/* Vector Rotate Left Word VX-form */
    case 68:		/* Vector Rotate Left Halfword */
    case 196:		/* Vector Rotate Left Doubleword */
    case 260:		/* Vector Shift Left Byte */
    case 388:		/* Vector Shift Left Word */
    case 324:		/* Vector Shift Left Halfword */
    case 1476:		/* Vector Shift Left Doubleword */
    case 516:		/* Vector Shift Right Byte */
    case 644:		/* Vector Shift Right Word */
    case 580:		/* Vector Shift Right Halfword */
    case 1732:		/* Vector Shift Right Doubleword */
    case 772:		/* Vector Shift Right Algebraic Byte */
    case 900:		/* Vector Shift Right Algebraic Word */
    case 836:		/* Vector Shift Right Algebraic Halfword */
    case 964:		/* Vector Shift Right Algebraic Doubleword */
    case 10:		/* Vector Add Single-Precision */
    case 74:		/* Vector Subtract Single-Precision */
    case 1034:		/* Vector Maximum Single-Precision */
    case 1098:		/* Vector Minimum Single-Precision */
    case 842:		/* Vector Convert From Signed Fixed-Point Word */
    case 778:		/* Vector Convert From Unsigned Fixed-Point Word */
    case 714:		/* Vector Round to Single-Precision Integer toward -Infinity */
    case 522:		/* Vector Round to Single-Precision Integer Nearest */
    case 650:		/* Vector Round to Single-Precision Integer toward +Infinity */
    case 586:		/* Vector Round to Single-Precision Integer toward Zero */
    case 394:		/* Vector 2 Raised to the Exponent Estimate Floating-Point */
    case 458:		/* Vector Log Base 2 Estimate Floating-Point */
    case 266:		/* Vector Reciprocal Estimate Single-Precision */
    case 330:		/* Vector Reciprocal Square Root Estimate Single-Precision */
    case 1288:		/* Vector AES Cipher */
    case 1289:		/* Vector AES Cipher Last */
    case 1352:		/* Vector AES Inverse Cipher */
    case 1353:		/* Vector AES Inverse Cipher Last */
    case 1480:		/* Vector AES SubBytes */
    case 1730:		/* Vector SHA-512 Sigma Doubleword */
    case 1666:		/* Vector SHA-256 Sigma Word */
    case 1032:		/* Vector Polynomial Multiply-Sum Byte */
    case 1160:		/* Vector Polynomial Multiply-Sum Word */
    case 1096:		/* Vector Polynomial Multiply-Sum Halfword */
    case 1224:		/* Vector Polynomial Multiply-Sum Doubleword */
    case 1292:		/* Vector Gather Bits by Bytes by Doubleword */
    case 1794:		/* Vector Count Leading Zeros Byte */
    case 1858:		/* Vector Count Leading Zeros Halfword */
    case 1922:		/* Vector Count Leading Zeros Word */
    case 1986:		/* Vector Count Leading Zeros Doubleword */
    case 1795:		/* Vector Population Count Byte */
    case 1859:		/* Vector Population Count Halfword */
    case 1923:		/* Vector Population Count Word */
    case 1987:		/* Vector Population Count Doubleword */
    case 1356:		/* Vector Bit Permute Quadword */
    case 1484:		/* Vector Bit Permute Doubleword */
    case 513:		/* Vector Multiply-by-10 Unsigned Quadword */
    case 1:		/* Vector Multiply-by-10 & write Carry Unsigned
			   Quadword */
    case 577:		/* Vector Multiply-by-10 Extended Unsigned Quadword */
    case 65:		/* Vector Multiply-by-10 Extended & write Carry
			   Unsigned Quadword */
    case 1027:		/* Vector Absolute Difference Unsigned Byte */
    case 1091:		/* Vector Absolute Difference Unsigned Halfword */
    case 1155:		/* Vector Absolute Difference Unsigned Word */
    case 1796:		/* Vector Shift Right Variable */
    case 1860:		/* Vector Shift Left Variable */
    case 133:		/* Vector Rotate Left Word then Mask Insert */
    case 197:		/* Vector Rotate Left Doubleword then Mask Insert */
    case 389:		/* Vector Rotate Left Word then AND with Mask */
    case 453:		/* Vector Rotate Left Doubleword then AND with Mask */
    case 525:		/* Vector Extract Unsigned Byte */
    case 589:		/* Vector Extract Unsigned Halfword */
    case 653:		/* Vector Extract Unsigned Word */
    case 717:		/* Vector Extract Doubleword */
    case 781:		/* Vector Insert Byte */
    case 845:		/* Vector Insert Halfword */
    case 909:		/* Vector Insert Word */
    case 973:		/* Vector Insert Doubleword */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      return 0;

    case 1549:		/* Vector Extract Unsigned Byte Left-Indexed */
    case 1613:		/* Vector Extract Unsigned Halfword Left-Indexed */
    case 1677:		/* Vector Extract Unsigned Word Left-Indexed */
    case 1805:		/* Vector Extract Unsigned Byte Right-Indexed */
    case 1869:		/* Vector Extract Unsigned Halfword Right-Indexed */
    case 1933:		/* Vector Extract Unsigned Word Right-Indexed */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;

    case 1604:		/* Move To Vector Status and Control Register */
      record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
      return 0;
    case 1540:		/* Move From Vector Status and Control Register */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      return 0;
    case 833:		/* Decimal Copy Sign */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse and record instructions of primary opcode-19 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_EXTOP (insn);

  switch (ext & 0x01f)
    {
    case 2:		/* Add PC Immediate Shifted */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;
    }

  switch (ext)
    {
    case 0:		/* Move Condition Register Field */
    case 33:		/* Condition Register NOR */
    case 129:		/* Condition Register AND with Complement */
    case 193:		/* Condition Register XOR */
    case 225:		/* Condition Register NAND */
    case 257:		/* Condition Register AND */
    case 289:		/* Condition Register Equivalent */
    case 417:		/* Condition Register OR with Complement */
    case 449:		/* Condition Register OR */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 16:		/* Branch Conditional */
    case 560:		/* Branch Conditional to Branch Target Address Register */
      if ((PPC_BO (insn) & 0x4) == 0)
	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
      /* FALL-THROUGH */
    case 528:		/* Branch Conditional to Count Register */
      if (PPC_LK (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
      return 0;

    case 150:		/* Instruction Synchronize */
      /* Do nothing.  */
      return 0;
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse and record instructions of primary opcode-31 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_EXTOP (insn);
  int tmp, nr, nb, i;
  CORE_ADDR at_dcsz, ea = 0;
  ULONGEST rb, ra, xer;
  int size = 0;

  /* These instructions have OE bit.  */
  switch (ext & 0x1ff)
    {
    /* These write RT and XER.  Update CR if RC is set.  */
    case 8:		/* Subtract from carrying */
    case 10:		/* Add carrying */
    case 136:		/* Subtract from extended */
    case 138:		/* Add extended */
    case 200:		/* Subtract from zero extended */
    case 202:		/* Add to zero extended */
    case 232:		/* Subtract from minus one extended */
    case 234:		/* Add to minus one extended */
      /* CA is always altered, but SO/OV are only altered when OE=1.
	 In any case, XER is always altered.  */
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;

    /* These write RT.  Update CR if RC is set and update XER if OE is set.  */
    case 40:		/* Subtract from */
    case 104:		/* Negate */
    case 233:		/* Multiply low doubleword */
    case 235:		/* Multiply low word */
    case 266:		/* Add */
    case 393:		/* Divide Doubleword Extended Unsigned */
    case 395:		/* Divide Word Extended Unsigned */
    case 425:		/* Divide Doubleword Extended */
    case 427:		/* Divide Word Extended */
    case 457:		/* Divide Doubleword Unsigned */
    case 459:		/* Divide Word Unsigned */
    case 489:		/* Divide Doubleword */
    case 491:		/* Divide Word */
      if (PPC_OE (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      /* FALL-THROUGH */
    case 9:		/* Multiply High Doubleword Unsigned */
    case 11:		/* Multiply High Word Unsigned */
    case 73:		/* Multiply High Doubleword */
    case 75:		/* Multiply High Word */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;
    }

  if ((ext & 0x1f) == 15)
    {
      /* Integer Select. bit[16:20] is used for BC.  */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;
    }

  if ((ext & 0xff) == 170)
    {
      /* Add Extended using alternate carry bits */
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;
    }

  switch (ext)
    {
    case 78:		/* Determine Leftmost Zero Byte */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;

    /* These only write RT.  */
    case 19:		/* Move from condition register */
			/* Move From One Condition Register Field */
    case 74:		/* Add and Generate Sixes */
    case 74 | 0x200:	/* Add and Generate Sixes (bit-21 dont-care) */
    case 302:		/* Move From Branch History Rolling Buffer */
    case 339:		/* Move From Special Purpose Register */
    case 371:		/* Move From Time Base [Phased-Out]  */
    case 309:		/* Load Doubleword Monitored Indexed  */
    case 128:		/* Set Boolean */
    case 755:		/* Deliver A Random Number */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;

    /* These only write to RA.  */
    case 51:		/* Move From VSR Doubleword */
    case 115:		/* Move From VSR Word and Zero */
    case 122:		/* Population count bytes */
    case 378:		/* Population count words */
    case 506:		/* Population count doublewords */
    case 154:		/* Parity Word */
    case 186:		/* Parity Doubleword */
    case 252:		/* Bit Permute Doubleword */
    case 282:		/* Convert Declets To Binary Coded Decimal */
    case 314:		/* Convert Binary Coded Decimal To Declets */
    case 508:		/* Compare bytes */
    case 307:		/* Move From VSR Lower Doubleword */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      return 0;

    /* These write CR and optional RA.  */
    case 792:		/* Shift Right Algebraic Word */
    case 794:		/* Shift Right Algebraic Doubleword */
    case 824:		/* Shift Right Algebraic Word Immediate */
    case 826:		/* Shift Right Algebraic Doubleword Immediate (413) */
    case 826 | 1:	/* Shift Right Algebraic Doubleword Immediate (413) */
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 0:		/* Compare */
    case 32:		/* Compare logical */
    case 144:		/* Move To Condition Register Fields */
			/* Move To One Condition Register Field */
    case 192:		/* Compare Ranged Byte */
    case 224:		/* Compare Equal Byte */
    case 576:		/* Move XER to CR Extended */
    case 902:		/* Paste (should always fail due to single-stepping and
			   the memory location might not be accessible, so
			   record only CR) */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    /* These write to RT.  Update RA if 'update indexed.'  */
    case 53:		/* Load Doubleword with Update Indexed */
    case 119:		/* Load Byte and Zero with Update Indexed */
    case 311:		/* Load Halfword and Zero with Update Indexed */
    case 55:		/* Load Word and Zero with Update Indexed */
    case 375:		/* Load Halfword Algebraic with Update Indexed */
    case 373:		/* Load Word Algebraic with Update Indexed */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 21:		/* Load Doubleword Indexed */
    case 52:		/* Load Byte And Reserve Indexed */
    case 116:		/* Load Halfword And Reserve Indexed */
    case 20:		/* Load Word And Reserve Indexed */
    case 84:		/* Load Doubleword And Reserve Indexed */
    case 87:		/* Load Byte and Zero Indexed */
    case 279:		/* Load Halfword and Zero Indexed */
    case 23:		/* Load Word and Zero Indexed */
    case 343:		/* Load Halfword Algebraic Indexed */
    case 341:		/* Load Word Algebraic Indexed */
    case 790:		/* Load Halfword Byte-Reverse Indexed */
    case 534:		/* Load Word Byte-Reverse Indexed */
    case 532:		/* Load Doubleword Byte-Reverse Indexed */
    case 582:		/* Load Word Atomic */
    case 614:		/* Load Doubleword Atomic */
    case 265:		/* Modulo Unsigned Doubleword */
    case 777:		/* Modulo Signed Doubleword */
    case 267:		/* Modulo Unsigned Word */
    case 779:		/* Modulo Signed Word */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      return 0;

    case 597:		/* Load String Word Immediate */
    case 533:		/* Load String Word Indexed */
      if (ext == 597)
	{
	nr = PPC_NB (insn);
	if (nr == 0)
	  nr = 32;
	}
      else
	{
	  regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
	  nr = PPC_XER_NB (xer);
	}

      nr = (nr + 3) >> 2;

      /* If n=0, the contents of register RT are undefined.  */
      if (nr == 0)
	nr = 1;

      for (i = 0; i < nr; i++)
	record_full_arch_list_add_reg (regcache,
				       tdep->ppc_gp0_regnum
				       + ((PPC_RT (insn) + i) & 0x1f));
      return 0;

    case 276:		/* Load Quadword And Reserve Indexed */
      tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
      record_full_arch_list_add_reg (regcache, tmp);
      record_full_arch_list_add_reg (regcache, tmp + 1);
      return 0;

    /* These write VRT.  */
    case 6:		/* Load Vector for Shift Left Indexed */
    case 38:		/* Load Vector for Shift Right Indexed */
    case 7:		/* Load Vector Element Byte Indexed */
    case 39:		/* Load Vector Element Halfword Indexed */
    case 71:		/* Load Vector Element Word Indexed */
    case 103:		/* Load Vector Indexed */
    case 359:		/* Load Vector Indexed LRU */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
      return 0;

    /* These write FRT.  Update RA if 'update indexed.'  */
    case 567:		/* Load Floating-Point Single with Update Indexed */
    case 631:		/* Load Floating-Point Double with Update Indexed */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 535:		/* Load Floating-Point Single Indexed */
    case 599:		/* Load Floating-Point Double Indexed */
    case 855:		/* Load Floating-Point as Integer Word Algebraic Indexed */
    case 887:		/* Load Floating-Point as Integer Word and Zero Indexed */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      return 0;

    case 791:		/* Load Floating-Point Double Pair Indexed */
      tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
      record_full_arch_list_add_reg (regcache, tmp);
      record_full_arch_list_add_reg (regcache, tmp + 1);
      return 0;

    case 179:		/* Move To VSR Doubleword */
    case 211:		/* Move To VSR Word Algebraic */
    case 243:		/* Move To VSR Word and Zero */
    case 588:		/* Load VSX Scalar Doubleword Indexed */
    case 524:		/* Load VSX Scalar Single-Precision Indexed */
    case 76:		/* Load VSX Scalar as Integer Word Algebraic Indexed */
    case 12:		/* Load VSX Scalar as Integer Word and Zero Indexed */
    case 844:		/* Load VSX Vector Doubleword*2 Indexed */
    case 332:		/* Load VSX Vector Doubleword & Splat Indexed */
    case 780:		/* Load VSX Vector Word*4 Indexed */
    case 268:		/* Load VSX Vector Indexed */
    case 364:		/* Load VSX Vector Word & Splat Indexed */
    case 812:		/* Load VSX Vector Halfword*8 Indexed */
    case 876:		/* Load VSX Vector Byte*16 Indexed */
    case 269:		/* Load VSX Vector with Length */
    case 301:		/* Load VSX Vector Left-justified with Length */
    case 781:		/* Load VSX Scalar as Integer Byte & Zero Indexed */
    case 813:		/* Load VSX Scalar as Integer Halfword & Zero Indexed */
    case 403:		/* Move To VSR Word & Splat */
    case 435:		/* Move To VSR Double Doubleword */
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;

    /* These write RA.  Update CR if RC is set.  */
    case 24:		/* Shift Left Word */
    case 26:		/* Count Leading Zeros Word */
    case 27:		/* Shift Left Doubleword */
    case 28:		/* AND */
    case 58:		/* Count Leading Zeros Doubleword */
    case 60:		/* AND with Complement */
    case 124:		/* NOR */
    case 284:		/* Equivalent */
    case 316:		/* XOR */
    case 476:		/* NAND */
    case 412:		/* OR with Complement */
    case 444:		/* OR */
    case 536:		/* Shift Right Word */
    case 539:		/* Shift Right Doubleword */
    case 922:		/* Extend Sign Halfword */
    case 954:		/* Extend Sign Byte */
    case 986:		/* Extend Sign Word */
    case 538:		/* Count Trailing Zeros Word */
    case 570:		/* Count Trailing Zeros Doubleword */
    case 890:		/* Extend-Sign Word and Shift Left Immediate (445) */
    case 890 | 1:	/* Extend-Sign Word and Shift Left Immediate (445) */

      if (ext == 444 && tdep->ppc_ppr_regnum >= 0
	  && (PPC_RS (insn) == PPC_RA (insn))
	  && (PPC_RA (insn) == PPC_RB (insn))
	  && !PPC_RC (insn))
	{
	  /* or Rx,Rx,Rx alters PRI in PPR.  */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
	  return 0;
	}

      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      return 0;

    /* Store memory.  */
    case 181:		/* Store Doubleword with Update Indexed */
    case 183:		/* Store Word with Update Indexed */
    case 247:		/* Store Byte with Update Indexed */
    case 439:		/* Store Half Word with Update Indexed */
    case 695:		/* Store Floating-Point Single with Update Indexed */
    case 759:		/* Store Floating-Point Double with Update Indexed */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 135:		/* Store Vector Element Byte Indexed */
    case 167:		/* Store Vector Element Halfword Indexed */
    case 199:		/* Store Vector Element Word Indexed */
    case 231:		/* Store Vector Indexed */
    case 487:		/* Store Vector Indexed LRU */
    case 716:		/* Store VSX Scalar Doubleword Indexed */
    case 140:		/* Store VSX Scalar as Integer Word Indexed */
    case 652:		/* Store VSX Scalar Single-Precision Indexed */
    case 972:		/* Store VSX Vector Doubleword*2 Indexed */
    case 908:		/* Store VSX Vector Word*4 Indexed */
    case 149:		/* Store Doubleword Indexed */
    case 151:		/* Store Word Indexed */
    case 215:		/* Store Byte Indexed */
    case 407:		/* Store Half Word Indexed */
    case 694:		/* Store Byte Conditional Indexed */
    case 726:		/* Store Halfword Conditional Indexed */
    case 150:		/* Store Word Conditional Indexed */
    case 214:		/* Store Doubleword Conditional Indexed */
    case 182:		/* Store Quadword Conditional Indexed */
    case 662:		/* Store Word Byte-Reverse Indexed */
    case 918:		/* Store Halfword Byte-Reverse Indexed */
    case 660:		/* Store Doubleword Byte-Reverse Indexed */
    case 663:		/* Store Floating-Point Single Indexed */
    case 727:		/* Store Floating-Point Double Indexed */
    case 919:		/* Store Floating-Point Double Pair Indexed */
    case 983:		/* Store Floating-Point as Integer Word Indexed */
    case 396:		/* Store VSX Vector Indexed */
    case 940:		/* Store VSX Vector Halfword*8 Indexed */
    case 1004:		/* Store VSX Vector Byte*16 Indexed */
    case 909:		/* Store VSX Scalar as Integer Byte Indexed */
    case 941:		/* Store VSX Scalar as Integer Halfword Indexed */
      if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);

      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      regcache_raw_read_unsigned (regcache,
				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
      ea = ra + rb;

      switch (ext)
	{
	case 183:	/* Store Word with Update Indexed */
	case 199:	/* Store Vector Element Word Indexed */
	case 140:	/* Store VSX Scalar as Integer Word Indexed */
	case 652:	/* Store VSX Scalar Single-Precision Indexed */
	case 151:	/* Store Word Indexed */
	case 150:	/* Store Word Conditional Indexed */
	case 662:	/* Store Word Byte-Reverse Indexed */
	case 663:	/* Store Floating-Point Single Indexed */
	case 695:	/* Store Floating-Point Single with Update Indexed */
	case 983:	/* Store Floating-Point as Integer Word Indexed */
	  size = 4;
	  break;
	case 247:	/* Store Byte with Update Indexed */
	case 135:	/* Store Vector Element Byte Indexed */
	case 215:	/* Store Byte Indexed */
	case 694:	/* Store Byte Conditional Indexed */
	case 909:	/* Store VSX Scalar as Integer Byte Indexed */
	  size = 1;
	  break;
	case 439:	/* Store Halfword with Update Indexed */
	case 167:	/* Store Vector Element Halfword Indexed */
	case 407:	/* Store Halfword Indexed */
	case 726:	/* Store Halfword Conditional Indexed */
	case 918:	/* Store Halfword Byte-Reverse Indexed */
	case 941:	/* Store VSX Scalar as Integer Halfword Indexed */
	  size = 2;
	  break;
	case 181:	/* Store Doubleword with Update Indexed */
	case 716:	/* Store VSX Scalar Doubleword Indexed */
	case 149:	/* Store Doubleword Indexed */
	case 214:	/* Store Doubleword Conditional Indexed */
	case 660:	/* Store Doubleword Byte-Reverse Indexed */
	case 727:	/* Store Floating-Point Double Indexed */
	case 759:	/* Store Floating-Point Double with Update Indexed */
	  size = 8;
	  break;
	case 972:	/* Store VSX Vector Doubleword*2 Indexed */
	case 908:	/* Store VSX Vector Word*4 Indexed */
	case 182:	/* Store Quadword Conditional Indexed */
	case 231:	/* Store Vector Indexed */
	case 487:	/* Store Vector Indexed LRU */
	case 919:	/* Store Floating-Point Double Pair Indexed */
	case 396:	/* Store VSX Vector Indexed */
	case 940:	/* Store VSX Vector Halfword*8 Indexed */
	case 1004:	/* Store VSX Vector Byte*16 Indexed */
	  size = 16;
	  break;
	default:
	  gdb_assert (0);
	}

      /* Align address for Store Vector instructions.  */
      switch (ext)
	{
	case 167:	/* Store Vector Element Halfword Indexed */
	  addr = addr & ~0x1ULL;
	  break;

	case 199:	/* Store Vector Element Word Indexed */
	  addr = addr & ~0x3ULL;
	  break;

	case 231:	/* Store Vector Indexed */
	case 487:	/* Store Vector Indexed LRU */
	  addr = addr & ~0xfULL;
	  break;
	}

      record_full_arch_list_add_mem (addr, size);
      return 0;

    case 397:		/* Store VSX Vector with Length */
    case 429:		/* Store VSX Vector Left-justified with Length */
      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      ea = ra;
      regcache_raw_read_unsigned (regcache,
				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
      /* Store up to 16 bytes.  */
      nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
      if (nb > 0)
	record_full_arch_list_add_mem (ea, nb);
      return 0;

    case 710:		/* Store Word Atomic */
    case 742:		/* Store Doubleword Atomic */
      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      ea = ra;
      switch (ext)
	{
	case 710:	/* Store Word Atomic */
	  size = 8;
	  break;
	case 742:	/* Store Doubleword Atomic */
	  size = 16;
	  break;
	default:
	  gdb_assert (0);
	}
      record_full_arch_list_add_mem (ea, size);
      return 0;

    case 725:		/* Store String Word Immediate */
      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      ea += ra;

      nb = PPC_NB (insn);
      if (nb == 0)
	nb = 32;

      record_full_arch_list_add_mem (ea, nb);

      return 0;

    case 661:		/* Store String Word Indexed */
      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      ea += ra;

      regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
      nb = PPC_XER_NB (xer);

      if (nb != 0)
	{
	  regcache_raw_read_unsigned (regcache,
				      tdep->ppc_gp0_regnum + PPC_RB (insn),
				      &rb);
	  ea += rb;
	  record_full_arch_list_add_mem (ea, nb);
	}

      return 0;

    case 467:		/* Move To Special Purpose Register */
      switch (PPC_SPR (insn))
	{
	case 1:			/* XER */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
	  return 0;
	case 3:			/* DSCR */
	  if (tdep->ppc_dscr_regnum >= 0)
	    record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
	  return 0;
	case 8:			/* LR */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
	  return 0;
	case 9:			/* CTR */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
	  return 0;
	case 256:		/* VRSAVE */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
	  return 0;
	case 815:		/* TAR */
	  if (tdep->ppc_tar_regnum >= 0)
	    record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
	  return 0;
	case 896:
	case 898:		/* PPR */
	  if (tdep->ppc_ppr_regnum >= 0)
	    record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
	  return 0;
	}

      goto UNKNOWN_OP;

    case 147:		/* Move To Split Little Endian */
      record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
      return 0;

    case 512:		/* Move to Condition Register from XER */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      return 0;

    case 4:		/* Trap Word */
    case 68:		/* Trap Doubleword */
    case 430:		/* Clear BHRB */
    case 598:		/* Synchronize */
    case 62:		/* Wait for Interrupt */
    case 30:		/* Wait */
    case 22:		/* Instruction Cache Block Touch */
    case 854:		/* Enforce In-order Execution of I/O */
    case 246:		/* Data Cache Block Touch for Store */
    case 54:		/* Data Cache Block Store */
    case 86:		/* Data Cache Block Flush */
    case 278:		/* Data Cache Block Touch */
    case 758:		/* Data Cache Block Allocate */
    case 982:		/* Instruction Cache Block Invalidate */
    case 774:		/* Copy */
    case 838:		/* CP_Abort */
      return 0;

    case 654:		/* Transaction Begin */
    case 686:		/* Transaction End */
    case 750:		/* Transaction Suspend or Resume */
    case 782:		/* Transaction Abort Word Conditional */
    case 814:		/* Transaction Abort Doubleword Conditional */
    case 846:		/* Transaction Abort Word Conditional Immediate */
    case 878:		/* Transaction Abort Doubleword Conditional Immediate */
    case 910:		/* Transaction Abort */
      record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
      /* FALL-THROUGH */
    case 718:		/* Transaction Check */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 1014:		/* Data Cache Block set to Zero */
      if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
	  || at_dcsz == 0)
	at_dcsz = 128; /* Assume 128-byte cache line size (POWER8)  */

      ra = 0;
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
      regcache_raw_read_unsigned (regcache,
				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
      ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
      record_full_arch_list_add_mem (ea, at_dcsz);
      return 0;
    }

UNKNOWN_OP:
  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse and record instructions of primary opcode-59 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_EXTOP (insn);

  switch (ext & 0x1f)
    {
    case 18:		/* Floating Divide */
    case 20:		/* Floating Subtract */
    case 21:		/* Floating Add */
    case 22:		/* Floating Square Root */
    case 24:		/* Floating Reciprocal Estimate */
    case 25:		/* Floating Multiply */
    case 26:		/* Floating Reciprocal Square Root Estimate */
    case 28:		/* Floating Multiply-Subtract */
    case 29:		/* Floating Multiply-Add */
    case 30:		/* Floating Negative Multiply-Subtract */
    case 31:		/* Floating Negative Multiply-Add */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);

      return 0;
    }

  switch (ext)
    {
    case 2:		/* DFP Add */
    case 3:		/* DFP Quantize */
    case 34:		/* DFP Multiply */
    case 35:		/* DFP Reround */
    case 67:		/* DFP Quantize Immediate */
    case 99:		/* DFP Round To FP Integer With Inexact */
    case 227:		/* DFP Round To FP Integer Without Inexact */
    case 258:		/* DFP Convert To DFP Long! */
    case 290:		/* DFP Convert To Fixed */
    case 514:		/* DFP Subtract */
    case 546:		/* DFP Divide */
    case 770:		/* DFP Round To DFP Short! */
    case 802:		/* DFP Convert From Fixed */
    case 834:		/* DFP Encode BCD To DPD */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 130:		/* DFP Compare Ordered */
    case 162:		/* DFP Test Exponent */
    case 194:		/* DFP Test Data Class */
    case 226:		/* DFP Test Data Group */
    case 642:		/* DFP Compare Unordered */
    case 674:		/* DFP Test Significance */
    case 675:		/* DFP Test Significance Immediate */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 66:		/* DFP Shift Significand Left Immediate */
    case 98:		/* DFP Shift Significand Right Immediate */
    case 322:		/* DFP Decode DPD To BCD */
    case 354:		/* DFP Extract Biased Exponent */
    case 866:		/* DFP Insert Biased Exponent */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 846:		/* Floating Convert From Integer Doubleword Single */
    case 974:		/* Floating Convert From Integer Doubleword Unsigned
			   Single */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);

      return 0;
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse and record instructions of primary opcode-60 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_EXTOP (insn);

  switch (ext >> 2)
    {
    case 0:		/* VSX Scalar Add Single-Precision */
    case 32:		/* VSX Scalar Add Double-Precision */
    case 24:		/* VSX Scalar Divide Single-Precision */
    case 56:		/* VSX Scalar Divide Double-Precision */
    case 176:		/* VSX Scalar Copy Sign Double-Precision */
    case 33:		/* VSX Scalar Multiply-Add Double-Precision */
    case 41:		/* ditto */
    case 1:		/* VSX Scalar Multiply-Add Single-Precision */
    case 9:		/* ditto */
    case 160:		/* VSX Scalar Maximum Double-Precision */
    case 168:		/* VSX Scalar Minimum Double-Precision */
    case 49:		/* VSX Scalar Multiply-Subtract Double-Precision */
    case 57:		/* ditto */
    case 17:		/* VSX Scalar Multiply-Subtract Single-Precision */
    case 25:		/* ditto */
    case 48:		/* VSX Scalar Multiply Double-Precision */
    case 16:		/* VSX Scalar Multiply Single-Precision */
    case 161:		/* VSX Scalar Negative Multiply-Add Double-Precision */
    case 169:		/* ditto */
    case 129:		/* VSX Scalar Negative Multiply-Add Single-Precision */
    case 137:		/* ditto */
    case 177:		/* VSX Scalar Negative Multiply-Subtract Double-Precision */
    case 185:		/* ditto */
    case 145:		/* VSX Scalar Negative Multiply-Subtract Single-Precision */
    case 153:		/* ditto */
    case 40:		/* VSX Scalar Subtract Double-Precision */
    case 8:		/* VSX Scalar Subtract Single-Precision */
    case 96:		/* VSX Vector Add Double-Precision */
    case 64:		/* VSX Vector Add Single-Precision */
    case 120:		/* VSX Vector Divide Double-Precision */
    case 88:		/* VSX Vector Divide Single-Precision */
    case 97:		/* VSX Vector Multiply-Add Double-Precision */
    case 105:		/* ditto */
    case 65:		/* VSX Vector Multiply-Add Single-Precision */
    case 73:		/* ditto */
    case 224:		/* VSX Vector Maximum Double-Precision */
    case 192:		/* VSX Vector Maximum Single-Precision */
    case 232:		/* VSX Vector Minimum Double-Precision */
    case 200:		/* VSX Vector Minimum Single-Precision */
    case 113:		/* VSX Vector Multiply-Subtract Double-Precision */
    case 121:		/* ditto */
    case 81:		/* VSX Vector Multiply-Subtract Single-Precision */
    case 89:		/* ditto */
    case 112:		/* VSX Vector Multiply Double-Precision */
    case 80:		/* VSX Vector Multiply Single-Precision */
    case 225:		/* VSX Vector Negative Multiply-Add Double-Precision */
    case 233:		/* ditto */
    case 193:		/* VSX Vector Negative Multiply-Add Single-Precision */
    case 201:		/* ditto */
    case 241:		/* VSX Vector Negative Multiply-Subtract Double-Precision */
    case 249:		/* ditto */
    case 209:		/* VSX Vector Negative Multiply-Subtract Single-Precision */
    case 217:		/* ditto */
    case 104:		/* VSX Vector Subtract Double-Precision */
    case 72:		/* VSX Vector Subtract Single-Precision */
    case 128:		/* VSX Scalar Maximum Type-C Double-Precision */
    case 136:		/* VSX Scalar Minimum Type-C Double-Precision */
    case 144:		/* VSX Scalar Maximum Type-J Double-Precision */
    case 152:		/* VSX Scalar Minimum Type-J Double-Precision */
    case 3:		/* VSX Scalar Compare Equal Double-Precision */
    case 11:		/* VSX Scalar Compare Greater Than Double-Precision */
    case 19:		/* VSX Scalar Compare Greater Than or Equal
			   Double-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      /* FALL-THROUGH */
    case 240:		/* VSX Vector Copy Sign Double-Precision */
    case 208:		/* VSX Vector Copy Sign Single-Precision */
    case 130:		/* VSX Logical AND */
    case 138:		/* VSX Logical AND with Complement */
    case 186:		/* VSX Logical Equivalence */
    case 178:		/* VSX Logical NAND */
    case 170:		/* VSX Logical OR with Complement */
    case 162:		/* VSX Logical NOR */
    case 146:		/* VSX Logical OR */
    case 154:		/* VSX Logical XOR */
    case 18:		/* VSX Merge High Word */
    case 50:		/* VSX Merge Low Word */
    case 10:		/* VSX Permute Doubleword Immediate (DM=0) */
    case 10 | 0x20:	/* VSX Permute Doubleword Immediate (DM=1) */
    case 10 | 0x40:	/* VSX Permute Doubleword Immediate (DM=2) */
    case 10 | 0x60:	/* VSX Permute Doubleword Immediate (DM=3) */
    case 2:		/* VSX Shift Left Double by Word Immediate (SHW=0) */
    case 2 | 0x20:	/* VSX Shift Left Double by Word Immediate (SHW=1) */
    case 2 | 0x40:	/* VSX Shift Left Double by Word Immediate (SHW=2) */
    case 2 | 0x60:	/* VSX Shift Left Double by Word Immediate (SHW=3) */
    case 216:		/* VSX Vector Insert Exponent Single-Precision */
    case 248:		/* VSX Vector Insert Exponent Double-Precision */
    case 26:		/* VSX Vector Permute */
    case 58:		/* VSX Vector Permute Right-indexed */
    case 213:		/* VSX Vector Test Data Class Single-Precision (DC=0) */
    case 213 | 0x8:	/* VSX Vector Test Data Class Single-Precision (DC=1) */
    case 245:		/* VSX Vector Test Data Class Double-Precision (DC=0) */
    case 245 | 0x8:	/* VSX Vector Test Data Class Double-Precision (DC=1) */
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;

    case 61:		/* VSX Scalar Test for software Divide Double-Precision */
    case 125:		/* VSX Vector Test for software Divide Double-Precision */
    case 93:		/* VSX Vector Test for software Divide Single-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 35:		/* VSX Scalar Compare Unordered Double-Precision */
    case 43:		/* VSX Scalar Compare Ordered Double-Precision */
    case 59:		/* VSX Scalar Compare Exponents Double-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;
    }

  switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit.  */
    {
    case 99:		/* VSX Vector Compare Equal To Double-Precision */
    case 67:		/* VSX Vector Compare Equal To Single-Precision */
    case 115:		/* VSX Vector Compare Greater Than or
			   Equal To Double-Precision */
    case 83:		/* VSX Vector Compare Greater Than or
			   Equal To Single-Precision */
    case 107:		/* VSX Vector Compare Greater Than Double-Precision */
    case 75:		/* VSX Vector Compare Greater Than Single-Precision */
      if (PPC_Rc (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;
    }

  switch (ext >> 1)
    {
    case 265:		/* VSX Scalar round Double-Precision to
			   Single-Precision and Convert to
			   Single-Precision format */
    case 344:		/* VSX Scalar truncate Double-Precision to
			   Integer and Convert to Signed Integer
			   Doubleword format with Saturate */
    case 88:		/* VSX Scalar truncate Double-Precision to
			   Integer and Convert to Signed Integer Word
			   Format with Saturate */
    case 328:		/* VSX Scalar truncate Double-Precision integer
			   and Convert to Unsigned Integer Doubleword
			   Format with Saturate */
    case 72:		/* VSX Scalar truncate Double-Precision to
			   Integer and Convert to Unsigned Integer Word
			   Format with Saturate */
    case 329:		/* VSX Scalar Convert Single-Precision to
			   Double-Precision format */
    case 376:		/* VSX Scalar Convert Signed Integer
			   Doubleword to floating-point format and
			   Round to Double-Precision format */
    case 312:		/* VSX Scalar Convert Signed Integer
			   Doubleword to floating-point format and
			   round to Single-Precision */
    case 360:		/* VSX Scalar Convert Unsigned Integer
			   Doubleword to floating-point format and
			   Round to Double-Precision format */
    case 296:		/* VSX Scalar Convert Unsigned Integer
			   Doubleword to floating-point format and
			   Round to Single-Precision */
    case 73:		/* VSX Scalar Round to Double-Precision Integer
			   Using Round to Nearest Away */
    case 107:		/* VSX Scalar Round to Double-Precision Integer
			   Exact using Current rounding mode */
    case 121:		/* VSX Scalar Round to Double-Precision Integer
			   Using Round toward -Infinity */
    case 105:		/* VSX Scalar Round to Double-Precision Integer
			   Using Round toward +Infinity */
    case 89:		/* VSX Scalar Round to Double-Precision Integer
			   Using Round toward Zero */
    case 90:		/* VSX Scalar Reciprocal Estimate Double-Precision */
    case 26:		/* VSX Scalar Reciprocal Estimate Single-Precision */
    case 281:		/* VSX Scalar Round to Single-Precision */
    case 74:		/* VSX Scalar Reciprocal Square Root Estimate
			   Double-Precision */
    case 10:		/* VSX Scalar Reciprocal Square Root Estimate
			   Single-Precision */
    case 75:		/* VSX Scalar Square Root Double-Precision */
    case 11:		/* VSX Scalar Square Root Single-Precision */
    case 393:		/* VSX Vector round Double-Precision to
			   Single-Precision and Convert to
			   Single-Precision format */
    case 472:		/* VSX Vector truncate Double-Precision to
			   Integer and Convert to Signed Integer
			   Doubleword format with Saturate */
    case 216:		/* VSX Vector truncate Double-Precision to
			   Integer and Convert to Signed Integer Word
			   Format with Saturate */
    case 456:		/* VSX Vector truncate Double-Precision to
			   Integer and Convert to Unsigned Integer
			   Doubleword format with Saturate */
    case 200:		/* VSX Vector truncate Double-Precision to
			   Integer and Convert to Unsigned Integer Word
			   Format with Saturate */
    case 457:		/* VSX Vector Convert Single-Precision to
			   Double-Precision format */
    case 408:		/* VSX Vector truncate Single-Precision to
			   Integer and Convert to Signed Integer
			   Doubleword format with Saturate */
    case 152:		/* VSX Vector truncate Single-Precision to
			   Integer and Convert to Signed Integer Word
			   Format with Saturate */
    case 392:		/* VSX Vector truncate Single-Precision to
			   Integer and Convert to Unsigned Integer
			   Doubleword format with Saturate */
    case 136:		/* VSX Vector truncate Single-Precision to
			   Integer and Convert to Unsigned Integer Word
			   Format with Saturate */
    case 504:		/* VSX Vector Convert and round Signed Integer
			   Doubleword to Double-Precision format */
    case 440:		/* VSX Vector Convert and round Signed Integer
			   Doubleword to Single-Precision format */
    case 248:		/* VSX Vector Convert Signed Integer Word to
			   Double-Precision format */
    case 184:		/* VSX Vector Convert and round Signed Integer
			   Word to Single-Precision format */
    case 488:		/* VSX Vector Convert and round Unsigned
			   Integer Doubleword to Double-Precision format */
    case 424:		/* VSX Vector Convert and round Unsigned
			   Integer Doubleword to Single-Precision format */
    case 232:		/* VSX Vector Convert and round Unsigned
			   Integer Word to Double-Precision format */
    case 168:		/* VSX Vector Convert and round Unsigned
			   Integer Word to Single-Precision format */
    case 201:		/* VSX Vector Round to Double-Precision
			   Integer using round to Nearest Away */
    case 235:		/* VSX Vector Round to Double-Precision
			   Integer Exact using Current rounding mode */
    case 249:		/* VSX Vector Round to Double-Precision
			   Integer using round toward -Infinity */
    case 233:		/* VSX Vector Round to Double-Precision
			   Integer using round toward +Infinity */
    case 217:		/* VSX Vector Round to Double-Precision
			   Integer using round toward Zero */
    case 218:		/* VSX Vector Reciprocal Estimate Double-Precision */
    case 154:		/* VSX Vector Reciprocal Estimate Single-Precision */
    case 137:		/* VSX Vector Round to Single-Precision Integer
			   Using Round to Nearest Away */
    case 171:		/* VSX Vector Round to Single-Precision Integer
			   Exact Using Current rounding mode */
    case 185:		/* VSX Vector Round to Single-Precision Integer
			   Using Round toward -Infinity */
    case 169:		/* VSX Vector Round to Single-Precision Integer
			   Using Round toward +Infinity */
    case 153:		/* VSX Vector Round to Single-Precision Integer
			   Using round toward Zero */
    case 202:		/* VSX Vector Reciprocal Square Root Estimate
			   Double-Precision */
    case 138:		/* VSX Vector Reciprocal Square Root Estimate
			   Single-Precision */
    case 203:		/* VSX Vector Square Root Double-Precision */
    case 139:		/* VSX Vector Square Root Single-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      /* FALL-THROUGH */
    case 345:		/* VSX Scalar Absolute Value Double-Precision */
    case 267:		/* VSX Scalar Convert Scalar Single-Precision to
			   Vector Single-Precision format Non-signalling */
    case 331:		/* VSX Scalar Convert Single-Precision to
			   Double-Precision format Non-signalling */
    case 361:		/* VSX Scalar Negative Absolute Value Double-Precision */
    case 377:		/* VSX Scalar Negate Double-Precision */
    case 473:		/* VSX Vector Absolute Value Double-Precision */
    case 409:		/* VSX Vector Absolute Value Single-Precision */
    case 489:		/* VSX Vector Negative Absolute Value Double-Precision */
    case 425:		/* VSX Vector Negative Absolute Value Single-Precision */
    case 505:		/* VSX Vector Negate Double-Precision */
    case 441:		/* VSX Vector Negate Single-Precision */
    case 164:		/* VSX Splat Word */
    case 165:		/* VSX Vector Extract Unsigned Word */
    case 181:		/* VSX Vector Insert Word */
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;

    case 298:		/* VSX Scalar Test Data Class Single-Precision */
    case 362:		/* VSX Scalar Test Data Class Double-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      /* FALL-THROUGH */
    case 106:		/* VSX Scalar Test for software Square Root
			   Double-Precision */
    case 234:		/* VSX Vector Test for software Square Root
			   Double-Precision */
    case 170:		/* VSX Vector Test for software Square Root
			   Single-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 347:
      switch (PPC_FIELD (insn, 11, 5))
	{
	case 0:		/* VSX Scalar Extract Exponent Double-Precision */
	case 1:		/* VSX Scalar Extract Significand Double-Precision */
          record_full_arch_list_add_reg (regcache,
					 tdep->ppc_gp0_regnum + PPC_RT (insn));
	  return 0;
	case 16:	/* VSX Scalar Convert Half-Precision format to
			   Double-Precision format */
	case 17:	/* VSX Scalar round & Convert Double-Precision format
			   to Half-Precision format */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
	  return 0;
	}
      break;

    case 475:
      switch (PPC_FIELD (insn, 11, 5))
	{
	case 24:	/* VSX Vector Convert Half-Precision format to
			   Single-Precision format */
	case 25:	/* VSX Vector round and Convert Single-Precision format
			   to Half-Precision format */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
	  /* FALL-THROUGH */
	case 0:		/* VSX Vector Extract Exponent Double-Precision */
	case 1:		/* VSX Vector Extract Significand Double-Precision */
	case 7:		/* VSX Vector Byte-Reverse Halfword */
	case 8:		/* VSX Vector Extract Exponent Single-Precision */
	case 9:		/* VSX Vector Extract Significand Single-Precision */
	case 15:	/* VSX Vector Byte-Reverse Word */
	case 23:	/* VSX Vector Byte-Reverse Doubleword */
	case 31:	/* VSX Vector Byte-Reverse Quadword */
	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
	  return 0;
	}
      break;
    }

  switch (ext)
    {
    case 360:		/* VSX Vector Splat Immediate Byte */
      if (PPC_FIELD (insn, 11, 2) == 0)
	{
	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
	  return 0;
	}
      break;
    case 918:		/* VSX Scalar Insert Exponent Double-Precision */
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;
    }

  if (((ext >> 3) & 0x3) == 3)	/* VSX Select */
    {
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse and record instructions of primary opcode-61 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST ea = 0;
  int size;

  switch (insn & 0x3)
    {
    case 0:		/* Store Floating-Point Double Pair */
    case 2:		/* Store VSX Scalar Doubleword */
    case 3:		/* Store VSX Scalar Single */
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn),
				    &ea);
      ea += PPC_DS (insn) << 2;
      switch (insn & 0x3)
	{
	case 0:		/* Store Floating-Point Double Pair */
	  size = 16;
	  break;
	case 2:		/* Store VSX Scalar Doubleword */
	  size = 8;
	  break;
	case 3:		/* Store VSX Scalar Single */
	  size = 4;
	  break;
	default:
	  gdb_assert (0);
	}
      record_full_arch_list_add_mem (ea, size);
      return 0;
    }

  switch (insn & 0x7)
    {
    case 1:		/* Load VSX Vector */
      ppc_record_vsr (regcache, tdep, PPC_XT (insn));
      return 0;
    case 5:		/* Store VSX Vector */
      if (PPC_RA (insn) != 0)
	regcache_raw_read_unsigned (regcache,
				    tdep->ppc_gp0_regnum + PPC_RA (insn),
				    &ea);
      ea += PPC_DQ (insn) << 4;
      record_full_arch_list_add_mem (ea, 16);
      return 0;
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s.\n", insn, paddress (gdbarch, addr));
  return -1;
}

/* Parse and record instructions of primary opcode-63 at ADDR.
   Return 0 if successful.  */

static int
ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
			   CORE_ADDR addr, uint32_t insn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ext = PPC_EXTOP (insn);
  int tmp;

  switch (ext & 0x1f)
    {
    case 18:		/* Floating Divide */
    case 20:		/* Floating Subtract */
    case 21:		/* Floating Add */
    case 22:		/* Floating Square Root */
    case 24:		/* Floating Reciprocal Estimate */
    case 25:		/* Floating Multiply */
    case 26:		/* Floating Reciprocal Square Root Estimate */
    case 28:		/* Floating Multiply-Subtract */
    case 29:		/* Floating Multiply-Add */
    case 30:		/* Floating Negative Multiply-Subtract */
    case 31:		/* Floating Negative Multiply-Add */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 23:		/* Floating Select */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;
    }

  switch (ext & 0xff)
    {
    case 5:		/* VSX Scalar Round to Quad-Precision Integer */
    case 37:		/* VSX Scalar Round Quad-Precision to Double-Extended
			   Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
      return 0;
    }

  switch (ext)
    {
    case 2:		/* DFP Add Quad */
    case 3:		/* DFP Quantize Quad */
    case 34:		/* DFP Multiply Quad */
    case 35:		/* DFP Reround Quad */
    case 67:		/* DFP Quantize Immediate Quad */
    case 99:		/* DFP Round To FP Integer With Inexact Quad */
    case 227:		/* DFP Round To FP Integer Without Inexact Quad */
    case 258:		/* DFP Convert To DFP Extended Quad */
    case 514:		/* DFP Subtract Quad */
    case 546:		/* DFP Divide Quad */
    case 770:		/* DFP Round To DFP Long Quad */
    case 802:		/* DFP Convert From Fixed Quad */
    case 834:		/* DFP Encode BCD To DPD Quad */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
      record_full_arch_list_add_reg (regcache, tmp);
      record_full_arch_list_add_reg (regcache, tmp + 1);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 130:		/* DFP Compare Ordered Quad */
    case 162:		/* DFP Test Exponent Quad */
    case 194:		/* DFP Test Data Class Quad */
    case 226:		/* DFP Test Data Group Quad */
    case 642:		/* DFP Compare Unordered Quad */
    case 674:		/* DFP Test Significance Quad */
    case 675:		/* DFP Test Significance Immediate Quad */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 66:		/* DFP Shift Significand Left Immediate Quad */
    case 98:		/* DFP Shift Significand Right Immediate Quad */
    case 322:		/* DFP Decode DPD To BCD Quad */
    case 866:		/* DFP Insert Biased Exponent Quad */
      tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
      record_full_arch_list_add_reg (regcache, tmp);
      record_full_arch_list_add_reg (regcache, tmp + 1);
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 290:		/* DFP Convert To Fixed Quad */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 354:		/* DFP Extract Biased Exponent Quad */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 12:		/* Floating Round to Single-Precision */
    case 14:		/* Floating Convert To Integer Word */
    case 15:		/* Floating Convert To Integer Word
			   with round toward Zero */
    case 142:		/* Floating Convert To Integer Word Unsigned */
    case 143:		/* Floating Convert To Integer Word Unsigned
			   with round toward Zero */
    case 392:		/* Floating Round to Integer Nearest */
    case 424:		/* Floating Round to Integer Toward Zero */
    case 456:		/* Floating Round to Integer Plus */
    case 488:		/* Floating Round to Integer Minus */
    case 814:		/* Floating Convert To Integer Doubleword */
    case 815:		/* Floating Convert To Integer Doubleword
			   with round toward Zero */
    case 846:		/* Floating Convert From Integer Doubleword */
    case 942:		/* Floating Convert To Integer Doubleword Unsigned */
    case 943:		/* Floating Convert To Integer Doubleword Unsigned
			   with round toward Zero */
    case 974:		/* Floating Convert From Integer Doubleword Unsigned */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 583:
      switch (PPC_FIELD (insn, 11, 5))
        {
	  case 1:	/* Move From FPSCR & Clear Enables */
	  case 20:	/* Move From FPSCR Control & set DRN */
	  case 21:	/* Move From FPSCR Control & set DRN Immediate */
	  case 22:	/* Move From FPSCR Control & set RN */
	  case 23:	/* Move From FPSCR Control & set RN Immediate */
	    record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
	    /* Fall through.  */
	  case 0:	/* Move From FPSCR */
	  case 24:	/* Move From FPSCR Lightweight */
	    if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
	      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
	    record_full_arch_list_add_reg (regcache,
					   tdep->ppc_fp0_regnum
					   + PPC_FRT (insn));
	    return 0;
        }
      break;

    case 8:		/* Floating Copy Sign */
    case 40:		/* Floating Negate */
    case 72:		/* Floating Move Register */
    case 136:		/* Floating Negative Absolute Value */
    case 264:		/* Floating Absolute Value */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 838:		/* Floating Merge Odd Word */
    case 966:		/* Floating Merge Even Word */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      return 0;

    case 38:		/* Move To FPSCR Bit 1 */
    case 70:		/* Move To FPSCR Bit 0 */
    case 134:		/* Move To FPSCR Field Immediate */
    case 711:		/* Move To FPSCR Fields */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      return 0;

    case 0:		/* Floating Compare Unordered */
    case 32:		/* Floating Compare Ordered */
    case 64:		/* Move to Condition Register from FPSCR */
    case 132:		/* VSX Scalar Compare Ordered Quad-Precision */
    case 164:		/* VSX Scalar Compare Exponents Quad-Precision */
    case 644:		/* VSX Scalar Compare Unordered Quad-Precision */
    case 708:		/* VSX Scalar Test Data Class Quad-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      /* FALL-THROUGH */
    case 128:		/* Floating Test for software Divide */
    case 160:		/* Floating Test for software Square Root */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      return 0;

    case 4:		/* VSX Scalar Add Quad-Precision */
    case 36:		/* VSX Scalar Multiply Quad-Precision */
    case 388:		/* VSX Scalar Multiply-Add Quad-Precision */
    case 420:		/* VSX Scalar Multiply-Subtract Quad-Precision */
    case 452:		/* VSX Scalar Negative Multiply-Add Quad-Precision */
    case 484:		/* VSX Scalar Negative Multiply-Subtract
			   Quad-Precision */
    case 516:		/* VSX Scalar Subtract Quad-Precision */
    case 548:		/* VSX Scalar Divide Quad-Precision */
      record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
      /* FALL-THROUGH */
    case 100:		/* VSX Scalar Copy Sign Quad-Precision */
    case 868:		/* VSX Scalar Insert Exponent Quad-Precision */
      ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
      return 0;

    case 804:
      switch (PPC_FIELD (insn, 11, 5))
	{
	case 27:	/* VSX Scalar Square Root Quad-Precision */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
	  /* FALL-THROUGH */
	case 0:		/* VSX Scalar Absolute Quad-Precision */
	case 2:		/* VSX Scalar Extract Exponent Quad-Precision */
	case 8:		/* VSX Scalar Negative Absolute Quad-Precision */
	case 16:	/* VSX Scalar Negate Quad-Precision */
	case 18:	/* VSX Scalar Extract Significand Quad-Precision */
	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
	  return 0;
	}
      break;

    case 836:
      switch (PPC_FIELD (insn, 11, 5))
	{
	case 1:		/* VSX Scalar truncate & Convert Quad-Precision format
			   to Unsigned Word format */
	case 2:		/* VSX Scalar Convert Unsigned Doubleword format to
			   Quad-Precision format */
	case 9:		/* VSX Scalar truncate & Convert Quad-Precision format
			   to Signed Word format */
	case 10:	/* VSX Scalar Convert Signed Doubleword format to
			   Quad-Precision format */
	case 17:	/* VSX Scalar truncate & Convert Quad-Precision format
			   to Unsigned Doubleword format */
	case 20:	/* VSX Scalar round & Convert Quad-Precision format to
			   Double-Precision format */
	case 22:	/* VSX Scalar Convert Double-Precision format to
			   Quad-Precision format */
	case 25:	/* VSX Scalar truncate & Convert Quad-Precision format
			   to Signed Doubleword format */
	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
	  return 0;
	}
    }

  fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
		      "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
  return -1;
}

/* Parse the current instruction and record the values of the registers and
   memory that will be changed in current instruction to "record_arch_list".
   Return -1 if something wrong.  */

int
ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
		      CORE_ADDR addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  uint32_t insn;
  int op6, tmp, i;

  insn = read_memory_unsigned_integer (addr, 4, byte_order);
  op6 = PPC_OP6 (insn);

  switch (op6)
    {
    case 2:		/* Trap Doubleword Immediate */
    case 3:		/* Trap Word Immediate */
      /* Do nothing.  */
      break;

    case 4:
      if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 17:		/* System call */
      if (PPC_LEV (insn) != 0)
	goto UNKNOWN_OP;

      if (tdep->ppc_syscall_record != NULL)
	{
	  if (tdep->ppc_syscall_record (regcache) != 0)
	    return -1;
	}
      else
	{
	  printf_unfiltered (_("no syscall record support\n"));
	  return -1;
	}
      break;

    case 7:		/* Multiply Low Immediate */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      break;

    case 8:		/* Subtract From Immediate Carrying */
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      break;

    case 10:		/* Compare Logical Immediate  */
    case 11:		/* Compare Immediate */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      break;

    case 13:		/* Add Immediate Carrying and Record */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      /* FALL-THROUGH */
    case 12:		/* Add Immediate Carrying */
      record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
      /* FALL-THROUGH */
    case 14:		/* Add Immediate */
    case 15:		/* Add Immediate Shifted */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      break;

    case 16:		/* Branch Conditional */
      if ((PPC_BO (insn) & 0x4) == 0)
	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
      /* FALL-THROUGH */
    case 18:		/* Branch */
      if (PPC_LK (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
      break;

    case 19:
      if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 20:		/* Rotate Left Word Immediate then Mask Insert */
    case 21:		/* Rotate Left Word Immediate then AND with Mask */
    case 23:		/* Rotate Left Word then AND with Mask */
    case 30:		/* Rotate Left Doubleword Immediate then Clear Left */
			/* Rotate Left Doubleword Immediate then Clear Right */
			/* Rotate Left Doubleword Immediate then Clear */
			/* Rotate Left Doubleword then Clear Left */
			/* Rotate Left Doubleword then Clear Right */
			/* Rotate Left Doubleword Immediate then Mask Insert */
      if (PPC_RC (insn))
	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      break;

    case 28:		/* AND Immediate */
    case 29:		/* AND Immediate Shifted */
      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
      /* FALL-THROUGH */
    case 24:		/* OR Immediate */
    case 25:		/* OR Immediate Shifted */
    case 26:		/* XOR Immediate */
    case 27:		/* XOR Immediate Shifted */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      break;

    case 31:
      if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 33:		/* Load Word and Zero with Update */
    case 35:		/* Load Byte and Zero with Update */
    case 41:		/* Load Halfword and Zero with Update */
    case 43:		/* Load Halfword Algebraic with Update */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 32:		/* Load Word and Zero */
    case 34:		/* Load Byte and Zero */
    case 40:		/* Load Halfword and Zero */
    case 42:		/* Load Halfword Algebraic */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      break;

    case 46:		/* Load Multiple Word */
      for (i = PPC_RT (insn); i < 32; i++)
	record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
      break;

    case 56:		/* Load Quadword */
      tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
      record_full_arch_list_add_reg (regcache, tmp);
      record_full_arch_list_add_reg (regcache, tmp + 1);
      break;

    case 49:		/* Load Floating-Point Single with Update */
    case 51:		/* Load Floating-Point Double with Update */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 48:		/* Load Floating-Point Single */
    case 50:		/* Load Floating-Point Double */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
      break;

    case 47:		/* Store Multiple Word */
	{
	  ULONGEST iaddr = 0;

	  if (PPC_RA (insn) != 0)
	    regcache_raw_read_unsigned (regcache,
					tdep->ppc_gp0_regnum + PPC_RA (insn),
					&iaddr);

	  iaddr += PPC_D (insn);
	  record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
	}
      break;

    case 37:		/* Store Word with Update */
    case 39:		/* Store Byte with Update */
    case 45:		/* Store Halfword with Update */
    case 53:		/* Store Floating-Point Single with Update */
    case 55:		/* Store Floating-Point Double with Update */
      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RA (insn));
      /* FALL-THROUGH */
    case 36:		/* Store Word */
    case 38:		/* Store Byte */
    case 44:		/* Store Halfword */
    case 52:		/* Store Floating-Point Single */
    case 54:		/* Store Floating-Point Double */
	{
	  ULONGEST iaddr = 0;
	  int size = -1;

	  if (PPC_RA (insn) != 0)
	    regcache_raw_read_unsigned (regcache,
					tdep->ppc_gp0_regnum + PPC_RA (insn),
					&iaddr);
	  iaddr += PPC_D (insn);

	  if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
	    size = 4;
	  else if (op6 == 54 || op6 == 55)
	    size = 8;
	  else if (op6 == 44 || op6 == 45)
	    size = 2;
	  else if (op6 == 38 || op6 == 39)
	    size = 1;
	  else
	    gdb_assert (0);

	  record_full_arch_list_add_mem (iaddr, size);
	}
      break;

    case 57:
      switch (insn & 0x3)
        {
	case 0:		/* Load Floating-Point Double Pair */
	  tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
	  record_full_arch_list_add_reg (regcache, tmp);
	  record_full_arch_list_add_reg (regcache, tmp + 1);
	  break;
	case 2:		/* Load VSX Scalar Doubleword */
	case 3:		/* Load VSX Scalar Single */
	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
	  break;
	default:
	  goto UNKNOWN_OP;
	}
      break;

    case 58:		/* Load Doubleword */
			/* Load Doubleword with Update */
			/* Load Word Algebraic */
      if (PPC_FIELD (insn, 30, 2) > 2)
	goto UNKNOWN_OP;

      record_full_arch_list_add_reg (regcache,
				     tdep->ppc_gp0_regnum + PPC_RT (insn));
      if (PPC_BIT (insn, 31))
	record_full_arch_list_add_reg (regcache,
				       tdep->ppc_gp0_regnum + PPC_RA (insn));
      break;

    case 59:
      if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 60:
      if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 61:
      if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    case 62:		/* Store Doubleword */
			/* Store Doubleword with Update */
			/* Store Quadword with Update */
	{
	  ULONGEST iaddr = 0;
	  int size;
	  int sub2 = PPC_FIELD (insn, 30, 2);

	  if (sub2 > 2)
	    goto UNKNOWN_OP;

	  if (PPC_RA (insn) != 0)
	    regcache_raw_read_unsigned (regcache,
					tdep->ppc_gp0_regnum + PPC_RA (insn),
					&iaddr);

	  size = (sub2 == 2) ? 16 : 8;

	  iaddr += PPC_DS (insn) << 2;
	  record_full_arch_list_add_mem (iaddr, size);

	  if (op6 == 62 && sub2 == 1)
	    record_full_arch_list_add_reg (regcache,
					   tdep->ppc_gp0_regnum +
					   PPC_RA (insn));

	  break;
	}

    case 63:
      if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
	return -1;
      break;

    default:
UNKNOWN_OP:
      fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
			  "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
      return -1;
    }

  if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
    return -1;
  if (record_full_arch_list_add_end ())
    return -1;
  return 0;
}

/* Initialize the current architecture based on INFO.  If possible, re-use an
   architecture from ARCHES, which is a list of architectures already created
   during this debugging session.

   Called e.g. at program startup, when reading a core file, and when reading
   a binary file.  */

static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int wordsize, from_xcoff_exec, from_elf_exec;
  enum bfd_architecture arch;
  unsigned long mach;
  bfd abfd;
  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
  int soft_float;
  enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
  enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
  int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
  int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
  int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
  int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
  int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
  int have_htm_tar = 0;
  int tdesc_wordsize = -1;
  const struct target_desc *tdesc = info.target_desc;
  struct tdesc_arch_data *tdesc_data = NULL;
  int num_pseudoregs = 0;
  int cur_reg;

  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;

  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;

  /* Check word size.  If INFO is from a binary file, infer it from
     that, else choose a likely default.  */
  if (from_xcoff_exec)
    {
      if (bfd_xcoff_is_xcoff64 (info.abfd))
	wordsize = 8;
      else
	wordsize = 4;
    }
  else if (from_elf_exec)
    {
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
	wordsize = 8;
      else
	wordsize = 4;
    }
  else if (tdesc_has_registers (tdesc))
    wordsize = -1;
  else
    {
      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
	wordsize = (info.bfd_arch_info->bits_per_word
		    / info.bfd_arch_info->bits_per_byte);
      else
	wordsize = 4;
    }

  /* Get the architecture and machine from the BFD.  */
  arch = info.bfd_arch_info->arch;
  mach = info.bfd_arch_info->mach;

  /* For e500 executables, the apuinfo section is of help here.  Such
     section contains the identifier and revision number of each
     Application-specific Processing Unit that is present on the
     chip.  The content of the section is determined by the assembler
     which looks at each instruction and determines which unit (and
     which version of it) can execute it.  Grovel through the section
     looking for relevant e500 APUs.  */

  if (bfd_uses_spe_extensions (info.abfd))
    {
      arch = info.bfd_arch_info->arch;
      mach = bfd_mach_ppc_e500;
      bfd_default_set_arch_mach (&abfd, arch, mach);
      info.bfd_arch_info = bfd_get_arch_info (&abfd);
    }

  /* Find a default target description which describes our register
     layout, if we do not already have one.  */
  if (! tdesc_has_registers (tdesc))
    {
      const struct ppc_variant *v;

      /* Choose variant.  */
      v = find_variant_by_arch (arch, mach);
      if (!v)
	return NULL;

      tdesc = *v->tdesc;
    }

  gdb_assert (tdesc_has_registers (tdesc));

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      static const char *const gprs[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
      };
      const struct tdesc_feature *feature;
      int i, valid_p;
      static const char *const msr_names[] = { "msr", "ps" };
      static const char *const cr_names[] = { "cr", "cnd" };
      static const char *const ctr_names[] = { "ctr", "cnt" };

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.core");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      for (i = 0; i < ppc_num_gprs; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
					  "pc");
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
					  "lr");
      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
					  "xer");

      /* Allow alternate names for these registers, to accomodate GDB's
	 historic naming.  */
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_MSR_REGNUM, msr_names);
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_CR_REGNUM, cr_names);
      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
						  PPC_CTR_REGNUM, ctr_names);

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
					 "mq");

      tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
      if (wordsize == -1)
	wordsize = tdesc_wordsize;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.fpu");
      if (feature != NULL)
	{
	  static const char *const fprs[] = {
	    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
	    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
	    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
	    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
	  };
	  valid_p = 1;
	  for (i = 0; i < ppc_num_fprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_F0_REGNUM + i, fprs[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_FPSCR_REGNUM, "fpscr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_fpu = 1;

	  /* The fpscr register was expanded in isa 2.05 to 64 bits
	     along with the addition of the decimal floating point
	     facility.  */
	  if (tdesc_register_bitsize (feature, "fpscr") > 32)
	    have_dfp = 1;
	}
      else
	have_fpu = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.altivec");
      if (feature != NULL)
	{
	  static const char *const vector_regs[] = {
	    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
	    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
	    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
	    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
	  };

	  valid_p = 1;
	  for (i = 0; i < ppc_num_gprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_VR0_REGNUM + i,
						vector_regs[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_VSCR_REGNUM, "vscr");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_VRSAVE_REGNUM, "vrsave");

	  if (have_spe || !valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_altivec = 1;
	}
      else
	have_altivec = 0;

      /* Check for POWER7 VSX registers support.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.vsx");

      if (feature != NULL)
	{
	  static const char *const vsx_regs[] = {
	    "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
	    "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
	    "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
	    "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
	    "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
	    "vs30h", "vs31h"
	  };

	  valid_p = 1;

	  for (i = 0; i < ppc_num_vshrs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_VSR0_UPPER_REGNUM + i,
						vsx_regs[i]);

	  if (!valid_p || !have_fpu || !have_altivec)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }

	  have_vsx = 1;
	}
      else
	have_vsx = 0;

      /* On machines supporting the SPE APU, the general-purpose registers
	 are 64 bits long.  There are SIMD vector instructions to treat them
	 as pairs of floats, but the rest of the instruction set treats them
	 as 32-bit registers, and only operates on their lower halves.

	 In the GDB regcache, we treat their high and low halves as separate
	 registers.  The low halves we present as the general-purpose
	 registers, and then we have pseudo-registers that stitch together
	 the upper and lower halves and present them as pseudo-registers.

	 Thus, the target description is expected to supply the upper
	 halves separately.  */

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.spe");
      if (feature != NULL)
	{
	  static const char *const upper_spe[] = {
	    "ev0h", "ev1h", "ev2h", "ev3h",
	    "ev4h", "ev5h", "ev6h", "ev7h",
	    "ev8h", "ev9h", "ev10h", "ev11h",
	    "ev12h", "ev13h", "ev14h", "ev15h",
	    "ev16h", "ev17h", "ev18h", "ev19h",
	    "ev20h", "ev21h", "ev22h", "ev23h",
	    "ev24h", "ev25h", "ev26h", "ev27h",
	    "ev28h", "ev29h", "ev30h", "ev31h"
	  };

	  valid_p = 1;
	  for (i = 0; i < ppc_num_gprs; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_SPE_UPPER_GP0_REGNUM + i,
						upper_spe[i]);
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SPE_ACC_REGNUM, "acc");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SPE_FSCR_REGNUM, "spefscr");

	  if (have_mq || have_fpu || !valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_spe = 1;
	}
      else
	have_spe = 0;

      /* Program Priority Register.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.ppr");
      if (feature != NULL)
	{
	  valid_p = 1;
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_PPR_REGNUM, "ppr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_ppr = 1;
	}
      else
	have_ppr = 0;

      /* Data Stream Control Register.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.dscr");
      if (feature != NULL)
	{
	  valid_p = 1;
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_DSCR_REGNUM, "dscr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_dscr = 1;
	}
      else
	have_dscr = 0;

      /* Target Address Register.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.tar");
      if (feature != NULL)
	{
	  valid_p = 1;
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_TAR_REGNUM, "tar");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_tar = 1;
	}
      else
	have_tar = 0;

      /* Event-based Branching Registers.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.ebb");
      if (feature != NULL)
	{
	  static const char *const ebb_regs[] = {
	    "bescr", "ebbhr", "ebbrr"
	  };

	  valid_p = 1;
	  for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_BESCR_REGNUM + i,
						ebb_regs[i]);
	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_ebb = 1;
	}
      else
	have_ebb = 0;

      /* Subset of the ISA 2.07 Performance Monitor Registers provided
	 by Linux.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.linux.pmu");
      if (feature != NULL)
	{
	  valid_p = 1;

	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_MMCR0_REGNUM,
					      "mmcr0");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_MMCR2_REGNUM,
					      "mmcr2");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SIAR_REGNUM,
					      "siar");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SDAR_REGNUM,
					      "sdar");
	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
					      PPC_SIER_REGNUM,
					      "sier");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_pmu = 1;
	}
      else
	have_pmu = 0;

      /* Hardware Transactional Memory Registers.  */
      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.spr");
      if (feature != NULL)
	{
	  static const char *const tm_spr_regs[] = {
	    "tfhar", "texasr", "tfiar"
	  };

	  valid_p = 1;
	  for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_TFHAR_REGNUM + i,
						tm_spr_regs[i]);
	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }

	  have_htm_spr = 1;
	}
      else
	have_htm_spr = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.core");
      if (feature != NULL)
	{
	  static const char *const cgprs[] = {
	    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
	    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
	    "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
	    "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
	    "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
	  };

	  valid_p = 1;

	  for (i = 0; i < ARRAY_SIZE (cgprs); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_CR0_REGNUM + i,
						cgprs[i]);
	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }

	  have_htm_core = 1;
	}
      else
	have_htm_core = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.fpu");
      if (feature != NULL)
	{
	  valid_p = 1;

	  static const char *const cfprs[] = {
	    "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
	    "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
	    "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
	    "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
	    "cf30", "cf31", "cfpscr"
	  };

	  for (i = 0; i < ARRAY_SIZE (cfprs); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_CF0_REGNUM + i,
						cfprs[i]);

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_fpu = 1;
	}
      else
	have_htm_fpu = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.altivec");
      if (feature != NULL)
	{
	  valid_p = 1;

	  static const char *const cvmx[] = {
	    "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
	    "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
	    "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
	    "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
	    "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
	    "cvrsave"
	  };

	  for (i = 0; i < ARRAY_SIZE (cvmx); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						PPC_CVR0_REGNUM + i,
						cvmx[i]);

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_altivec = 1;
	}
      else
	have_htm_altivec = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.vsx");
      if (feature != NULL)
	{
	  valid_p = 1;

	  static const char *const cvsx[] = {
	    "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
	    "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
	    "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
	    "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
	    "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
	    "cvs30h", "cvs31h"
	  };

	  for (i = 0; i < ARRAY_SIZE (cvsx); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						(PPC_CVSR0_UPPER_REGNUM
						 + i),
						cvsx[i]);

	  if (!valid_p || !have_htm_fpu || !have_htm_altivec)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_vsx = 1;
	}
      else
	have_htm_vsx = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.ppr");
      if (feature != NULL)
	{
	  valid_p = tdesc_numbered_register (feature, tdesc_data,
					     PPC_CPPR_REGNUM, "cppr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_ppr = 1;
	}
      else
	have_htm_ppr = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.dscr");
      if (feature != NULL)
	{
	  valid_p = tdesc_numbered_register (feature, tdesc_data,
					     PPC_CDSCR_REGNUM, "cdscr");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_dscr = 1;
	}
      else
	have_htm_dscr = 0;

      feature = tdesc_find_feature (tdesc,
				    "org.gnu.gdb.power.htm.tar");
      if (feature != NULL)
	{
	  valid_p = tdesc_numbered_register (feature, tdesc_data,
					     PPC_CTAR_REGNUM, "ctar");

	  if (!valid_p)
	    {
	      tdesc_data_cleanup (tdesc_data);
	      return NULL;
	    }
	  have_htm_tar = 1;
	}
      else
	have_htm_tar = 0;
    }

  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
     complain for a 32-bit binary on a 64-bit target; we do not yet
     support that.  For instance, the 32-bit ABI routines expect
     32-bit GPRs.

     As long as there isn't an explicit target description, we'll
     choose one based on the BFD architecture and get a word size
     matching the binary (probably powerpc:common or
     powerpc:common64).  So there is only trouble if a 64-bit target
     supplies a 64-bit description while debugging a 32-bit
     binary.  */
  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
    {
      tdesc_data_cleanup (tdesc_data);
      return NULL;
    }

#ifdef HAVE_ELF
  if (from_elf_exec)
    {
      switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
	{
	case 1:
	  elf_abi = POWERPC_ELF_V1;
	  break;
	case 2:
	  elf_abi = POWERPC_ELF_V2;
	  break;
	default:
	  break;
	}
    }

  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
    {
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					Tag_GNU_Power_ABI_FP) & 3)
	{
	case 1:
	  soft_float_flag = AUTO_BOOLEAN_FALSE;
	  break;
	case 2:
	  soft_float_flag = AUTO_BOOLEAN_TRUE;
	  break;
	default:
	  break;
	}
    }

  if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
    {
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					Tag_GNU_Power_ABI_FP) >> 2)
	{
	case 1:
	  long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
	  break;
	case 3:
	  long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
	  break;
	default:
	  break;
	}
    }

  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
    {
      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
					Tag_GNU_Power_ABI_Vector))
	{
	case 1:
	  vector_abi = POWERPC_VEC_GENERIC;
	  break;
	case 2:
	  vector_abi = POWERPC_VEC_ALTIVEC;
	  break;
	case 3:
	  vector_abi = POWERPC_VEC_SPE;
	  break;
	default:
	  break;
	}
    }
#endif

  /* At this point, the only supported ELF-based 64-bit little-endian
     operating system is GNU/Linux, and this uses the ELFv2 ABI by
     default.  All other supported ELF-based operating systems use the
     ELFv1 ABI by default.  Therefore, if the ABI marker is missing,
     e.g. because we run a legacy binary, or have attached to a process
     and have not found any associated binary file, set the default
     according to this heuristic.  */
  if (elf_abi == POWERPC_ELF_AUTO)
    {
      if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
        elf_abi = POWERPC_ELF_V2;
      else
        elf_abi = POWERPC_ELF_V1;
    }

  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
    soft_float = 1;
  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
    soft_float = 0;
  else
    soft_float = !have_fpu;

  /* If we have a hard float binary or setting but no floating point
     registers, downgrade to soft float anyway.  We're still somewhat
     useful in this scenario.  */
  if (!soft_float && !have_fpu)
    soft_float = 1;

  /* Similarly for vector registers.  */
  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
    vector_abi = POWERPC_VEC_GENERIC;

  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
    vector_abi = POWERPC_VEC_GENERIC;

  if (vector_abi == POWERPC_VEC_AUTO)
    {
      if (have_altivec)
	vector_abi = POWERPC_VEC_ALTIVEC;
      else if (have_spe)
	vector_abi = POWERPC_VEC_SPE;
      else
	vector_abi = POWERPC_VEC_GENERIC;
    }

  /* Do not limit the vector ABI based on available hardware, since we
     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Word size in the various PowerPC bfd_arch_info structs isn't
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
         separate word size check.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->elf_abi != elf_abi)
	continue;
      if (tdep && tdep->soft_float != soft_float)
	continue;
      if (tdep && tdep->long_double_abi != long_double_abi)
	continue;
      if (tdep && tdep->vector_abi != vector_abi)
	continue;
      if (tdep && tdep->wordsize == wordsize)
	{
	  if (tdesc_data != NULL)
	    tdesc_data_cleanup (tdesc_data);
	  return arches->gdbarch;
	}
    }

  /* None found, create a new architecture from INFO, whose bfd_arch_info
     validity depends on the source:
       - executable		useless
       - rs6000_host_arch()	good
       - core file		good
       - "set arch"		trust blindly
       - GDB startup		useless but harmless */

  tdep = XCNEW (struct gdbarch_tdep);
  tdep->wordsize = wordsize;
  tdep->elf_abi = elf_abi;
  tdep->soft_float = soft_float;
  tdep->long_double_abi = long_double_abi;
  tdep->vector_abi = vector_abi;

  gdbarch = gdbarch_alloc (&info, tdep);

  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;

  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
  tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
  tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
  tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
  tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
  tdep->have_ebb = have_ebb;

  /* If additional pmu registers are added, care must be taken when
     setting new fields in the tdep below, to maintain compatibility
     with features that only provide some of the registers.  Currently
     gdb access to the pmu registers is only supported in linux, and
     linux only provides a subset of the pmu registers defined in the
     architecture.  */

  tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
  tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
  tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
  tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
  tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;

  tdep->have_htm_spr = have_htm_spr;
  tdep->have_htm_core = have_htm_core;
  tdep->have_htm_fpu = have_htm_fpu;
  tdep->have_htm_altivec = have_htm_altivec;
  tdep->have_htm_vsx = have_htm_vsx;
  tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
  tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
  tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;

  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);

  /* The XML specification for PowerPC sensibly calls the MSR "msr".
     GDB traditionally called it "ps", though, so let GDB add an
     alias.  */
  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);

  if (wordsize == 8)
    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
  else
    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);

  /* Set lr_frame_offset.  */
  if (wordsize == 8)
    tdep->lr_frame_offset = 16;
  else
    tdep->lr_frame_offset = 4;

  if (have_spe || have_dfp || have_altivec
      || have_vsx || have_htm_fpu || have_htm_vsx)
    {
      set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch,
					 rs6000_pseudo_register_write);
      set_gdbarch_ax_pseudo_register_collect (gdbarch,
	      rs6000_ax_pseudo_register_collect);
    }

  set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);

  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);

  if (have_spe)
    num_pseudoregs += 32;
  if (have_dfp)
    num_pseudoregs += 16;
  if (have_altivec)
    num_pseudoregs += 32;
  if (have_vsx)
    /* Include both VSX and Extended FP registers.  */
    num_pseudoregs += 96;
  if (have_htm_fpu)
    num_pseudoregs += 16;
  /* Include both checkpointed VSX and EFP registers.  */
  if (have_htm_vsx)
    num_pseudoregs += 64 + 32;

  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);

  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
  if (wordsize == 8)
    /* PPC64 SYSV.  */
    set_gdbarch_frame_red_zone_size (gdbarch, 288);

  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);

  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);

  if (wordsize == 4)
    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
  else if (wordsize == 8)
    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);

  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
  set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
  set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       rs6000_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       rs6000_breakpoint::bp_from_kind);

  /* The value of symbols of type N_SO and N_FUN maybe null when
     it shouldn't be.  */
  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);

  /* Handles single stepping of atomic sequences.  */
  set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
  
  /* Not sure on this.  FIXMEmgo */
  set_gdbarch_frame_args_skip (gdbarch, 8);

  /* Helpers for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);

  /* Trampoline.  */
  set_gdbarch_in_solib_return_trampoline
    (gdbarch, rs6000_in_solib_return_trampoline);
  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);

  /* Frame handling.  */
  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);

  /* Setup displaced stepping.  */
  set_gdbarch_displaced_step_copy_insn (gdbarch,
					ppc_displaced_step_copy_insn);
  set_gdbarch_displaced_step_hw_singlestep (gdbarch,
					    ppc_displaced_step_hw_singlestep);
  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
  set_gdbarch_displaced_step_location (gdbarch,
				       displaced_step_at_entry_point);

  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  info.target_desc = tdesc;
  info.tdesc_data = tdesc_data;
  gdbarch_init_osabi (info, gdbarch);

  switch (info.osabi)
    {
    case GDB_OSABI_LINUX:
    case GDB_OSABI_NETBSD:
    case GDB_OSABI_UNKNOWN:
      frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
      break;
    default:
      set_gdbarch_believe_pcc_promotion (gdbarch, 1);

      frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
    }

  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
  set_tdesc_pseudo_register_reggroup_p (gdbarch,
					rs6000_pseudo_register_reggroup_p);
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  /* Override the normal target description method to make the SPE upper
     halves anonymous.  */
  set_gdbarch_register_name (gdbarch, rs6000_register_name);

  /* Choose register numbers for all supported pseudo-registers.  */
  tdep->ppc_ev0_regnum = -1;
  tdep->ppc_dl0_regnum = -1;
  tdep->ppc_v0_alias_regnum = -1;
  tdep->ppc_vsr0_regnum = -1;
  tdep->ppc_efpr0_regnum = -1;
  tdep->ppc_cdl0_regnum = -1;
  tdep->ppc_cvsr0_regnum = -1;
  tdep->ppc_cefpr0_regnum = -1;

  cur_reg = gdbarch_num_regs (gdbarch);

  if (have_spe)
    {
      tdep->ppc_ev0_regnum = cur_reg;
      cur_reg += 32;
    }
  if (have_dfp)
    {
      tdep->ppc_dl0_regnum = cur_reg;
      cur_reg += 16;
    }
  if (have_altivec)
    {
      tdep->ppc_v0_alias_regnum = cur_reg;
      cur_reg += 32;
    }
  if (have_vsx)
    {
      tdep->ppc_vsr0_regnum = cur_reg;
      cur_reg += 64;
      tdep->ppc_efpr0_regnum = cur_reg;
      cur_reg += 32;
    }
  if (have_htm_fpu)
    {
      tdep->ppc_cdl0_regnum = cur_reg;
      cur_reg += 16;
    }
  if (have_htm_vsx)
    {
      tdep->ppc_cvsr0_regnum = cur_reg;
      cur_reg += 64;
      tdep->ppc_cefpr0_regnum = cur_reg;
      cur_reg += 32;
    }

  gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);

  /* Register the ravenscar_arch_ops.  */
  if (mach == bfd_mach_ppc_e500)
    register_e500_ravenscar_ops (gdbarch);
  else
    register_ppc_ravenscar_ops (gdbarch);

  set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
  set_gdbarch_valid_disassembler_options (gdbarch,
					  disassembler_options_powerpc ());

  return gdbarch;
}

static void
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (tdep == NULL)
    return;

  /* FIXME: Dump gdbarch_tdep.  */
}

static void
powerpc_set_soft_float (const char *args, int from_tty,
			struct cmd_list_element *c)
{
  struct gdbarch_info info;

  /* Update the architecture.  */
  gdbarch_info_init (&info);
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("could not update architecture"));
}

static void
powerpc_set_vector_abi (const char *args, int from_tty,
			struct cmd_list_element *c)
{
  struct gdbarch_info info;
  int vector_abi;

  for (vector_abi = POWERPC_VEC_AUTO;
       vector_abi != POWERPC_VEC_LAST;
       vector_abi++)
    if (strcmp (powerpc_vector_abi_string,
		powerpc_vector_strings[vector_abi]) == 0)
      {
	powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
	break;
      }

  if (vector_abi == POWERPC_VEC_LAST)
    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
		    powerpc_vector_abi_string);

  /* Update the architecture.  */
  gdbarch_info_init (&info);
  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__, _("could not update architecture"));
}

/* Show the current setting of the exact watchpoints flag.  */

static void
show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
				struct cmd_list_element *c,
				const char *value)
{
  fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
}

/* Read a PPC instruction from memory.  */

static unsigned int
read_insn (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  return read_memory_unsigned_integer (pc, 4, byte_order);
}

/* Return non-zero if the instructions at PC match the series
   described in PATTERN, or zero otherwise.  PATTERN is an array of
   'struct ppc_insn_pattern' objects, terminated by an entry whose
   mask is zero.

   When the match is successful, fill INSNS[i] with what PATTERN[i]
   matched.  If PATTERN[i] is optional, and the instruction wasn't
   present, set INSNS[i] to 0 (which is not a valid PPC instruction).
   INSNS should have as many elements as PATTERN, minus the terminator.
   Note that, if PATTERN contains optional instructions which aren't
   present in memory, then INSNS will have holes, so INSNS[i] isn't
   necessarily the i'th instruction in memory.  */

int
ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
			 const struct ppc_insn_pattern *pattern,
			 unsigned int *insns)
{
  int i;
  unsigned int insn;

  for (i = 0, insn = 0; pattern[i].mask; i++)
    {
      if (insn == 0)
	insn = read_insn (frame, pc);
      insns[i] = 0;
      if ((insn & pattern[i].mask) == pattern[i].data)
	{
	  insns[i] = insn;
	  pc += 4;
	  insn = 0;
	}
      else if (!pattern[i].optional)
	return 0;
    }

  return 1;
}

/* Return the 'd' field of the d-form instruction INSN, properly
   sign-extended.  */

CORE_ADDR
ppc_insn_d_field (unsigned int insn)
{
  return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}

/* Return the 'ds' field of the ds-form instruction INSN, with the two
   zero bits concatenated at the right, and properly
   sign-extended.  */

CORE_ADDR
ppc_insn_ds_field (unsigned int insn)
{
  return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}

/* Initialization code.  */

void _initialize_rs6000_tdep ();
void
_initialize_rs6000_tdep ()
{
  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);

  /* Initialize the standard target descriptions.  */
  initialize_tdesc_powerpc_32 ();
  initialize_tdesc_powerpc_altivec32 ();
  initialize_tdesc_powerpc_vsx32 ();
  initialize_tdesc_powerpc_403 ();
  initialize_tdesc_powerpc_403gc ();
  initialize_tdesc_powerpc_405 ();
  initialize_tdesc_powerpc_505 ();
  initialize_tdesc_powerpc_601 ();
  initialize_tdesc_powerpc_602 ();
  initialize_tdesc_powerpc_603 ();
  initialize_tdesc_powerpc_604 ();
  initialize_tdesc_powerpc_64 ();
  initialize_tdesc_powerpc_altivec64 ();
  initialize_tdesc_powerpc_vsx64 ();
  initialize_tdesc_powerpc_7400 ();
  initialize_tdesc_powerpc_750 ();
  initialize_tdesc_powerpc_860 ();
  initialize_tdesc_powerpc_e500 ();
  initialize_tdesc_rs6000 ();

  /* Add root prefix command for all "set powerpc"/"show powerpc"
     commands.  */
  add_basic_prefix_cmd ("powerpc", no_class,
			_("Various PowerPC-specific commands."),
			&setpowerpccmdlist, "set powerpc ", 0, &setlist);

  add_show_prefix_cmd ("powerpc", no_class,
		       _("Various PowerPC-specific commands."),
		       &showpowerpccmdlist, "show powerpc ", 0, &showlist);

  /* Add a command to allow the user to force the ABI.  */
  add_setshow_auto_boolean_cmd ("soft-float", class_support,
				&powerpc_soft_float_global,
				_("Set whether to use a soft-float ABI."),
				_("Show whether to use a soft-float ABI."),
				NULL,
				powerpc_set_soft_float, NULL,
				&setpowerpccmdlist, &showpowerpccmdlist);

  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
			&powerpc_vector_abi_string,
			_("Set the vector ABI."),
			_("Show the vector ABI."),
			NULL, powerpc_set_vector_abi, NULL,
			&setpowerpccmdlist, &showpowerpccmdlist);

  add_setshow_boolean_cmd ("exact-watchpoints", class_support,
			   &target_exact_watchpoints,
			   _("\
Set whether to use just one debug register for watchpoints on scalars."),
			   _("\
Show whether to use just one debug register for watchpoints on scalars."),
			   _("\
If true, GDB will use only one debug register when watching a variable of\n\
scalar type, thus assuming that the variable is accessed through the address\n\
of its first byte."),
			   NULL, show_powerpc_exact_watchpoints,
			   &setpowerpccmdlist, &showpowerpccmdlist);
}