Age | Commit message (Collapse) | Author | Files | Lines |
|
Without this we unconditionally try to slurp in secondary
relocs for each input section, leading to quadratic behaviour
even for strip(1). On write-out we already used a flag to avoid
this.
So track existence of secondary relocs on read-in as well and
only slurp in when needed. This still doesn't implement a proper
list of secondary reloc sections, and still would exhibit quadratic
behaviour if most input sections have a secondary reloc section.
But at least on normal input this avoids any slowdown from trying
to handle secondary relocation sections.
bfd/
* elf.c (bfd_section_from_shdr): Set has_secondary_relocs flag.
(_bfd_elf_slurp_secondary_reloc_section): Use it for early-out.
|
|
bfd * elf.c (elfcore_make_memtag_note_section): New function.
(elfcore_grok_note): Handle NT_MEMTAG note types.
binutils* readelf.c (get_note_type): Handle NT_MEMTAG note types.
include * elf/common.h (NT_MEMTAG): New constant.
(NT_MEMTAG_TYPE_AARCH_MTE): New constant.
|
|
* elf-bfd.h (elfcore_write_aarch_mte): New prototype.
* elf.c (elfcore_grok_aarch_mte, elfcore_write_aarch_mte): New
functions.
(elfcore_grok_note): Handle notes of type NT_ARM_TAGGED_ADDR_CTRL.
(elfcore_write_register_note): Handle MTE notes.
|
|
symbols.
bfd * elf.c (_bfd_elf_maybe_function_sym): Do not accept annobin
symbols as potential function symbols.
* elfnn-aarch64.c (elfNN_aarch64_maybe_function_sym): Likewise.
* elf64-ppc.c (ppc64_elf_maybe_function_sym): Likewise.
* elf32-arm.c (elf32_arm_maybe_function_sym): Likewise.
ld * testsuite/ld-elf/anno-sym.s: New test source file.
* testsuite/ld-elf/anno-sym.d: New test driver.
* testsuite/ld-elf/anno-sym.l: New test error output.
|
|
The change implementing the .persistent family of sections broke the
existing support for the .persistent.bss section in the compiler:
int a __attribute__ ((section (".persistent.bss")));
t.s: Assembler messages:
t.s:4: Warning: setting incorrect section type for .persistent.bss
The compiler encodes it as @nobits but the assembler expects @progbits.
The assembler is incorrect and should treat the section like the compiler.
bfd/
* elf.c (special_sections_p): Add .persistent.bss.
gas/
* testsuite/gas/elf/section25.d: Run it everywhere.
* testsuite/gas/elf/section26.d: Likewise.
* testsuite/gas/elf/section26.s: Add test for .persistent.bss.
|
|
Since p_memsz of the loadable PT_NOTE segment should be the same as
p_filesz, set p_memsz on the loadable PT_NOTE segment when updating
p_filesz.
bfd/
PR binutils/27708
* elf.c (assign_file_positions_for_non_load_sections): Set
p_memsz to p_filesz for the loadable PT_NOTE segment.
binutils/
PR binutils/27708
* testsuite/binutils-all/x86-64/pr27708.dump: New file.
* testsuite/binutils-all/x86-64/pr27708.exe.bz2: Likewise.
* testsuite/binutils-all/x86-64/x86-64.exp: Run binutils/27708
test.
|
|
binutils* readelf.c (get_netbsd_elfcore_note_type): Remove unneeded #ifdef
checks for NT_NETBSDCORE_AUXV and NT_NETBSDCORE_LWPSTATUS.
bfd * elf.c (elfcore_grok_netbsd_note): Remove unneeded #ifdef
checks for NT_NETBSDCORE_AUXV and NT_NETBSDCORE_LWPSTATUS.
|
|
bfd/ChangeLog:
* elf-bfd.h (bfd_section_is_ctf): Use startswith function.
* elf.c (_bfd_elf_make_section_from_shdr): Likewise.
(elf_get_reloc_section): Likewise.
* elf32-arc.c (elf_arc_size_dynamic_sections): Likewise.
* elf32-m32r.c (m32r_elf_section_flags): Likewise.
* elf32-microblaze.c (microblaze_elf_size_dynamic_sections): Likewise.
* elf32-nds32.c (nds32_elf_size_dynamic_sections): Likewise.
(nds32_elf_relocate_section): Likewise.
(nds32_elf_action_discarded): Likewise.
(nds32_elf_check_relocs): Likewise.
(nds32_elf_section_flags): Likewise.
* elf32-or1k.c (or1k_elf_check_relocs): Likewise.
* elf32-ppc.c (ppc_elf_section_from_shdr): Likewise.
* elf32-rx.c (rx_table_find): Likewise.
(rx_table_map): Likewise.
* elf32-spu.c (spu_elf_backend_symbol_processing): Likewise.
(spu_elf_find_overlays): Likewise.
(needs_ovl_stub): Likewise.
(allocate_spuear_stubs): Likewise.
(build_spuear_stubs): Likewise.
(mark_overlay_section): Likewise.
(spu_elf_auto_overlay): Likewise.
(spu_elf_output_symbol_hook): Likewise.
* elf32-tilepro.c (tilepro_elf_size_dynamic_sections): Likewise.
* elf32-xtensa.c (xtensa_property_section_name): Likewise.
* elf64-ppc.c (ppc64_elf_section_flags): Likewise.
(ppc64_elf_relocate_section): Likewise.
* elflink.c (resolve_section): Likewise.
(UNARY_OP): Likewise.
(BINARY_OP_HEAD): Likewise.
(elf_link_input_bfd): Likewise.
* elfnn-riscv.c (riscv_elf_size_dynamic_sections): Likewise.
* elfxx-riscv.c (riscv_parse_subset): Likewise.
* elfxx-tilegx.c (tilegx_elf_size_dynamic_sections): Likewise.
* opncls.c (get_build_id): Likewise.
binutils/ChangeLog:
* dllwrap.c: Use startswith function.
* objcopy.c (is_dwo_section): Likewise.
(handle_remove_section_option): Likewise.
(copy_main): Likewise.
* objdump.c (is_significant_symbol_name): Likewise.
|
|
* sysdep.h: POISON_BFD_BOOLEAN: Define.
* aix5ppc-core.c, * aout-cris.c, * aout-ns32k.c, * aout-target.h,
* aoutx.h, * arc-got.h, * archive.c, * archive64.c, * archures.c,
* bfd-in.h, * bfd.c, * bfdwin.c, * binary.c, * cache.c,
* coff-alpha.c, * coff-arm.c, * coff-arm.h, * coff-bfd.c,
* coff-bfd.h, * coff-go32.c, * coff-i386.c, * coff-ia64.c,
* coff-mcore.c, * coff-mips.c, * coff-rs6000.c, * coff-sh.c,
* coff-stgo32.c, * coff-tic30.c, * coff-tic4x.c, * coff-tic54x.c,
* coff-x86_64.c, * coff-z80.c, * coff-z8k.c, * coff64-rs6000.c,
* coffcode.h, * coffgen.c, * cofflink.c, * compress.c,
* corefile.c, * cpu-aarch64.c, * cpu-aarch64.h, * cpu-alpha.c,
* cpu-arc.c, * cpu-arm.c, * cpu-arm.h, * cpu-avr.c, * cpu-bfin.c,
* cpu-bpf.c, * cpu-cr16.c, * cpu-cris.c, * cpu-crx.c,
* cpu-csky.c, * cpu-d10v.c, * cpu-d30v.c, * cpu-dlx.c,
* cpu-epiphany.c, * cpu-fr30.c, * cpu-frv.c, * cpu-ft32.c,
* cpu-h8300.c, * cpu-hppa.c, * cpu-i386.c, * cpu-ia64.c,
* cpu-iamcu.c, * cpu-ip2k.c, * cpu-iq2000.c, * cpu-k1om.c,
* cpu-l1om.c, * cpu-lm32.c, * cpu-m10200.c, * cpu-m10300.c,
* cpu-m32c.c, * cpu-m32r.c, * cpu-m68hc11.c, * cpu-m68hc12.c,
* cpu-m68k.c, * cpu-m9s12x.c, * cpu-m9s12xg.c, * cpu-mcore.c,
* cpu-mep.c, * cpu-metag.c, * cpu-microblaze.c, * cpu-mips.c,
* cpu-mmix.c, * cpu-moxie.c, * cpu-msp430.c, * cpu-mt.c,
* cpu-nds32.c, * cpu-nfp.c, * cpu-nios2.c, * cpu-ns32k.c,
* cpu-or1k.c, * cpu-pdp11.c, * cpu-pj.c, * cpu-powerpc.c,
* cpu-pru.c, * cpu-riscv.c, * cpu-rl78.c, * cpu-rs6000.c,
* cpu-rx.c, * cpu-s12z.c, * cpu-s390.c, * cpu-score.c,
* cpu-sh.c, * cpu-sparc.c, * cpu-spu.c, * cpu-tic30.c,
* cpu-tic4x.c, * cpu-tic54x.c, * cpu-tic6x.c, * cpu-tilegx.c,
* cpu-tilepro.c, * cpu-v850.c, * cpu-v850_rh850.c, * cpu-vax.c,
* cpu-visium.c, * cpu-wasm32.c, * cpu-xc16x.c, * cpu-xgate.c,
* cpu-xstormy16.c, * cpu-xtensa.c, * cpu-z80.c, * cpu-z8k.c,
* dwarf1.c, * dwarf2.c, * ecoff-bfd.h, * ecoff.c, * ecofflink.c,
* elf-attrs.c, * elf-bfd.h, * elf-eh-frame.c, * elf-hppa.h,
* elf-ifunc.c, * elf-m10200.c, * elf-m10300.c, * elf-nacl.c,
* elf-nacl.h, * elf-properties.c, * elf-s390-common.c,
* elf-s390.h, * elf-strtab.c, * elf-vxworks.c, * elf-vxworks.h,
* elf.c, * elf32-am33lin.c, * elf32-arc.c, * elf32-arm.c,
* elf32-arm.h, * elf32-avr.c, * elf32-avr.h, * elf32-bfin.c,
* elf32-bfin.h, * elf32-cr16.c, * elf32-cr16.h, * elf32-cris.c,
* elf32-crx.c, * elf32-csky.c, * elf32-csky.h, * elf32-d10v.c,
* elf32-d30v.c, * elf32-dlx.c, * elf32-epiphany.c,
* elf32-fr30.c, * elf32-frv.c, * elf32-ft32.c, * elf32-gen.c,
* elf32-h8300.c, * elf32-hppa.c, * elf32-hppa.h, * elf32-i386.c,
* elf32-ip2k.c, * elf32-iq2000.c, * elf32-lm32.c, * elf32-m32c.c,
* elf32-m32r.c, * elf32-m68hc11.c, * elf32-m68hc12.c,
* elf32-m68hc1x.c, * elf32-m68hc1x.h, * elf32-m68k.c,
* elf32-m68k.h, * elf32-mcore.c, * elf32-mep.c, * elf32-metag.c,
* elf32-metag.h, * elf32-microblaze.c, * elf32-mips.c,
* elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c,
* elf32-nios2.c, * elf32-nios2.h, * elf32-or1k.c, * elf32-pj.c,
* elf32-ppc.c, * elf32-ppc.h, * elf32-pru.c, * elf32-rl78.c,
* elf32-rx.c, * elf32-s12z.c, * elf32-s390.c, * elf32-score.c,
* elf32-score.h, * elf32-score7.c, * elf32-sh-relocs.h,
* elf32-sh.c, * elf32-sparc.c, * elf32-spu.c, * elf32-spu.h,
* elf32-tic6x.c, * elf32-tic6x.h, * elf32-tilegx.c,
* elf32-tilepro.c, * elf32-v850.c, * elf32-v850.h,
* elf32-vax.c, * elf32-visium.c, * elf32-wasm32.c,
* elf32-xc16x.c, * elf32-xgate.c, * elf32-xstormy16.c,
* elf32-xtensa.c, * elf32-z80.c, * elf64-alpha.c, * elf64-bpf.c,
* elf64-gen.c, * elf64-hppa.c, * elf64-ia64-vms.c,
* elf64-mips.c, * elf64-mmix.c, * elf64-nfp.c, * elf64-ppc.c,
* elf64-ppc.h, * elf64-s390.c, * elf64-sparc.c,
* elf64-tilegx.c, * elf64-x86-64.c, * elfcode.h,
* elfcore.h, * elflink.c, * elfn32-mips.c, * elfnn-aarch64.c,
* elfnn-ia64.c, * elfnn-riscv.c, * elfxx-aarch64.c,
* elfxx-aarch64.h, * elfxx-ia64.c, * elfxx-ia64.h,
* elfxx-mips.c, * elfxx-mips.h, * elfxx-riscv.c, * elfxx-riscv.h,
* elfxx-sparc.c, * elfxx-sparc.h, * elfxx-target.h,
* elfxx-tilegx.c, * elfxx-tilegx.h, * elfxx-x86.c, * elfxx-x86.h,
* format.c, * genlink.h, * hash.c, * i386aout.c, * i386lynx.c,
* i386msdos.c, * ihex.c, * libaout.h, * libbfd-in.h,
* libbfd.c, * libcoff-in.h, * libecoff.h, * libpei.h,
* libxcoff.h, * linker.c, * mach-o-aarch64.c, * mach-o-arm.c,
* mach-o-i386.c, * mach-o-x86-64.c, * mach-o.c, * mach-o.h,
* merge.c, * mmo.c, * netbsd.h, * opncls.c, * pc532-mach.c,
* pdp11.c, * pe-arm.c, * pe-i386.c, * pe-mcore.c, * pe-sh.c,
* pe-x86_64.c, * peXXigen.c, * pef.c, * pei-arm.c, * pei-i386.c,
* pei-ia64.c, * pei-mcore.c, * pei-sh.c, * pei-x86_64.c,
* peicode.h, * plugin.c, * plugin.h, * ppcboot.c, * reloc.c,
* reloc16.c, * rs6000-core.c, * section.c, * simple.c, * som.c,
* som.h, * srec.c, * stabs.c, * syms.c, * targets.c, * tekhex.c,
* verilog.c, * vms-alpha.c, * vms-lib.c, * vms-misc.c, * vms.h,
* wasm-module.c, * xcofflink.c, * xcofflink.h, * xsym.c,
* xsym.h: Replace bfd_boolean with bool, FALSE with false, and
TRUE with true throughout.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* libcoff.h: Regenerate.
|
|
bfd/ChangeLog:
* bfd-in.h (startswith): Add startswith function.
(CONST_STRNEQ): Remove.
* bfd-in2.h (startswith): Regenerate with make headers.
* archive.c (bfd_slurp_armap): Replace usage of CONST_STRNEQ with startswith.
(_bfd_slurp_extended_name_table): Likewise.
* archive64.c (_bfd_archive_64_bit_slurp_armap): Likewise.
* bfd.c (bfd_get_sign_extend_vma): Likewise.
(bfd_convert_section_size): Likewise.
(bfd_convert_section_contents): Likewise.
* coff-stgo32.c (go32exe_create_stub): Likewise.
(go32exe_check_format): Likewise.
* coffcode.h (styp_to_sec_flags): Likewise.
(GNU_DEBUGALTLINK): Likewise.
* coffgen.c (_bfd_coff_section_already_linked): Likewise.
(coff_gc_sweep): Likewise.
(bfd_coff_gc_sections): Likewise.
* cofflink.c (coff_link_add_symbols): Likewise.
(process_embedded_commands): Likewise.
* compress.c (bfd_is_section_compressed_with_header): Likewise.
(bfd_init_section_decompress_status): Likewise.
* dwarf2.c (find_debug_info): Likewise.
(place_sections): Likewise.
* ecoff.c (_bfd_ecoff_slurp_armap): Likewise.
* elf-m10300.c (_bfd_mn10300_elf_size_dynamic_sections): Likewise.
* elf.c (_bfd_elf_make_section_from_shdr): Likewise.
(assign_section_numbers): Likewise.
(elfcore_grok_win32pstatus): Likewise.
* elf32-arm.c (cmse_scan): Likewise.
(elf32_arm_gc_mark_extra_sections): Likewise.
(elf32_arm_size_dynamic_sections): Likewise.
(is_arm_elf_unwind_section_name): Likewise.
* elf32-bfin.c (bfin_size_dynamic_sections): Likewise.
* elf32-cr16.c (_bfd_cr16_elf_size_dynamic_sections): Likewise.
* elf32-cris.c (elf_cris_size_dynamic_sections): Likewise.
* elf32-csky.c (csky_elf_size_dynamic_sections): Likewise.
* elf32-hppa.c (elf32_hppa_size_dynamic_sections): Likewise.
* elf32-iq2000.c (iq2000_elf_check_relocs): Likewise.
* elf32-lm32.c (lm32_elf_size_dynamic_sections): Likewise.
* elf32-m32r.c (m32r_elf_size_dynamic_sections): Likewise.
* elf32-m68k.c (elf_m68k_size_dynamic_sections): Likewise.
* elf32-metag.c (elf_metag_size_dynamic_sections): Likewise.
* elf32-msp430.c (msp430_elf_relax_delete_bytes): Likewise.
* elf32-nios2.c (nios2_elf32_size_dynamic_sections): Likewise.
* elf32-or1k.c (or1k_elf_size_dynamic_sections): Likewise.
* elf32-ppc.c (ppc_elf_size_dynamic_sections): Likewise.
* elf32-s390.c (elf_s390_size_dynamic_sections): Likewise.
* elf32-score.c (s3_bfd_score_elf_size_dynamic_sections): Likewise.
* elf32-score7.c (s7_bfd_score_elf_size_dynamic_sections): Likewise.
* elf32-sh.c (sh_elf_size_dynamic_sections): Likewise.
* elf32-tic6x.c (is_tic6x_elf_unwind_section_name): Likewise.
(elf32_tic6x_size_dynamic_sections): Likewise.
* elf32-vax.c (elf_vax_size_dynamic_sections): Likewise.
* elf32-xtensa.c (elf_xtensa_size_dynamic_sections): Likewise.
(xtensa_is_insntable_section): Likewise.
(xtensa_is_littable_section): Likewise.
(xtensa_is_proptable_section): Likewise.
(xtensa_property_section_name): Likewise.
(xtensa_callback_required_dependence): Likewise.
* elf64-alpha.c (elf64_alpha_size_dynamic_sections): Likewise.
* elf64-hppa.c (elf64_hppa_size_dynamic_sections): Likewise.
* elf64-ia64-vms.c (is_unwind_section_name): Likewise.
(get_reloc_section): Likewise.
(elf64_ia64_size_dynamic_sections): Likewise.
(elf64_ia64_object_p): Likewise.
* elf64-mmix.c (mmix_elf_add_symbol_hook): Likewise.
* elf64-ppc.c (ppc64_elf_size_dynamic_sections): Likewise.
* elf64-s390.c (elf_s390_size_dynamic_sections): Likewise.
* elflink.c (elf_link_add_object_symbols): Likewise.
(_bfd_elf_gc_mark_extra_sections): Likewise.
(bfd_elf_parse_eh_frame_entries): Likewise.
(_bfd_elf_section_already_linked): Likewise.
* elfnn-aarch64.c (elfNN_aarch64_size_dynamic_sections): Likewise.
* elfnn-ia64.c (is_unwind_section_name): Likewise.
(elfNN_ia64_size_dynamic_sections): Likewise.
(elfNN_ia64_object_p): Likewise.
* elfxx-mips.c (FN_STUB_P): Likewise.
(CALL_STUB_P): Likewise.
(CALL_FP_STUB_P): Likewise.
(_bfd_mips_elf_section_from_shdr): Likewise.
(_bfd_mips_elf_fake_sections): Likewise.
(_bfd_mips_elf_size_dynamic_sections): Likewise.
(_bfd_mips_final_write_processing): Likewise.
(_bfd_mips_elf_final_link): Likewise.
* elfxx-sparc.c (_bfd_sparc_elf_size_dynamic_sections): Likewise.
* elfxx-x86.c (elf_i386_is_reloc_section): Likewise.
(elf_x86_64_is_reloc_section): Likewise.
* hpux-core.c (thread_section_p): Likewise.
* libcoff.h (bfd_pei_p): Likewise.
* linker.c (REAL): Likewise.
(unwrap_hash_lookup): Likewise.
(_bfd_generic_link_add_one_symbol): Likewise.
* mmo.c (mmo_internal_write_section): Likewise.
* osf-core.c (osf_core_core_file_p): Likewise.
* pef.c (bfd_pef_print_symbol): Likewise.
* pei-x86_64.c (pex64_print_all_pdata_sections): Likewise.
* som.c (som_slurp_symbol_table): Likewise.
(som_slurp_armap): Likewise.
* wasm-module.c (wasm_compute_custom_section_file_position): Likewise.
binutils/ChangeLog:
* dlltool.c (scan_drectve_symbols): Replace usage of CONST_STRNEQ with startswith.
* emul_aix.c (ar_emul_aix_parse_arg): Likewise.
* objcopy.c (is_mergeable_note_section): Likewise.
* objdump.c (dump_dwarf_section): Likewise.
* prdbg.c (pr_method_type): Likewise.
(pr_class_baseclass): Likewise.
(tg_class_baseclass): Likewise.
* readelf.c (process_lto_symbol_tables): Likewise.
* stabs.c (ULLHIGH): Likewise.
(parse_stab_argtypes): Likewise.
(stab_demangle_function_name): Likewise.
gas/ChangeLog:
* config/tc-i386.c (md_parse_option): Replace usage of CONST_STRNEQ with startswith.
(x86_64_section_word): Likewise.
* config/tc-sparc.c (md_parse_option): Likewise.
gdb/ChangeLog:
* arm-tdep.c (show_disassembly_style_sfunc): Replace usage of CONST_STRNEQ with startswith.
(_initialize_arm_tdep): Likewise.
ld/ChangeLog:
* emultempl/aix.em: Replace usage of CONST_STRNEQ with startswith.
* emultempl/beos.em: Likewise.
* emultempl/elf.em: Likewise.
* emultempl/pe.em: Likewise.
* emultempl/pep.em: Likewise.
* emultempl/xtensaelf.em: Likewise.
* ldctor.c (ctor_prio): Likewise.
* ldelf.c (ldelf_try_needed): Likewise.
(ldelf_parse_ld_so_conf): Likewise.
(ldelf_after_open): Likewise.
(output_rel_find): Likewise.
(ldelf_place_orphan): Likewise.
* ldfile.c (ldfile_add_library_path): Likewise.
* ldlang.c (lang_add_input_file): Likewise.
* ldmain.c (get_sysroot): Likewise.
(get_emulation): Likewise.
(add_archive_element): Likewise.
* ldwrite.c (unsplittable_name): Likewise.
(clone_section): Likewise.
* lexsup.c (parse_args): Likewise.
* pe-dll.c (is_import): Likewise.
(pe_implied_import_dll): Likewise.
opcodes/ChangeLog:
* aarch64-dis.c (parse_aarch64_dis_option): Replace usage of CONST_STRNEQ with startswith.
* arc-dis.c (parse_option): Likewise.
* arm-dis.c (parse_arm_disassembler_options): Likewise.
* cris-dis.c (print_with_operands): Likewise.
* h8300-dis.c (bfd_h8_disassemble): Likewise.
* i386-dis.c (print_insn): Likewise.
* ia64-gen.c (fetch_insn_class): Likewise.
(parse_resource_users): Likewise.
(in_iclass): Likewise.
(lookup_specifier): Likewise.
(insert_opcode_dependencies): Likewise.
* mips-dis.c (parse_mips_ase_option): Likewise.
(parse_mips_dis_option): Likewise.
* s390-dis.c (disassemble_init_s390): Likewise.
* wasm32-dis.c (parse_wasm32_disassembler_options): Likewise.
|
|
The exception for debug sections in clearing SEC_EXCLUDE when
relocatable was really for one specific debug section, so let's make
it do just that.
bfd/
PR 27590
* elf.c (_bfd_elf_make_section_from_shdr): Remove SHF_EXCLUDE
test for .gnu.debuglto*.
ld/
PR 27590
* ldlang.c (lang_gc_sections): Clear SEC_EXCLUDE when relocatable
for all sections except .stabstr.
|
|
commit 994b25132814f4c2be93ce53a616a74139c4cf3c
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Sun Jan 17 20:01:16 2021 -0800
ld/elf: Ignore section symbols when matching linkonce with comdat
ignored section symbols when comparing symbols in 2 sections. Since all
references to debugging sections are done with section symbols, symbols
in debugging sections are ignored and we fail to match symbols in comdat
debugging sections. Also .gnu.debuglto_.debug_* sections aren't treated
as debugging sections.
1. Treate .gnu.debuglto_.debug_ section as debugging section unless it
is marked with SHF_EXCLUDE.
2. Revert commit 994b2513281 in elf_create_symbuf.
3. Ignore section symbols only when matching non-debugging sections or
linkonce section with comdat section.
bfd/
PR ld/27590
* elf.c (_bfd_elf_make_section_from_shdr): Treate
.gnu.debuglto_.debug_ section as debugging section unless it is
marked with SHF_EXCLUDE.
* elflink.c (elf_create_symbuf): Revert commit 994b2513281.
(bfd_elf_match_symbols_in_sections): Ignore section symbols when
matching non-debugging sections or linkonce section with comdat
section.
ld/
PR ld/27590
* testsuite/ld-elf/pr27590.s: New file.
* testsuite/ld-elf/pr27590a.d: Likewise.
* testsuite/ld-elf/pr27590b.d: Likewise.
* testsuite/ld-i386/i386.exp: Also run ld/27193 test with
--reduce-memory-overheads.
|
|
* elf.c (bfd_elf_generic_reloc): Make references between debug
sections use section relative values.
|
|
Adds support for including RISC-V control and status registers into
core files.
The value for the define NT_RISCV_CSR is set to 0x900, this
corresponds to a patch I have proposed for the Linux kernel here:
http://lists.infradead.org/pipermail/linux-riscv/2020-December/003910.html
As I have not yet heard if the above patch will be accepted into the
kernel or not I have set the note name string to "GDB", and the note
type to NT_RISCV_CSR.
This means that if the above patch is rejected from the kernel, and
the note type number 0x900 is assigned to some other note type, we
will still be able to distinguish between the GDB produced
NT_RISCV_CSR, and the kernel produced notes, where the name would be
set to "CORE".
bfd/ChangeLog:
* elf-bfd.h (elfcore_write_riscv_csr): Declare.
* elf.c (elfcore_grok_riscv_csr): New function.
(elfcore_grok_note): Handle NT_RISCV_CSR.
(elfcore_write_riscv_csr): New function.
(elfcore_write_register_note): Handle '.reg-riscv-csr'.
binutils/ChangeLog:
* readelf.c (get_note_type): Handle NT_RISCV_CSR.
include/ChangeLog:
* elf/common.h (NT_RISCV_CSR): Define.
|
|
This commit lays the ground work for allowing GDB to write its target
description into a generated core file.
The goal of this work is to allow a user to connect to a remote
target, capture a core file from within GDB, then pass the executable
and core file to another user and have the user be able to examine the
state of the machine without needing to connect to a running target.
Different remote targets can have different register sets and this
information is communicated from the target to GDB in the target
description.
It is possible for a user to extract the target description from GDB
and pass this along with the core file so that when the core file is
used the target description can be fed back into GDB, however this is
not a great user experience.
It would be nicer, I think, if GDB could write the target description
directly into the core file, and then make use of this description
when loading a core file.
This commit performs the binutils/bfd side of this task, adding the
boiler plate functions to access the target description from within a
core file note, and reserving a new number for a note containing the
target description. Later commits will extend GDB to make use of
this.
The new note is given the name 'GDB' and a type NT_GDB_TDESC. This
should hopefully protect us if there's ever a reuse of the number
assigned to NT_GDB_TDESC by some other core file producer. It should
also, hopefully, make it clearer to users that this note carries GDB
specific information.
bfd/ChangeLog:
* elf-bfd.h (elfcore_write_gdb_tdesc): Declare new function.
* elf.c (elfcore_grok_gdb_tdesc): New function.
(elfcore_grok_note): Handle NT_GDB_TDESC.
(elfcore_write_gdb_tdesc): New function.
(elfcore_write_register_note): Handle NT_GDB_TDESC.
binutils/ChangeLog:
* readelf.c (get_note_type): Handle NT_GDB_TDESC.
include/ChangeLog:
* elf/common.h (NT_GDB_TDESC): Define.
|
|
Adds a trivial wrapper over elfcore_write_note, primarily to be more
consistent with other ELF note helper functions and highlight NT_FILE as
one of notes handled by gdb.
bfd/ChangeLog:
2020-12-17 Mihails Strasuns <mihails.strasuns@intel.com>
* bfd-elf.h (elfcore_write_file_note): New function.
* elf.c (elfcore_write_file_note): New function.
gdb/ChangeLog:
2020-12-17 Mihails Strasuns <mihails.strasuns@intel.com>
* linux-tdep.c (linux_make_mappings_corefile_notes): Start using
elfcore_write_file_note.
|
|
* elf.c (elfcore_grok_win32pstatus): Check for a note type of 0.
|
|
For ELF targets, section symbols are required only for relocations.
With -ffunction-sections -fdata-sections, there can be many unused
section symbols. Sizes of libstdc++.a on Linux/x86-64 in GCC 11 are
With unused section symbols : 39411698 bytes
Without unused section symbols: 39227002 bytes
The unused section symbols in libstdc++.a occupy more than 180 KB.
Add BSF_SECTION_SYM_USED to indicate if a section symbol should be
included in the symbol table. The BSF_SECTION_SYM_USED should be set
if the section symbol is used for relocation or the section symbol is
always included in the symbol table.
Add keep_unused_section_symbols to bfd_target to indicate if unused
section symbols should be kept. If TARGET_KEEP_UNUSED_SECTION_SYMBOLS
is defined as FALSE, unused ection symbols will be removed.
Tested on Linux/x86. Other ELF backends need to:
1. Define TARGET_KEEP_UNUSED_SECTION_SYMBOLS to FALSE.
2. Mark used section symbols in assembler backend.
3. Remove unused section symbols from expected assembler and linker
outputs.
bfd/
PR 27109
* aix386-core.c (core_aix386_vec): Initialize
keep_unused_section_symbol to TARGET_KEEP_UNUSED_SECTION_SYMBOLS.
* aout-target.h (MY (vec)): Likewise.
* binary.c (binary_vec): Likewise.
* cisco-core.c (core_cisco_be_vec): Likewise.
(core_cisco_le_vec): Likewise.
* coff-alpha.c (alpha_ecoff_le_vec): Likewise.
* coff-i386.c (TARGET_SYM): Likewise.
(TARGET_SYM_BIG): Likewise.
* coff-ia64.c (TARGET_SYM): Likewise.
* coff-mips.c (mips_ecoff_le_vec): Likewise.
(mips_ecoff_be_vec): Likewise.
(mips_ecoff_bele_vec): Likewise.
* coff-rs6000.c (rs6000_xcoff_vec): Likewise.
(powerpc_xcoff_vec): Likewise.
* coff-sh.c (sh_coff_small_vec): Likewise.
(sh_coff_small_le_vec): Likewise.
* coff-tic30.c (tic30_coff_vec): Likewise.
* coff-tic54x.c (tic54x_coff0_vec): Likewise.
(tic54x_coff0_beh_vec): Likewise.
(tic54x_coff1_vec): Likewise.
(tic54x_coff1_beh_vec): Likewise.
(tic54x_coff2_vec): Likewise.
(tic54x_coff2_beh_vec): Likewise.
* coff-x86_64.c (TARGET_SYM): Likewise.
(TARGET_SYM_BIG): Likewise.
* coff64-rs6000.c (rs6000_xcoff64_vec): Likewise.
(rs6000_xcoff64_aix_vec): Likewise.
* coffcode.h (CREATE_BIG_COFF_TARGET_VEC): Likewise.
(CREATE_BIGHDR_COFF_TARGET_VEC): Likewise.
(CREATE_LITTLE_COFF_TARGET_VEC): Likewise.
* elfxx-target.h (TARGET_BIG_SYM): Likewise.
(TARGET_LITTLE_SYM): Likewise.
* hppabsd-core.c (core_hppabsd_vec): Likewise.
* hpux-core.c (core_hpux_vec): Likewise.
* i386msdos.c (i386_msdos_vec): Likewise.
* ihex.c (ihex_vec): Likewise.
* irix-core.c (core_irix_vec): Likewise.
* mach-o-target.c (TARGET_NAME): Likewise.
* mmo.c (mmix_mmo_vec): Likewise.
* netbsd-core.c (core_netbsd_vec): Likewise.
* osf-core.c (core_osf_vec): Likewise.
* pdp11.c (MY (vec)): Likewise.
* pef.c (pef_vec): Likewise.
(pef_xlib_vec): Likewise.
* plugin.c (plugin_vec): Likewise.
* ppcboot.c (powerpc_boot_vec): Likewise.
* ptrace-core.c (core_ptrace_vec): Likewise.
* sco5-core.c (core_sco5_vec): Likewise.
* som.c (hppa_som_vec): Likewise.
* srec.c (srec_vec): Likewise.
(symbolsrec_vec): Likewise.
* tekhex.c (tekhex_vec): Likewise.
* trad-core.c (core_trad_vec): Likewise.
* verilog.c (verilog_vec): Likewise.
* vms-alpha.c (alpha_vms_vec): Likewise.
* vms-lib.c (alpha_vms_lib_txt_vec): Likewise.
* wasm-module.c (wasm_vec): Likewise.
* xsym.c (sym_vec): Likewise.
* elf.c (ignore_section_sym): Return TRUE if BSF_SECTION_SYM_USED
isn't set.
(elf_map_symbols): Don't include ignored section symbols.
* elfcode.h (elf_slurp_symbol_table): Also set
BSF_SECTION_SYM_USED on STT_SECTION symbols.
* elflink.c (bfd_elf_final_link): Generated section symbols only
when emitting relocations or reqired.
* elfxx-x86.h (TARGET_KEEP_UNUSED_SECTION_SYMBOLS): New.
* syms.c (BSF_SECTION_SYM_USED): New.
* targets.c (TARGET_KEEP_UNUSED_SECTION_SYMBOLS): New.
(bfd_target): Add keep_unused_section_symbols.
(bfd_keep_unused_section_symbols): New.
* bfd-in2.h: Regenerated.
binutils/
PR 27109
* objcopy.c (copy_object): Handle section symbols for
non-relocatable inputs.
* testsuite/binutils-all/readelf.exp (readelf_test): Check
is_elf_unused_section_symbols.
* testsuite/binutils-all/readelf.s-64: Updated.
* testsuite/binutils-all/readelf.ss: Likewise.
* testsuite/binutils-all/readelf.ss-64: Likewise.
* testsuite/binutils-all/readelf.s-64-unused: New file.
* testsuite/binutils-all/readelf.ss-64-unused: Likewise.
* testsuite/binutils-all/readelf.ss-unused: Likewise.
* testsuite/lib/binutils-common.exp
(is_elf_unused_section_symbols): New proc.
gas/ChangeLog:
PR 27109
* read.c (s_reloc): Call symbol_mark_used_in_reloc on the
section symbol.
* subsegs.c (subseg_set_rest): Set BSF_SECTION_SYM_USED if needed.
* write.c (adjust_reloc_syms): Call symbol_mark_used_in_reloc
on the section symbol.
(set_symtab): Don't generate unused section symbols.
(maybe_generate_build_notes): Call symbol_mark_used_in_reloc
on the section symbol.
* config/obj-elf.c (elf_adjust_symtab): Call
symbol_mark_used_in_reloc on the group signature symbol.
* testsuite/gas/cfi/cfi-label.d: Remove unused section symbols
from expected output.
* testsuite/gas/elf/elf.exp (run_elf_list_test): Check
is_elf_unused_section_symbols.
* testsuite/gas/elf/section2.e: Updated.
* testsuite/gas/elf/section2.e-unused: New file.
* testsuite/gas/elf/symver.d: Remove unused section symbols.
* testsuite/gas/i386/ilp32/elf/symver.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-size-1.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-size-3.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-size-5.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-unwind.d: Likewise.
* testsuite/gas/i386/size-1.d: Likewise.
* testsuite/gas/i386/size-3.d: Likewise.
* testsuite/gas/i386/svr4.d: Likewise.
* testsuite/gas/i386/x86-64-size-1.d: Likewise.
* testsuite/gas/i386/x86-64-size-3.d: Likewise.
* testsuite/gas/i386/x86-64-size-5.d: Likewise.
* testsuite/gas/i386/x86-64-unwind.d: Likewise.
ld/
PR 27109
* testsuite/ld-elf/export-class.sd: Adjust the expected output.
* testsuite/ld-elf/loadaddr3b.d: Likewise.
* testsuite/ld-i386/ibt-plt-1.d: Likewise.
* testsuite/ld-i386/ibt-plt-2a.d: Likewise.
* testsuite/ld-i386/ibt-plt-2c.d: Likewise.
* testsuite/ld-i386/ibt-plt-3a.d: Likewise.
* testsuite/ld-i386/ibt-plt-3c.d: Likewise.
* testsuite/ld-i386/pr19636-1d.d: Likewise.
* testsuite/ld-i386/pr19636-1l.d: Likewise.
* testsuite/ld-i386/pr19636-2c.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-local-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-local-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-21-x86-64.d: Likewise.
* testsuite/ld-ifunc/ifunc-22-x86-64.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64.d: Likewise.
* testsuite/ld-x86-64/bnd-branch-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c.d: Likewise.
* testsuite/ld-x86-64/pr19609-4e.d: Likewise.
* testsuite/ld-x86-64/pr19609-6a.d: Likewise.
* testsuite/ld-x86-64/pr19609-6b.d: Likewise.
* testsuite/ld-x86-64/pr19609-7b.d: Likewise.
* testsuite/ld-x86-64/pr19609-7d.d: Likewise.
* testsuite/ld-x86-64/pr19636-2l.d: Likewise.
* testsuite/ld-x86-64/pr20253-1d.d: Likewise.
* testsuite/ld-x86-64/pr20253-1h.d: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038b.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c.d: Likewise.
* testsuite/ld-x86-64/pr23854.d: Likewise.
* testsuite/ld-x86-64/pr25416-3.d: Likewise.
* testsuite/ld-x86-64/pr25416-4.d: Likewise.
* testsuite/ld-i386/plt-pic.pd: Likewise.
* testsuite/ld-i386/plt-pic2.dd: Likewise.
* testsuite/ld-i386/plt.pd: Likewise.
* testsuite/ld-i386/plt2.dd: Likewise.
* testsuite/ld-i386/tlsbin.rd: Likewise.
* testsuite/ld-i386/tlsbin2.rd: Likewise.
* testsuite/ld-i386/tlsbindesc.rd: Likewise.
* testsuite/ld-i386/tlsdesc.rd: Likewise.
* testsuite/ld-i386/tlsgdesc.rd: Likewise.
* testsuite/ld-i386/tlsnopic.rd: Likewise.
* testsuite/ld-i386/tlspic.rd: Likewise.
* testsuite/ld-i386/tlspic2.rd: Likewise.
* testsuite/ld-x86-64/mpx3.dd: Likewise.
* testsuite/ld-x86-64/mpx3n.dd: Likewise.
* testsuite/ld-x86-64/mpx4.dd: Likewise.
* testsuite/ld-x86-64/mpx4n.dd: Likewise.
* testsuite/ld-x86-64/pe-x86-64-1.od: Likewise.
* testsuite/ld-x86-64/pe-x86-64-2.od: Likewise.
* testsuite/ld-x86-64/pe-x86-64-3.od: Likewise.
* testsuite/ld-x86-64/pe-x86-64-4.od: Likewise.
* testsuite/ld-x86-64/plt.pd: Likewise.
* testsuite/ld-x86-64/plt2.dd: Likewise.
* testsuite/ld-x86-64/tlsbin.rd: Likewise.
* testsuite/ld-x86-64/tlsbin2.rd: Likewise.
* testsuite/ld-x86-64/tlsbindesc.rd: Likewise.
* testsuite/ld-x86-64/tlsdesc.rd: Likewise.
* testsuite/ld-x86-64/tlsgdesc.rd: Likewise.
* testsuite/ld-x86-64/tlspic.rd: Likewise.
* testsuite/ld-x86-64/tlspic2.rd: Likewise.
* testsuite/ld-elf/sec64k.exp: Check
is_elf_unused_section_symbols.
|
|
|
|
elfNN_bed was made writable as an expedient means of communicating
ld -z max-page-size and ld -z common-page-size values to BFD linker
code, and even for objcopy to communicate segment alignment between
copy_private_bfd_data, rewrite_elf_program_header and
assign_file_positions_for_load_sections. Some time later elfNN_bed
elf_osabi was written by gas. It turns out none of these
modifications to elfNN_bed was necessary, so make it const again.
include/
* bfdlink.h (struct bfd_link_info): Add maxpagesize and
commonpagesize.
bfd/
* elfxx-target.h (elfNN_bed): Constify.
* bfd.c (bfd_elf_set_pagesize): Delete.
(bfd_emul_set_maxpagesize, bfd_emul_set_commonpagesize): Delete.
* elf.c (get_program_header_size): Get commonpagesize from
link info.
(_bfd_elf_map_sections_to_segments): Get maxpagesize from link info.
(assign_file_positions_for_load_sections): Likewise.
(assign_file_positions_for_non_load_sections): Likewise.
(rewrite_elf_program_header): Add maxpagesize param. Set map_p_align.
(copy_private_bfd_data): Don't call bfd_elf_set_maxpagesize.
Instead pass maxpagesize to rewrite_elf_program_header.
* elf32-nds32.c (relax_range_measurement): Add link_info param.
Get maxpagesize from link_info. Adjust caller.
* bfd-in2.h: Regenerate.
gas/
* config/obj-elf.c (obj_elf_section): Don't set elf_osabi here.
(obj_elf_type): Likewise.
ld/
* ld.h (ld_config_type): Delete maxpagesize and commonpagesize.
* emultempl/elf.em: Use link_info rather than config
for maxpagesize and commonpagesize.
* emultempl/ppc32elf.em: Likewise.
* ldexp.c (fold_binary, fold_name): Likewise.
* ldemul.c (after_parse_default): Likewise.
(set_output_arch_default): Don't call bfd_emul_set_maxpagesize
or bfd_emul_set_commonpagesize.
|
|
The static variables used by bfd_section_from_shdr to detect loops
in ELF sections have a problem: Comparing a BFD pointer doesn't
guarantee that the current bfd is the same as the one previously used
to allocate the sections_being_created array. For example, doing
size bad_elf_1 bad_elf_2
with two corrupted ELF files containing section loops will leave the
section_being_created array allocated for the first file and since
bfd_close is called for bad_elf_1 before bfd_elf_2 is opened, it is
possible that the BFD for the second file is allocated in the same
memory as the first file. If bad_elf_2 has more sections than
bad_elf_1 then we might write beyond the end of the array.
So this patch implements the FIXME Nick put in a comment about
attaching the array to the BFD.
* elf-bfd.h (struct elf_obj_tdata): Add being_created.
* elf.c (bfd_section_from_shdr): Delete static vars for loop
detection. Use new tdata variable instead.
* elfcode.h (elf_object_p): Allocate being_created.
|
|
Section ordering is important for _bfd_elf_map_sections_to_segments
and assign_file_positions_for_load_sections, which are only prepared
to handle sections in increasing LMA order. When zero size sections
are involved it is possible to have multiple sections at the same LMA.
In that case the zero size sections must sort before any non-zero size
sections regardless of their types.
bfd/
PR 26907
* elf.c (elf_sort_sections): Don't sort zero size !load sections
after load sections.
ld/
* testsuite/ld-elf/pr26907.ld,
* testsuite/ld-elf/pr26907.s,
* testsuite/ld-elf/pr26907.d: New test.
|
|
The ".persistent" section is for data that should be initialized during
load, but not during application reset.
The ".noinit" section is for data that should not be initialized during
load or application reset.
Targets utilizing the elf.sc linker script template can define
HAVE_{NOINIT,PERSISTENT}=yes to include the .noinit or .persistent
output sections in the generated linker script.
Targets with existing support for .noinit did not handle unique
.noinit.* and .gnu.linkonce.n.* sections the .noinit output section,
this patch also fixes that.
bfd/ChangeLog:
* elf.c (special_sections_g): Add .gnu.linkonce.n and .gnu.linkonce.p.
(special_sections_n): Add .noinit.
(special_sections_p): Add .persistent.
binutils/ChangeLog:
* testsuite/lib/binutils-common.exp (supports_noinit_section): New.
(supports_persistent_section): New.
gas/ChangeLog:
* testsuite/gas/elf/elf.exp: Run new tests.
* testsuite/gas/elf/section25.d: New test.
* testsuite/gas/elf/section25.s: New test.
* testsuite/gas/elf/section26.d: New test.
* testsuite/gas/elf/section26.s: New test.
ld/ChangeLog:
* emulparams/armelf.sh (OTHER_SECTIONS): Remove .noinit section
definition.
Define HAVE_{NOINIT,PERSISTENT}=yes.
* scripttempl/avr.sc (.noinit): Add .noinit.* and .gnu.linkonce.n.*
input section wildcard patterns.
* scripttempl/elf.sc: Define .noinit and .persistent sections when
HAVE_NOINIT or HAVE_PERSISTENT are defined to "yes".
* scripttempl/elf32msp430.sc (.noinit): Add .noinit.* and
.gnu.linkonce.n.*. input section wildcard patterns.
(.persistent): Add .persistent.* and
.gnu.linkonce.p.*. input section wildcard patterns.
* scripttempl/elfarcv2.sc (.noinit): Add .noinit.* and
.gnu.linkonce.n.*. input section wildcard patterns.
* scripttempl/pru.sc: Likewise.
* testsuite/ld-elf/noinit-sections-1.d: New test.
* testsuite/ld-elf/noinit-sections-2.d: New test.
* testsuite/ld-elf/noinit-sections-2.l: New test.
* testsuite/ld-elf/noinit-sections.s: New test.
* testsuite/ld-elf/persistent-sections-1.d: New test.
* testsuite/ld-elf/persistent-sections-2.d: New test.
* testsuite/ld-elf/persistent-sections-2.l: New test.
* testsuite/ld-elf/persistent-sections.s: New test.
|
|
relocations.
PR 26931
* elf-bfd.h (struct elf_backend_data): Add bfd_boolean field to
slurp_secondary_relocs field.
(_bfd_elf_slurp_secondary_reloc_section): Update prototype.
* elf.c (_bfd_elf_slurp_secondary_reloc_section): Add new
parameter. Compute number of symbols based upon the new
parameter.
* elfcode.h (elf_slurp_reloc_table): Pass dynamic as new
parameter.
|
|
This is embarrassing.
The whole point of CTF is that it remains intact even after a binary is
stripped, providing a compact mapping from symbols to types for
everything in the externally-visible interface of an ELF object: it has
connections to the symbol table for that purpose, and to the string
table to avoid duplicating symbol names. So it's a shame that the hooks
I implemented last year served to hook it up to the .symtab and .strtab,
which obviously disappear on strip, leaving any accompanying the CTF
dict containing references to strings (and, soon, symbols) which don't
exist any more because their containing strtab has been vaporized. The
original Solaris design used .dynsym and .dynstr (well, actually,
.ldynsym, which has more symbols) which do not disappear. So should we.
Thankfully the work we did before serves as guide rails, and adjusting
things to use the .dynstr and .dynsym was fast and easy. The only
annoyance is that the dynsym is assembled inside elflink.c in a fairly
piecemeal fashion, so that the easiest way to get the symbols out was to
hook in before every call to swap_symbol_out (we also leave in a hook in
front of symbol additions to the .symtab because it seems plausible that
we might want to hook them in future too: for now that hook is unused).
We adjust things so that rather than being offered a whole hash table of
symbols at once, libctf is now given symbols one at a time, with st_name
indexes already resolved and pointing at their final .dynstr offsets:
it's now up to libctf to resolve these to names as needed using the
strtab info we pass it separately.
Some bits might be contentious. The ctf_new_dynstr callback takes an
elf_internal_sym, and this remains an elf_internal_sym right down
through the generic emulation layers into ldelfgen. This is no worse
than the elf_sym_strtab we used to pass down, but in the future when we
gain non-ELF CTF symtab support we might want to lower the
elf_internal_sym to some other representation (perhaps a
ctf_link_symbol) in bfd or in ldlang_ctf_new_dynsym. We rename the
'apply_strsym' hooks to 'acquire_strings' instead, becuse they no longer
have anything to do with symbols.
There are some API changes to pieces of API which are technically public
but actually totally unused by anything and/or unused by anything but ld
so they can change freely: the ctf_link_symbol gains new fields to allow
symbol names to be given as strtab offsets as well as strings, and a
symidx so that the symbol index can be passed in. ctf_link_shuffle_syms
loses its callback parameter: the idea now is that linkers call the new
ctf_link_add_linker_symbol for every symbol in .dynsym, feed in all the
strtab entries with ctf_link_add_strtab, and then a call to
ctf_link_shuffle_syms will apply both and arrange to use them to reorder
the CTF symtab at CTF serialization time (which is coming in the next
commit).
Inside libctf we have a new preamble flag CTF_F_DYNSTR which is always
set in v3-format CTF dicts from this commit forwards: CTF dicts without
this flag are associated with .strtab like they used to be, so that old
dicts' external strings don't turn to garbage when loaded by new libctf.
Dicts with this flag are associated with .dynstr and .dynsym instead.
(The flag is not the next in sequence because this commit was written
quite late: the missing flags will be filled in by the next commit.)
Tests forthcoming in a later commit in this series.
bfd/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* elflink.c (elf_finalize_dynstr): Call examine_strtab after
dynstr finalization.
(elf_link_swap_symbols_out): Don't call it here. Call
ctf_new_symbol before swap_symbol_out.
(elf_link_output_extsym): Call ctf_new_dynsym before
swap_symbol_out.
(bfd_elf_final_link): Likewise.
* elf.c (swap_out_syms): Pass in bfd_link_info. Call
ctf_new_symbol before swap_symbol_out.
(_bfd_elf_compute_section_file_positions): Adjust.
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* readelf.c (dump_section_as_ctf): Use .dynsym and .dynstr, not
.symtab and .strtab.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* bfdlink.h (struct elf_sym_strtab): Replace with...
(struct elf_internal_sym): ... this.
(struct bfd_link_callbacks) <examine_strtab>: Take only a
symstrtab argument.
<ctf_new_symbol>: New.
<ctf_new_dynsym>: Likewise.
* ctf-api.h (struct ctf_link_sym) <st_symidx>: New.
<st_nameidx>: Likewise.
<st_nameidx_set>: Likewise.
(ctf_link_iter_symbol_f): Removed.
(ctf_link_shuffle_syms): Remove most parameters, just takes a
ctf_dict_t now.
(ctf_link_add_linker_symbol): New, split from
ctf_link_shuffle_syms.
* ctf.h (CTF_F_DYNSTR): New.
(CTF_F_MAX): Adjust.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldelfgen.c (struct ctf_strsym_iter_cb_arg): Rename to...
(struct ctf_strtab_iter_cb_arg): ... this, changing fields:
<syms>: Remove.
<symcount>: Remove.
<symstrtab>: Rename to...
<strtab>: ... this.
(ldelf_ctf_strtab_iter_cb): Adjust.
(ldelf_ctf_symbols_iter_cb): Remove.
(ldelf_new_dynsym_for_ctf): New, tell libctf about a single
symbol.
(ldelf_examine_strtab_for_ctf): Rename to...
(ldelf_acquire_strings_for_ctf): ... this, only doing the strtab
portion and not symbols.
* ldelfgen.h: Adjust declarations accordingly.
* ldemul.c (ldemul_examine_strtab_for_ctf): Rename to...
(ldemul_acquire_strings_for_ctf): ... this.
(ldemul_new_dynsym_for_ctf): New.
* ldemul.h: Adjust declarations accordingly.
* ldlang.c (ldlang_ctf_apply_strsym): Rename to...
(ldlang_ctf_acquire_strings): ... this.
(ldlang_ctf_new_dynsym): New.
(lang_write_ctf): Call ldemul_new_dynsym_for_ctf with NULL to do
the actual symbol shuffle.
* ldlang.h (struct elf_strtab_hash): Adjust accordingly.
* ldmain.c (bfd_link_callbacks): Wire up new/renamed callbacks.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-link.c (ctf_link_shuffle_syms): Adjust.
(ctf_link_add_linker_symbol): New, unimplemented stub.
* libctf.ver: Add it.
* ctf-create.c (ctf_serialize): Set CTF_F_DYNSTR on newly-serialized
dicts.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Check for the flag: open the
symtab/strtab if not present, dynsym/dynstr otherwise.
* ctf-archive.c (ctf_arc_bufpreamble): New, get the preamble from
some arbitrary member of a CTF archive.
* ctf-impl.h (ctf_arc_bufpreamble): Declare it.
|
|
The SHF_GNU_RETAIN section flag is an extension to the GNU ELF OSABI.
It is defined as follows:
=========================================================
Section Attribute Flags
+-------------------------------------+
| Name | Value |
+-------------------------------------+
| SHF_GNU_RETAIN | 0x200000 (1 << 21) |
+-------------------------------------+
SHF_GNU_RETAIN
The link editor should not garbage collect the section.
=========================================================
The .section directive accepts the "R" flag, which indicates
SHF_GNU_RETAIN should be applied to the section.
There is not a direct mapping of SHF_GNU_RETAIN to the BFD
section flag SEC_KEEP. Keeping these flags distinct allows
SHF_GNU_RETAIN sections to be explicitly removed by placing them in
/DISCARD/.
bfd/ChangeLog:
* elf-bfd.h (enum elf_gnu_osabi): Add elf_gnu_osabi_retain.
(struct elf_obj_tdata): Increase has_gnu_osabi to 4 bits.
* elf.c (_bfd_elf_make_section_from_shdr): Set elf_gnu_osabi_retain
for SHF_GNU_RETAIN.
(_bfd_elf_final_write_processing): Report if SHF_GNU_RETAIN is
not supported by the OSABI.
Adjust error messages.
* elflink.c (elf_link_input_bfd): Copy enabled has_gnu_osabi bits from
input BFD to output BFD.
(bfd_elf_gc_sections): gc_mark the section if SHF_GNU_RETAIN is set.
binutils/ChangeLog:
* NEWS: Announce SHF_GNU_RETAIN support.
* readelf.c (get_elf_section_flags): Handle SHF_GNU_RETAIN.
Recognize SHF_GNU_RETAIN and SHF_GNU_MBIND only for supported OSABIs.
* testsuite/binutils-all/readelf.exp: Run new tests.
Don't run run_dump_test when there isn't an assembler available.
* testsuite/lib/binutils-common.exp (supports_gnu_osabi): Adjust
comment.
* testsuite/binutils-all/readelf-maskos-1a.d: New test.
* testsuite/binutils-all/readelf-maskos-1b.d: New test.
* testsuite/binutils-all/readelf-maskos.s: New test.
* testsuite/binutils-all/retain1.s: New test.
* testsuite/binutils-all/retain1a.d: New test.
* testsuite/binutils-all/retain1b.d: New test.
gas/ChangeLog:
* NEWS: Announce SHF_GNU_RETAIN support.
* config/obj-elf.c (obj_elf_change_section): Merge SHF_GNU_RETAIN bit
between section declarations.
(obj_elf_parse_section_letters): Handle 'R' flag.
Handle numeric flag values within the SHF_MASKOS range.
(obj_elf_section): Validate SHF_GNU_RETAIN usage.
* doc/as.texi: Document 'R' flag to .section directive.
* testsuite/gas/elf/elf.exp: Run new tests.
* testsuite/gas/elf/section10.d: Unset SHF_GNU_RETAIN bit.
* testsuite/gas/elf/section10.s: Likewise.
* testsuite/gas/elf/section22.d: New test.
* testsuite/gas/elf/section22.s: New test.
* testsuite/gas/elf/section23.s: New test.
* testsuite/gas/elf/section23a.d: New test.
* testsuite/gas/elf/section23b.d: New test.
* testsuite/gas/elf/section23b.err: New test.
* testsuite/gas/elf/section24.l: New test.
* testsuite/gas/elf/section24.s: New test.
* testsuite/gas/elf/section24a.d: New test.
* testsuite/gas/elf/section24b.d: New test.
include/ChangeLog:
* elf/common.h (SHF_GNU_RETAIN): Define.
ld/ChangeLog:
* NEWS: Announce support for SHF_GNU_RETAIN.
* ld.texi (garbage collection): Document SHF_GNU_RETAIN.
(Output Section Discarding): Likewise.
* testsuite/ld-elf/elf.exp: Run new tests.
* testsuite/ld-elf/retain1.s: New test.
* testsuite/ld-elf/retain1a.d: New test.
* testsuite/ld-elf/retain1b.d: New test.
* testsuite/ld-elf/retain2.d: New test.
* testsuite/ld-elf/retain2.ld: New test.
* testsuite/ld-elf/retain2.map: New test.
* testsuite/ld-elf/retain3.d: New test.
* testsuite/ld-elf/retain3.s: New test.
* testsuite/ld-elf/retain4.d: New test.
* testsuite/ld-elf/retain4.s: New test.
* testsuite/ld-elf/retain5.d: New test.
* testsuite/ld-elf/retain5.map: New test.
* testsuite/ld-elf/retain5lib.s: New test.
* testsuite/ld-elf/retain5main.s: New test.
* testsuite/ld-elf/retain6a.d: New test.
* testsuite/ld-elf/retain6b.d: New test.
* testsuite/ld-elf/retain6lib.s: New test.
* testsuite/ld-elf/retain6main.s: New test.
|
|
* elf.c (bfd_section_from_shdr): Free sections_being_created.
Use bfd_zmalloc.
|
|
architectures which support both REL and RELA relocs.
PR 26809
* elf.c (_bfd_elf_slurp_secondary_reloc_section): Use the correct
sized reloc reading function.
(_bfd_elf_write_secondary_reloc_section): Use the correct sized
reloc writing function.
|
|
provided when the "o" flag is used.
PR 26253
gas * config/obj-elf.c (obj_elf_section): Accept a numeric value for
the "o" section flag. Interpret it as a section index. Allow an
index of zero.
* doc/as.texi: Document the new behaviour.
* NEWS: Mention the new feature. Tidy entries.
* testsuite/gas/elf/sh-link-zero.s: New test.
* testsuite/gas/elf/sh-link-zero.d: New test driver.
* testsuite/gas/elf/elf.exp: Run the new test.
* testsuite/gas/elf/section21.l: Updated expected assembler
output.
bfd * elf.c (_bfd_elf_setup_sections): Do not complain about an
sh_link value of zero when the SLF_LINK_ORDER flag is set.
(assign_section_numbers): Likewise.
|
|
bfd/
* elf-bfd.h (elf_symbol_from): Remove unused ABFD parameter.
* elf.c (ignore_section_sym, _bfd_elf_copy_private_symbol_data),
(swap_out_syms): Adjust elf_symbol_from invocation.
binutils/
* nm.c (print_symbol): Adjust elf_symbol_from invocation.
* objcopy.c (is_hidden_symbol): Likewise.
gas/
* config/obj-elf.c (obj_elf_visibility, elf_frob_symbol): Adjust
elf_symbol_from invocation.
* config/tc-aarch64.c (s_variant_pcs): Likewise.
* config/tc-m68hc11.c (s_m68hc11_mark_symbol): Likewise.
* config/tc-ppc.c (ppc_elf_localentry, ppc_force_relocation),
(ppc_fix_adjustable): Likewise.
* config/tc-xgate.c (xgate_frob_symbol): Likewise.
ld/
* plugin.c (asymbol_from_plugin_symbol): Adjust elf_symbol_from
invocation.
opcodes/
* ppc-dis.c (ppc_symbol_is_valid): Adjust elf_symbol_from invocation.
|
|
A horribly fuzzed object with section headers inside the ELF header.
Disallow that, and crazy reloc sizes.
PR 26574
* elfcode.h (elf_object_p): Sanity check section header offset.
* elf.c (_bfd_elf_slurp_secondary_reloc_section): Sanity check
sh_entsize.
|
|
input file.
PR 26521
* elf.c (_bfd_elf_write_secondary_reloc_section): Check for
secondary reloc sections with a zero sh_entsize field.
|
|
As reported in [1], _bfd_error_handler() doesn't support '%zu'.
module_name_size is always 32-bits in the data structure we are
extracting it from, so use an unsigned int to store it instead.
[1] https://sourceware.org/pipermail/gdb-patches/2020-August/171391.html
bfd/ChangeLog:
2020-08-21 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Change name_size to unsigned
int. Use '%u' format with _bfd_error_handler to render it.
|
|
when writing out secondary reloc sections.
PR 26406
* elf-bfd.h (struct bfd_elf_section_data): Add
has_secondary_relocs field.
* elf.c (_bfd_elf_copy_special_section_fields): Set the
has_secondary_relocs field for sections which have associated
secondary relocs.
* elfcode.h (elf_write_relocs): Only call write_secondary_relocs
on sections which have associated secondary relocs.
|
|
bfd/ChangeLog:
2020-08-12 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Use unsigned int for
win32pstatus note type to avoid signedness comparison warning.
|
|
bfd/ChangeLog:
2020-07-21 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Warn on malformed
win32pstatus notes, and return TRUE so we continue rather than
stopping as if it was an error.
|
|
bfd/ChangeLog:
2020-07-01 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Handle NOTE_INFO_MODULE64.
|
|
Don't reject any win32pstatus notes smaller than minimum size for a
NOTE_INFO_THREAD.
This only happens to work because the Cygwin dumper tool currently
writes all these notes as the largest size of the union, (which wastes
lots of space in the core dump).
Instead, apply the appropriate size constraint for each win32pstatus
note type.
bfd/ChangeLog:
2020-07-11 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Don't apply size constraint
for NOTE_INFO_THREAD to all win32pstatus ELF notes, instead apply
appropriate size constraint for each win32pstatus note type.
|
|
Don't hardcode the size of the Win32 API thread CONTEXT type read from a
NOTE_INFO_THREAD win32pstatus note (since it's different on different
architectures).
bfd/ChangeLog:
2020-07-01 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Don't hardcode the size of
the Win32 API thread CONTEXT type read from a NOTE_INFO_THREAD
win32pstatus note.
|
|
Define constants for win32pstatus ELF notes, as they were prior to
4a6636fb, and say what specifies them.
bfd/ChangeLog:
2020-07-11 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (NOTE_INFO{_PROCESS,_THREAD,_MODULE}): Define.
(elfcore_grok_win32pstatus): Use.
|
|
Fix the offset used to read the tid from a win32pstatus ELF note.
This probably meant that registers were only being correctly recovered
from the core dump for the current thread.
It looks like this has beeen incorrect since 4a6636fb.
Also fix offsets used in NOTE_INFO_PROCESS (which is not actually
generated by the Cygwin dumper tool).
Also improve comment.
bfd/ChangeLog:
2020-07-01 Jon Turney <jon.turney@dronecode.org.uk>
* elf.c (elfcore_grok_win32pstatus): Fix the offset used to read
the tid from a win32pstatus NOTE_INFO_THREAD ELF note. Fix
offsets used to read NOTE_INFO_PROCESS.
|
|
PR 26330
* elf.c (_bfd_elf_get_symtab_upper_bound): Sanity check symbol table
size against file size. Correct LONG_MAX limit check.
(_bfd_elf_get_dynamic_symtab_upper_bound): Likewise.
(_bfd_elf_get_reloc_upper_bound): Don't check file size if writing.
(_bfd_elf_get_dynamic_reloc_upper_bound): Likewise.
* elf64-x86-64-.c (elf_x86_64_get_synthetic_symtab): Use
bfd_malloc_and_get_section.
|
|
GDB currently doesn't build on 32-bit Solaris:
* On Solaris 11.4/x86:
In file included from /usr/include/sys/procfs.h:26,
from /vol/src/gnu/gdb/hg/master/dist/gdb/i386-sol2-nat.c:24:
/usr/include/sys/old_procfs.h:31:2: error: #error "Cannot use procfs in the large file compilation environment"
#error "Cannot use procfs in the large file compilation environment"
^~~~~
* On Solaris 11.3/x86 there are several more instances of this.
The interaction between procfs and large-file support historically has
been a royal mess on Solaris:
* There are two versions of the procfs interface:
** The old ioctl-based /proc, deprecated and not used any longer in
either gdb or binutils.
** The `new' (introduced in Solaris 2.6, 1997) structured /proc.
* There are two headers one can possibly include:
** <procfs.h> which only provides the structured /proc, definining
_STRUCTURED_PROC=1 and then including ...
** <sys/procfs.h> which defaults to _STRUCTURED_PROC=0, the ioctl-based
/proc, but provides structured /proc if _STRUCTURED_PROC == 1.
* procfs and the large-file environment didn't go well together:
** Until Solaris 11.3, <sys/procfs.h> would always #error in 32-bit
compilations when the large-file environment was active
(_FILE_OFFSET_BITS == 64).
** In both Solaris 11.4 and Illumos, this restriction was lifted for
structured /proc.
So one has to be careful always to define _STRUCTURED_PROC=1 when
testing for or using <sys/procfs.h> on Solaris. As the errors above
show, this isn't always the case in binutils-gdb right now.
Also one may need to disable large-file support for 32-bit compilations
on Solaris. config/largefile.m4 meant to do this by wrapping the
AC_SYS_LARGEFILE autoconf macro with appropriate checks, yielding
ACX_LARGEFILE. Unfortunately the macro doesn't always succeed because
it neglects the _STRUCTURED_PROC part.
To make things even worse, since GCC 9 g++ predefines
_FILE_OFFSET_BITS=64 on Solaris. So even if largefile.m4 deciced not to
enable large-file support, this has no effect, breaking the gdb build.
This patch addresses all this as follows:
* All tests for the <sys/procfs.h> header are made with
_STRUCTURED_PROC=1, the definition going into the various config.h
files instead of having to make them (and sometimes failing) in the
affected sources.
* To cope with the g++ predefine of _FILE_OFFSET_BITS=64,
-U_FILE_OFFSET_BITS is added to various *_CPPFLAGS variables. It had
been far easier to have just
#undef _FILE_OFFSET_BITS
in config.h, but unfortunately such a construct in config.in is
commented by config.status irrespective of indentation and whitespace
if large-file support is disabled. I found no way around this and
putting the #undef in several global headers for bfd, binutils, ld,
and gdb seemed way more invasive.
* Last, the applicability check in largefile.m4 was modified only to
disable largefile support if really needed. To do so, it checks if
<sys/procfs.h> compiles with _FILE_OFFSET_BITS=64 defined. If it
doesn't, the disabling only happens if gdb exists in-tree and isn't
disabled, otherwise (building binutils from a tarball), there's no
conflict.
What initially confused me was the check for $plugins here, which
originally caused the disabling not to take place. Since AC_PLUGINGS
does enable plugin support if <dlfcn.h> exists (which it does on
Solaris), the disabling never happened.
I could find no explanation why the linker plugin needs large-file
support but thought it would be enough if gld and GCC's lto-plugin
agreed on the _FILE_OFFSET_BITS value. Unfortunately, that's not
enough: lto-plugin uses the simple-object interface from libiberty,
which includes off_t arguments. So to fully disable large-file
support would mean also disabling it in libiberty and its users: gcc
and libstdc++-v3. This seems highly undesirable, so I decided to
disable the linker plugin instead if large-file support won't work.
The patch allows binutils+gdb to build on i386-pc-solaris2.11 (both
Solaris 11.3 and 11.4, using GCC 9.3.0 which is the worst case due to
predefined _FILE_OFFSET_BITS=64). Also regtested on
amd64-pc-solaris2.11 (again on Solaris 11.3 and 11.4),
x86_64-pc-linux-gnu and i686-pc-linux-gnu.
config:
* largefile.m4 (ACX_LARGEFILE) <sparc-*-solaris*|i?86-*-solaris*>:
Check for <sys/procfs.h> incompatilibity with large-file support
on Solaris.
Only disable large-file support and perhaps plugins if needed.
Set, substitute LARGEFILE_CPPFLAGS if so.
bfd:
* bfd.m4 (BFD_SYS_PROCFS_H): New macro.
(BFD_HAVE_SYS_PROCFS_TYPE): Require BFD_SYS_PROCFS_H.
Don't define _STRUCTURED_PROC.
(BFD_HAVE_SYS_PROCFS_TYPE_MEMBER): Likewise.
* elf.c [HAVE_SYS_PROCFS_H] (_STRUCTURED_PROC): Don't define.
* configure.ac: Use BFD_SYS_PROCFS_H to check for <sys/procfs.h>.
* configure, config.in: Regenerate.
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
binutils:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gas:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gdb:
* proc-api.c (_STRUCTURED_PROC): Don't define.
* proc-events.c: Likewise.
* proc-flags.c: Likewise.
* proc-why.c: Likewise.
* procfs.c: Likewise.
* Makefile.in (INTERNAL_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* configure, config.in: Regenerate.
gdbserver:
* configure, config.in: Regenerate.
gdbsupport:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* common.m4 (GDB_AC_COMMON): Use BFD_SYS_PROCFS_H to check for
<sys/procfs.h>.
* Makefile.in: Regenerate.
* configure, config.in: Regenerate.
gnulib:
* configure.ac: Run ACX_LARGEFILE before gl_EARLY.
* configure: Regenerate.
gprof:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
ld:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
|
|
Even a testcase that is expected to fail shouldn't segfault.
* elf.c (assign_section_numbers): Comment. Don't segfault on
discarded sections when setting linked-to section for generic
ELF linker.
* elflink.c (bfd_elf_match_symbols_in_sections): Allow NULL info.
|
|
This commit removes a hack for GDB which was introduced in 2007.
See:
https://sourceware.org/ml/binutils/2007-08/msg00044.html
That hack mostly allowed GDB's handling of core files to continue to
work without any changes to GDB.
The problem with setting the section size to zero is that GDB won't
know how big that section is/was. Often, this doesn't matter because
the data in question are found in the exec file. But it can happen
that the section describes memory that had been allocated, but never
written to. In this instance, the contents of that memory region are
not written to the core file. Also, since the region in question was
dynamically allocated, it won't appear in the exec file. We don't
want these regions to appear as inaccessible to GDB (since they *were*
accessible when the process was live), so it's important that GDB know
the size of the region.
I've made changes to GDB which correctly handles this case. When
attempting to access memory, GDB will first consider core file data
for which both SEC_ALLOC and SEC_HAS_CONTENTS is set. Next, if that
fails, GDB will attempt to find the data in the exec file. Finally,
if that also fails, GDB will attempt to access memory in the sections
which are flagged as SEC_ALLOC, but not SEC_HAS_CONTENTS.
bfd/ChangeLog:
* elf.c (_bfd_elf_make_section_from_phdr): Remove hack for GDB.
|
|
PR 26029
* elf.c (_bfd_elf_close_and_cleanup): Free elf_shstrtab for
core files as well as objects.
|
|
* aoutx.h: Replace "if (x) free (x)" with "free (x)" throughout.
* archive.c, * bfd.c, * bfdio.c, * coff-alpha.c, * coff-ppc.c,
* coff-sh.c, * coff-stgo32.c, * coffcode.h, * coffgen.c,
* cofflink.c, * cpu-arm.c, * doc/chew.c, * dwarf2.c, * ecoff.c,
* ecofflink.c, * elf-eh-frame.c, * elf-m10200.c, * elf-m10300.c,
* elf-strtab.c, * elf.c, * elf32-arc.c, * elf32-arm.c,
* elf32-avr.c, * elf32-bfin.c, * elf32-cr16.c, * elf32-crx.c,
* elf32-epiphany.c, * elf32-ft32.c, * elf32-h8300.c,
* elf32-ip2k.c, * elf32-m32c.c, * elf32-m68hc11.c,
* elf32-m68k.c, * elf32-microblaze.c, * elf32-msp430.c,
* elf32-nds32.c, * elf32-nios2.c, * elf32-ppc.c, * elf32-pru.c,
* elf32-rl78.c, * elf32-rx.c, * elf32-sh.c, * elf32-spu.c,
* elf32-v850.c, * elf32-xtensa.c, * elf64-alpha.c,
* elf64-hppa.c, * elf64-ia64-vms.c, * elf64-mips.c
* elf64-mmix.c, * elf64-ppc.c, * elf64-sparc.c, * elfcode.h,
* elflink.c, * elfnn-ia64.c, * elfnn-riscv.c, * elfxx-mips.c,
* elfxx-x86.c, * format.c, * ihex.c, * libbfd.c, * linker.c,
* mmo.c, * opncls.c, * pdp11.c, * peXXigen.c, * pef.c,
* peicode.h, * simple.c, * som.c, * srec.c, * stabs.c, * syms.c,
* targets.c, * vms-lib.c, * xcofflink.c, * xtensa-isa.c: Likewise.
|
|
Check sizes early, before users of slurp_relocs allocate buffers for
the swapped in relocs.
PR 26011
* elf.c (_bfd_elf_get_reloc_upper_bound): Sanity check reloc
section size against file size.
(_bfd_elf_get_dynamic_reloc_upper_bound): Likewise.
|
|
PR 26005
* elf.c (bfd_section_from_shdr): Replace bfd_malloc + memset with
bfd_zmalloc to allocate memory for the sections_being_created array.
|
|
PR 26005
* elf.c (bfd_section_from_shdr): Use bfd_malloc to allocate memory
for the sections_being_created array.
|