Age | Commit message (Collapse) | Author | Files | Lines |
|
When working on the files I noted that there was no actual test for a
COMPLEX built from two INTEGERS. I added that now for completion.
|
|
The operators FLOOR, CEILING, CMPLX, LBOUND, UBOUND, and SIZE accept
(some only with Fortran 2003) the optional parameter KIND. This
parameter determines the kind of the associated return value. So far,
implementation of this kind parameter has been missing in GDB.
Additionally, the one argument overload for the CMPLX intrinsic function
was not yet available.
This patch adds overloads for all above mentioned functions to the
Fortran intrinsics handling in GDB.
It re-writes the intrinsic function handling section to use the helper
methods wrap_unop_intrinsic/wrap_binop_intrinsic/wrap_triop_intrinsic.
These methods define the action taken when a Fortran intrinsic function
is called with a certain amount of arguments (1/2/3). The helper methods
fortran_wrap2_kind and fortran_wrap3_kind have been added as equivalents
to the existing wrap and wrap2 methods.
After adding more overloads to the intrinsics handling, some of the
operation names were no longer accurate. E.g. UNOP_FORTRAN_CEILING
has been renamed to FORTRAN_CEILING as it is no longer a purely unary
intrinsic function. This patch also introduces intrinsic functions with
one, two, or three arguments to the Fortran parser and the
UNOP_OR_BINOP_OR_TERNOP_INTRINSIC token has been added.
|
|
Rename f77_keywords to f_keywords since some of the introduced keywords
in the array are f90 only.
|
|
Currently, when asking GDB to print the type of a Fortran default type
such as INTEGER or REAL, GDB will return the default name of that type,
e.g. "integer"/"real":
(gdb) ptype integer
type = integer
(gdb) ptype real
type = real
For LOGICAL and COMPLEX it would return the actual underlying types
(gdb) ptype logical
type = logical*4
(gdb) ptype complex
type = complex*4
Similarly, GDB would print the default integer type for the underlying
default type:
(gdb) ptype integer*4
type = integer
(gdb) ptype real*4
type = real
(gdb) ptype logical
type = logical*4
(gdb) ptype complex*4
type = complex*4
This is inconsistent and a bit confusing. Both options somehow indicate
what the internal underlying type for the default type is - but I think
the logical/complex version is a bit clearer.
Consider again:
(gdb) ptype integer
type = integer
This indicates to a user that the type of "integer" is Fortran's default
integer type. Without examining "ptype integer*4" I would expect, that
any variable declared integer in the actual code would also fit into a
GDB integer. But, since we cannot adapt out internal types to the
compiler flags used at compile time of a debugged binary, this might be
wrong. Consider debugging Fortran code compiled with GNU and e.g. the
"-fdefault-integer-8" flag. In this case the gfortran default integer
would be integer*8 while GDB internally still would use a builtin_integer,
so an integer of the size of an integer*4 type. On the other hand having
GDB print
(gdb) ptype integer
type = integer*4
makes this clearer. I would still be tempted to fit a variable declared
integer in the code into a GDB integer - but at least ptype would
directly tell me what is going on. Note, that when debugging a binary
compiled with "-fdefault-integer-8" a user will always see the actual
underlying type of any variable declared "integer" in the Fortran code.
So having the code
program test
integer :: a = 5
print *, a ! breakpt
end program test
will, when breaking at breakpt print
(gdb) ptype var
type = integer(kind=4)
or
(gdb) ptype var
type = integer(kind=8)
depending on the compiler flag.
This patch changes the outputs for the REAL and INTEGER default types to
actually print the internally used type over the default type name.
The new behavior for the above examples is:
(gdb) ptype integer
type = integer*4
(gdb) ptype integer*4
type = integer*4
Existing testcases have been adapted to reflect the new behavior.
|
|
The currently implemented intrinsic type handling for Fortran missed some
tokens and their parsing. While still not all Fortran type kinds are
implemented this patch at least makes the currently handled types
consistent. As an example for what this patch does, consider the
intrinsic type INTEGER. GDB implemented the handling of the
keywords "integer" and "integer_2" but missed "integer_4" and "integer_8"
even though their corresponding internal types were already available as
the Fortran builtin types builtin_integer and builtin_integer_s8.
Similar problems applied to LOGICAL, REAL, and COMPLEX. This patch adds
all missing tokens and their parsing. Whenever a section containing the
type handling was touched, it also was reordered to be in a more easy to
grasp order. All INTEGER/REAL/LOGICAL/COMPLEX types were grouped
together and ordered ascending in their size making a missing one more
easy to spot.
Before this change GDB would print the following when tyring to use the
INTEGER keywords:
(gdb) set language fortran
(gdb) ptype integer*1
unsupported kind 1 for type integer
(gdb) ptype integer_1
No symbol table is loaded. Use the "file" command.
(gdb) ptype integer*2
type = integer*2
(gdb) ptype integer_2
type = integer*2
(gdb) ptype integer*4
type = integer
(gdb) ptype integer_4
No symbol table is loaded. Use the "file" command.
(gdb) ptype integer*8
type = integer*8
(gdb) ptype integer_8
No symbol table is loaded. Use the "file" command.
(gdb) ptype integer
type = integer
With this patch all keywords are available and the GDB prints:
(gdb) set language fortran
(gdb) ptype integer*1
type = integer*1
(gdb) ptype integer_1
type = integer*1
(gdb) ptype integer*2
type = integer*2
(gdb) ptype integer_2
type = integer*2
(gdb) ptype integer*4
type = integer*4
(gdb) ptype integer_4
type = integer*4
(gdb) ptype integer*8
type = integer*8
(gdb) ptype integer_8
type = integer*8
(gdb) ptype integer
type = integer
The described changes have been applied to INTEGER, REAL, COMPLEX,
and LOGICAL. Existing testcases have been adapted to reflect the
new behavior. Tests for formerly missing types have been added.
|
|
According to the Fortran standard, logical is of the size of a
'single numeric storage unit' (just like real and integer). For
gfortran, flang and ifx/ifort this storage unit (or the default
logical type) is of size kind 4, actually occupying 4 bytes of
storage, and so the default type for logical expressions in
Fortran should probably also be Logical*4 and not Logical*2. I
adapted GDB's behavior to be in line with
gfortran/ifort/ifx/flang.
|
|
Add a few newlines after the type definitions and remove some
unnecessary linebreaks.
|
|
Before this patch things like
(gdb) ptype complex*8
complex*16
(gdb) ptype complex*4
complex*8
were possible in GDB, which seems confusing for a user. The reason
is a mixup in the implementation of the Fortran COMPLEX type. In
Fortran the "*X" after a type would normally (I don't think this
is language required) specify the type's size in memory. For the
COMPLEX type the kind parameters usually (at least for GNU, Intel, Flang)
specify not the size of the whole type but the size of the individual
two REALs used to form the COMPLEX. Thus, a COMPLEX*4 will usually
consist of two REAL*4s. Internally this type was represented by a
builtin_complex_s8 - but here I think the s8 actually meant the raw
size of the type. This is confusing and I renamed the types (e.g.
builting_complex_s8 became builtin_complex_s4 according to its most
common useage) and their printed names to their language equivalent.
Additionally, I added the default COMPLEX type "COMPLEX" being the same
as a COMPLEX*4 (as is normally the case) and removed the latter. I added
a few tests for this new behavior as well.
The new behavior is
(gdb) ptype complex*8
complex*8
(gdb) ptype complex*4
complex*4
|
|
|
|
Add builtin_integer_s1 of size TARGET_CHAR_BIT to Fortran builtin types.
|
|
Since commit 359efc2d894 ("[gdb/testsuite] Make gdb.base/annota1.exp more
robust") we see this fail with target board unix/-fPIE/-pie:
...
FAIL: gdb.base/annota1.exp: run until main breakpoint (timeout)
...
The problem is that the commit makes the number and order of matched
annotations fixed, while between target boards unix and unix/-fPIE/-pie there
is a difference:
...
\032\032post-prompt
Starting program: outputs/gdb.base/annota1/annota1
+\032\032breakpoints-invalid
+
\032\032starting
\032\032frames-invalid
...
Fix this by optionally matching the additional annotation.
Tested on x86_64-linux.
|
|
As reported in PR29043, when running test-case gdb.dwarf2/dw2-lines.exp with
target board unix/-m32/-fPIE/-pie, we run into:
...
Breakpoint 2, 0x56555540 in bar ()^M
(gdb) PASS: gdb.dwarf2/dw2-lines.exp: cv=2: cdw=32: lv=2: ldw=32: \
continue to breakpoint: foo \(1\)
next^M
Single stepping until exit from function bar,^M
which has no line number information.^M
0x56555587 in main ()^M
(gdb) FAIL: gdb.dwarf2/dw2-lines.exp: cv=2: cdw=32: lv=2: ldw=32: \
next to foo (2)
...
The problem is that the bar breakpoint ends up at an unexpected location
because:
- the synthetic debug info is incomplete and doesn't provide line info
for the prologue part of the function, so consequently gdb uses the i386
port prologue skipper to get past the prologue
- the i386 port prologue skipper doesn't get past a get_pc_thunk call.
Work around this in the test-case by breaking on bar_label instead.
Tested on x86_64-linux with target boards unix, unix/-m32, unix/-fPIE/-pie and
unix/-m32/-fPIE/-pie.
|
|
|
|
|
|
I noticed that MSYMBOL_VALUE_CHAIN is unused, so this patch removes it.
|
|
For better packing on 64-bit hosts.
* section.c (struct bfd_section): Move next and prev field earlier.
Move alignment_power later.
(BFD_FAKE_SECTION): Adjust to suit.
* bfd-in2.h: Regenerate.
|
|
As the comment says, hppa doesn't support use of BFD_RELOC_* in
.reloc directives. Using xfail can result in a spurious XPASS result
as BFD_RELOC values change.
* testsuite/gas/elf/pr27228.d: Change xfail to notarget for hppa.
|
|
* readelf.c (is_32bit_abs_reloc, is_16bit_abs_reloc): Comment fixes.
(is_none_reloc): Correct nds32 reloc numbers.
|
|
|
|
And disable the new test gas/elf/size.s for alpha which uses its own
.set, for hppa*-*-hpux* which does not allow .size before declaration.
|
|
gprofng/ChangeLog
2022-04-07 Vladimir Mezentsev <vladimir.mezentsev@oracle.com>
* libcollector/unwind.c: inizialize fprintf_styled_func.
* src/Disasm.cc: Likewise.
|
|
gprofng/ChangeLog
2022-04-06 Vladimir Mezentsev <vladimir.mezentsev@oracle.com>
* configure.ac: Add AM_ZLIB.
* src/Makefile.am: Add $(ZLIBINC) and $(ZLIB).
* gprofng/src/DbeSession.h: Likewise.
* configure: Regenerate.
* Makefile.in: Regenerate.
* doc/Makefile.in: Regenerate.
* gp-display-html/Makefile.in: Regenerate.
* src/Makefile.in: Regenerate.
|
|
I noticed that a build of GDB with GCC + --enable-ubsan, testing
against GDBserver showed this GDB crash:
(gdb) PASS: gdb.trace/trace-condition.exp: trace: 0x00abababcdcdcdcd << 46 == 0x7373400000000000: advance to trace begin
tstart
../../src/gdb/valarith.c:1365:15: runtime error: left shift of 48320975398096333 by 46 places cannot be represented in type 'long int'
ERROR: GDB process no longer exists
GDB process exited with wait status 269549 exp9 0 1
UNRESOLVED: gdb.trace/trace-condition.exp: trace: 0x00abababcdcdcdcd << 46 == 0x7373400000000000: start trace experiment
The problem is that, "0x00abababcdcdcdcd << 46" is an undefined signed
left shift, because the result is not representable in the type of the
lhs, which is signed. This actually became defined in C++20, and if
you compile with "g++ -std=c++20 -Wall", you'll see that GCC no longer
warns about it, while it warns if you specify prior language versions.
While at it, there are a couple other situations that are undefined
(and are still undefined in C++20) and result in GDB dying: shifting
by a negative ammount, or by >= than the bit size of the promoted lhs.
For the latter, GDB shifts using (U)LONGEST internally, so you have to
shift by >= 64 bits to see it:
$ gdb --batch -q -ex "p 1 << -1"
../../src/gdb/valarith.c:1365:15: runtime error: shift exponent -1 is negative
$ # gdb exited
$ gdb --batch -q -ex "p 1 << 64"
../../src/gdb/valarith.c:1365:15: runtime error: shift exponent 64 is too large for 64-bit type 'long int'
$ # gdb exited
Also, right shifting a negative value is implementation-defined
(before C++20, after which it is defined). For this, I chose to
change nothing in GDB other than adding tests, as I don't really know
whether we need to do anything. AFAIK, most implementations do an
arithmetic right shift, and it may be we don't support any host or
target that behaves differently. Plus, this becomes defined in C++20
exactly as arithmetic right shift.
Compilers don't error out on such shifts, at best they warn, so I
think GDB should just continue doing the shifts anyhow too.
Thus:
- Adjust scalar_binop to avoid the undefined paths, either by adding
explicit result paths, or by casting the lhs of the left shift to
unsigned, as appropriate.
For the shifts by a too-large count, I made the result be what you'd
get if you split the large count in a series of smaller shifts.
Thus:
Left shift, positive or negative lhs:
V << 64
=> V << 16 << 16 << 16 << 16
=> 0
Right shift, positive lhs:
Vpos >> 64
=> Vpos >> 16 >> 16 >> 16 >> 16
=> 0
Right shift, negative lhs:
Vneg >> 64
=> Vneg >> 16 >> 16 >> 16 >> 16
=> -1
This is actually Go's semantics (the compiler really emits
instructions to make it so that you get 0 or -1 if you have a
too-large shift). So for that language GDB does the shift and
nothing else. For other C-like languages where such a shift is
undefined, GDB warns in addition to performing the shift.
For shift by a negative count, for Go, this is a hard error. For
other languages, since their compilers only warn, I made GDB warn
too. The semantics I chose (we're free to pick them since this is
undefined behavior) is as-if you had shifted by the count cast to
unsigned, thus as if you had shifted by a too-large count, thus the
same as the previous scenario illustrated above.
Examples:
(gdb) set language go
(gdb) p 1 << 100
$1 = 0
(gdb) p -1 << 100
$2 = 0
(gdb) p 1 >> 100
$3 = 0
(gdb) p -1 >> 100
$4 = -1
(gdb) p -2 >> 100
$5 = -1
(gdb) p 1 << -1
left shift count is negative
(gdb) set language c
(gdb) p -2 >> 100
warning: right shift count >= width of type
$6 = -1
(gdb) p -2 << 100
warning: left shift count >= width of type
$7 = 0
(gdb) p 1 << -1
warning: left shift count is negative
$8 = 0
(gdb) p -1 >> -1
warning: right shift count is negative
$9 = -1
- The warnings' texts are the same as what GCC prints.
- Add comprehensive tests in a new gdb.base/bitshift.exp testcase, so
that we exercise all these scenarios.
Change-Id: I8bcd5fa02de3114b7ababc03e65702d86ec8d45d
|
|
This commit ports these two fixes to the C parser:
commit ebf13736b42af47c9907b5157c8e80c78dbe00e1
CommitDate: Thu Sep 4 21:46:28 2014 +0100
parse_number("0") reads uninitialized memory
commit 20562150d8a894bc91657c843ee88c508188e32e
CommitDate: Wed Oct 3 15:19:06 2018 -0600
Avoid undefined behavior in parse_number
... to the Fortran, Go, and Fortran number parsers, fixing the same
problems there.
Also add a new testcase that exercises printing 0xffffffffffffffff
(max 64-bit) in all languages, which crashes a GDB built with UBsan
without the fix.
I moved get_set_option_choices out of all-architectures.exp.tcl to
common code to be able to extract all the supported languages. I did
a tweak to it to generalize it a bit -- you now have to pass down the
"set" part of the command as well. This is so that the proc can be
used with "maintenance set" commands as well in future.
Change-Id: I8e8f2fdc1e8407f63d923c26fd55d98148b9e16a
|
|
PR 29038
* coffgen.c (coff_find_nearest_line_with_names): Fix typo
retrieving saved bias.
|
|
[Sending to binutils, gdb-patches and gcc-patches, since it touches the
top-level Makefile/configure]
I have my debuginfod library installed in a non-standard location
(/opt/debuginfod), which requires me to set
PKG_CONFIG_PATH=/opt/debuginfod/lib/pkg-config. If I just set it during
configure:
$ PKG_CONFIG_PATH=/opt/debuginfod/lib/pkg-config ./configure --with-debuginfod
$ make
or
$ ./configure --with-debuginfod PKG_CONFIG_PATH=/opt/debuginfod/lib/pkg-config
$ make
Then PKG_CONFIG_PATH is only present (and ignored) during the top-level
configure. When running make (which runs gdb's and binutils'
configure), PKG_CONFIG_PATH is not set, which results in their configure
script not finding the library:
checking for libdebuginfod >= 0.179... no
configure: error: "--with-debuginfod was given, but libdebuginfod is missing or unusable."
Change the top-level configure/Makefile system to capture the value
passed when configuring the top-level and pass it down to
subdirectories (similar to CFLAGS, LDFLAGS, etc).
I don't know much about the top-level build system, so I really don't
know if I did this correctly. The changes are:
- Use AC_SUBST(PKG_CONFIG_PATH) in configure.ac, so that
@PKG_CONFIG_PATH@ gets replaced with the actual PKG_CONFIG_PATH value
in config files (i.e. Makefile)
- Add a PKG_CONFIG_PATH Makefile variable in Makefile.tpl, initialized
to @PKG_CONFIG_PATH@
- Add PKG_CONFIG_PATH to HOST_EXPORTS in Makefile.tpl, which are the
variables set when running the sub-configures
I initially added PKG_CONFIG_PATH to flags_to_pass, in Makefile.def, but
I don't think it's needed. AFAIU, this defines the flags to pass down
when calling "make" in subdirectories. We only need PKG_CONFIG_PATH to
be passed down during configure. After that, it's captured in
gdb/config.status, so even if a "make" causes a re-configure later
(because gdb/configure has changed, for example), the PKG_CONFIG_PATH
value will be remembered.
ChangeLog:
* configure.ac: Add AC_SUBST(PKG_CONFIG_PATH).
* configure: Re-generate.
* Makefile.tpl (HOST_EXPORTS): Pass PKG_CONFIG_PATH.
(PKG_CONFIG_PATH): New.
* Makefile.in: Re-generate.
Change-Id: I91138dfca41c43b05e53e445f62e4b27882536bf
|
|
I see this failure:
(gdb) run ^M
Starting program: /home/smarchi/build/binutils-gdb/gdb/testsuite/outputs/gdb.dwarf2/dw2-inline-param/dw2-inline-param ^M
Warning:^M
Cannot insert breakpoint 1.^M
Cannot access memory at address 0x113b^M
^M
(gdb) FAIL: gdb.dwarf2/dw2-inline-param.exp: runto: run to *0x113b
The test loads the binary in GDB, grabs the address of a symbol, strips
the binary, reloads it in GDB, runs the program, and then tries to place
a breakpoint at that address. The problem is that the binary is built
as position independent, so the address GDB grabs in the first place
isn't where the code ends up after running.
Fix this by linking the binary as non-position-independent. The
alternative would be to compute the relocated address where to place the
breakpoint, but that's not very straightforward, unfortunately.
I was confused for a while, I was trying to load the binary in GDB
manually to get the symbol address, but GDB was telling me the symbol
could not be found. Meanwhile, it clearly worked in gdb.log. The thing
is that GDB strips the binary in-place, so we don't have access to the
intermediary binary with symbols. Change the test to output the
stripped binary to a separate file instead.
Change-Id: I66c56293df71b1ff49cf748d6784bd0e935211ba
|
|
Formalise what ought to be obvious. The top level of the binutils-gdb
repository isn't owned by binutils.
* MAINTAINERS: Spelling fix. GDB global maintainer rights.
|
|
Add the print of the base-class of an extended type to the output of
ptype. This requires the Fortran compiler to emit DW_AT_inheritance
for the extended type.
Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
|
|
Fortran 2003 supports type extension. This patch allows access
to inherited members by using their fully qualified name as described
in the Fortran standard.
In doing so the patch also fixes a bug in GDB when trying to access the
members of a base class in a derived class via the derived class' base
class member.
This patch fixes PR22497 and PR26373 on GDB side.
Using the example Fortran program from PR22497
program mvce
implicit none
type :: my_type
integer :: my_int
end type my_type
type, extends(my_type) :: extended_type
end type extended_type
type(my_type) :: foo
type(extended_type) :: bar
foo%my_int = 0
bar%my_int = 1
print*, foo, bar
end program mvce
and running this with GDB and setting a BP at 17:
Before:
(gdb) p bar%my_type
A syntax error in expression, near `my_type'.
(gdb) p bar%my_int
There is no member named my_int.
(gdb) p bar%my_type%my_int
A syntax error in expression, near `my_type%my_int'.
(gdb) p bar
$1 = ( my_type = ( my_int = 1 ) )
After:
(gdb) p bar%my_type
$1 = ( my_int = 1 )
(gdb) p bar%my_int
$2 = 1 # this line requires DW_TAG_inheritance to work
(gdb) p bar%my_type%my_int
$3 = 1
(gdb) p bar
$4 = ( my_type = ( my_int = 1 ) )
In the above example "p bar%my_int" requires the compiler to emit
information about the inheritance relationship between extended_type
and my_type which gfortran and flang currently do not de. The
respective issue gcc/49475 has been put as kfail.
Co-authored-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=26373
https://sourceware.org/bugzilla/show_bug.cgi?id=22497
|
|
Signed-off-by: Nils-Christian Kempke <nils-christian.kempke@intel.com>
|
|
Straightforward change, return an std::string instead of a
gdb::unique_xmalloc_ptr<char>. No behavior change expected.
Change-Id: Ia5e94c94221c35f978bb1b7bdffbff7209e0520e
|
|
|
|
Commit:
commit df7a7bdd9766adebc6b117c31bc617d81c1efd43
Date: Thu Mar 17 18:56:23 2022 +0000
gdb: add support for Fortran's ASSUMED RANK arrays
Added support for Fortran assumed rank arrays. Unfortunately, this
commit contained a bug that means though GDB can correctly calculate
the rank of an assumed rank array, GDB can't fetch the contents of an
assumed rank array.
The history of this patch can be seen on the mailing list here:
https://sourceware.org/pipermail/gdb-patches/2022-January/185306.html
The patches that were finally committed can be found here:
https://sourceware.org/pipermail/gdb-patches/2022-March/186906.html
The original patches did support fetching the array contents, it was
only the later series that introduced the regression.
The problem is that when calculating the array rank the result is a
count of the number of ranks, i.e. this is a 1 based result, 1, 2, 3,
etc.
In contrast, when computing the details of any particular rank the
value passed to the DWARF expression evaluator should be a 0 based
rank offset, i.e. a 0 based number, 0, 1, 2, etc.
In the patches that were originally merged, this was not the case, and
we were passing the 1 based rank number to the expression evaluator,
e.g. passing 1 when we should pass 0, 2 when we should pass 1, etc.
As a result the DWARF expression evaluator was reading the
wrong (undefined) memory, and returning garbage results.
In this commit I have extended the test case to cover checking the
array contents, I've then ensured we make use of the correct rank
value, and extended some comments, and added or adjusted some asserts
as appropriate.
|
|
Make gdb_compile handle a new "macros" option, which makes it pass the
appropriate flag to make the compiler include macro information in the
debug info. This will help simplify tests using macros, reduce
redundant code, and make it easier to add support for a new compiler.
Right now it only handles clang specially (using -fdebug-macro) and
falls back to -g3 otherwise (which works for gcc). Other compilers can
be added as needed.
There are some tests that are currently skipped if the compiler is nor
gcc nor clang. After this patch, the tests will attempt to run (the -g3
fall back will be used). That gives a chance to people using other
compilers to notice something is wrong and maybe add support for their
compiler. If it is needed to support a compiler that doesn't have a way
to include macro information, then we can always introduce a
"skip_macro_tests" that can be used to skip over them.
Change-Id: I50cd6ab1bfbb478c1005486408e214b551364c9b
|
|
It is only set, never used.
Change-Id: Ia46ed2f9da243b0ccfc4588c1b57be2a0f3939de
|
|
On openSUSE Tumbleweed I run into:
...
FAIL: gdb.base/annota1.exp: run until main breakpoint (timeout)
...
The problem is that the libthread_db message occurs at a location where it's
not expected:
...
Starting program: outputs/gdb.base/annota1/annota1 ^M
^M
^Z^Zstarting^M
^M
^Z^Zframes-invalid^M
[Thread debugging using libthread_db enabled]^M
Using host libthread_db library "/lib64/libthread_db.so.1".^M
^M
^Z^Zbreakpoints-invalid^M
^M
...
Fix this by making the matching more robust:
- rewrite the regexp such that each annotation is on a single line,
starting with \r\n\032\032 and ending with \r\n
- add a regexp variable optional_re, that matches all possible optional
output, and use it as a separator in the first part of the regexp
Tested on x86_64-linux.
|
|
By calling `uplevel $body` in the program proc (a pattern we use at many
places), we can get rid of curly braces around each line number program
directive. That seems like a nice small improvement to me.
Change-Id: Ib327edcbffbd4c23a08614adee56c12ea25ebc0b
|
|
These variables seem to be unused, remove them.
Change-Id: I7d613d9d35735930ee78b2c348943c73a702afbb
|
|
Same idea as previous patch, but for symtab::pspace.
Change-Id: I1023abe622bea75ef648c6a97a01b53775d4104d
|
|
Same idea as previous patch, but for symtab::objfile. I find
it clearer without this wrapper, as it shows that the objfile is
common to all symtabs of a given compunit. Otherwise, you could think
that each symtab (of a given compunit) can have a specific objfile.
Change-Id: Ifc0dbc7ec31a06eefa2787c921196949d5a6fcc6
|
|
symtab::blockvector is a wrapper around compunit_symtab::blockvector.
It is a bit misleadnig, as it gives the impression that a symtab has a
blockvector. Remove it, change all users to fetch the blockvector
through the compunit instead.
Change-Id: Ibd062cd7926112a60d52899dff9224591cbdeebf
|
|
I think the symtab::dirname method is bogus, or at least very
misleading. It makes you think that it returns the directory that was
used to find that symtab's file during compilation (i.e. the directory
the file refers to in the DWARF line header file table), or the
directory part of the symtab's filename maybe. In fact, it returns the
compilation unit's directory, which is the CWD of the compiler, at
compilation time. At least for DWARF, if the symtab's filename is
relative, it will be relative to that directory. But if the symtab's
filename is absolute, then the directory returned by symtab::dirname has
nothing to do with the symtab's filename.
Remove symtab::dirname to avoid this confusion, change all users to
fetch the same information through the compunit. At least, it will be
clear that this is a compunit property, not a symtab property.
Change-Id: I2894c3bf3789d7359a676db3c58be2c10763f5f0
|
|
Change gdb_breakpoint to accept a linespec, not just a function. In
fact, no behavior changes are necessary, this only changes the parameter
name and documentation. Change runto as well, since the two are so
close (runto forwards all its arguments to gdb_breakpoint).
I wrote this for a downstrean GDB port, but thought it could be
useful upstream, eventually, even though not callers take advantage of
it yet.
Change-Id: I08175fd444d5a60df90fd9985e1b5dfd87c027cc
|
|
This commit updates the comments in the gdb/reggroups.{c,h} files.
Fill in some missing comments, correct a few comments that were not
clear, and where we had comments duplicated between .c and .h files,
update the .c to reference the .h.
No user visible changes after this commit.
|
|
Move 'struct reggroup' into the reggroups.h header. Remove the
reggroup_name and reggroup_type accessor functions, and just use the
name/type member functions within 'struct reggroup', update all uses
of these removed functions.
There should be no user visible changes after this commit.
|
|
Convert the 'struct reggroup' into a real class, with a constructor
and getter methods.
There should be no user visible changes after this commit.
|
|
Convert the 7 global, pre-defined, register groups const, and fix the
fall out (a minor tweak required in riscv-tdep.c).
There should be no user visible changes after this commit.
|
|
Convert the reggroup_new and reggroup_gdbarch_new functions to return
a 'const regggroup *', and fix up all the fallout.
There should be no user visible changes after this commit.
|
|
Add a new function gdbarch_reggroups that returns a reference to a
vector containing all the reggroups for an architecture.
Make use of this function throughout GDB instead of the existing
reggroup_next and reggroup_prev functions.
Finally, delete the reggroup_next and reggroup_prev functions.
Most of these changes are pretty straight forward, using range based
for loops instead of the old style look using reggroup_next. There
are two places where the changes are less straight forward.
In gdb/python/py-registers.c, the register group iterator needed to
change slightly. As the iterator is tightly coupled to the gdbarch, I
just fetch the register group vector from the gdbarch when needed, and
use an index counter to find the next item from the vector when
needed.
In gdb/tui/tui-regs.c the tui_reg_next and tui_reg_prev functions are
just wrappers around reggroup_next and reggroup_prev respectively.
I've just inlined the logic of the old functions into the tui
functions. As the tui function had its own special twist (wrap around
behaviour) I think this is OK.
There should be no user visible changes after this commit.
|