diff options
Diffstat (limited to 'sim/txvu/sim-main.h')
-rw-r--r-- | sim/txvu/sim-main.h | 732 |
1 files changed, 0 insertions, 732 deletions
diff --git a/sim/txvu/sim-main.h b/sim/txvu/sim-main.h deleted file mode 100644 index b41af56..0000000 --- a/sim/txvu/sim-main.h +++ /dev/null @@ -1,732 +0,0 @@ -/* MIPS Simulator definition. - Copyright (C) 1997 Free Software Foundation, Inc. - Contributed by Cygnus Support. - -This file is part of GDB, the GNU debugger. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License along -with this program; if not, write to the Free Software Foundation, Inc., -59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -#ifndef SIM_MAIN_H -#define SIM_MAIN_H - -/* This simulator doesn't cache the Current Instruction Address */ -/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */ -/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */ - -#define SIM_HAVE_BIENDIAN - - -/* hobble some common features for moment */ -#define WITH_WATCHPOINTS 1 -#define WITH_MODULO_MEMORY 1 - -/* For device support. FIXME: revisit. */ -#define WITH_DEVICES 1 - -#include "sim-basics.h" - -typedef address_word sim_cia; - -#if (WITH_IGEN) -/* Get the number of instructions. FIXME: must be a more elegant way - of doing this. */ -#include "itable.h" -#define MAX_INSNS (nr_itable_entries) -#define INSN_NAME(i) itable[(i)].name -#endif - -#include "sim-base.h" - - -/* Depreciated macros and types for manipulating 64bit values. Use - ../common/sim-bits.h and ../common/sim-endian.h macros instead. */ - -typedef signed64 word64; -typedef unsigned64 uword64; - -#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF) -#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32) -#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF) -#define SET64HI(t) (((uword64)(t))<<32) -#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l)))) -#define UWORD64(h,l) (SET64HI(h)|SET64LO(l)) - -/* Sign-extend the given value (e) as a value (b) bits long. We cannot - assume the HI32bits of the operand are zero, so we must perform a - mask to ensure we can use the simple subtraction to sign-extend. */ -#define SIGNEXTEND(e,b) \ - ((unsigned_word) \ - (((e) & ((uword64) 1 << ((b) - 1))) \ - ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \ - : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1)))) - -/* Check if a value will fit within a halfword: */ -#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1)) - - - -/* Floating-point operations: */ - -#include "sim-fpu.h" - -/* FPU registers must be one of the following types. All other values - are reserved (and undefined). */ -typedef enum { - fmt_single = 0, - fmt_double = 1, - fmt_word = 4, - fmt_long = 5, - /* The following are well outside the normal acceptable format - range, and are used in the register status vector. */ - fmt_unknown = 0x10000000, - fmt_uninterpreted = 0x20000000, - fmt_uninterpreted_32 = 0x40000000, - fmt_uninterpreted_64 = 0x80000000, -} FP_formats; - -unsigned64 value_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats)); -#define ValueFPR(FPR,FMT) value_fpr (sd, cia, (FPR), (FMT)) - -void store_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats fmt, unsigned64 value)); -#define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, cia, (FPR), (FMT), (VALUE)) - -int NaN PARAMS ((unsigned64 op, FP_formats fmt)); -int Infinity PARAMS ((unsigned64 op, FP_formats fmt)); -int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt)); -unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt)); -unsigned64 convert PARAMS ((SIM_DESC sd, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to)); -#define Convert(rm,op,from,to) convert(sd,cia,rm,op,from,to) - -/* Macro to update FPSR condition-code field. This is complicated by - the fact that there is a hole in the index range of the bits within - the FCSR register. Also, the number of bits visible depends on the - MIPS ISA version being supported. */ - -#define SETFCC(cc,v) {\ - int bit = ((cc == 0) ? 23 : (24 + (cc)));\ - FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\ -} -#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0) - -/* This should be the COC1 value at the start of the preceding - instruction: */ -#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0) - -#if 1 -#define SizeFGR() (WITH_TARGET_WORD_BITSIZE) -#else -/* They depend on the CPU being simulated */ -#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32) -#endif - -/* Standard FCRS bits: */ -#define IR (0) /* Inexact Result */ -#define UF (1) /* UnderFlow */ -#define OF (2) /* OverFlow */ -#define DZ (3) /* Division by Zero */ -#define IO (4) /* Invalid Operation */ -#define UO (5) /* Unimplemented Operation */ - -/* Get masks for individual flags: */ -#if 1 /* SAFE version */ -#define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0) -#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0) -#define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0) -#else -#define FP_FLAGS(b) (1 << ((b) + 2)) -#define FP_ENABLE(b) (1 << ((b) + 7)) -#define FP_CAUSE(b) (1 << ((b) + 12)) -#endif - -#define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */ - -#define FP_MASK_RM (0x3) -#define FP_SH_RM (0) -#define FP_RM_NEAREST (0) /* Round to nearest (Round) */ -#define FP_RM_TOZERO (1) /* Round to zero (Trunc) */ -#define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */ -#define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */ -#define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM) - - - -/* Integer ALU operations: */ - -#include "sim-alu.h" - -#define ALU32_END(ANS) \ - if (ALU32_HAD_OVERFLOW) \ - SignalExceptionIntegerOverflow (); \ - (ANS) = ALU32_OVERFLOW_RESULT - - -#define ALU64_END(ANS) \ - if (ALU64_HAD_OVERFLOW) \ - SignalExceptionIntegerOverflow (); \ - (ANS) = ALU64_OVERFLOW_RESULT; - -/* start-sanitize-r5900 */ - -#define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word)) -#define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2) -#define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4) -#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8) - -#define BYTES_IN_MIPS_REGS (sizeof(signed_word)) -#define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2) -#define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4) -#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8) - -/* SUB_REG_FETCH - return as lvalue some sub-part of a "register" - T - type of the sub part - TC - # of T's in the mips part of the "register" - I - index (from 0) of desired sub part - A - low part of "register" - A1 - high part of register -*/ -#define SUB_REG_FETCH(T,TC,A,A1,I) \ -(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \ - + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \ - ? ((TC) - 1 - (I) % (TC)) \ - : ((I) % (TC)) \ - ) \ - ) \ - ) - -/* -GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R - where <type> has two letters: - 1 is S=signed or U=unsigned - 2 is B=byte H=halfword W=word D=doubleword -*/ - -#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) - -#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I) -#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I) - -#define GPR_SB(R,I) SUB_REG_SB(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_SH(R,I) SUB_REG_SH(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_SW(R,I) SUB_REG_SW(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_SD(R,I) SUB_REG_SD(®ISTERS[R], ®ISTERS1[R], I) - -#define GPR_UB(R,I) SUB_REG_UB(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_UH(R,I) SUB_REG_UH(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_UW(R,I) SUB_REG_UW(®ISTERS[R], ®ISTERS1[R], I) -#define GPR_UD(R,I) SUB_REG_UD(®ISTERS[R], ®ISTERS1[R], I) - - -#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I) -#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I) -#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I) -#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I) - -#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I) -#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I) -#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I) -#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I) - -#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I) -#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I) -#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I) -#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I) - -#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I) -#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I) -#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I) -#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I) - - - -#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I) -#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I) -#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I) -#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I) - -#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I) -#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I) -#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I) -#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I) - -#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I) -#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I) -#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I) -#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I) - -#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I) -#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I) -#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I) -#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I) - -/* end-sanitize-r5900 */ - - - - -struct _sim_cpu { - - - /* The following are internal simulator state variables: */ -#define CPU_CIA(CPU) (PC) - address_word dspc; /* delay-slot PC */ -#define DSPC ((STATE_CPU (sd,0))->dspc) - - /* Issue a delay slot instruction immediatly by re-calling - idecode_issue */ -#define DELAY_SLOT(TARGET) \ - do { \ - address_word target = (TARGET); \ - instruction_word delay_insn; \ - sim_events_slip (sd, 1); \ - CIA = CIA + 4; \ - STATE |= simDELAYSLOT; \ - delay_insn = IMEM (CIA); \ - idecode_issue (sd, delay_insn, (CIA)); \ - STATE &= ~simDELAYSLOT; \ - NIA = target; \ - } while (0) -#define NULLIFY_NEXT_INSTRUCTION() \ - do { \ - sim_events_slip (sd, 1); \ - dotrace (sd, tracefh, 2, NIA, 4, "load instruction"); \ - NIA = CIA + 8; \ - } while (0) - - - - /* State of the simulator */ - unsigned int state; - unsigned int dsstate; -#define STATE ((STATE_CPU (sd,0))->state) -#define DSSTATE ((STATE_CPU (sd,0))->dsstate) - -/* Flags in the "state" variable: */ -#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */ -#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */ -#define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */ -#define simPCOC0 (1 << 17) /* COC[1] from current */ -#define simPCOC1 (1 << 18) /* COC[1] from previous */ -#define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */ -#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */ -#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */ -#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */ - -#define ENGINE_ISSUE_PREFIX_HOOK() \ - { \ - /* Set previous flag, depending on current: */ \ - if (STATE & simPCOC0) \ - STATE |= simPCOC1; \ - else \ - STATE &= ~simPCOC1; \ - /* and update the current value: */ \ - if (GETFCC(0)) \ - STATE |= simPCOC0; \ - else \ - STATE &= ~simPCOC0; \ - } - - -/* This is nasty, since we have to rely on matching the register - numbers used by GDB. Unfortunately, depending on the MIPS target - GDB uses different register numbers. We cannot just include the - relevant "gdb/tm.h" link, since GDB may not be configured before - the sim world, and also the GDB header file requires too much other - state. */ - -#ifndef TM_MIPS_H -#define LAST_EMBED_REGNUM (89) -#define NUM_REGS (LAST_EMBED_REGNUM + 1) -/* start-sanitize-r5900 */ -#undef NUM_REGS -#define NUM_REGS (128) -/* end-sanitize-r5900 */ -#endif - -/* To keep this default simulator simple, and fast, we use a direct - vector of registers. The internal simulator engine then uses - manifests to access the correct slot. */ - - unsigned_word registers[LAST_EMBED_REGNUM + 1]; - int register_widths[NUM_REGS]; -#define REGISTERS ((STATE_CPU (sd,0))->registers) - -#define GPR (®ISTERS[0]) -#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL)) -#define FGRIDX (38) -#define FGR (®ISTERS[FGRIDX]) -#define LO (REGISTERS[33]) -#define HI (REGISTERS[34]) -#define PC (REGISTERS[37]) -#define CAUSE (REGISTERS[36]) -#define SRIDX (32) -#define SR (REGISTERS[SRIDX]) /* CPU status register */ -#define FCR0IDX (71) -#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */ -#define FCR31IDX (70) -#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */ -#define FCSR (FCR31) -#define Debug (REGISTERS[86]) -#define DEPC (REGISTERS[87]) -#define EPC (REGISTERS[88]) -#define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */ - - unsigned_word c0_config_reg; -#define C0_CONFIG ((STATE_CPU (sd,0))->c0_config_reg) - -/* The following are pseudonyms for standard registers */ -#define ZERO (REGISTERS[0]) -#define V0 (REGISTERS[2]) -#define A0 (REGISTERS[4]) -#define A1 (REGISTERS[5]) -#define A2 (REGISTERS[6]) -#define A3 (REGISTERS[7]) -#define SP (REGISTERS[29]) -#define RA (REGISTERS[31]) - - /* Keep the current format state for each register: */ - FP_formats fpr_state[32]; -#define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state) - - - /* Slots for delayed register updates. For the moment we just have a - fixed number of slots (rather than a more generic, dynamic - system). This keeps the simulator fast. However, we only allow - for the register update to be delayed for a single instruction - cycle. */ -#define PSLOTS (5) /* Maximum number of instruction cycles */ - int pending_in; - int pending_out; - int pending_total; - int pending_slot_count[PSLOTS]; - int pending_slot_reg[PSLOTS]; - unsigned_word pending_slot_value[PSLOTS]; -#define PENDING_IN ((STATE_CPU (sd, 0))->pending_in) -#define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out) -#define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total) -#define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count) -#define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg) -#define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value) - - /* The following are not used for MIPS IV onwards: */ -#define PENDING_FILL(r,v) {\ -/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\ - if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\ - sim_io_eprintf(sd,"Attempt to over-write pending value\n");\ - PENDING_SLOT_COUNT[PENDING_IN] = 2;\ - PENDING_SLOT_REG[PENDING_IN] = (r);\ - PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\ -/*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\ - PENDING_TOTAL++;\ - PENDING_IN++;\ - if (PENDING_IN == PSLOTS)\ - PENDING_IN = 0;\ -/*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\ - } - - - /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic - read-write instructions. It is set when a linked load occurs. It - is tested and cleared by the conditional store. It is cleared - (during other CPU operations) when a store to the location would - no longer be atomic. In particular, it is cleared by exception - return instructions. */ - int llbit; -#define LLBIT ((STATE_CPU (sd, 0))->llbit) - - -/* The HIACCESS and LOACCESS counts are used to ensure that - corruptions caused by using the HI or LO register to close to a - following operation are spotted. */ - - int hiaccess; - int loaccess; -#define HIACCESS ((STATE_CPU (sd, 0))->hiaccess) -#define LOACCESS ((STATE_CPU (sd, 0))->loaccess) - /* start-sanitize-r5900 */ - int hi1access; - int lo1access; -#define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access) -#define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access) - /* end-sanitize-r5900 */ -#if 1 - /* The 4300 and a few other processors have interlocks on hi/lo - register reads, and hence do not have this problem. To avoid - spurious warnings, we just disable this always. */ -#define CHECKHILO(s) -#else - unsigned_word HLPC; - /* If either of the preceding two instructions have accessed the HI - or LO registers, then the values they see should be - undefined. However, to keep the simulator world simple, we just - let them use the value read and raise a warning to notify the - user: */ -#define CHECKHILO(s) {\ - if ((HIACCESS != 0) || (LOACCESS != 0)) \ - sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\ -} - /* start-sanitize-r5900 */ -#undef CHECKHILO -#define CHECKHILO(s) {\ - if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\ - sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\ -} - /* end-sanitize-r5900 */ -#endif - - - /* start-sanitize-r5900 */ - /* The R5900 has 128 bit registers, but the hi 64 bits are only - touched by multimedia (MMI) instructions. The normal mips - instructions just use the lower 64 bits. To avoid changing the - older parts of the simulator to handle this weirdness, the high - 64 bits of each register are kept in a separate array - (registers1). The high 64 bits of any register are by convention - refered by adding a '1' to the end of the normal register's name. - So LO still refers to the low 64 bits of the LO register, LO1 - refers to the high 64 bits of that same register. */ - - signed_word registers1[LAST_EMBED_REGNUM + 1]; -#define REGISTERS1 ((STATE_CPU (sd, 0))->registers1) -#define GPR1 (®ISTERS1[0]) -#define LO1 (REGISTERS1[32]) -#define HI1 (REGISTERS1[33]) -#define REGISTER_SA (124) - - unsigned_word sa; /* the shift amount register */ -#define SA ((STATE_CPU (sd, 0))->sa) - - /* end-sanitize-r5900 */ - /* start-sanitize-vr5400 */ - - /* The MDMX ISA has a very very large accumulator */ - unsigned8 acc[3 * 8]; - /* end-sanitize-vr5400 */ - - sim_cpu_base base; -}; - - -/* MIPS specific simulator watch config */ - -void watch_options_install PARAMS ((SIM_DESC sd)); - -struct swatch { - sim_event *pc; - sim_event *clock; - sim_event *cycles; -}; - - -/* FIXME: At present much of the simulator is still static */ -struct sim_state { - - struct swatch watch; - - sim_cpu cpu[1]; -#if (WITH_SMP) -#define STATE_CPU(sd,n) (&(sd)->cpu[n]) -#else -#define STATE_CPU(sd,n) (&(sd)->cpu[0]) -#endif - - sim_state_base base; -}; - - - -/* Status information: */ - -/* TODO : these should be the bitmasks for these bits within the - status register. At the moment the following are VR4300 - bit-positions: */ -#define status_KSU_mask (0x3) /* mask for KSU bits */ -#define status_KSU_shift (3) /* shift for field */ -#define ksu_kernel (0x0) -#define ksu_supervisor (0x1) -#define ksu_user (0x2) -#define ksu_unknown (0x3) - -#define status_IE (1 << 0) /* Interrupt enable */ -#define status_EXL (1 << 1) /* Exception level */ -#define status_RE (1 << 25) /* Reverse Endian in user mode */ -#define status_FR (1 << 26) /* enables MIPS III additional FP registers */ -#define status_SR (1 << 20) /* soft reset or NMI */ -#define status_BEV (1 << 22) /* Location of general exception vectors */ -#define status_TS (1 << 21) /* TLB shutdown has occurred */ -#define status_ERL (1 << 2) /* Error level */ -#define status_RP (1 << 27) /* Reduced Power mode */ - -#define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */ - -/* NOTE: We keep the following status flags as bit values (1 for true, - 0 for false). This allows them to be used in binary boolean - operations without worrying about what exactly the non-zero true - value is. */ - -/* UserMode */ -#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0) - -/* BigEndianMem */ -/* Hardware configuration. Affects endianness of LoadMemory and - StoreMemory and the endianness of Kernel and Supervisor mode - execution. The value is 0 for little-endian; 1 for big-endian. */ -#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) -/*(state & simBE) ? 1 : 0)*/ - -/* ReverseEndian */ -/* This mode is selected if in User mode with the RE bit being set in - SR (Status Register). It reverses the endianness of load and store - instructions. */ -#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0) - -/* BigEndianCPU */ -/* The endianness for load and store instructions (0=little;1=big). In - User mode this endianness may be switched by setting the state_RE - bit in the SR register. Thus, BigEndianCPU may be computed as - (BigEndianMem EOR ReverseEndian). */ -#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */ - - - -/* Exceptions: */ - -/* NOTE: These numbers depend on the processor architecture being - simulated: */ -#define Interrupt (0) -#define TLBModification (1) -#define TLBLoad (2) -#define TLBStore (3) -#define AddressLoad (4) -#define AddressStore (5) -#define InstructionFetch (6) -#define DataReference (7) -#define SystemCall (8) -#define BreakPoint (9) -#define ReservedInstruction (10) -#define CoProcessorUnusable (11) -#define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */ -#define Trap (13) -#define FPE (15) -#define DebugBreakPoint (16) -#define Watch (23) - -/* The following exception code is actually private to the simulator - world. It is *NOT* a processor feature, and is used to signal - run-time errors in the simulator. */ -#define SimulatorFault (0xFFFFFFFF) - -void signal_exception (SIM_DESC sd, address_word cia, int exception, ...); -#define SignalException(exc,instruction) signal_exception (sd, cia, (exc), (instruction)) -#define SignalExceptionInterrupt() signal_exception (sd, NULL_CIA, Interrupt) -#define SignalExceptionInstructionFetch() signal_exception (sd, cia, InstructionFetch) -#define SignalExceptionAddressStore() signal_exception (sd, cia, AddressStore) -#define SignalExceptionAddressLoad() signal_exception (sd, cia, AddressLoad) -#define SignalExceptionSimulatorFault(buf) signal_exception (sd, cia, SimulatorFault, buf) -#define SignalExceptionFPE() signal_exception (sd, cia, FPE) -#define SignalExceptionIntegerOverflow() signal_exception (sd, cia, IntegerOverflow) -#define SignalExceptionCoProcessorUnusable() signal_exception (sd, cia, CoProcessorUnusable) - - -/* Co-processor accesses */ - -void cop_lw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, unsigned int memword)); -void cop_ld PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, uword64 memword)); -unsigned int cop_sw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg)); -uword64 cop_sd PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg)); - -#define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,cia,coproc_num,coproc_reg,memword) -#define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,cia,coproc_num,coproc_reg,memword) -#define COP_SW(coproc_num,coproc_reg) cop_sw(sd,cia,coproc_num,coproc_reg) -#define COP_SD(coproc_num,coproc_reg) cop_sd(sd,cia,coproc_num,coproc_reg) - -void decode_coproc PARAMS ((SIM_DESC sd, address_word cia, unsigned int instruction)); -#define DecodeCoproc(instruction) decode_coproc(sd, cia, (instruction)) - - - -/* Memory accesses */ - -/* The following are generic to all versions of the MIPS architecture - to date: */ - -/* Memory Access Types (for CCA): */ -#define Uncached (0) -#define CachedNoncoherent (1) -#define CachedCoherent (2) -#define Cached (3) - -#define isINSTRUCTION (1 == 0) /* FALSE */ -#define isDATA (1 == 1) /* TRUE */ -#define isLOAD (1 == 0) /* FALSE */ -#define isSTORE (1 == 1) /* TRUE */ -#define isREAL (1 == 0) /* FALSE */ -#define isRAW (1 == 1) /* TRUE */ -/* The parameter HOST (isTARGET / isHOST) is ignored */ -#define isTARGET (1 == 0) /* FALSE */ -/* #define isHOST (1 == 1) TRUE */ - -/* The "AccessLength" specifications for Loads and Stores. NOTE: This - is the number of bytes minus 1. */ -#define AccessLength_BYTE (0) -#define AccessLength_HALFWORD (1) -#define AccessLength_TRIPLEBYTE (2) -#define AccessLength_WORD (3) -#define AccessLength_QUINTIBYTE (4) -#define AccessLength_SEXTIBYTE (5) -#define AccessLength_SEPTIBYTE (6) -#define AccessLength_DOUBLEWORD (7) -#define AccessLength_QUADWORD (15) - -int address_translation PARAMS ((SIM_DESC sd, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw)); -#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \ -address_translation(sd,cia,vAddr,IorD,LorS,pAddr,CCA,raw) - -void load_memory PARAMS ((SIM_DESC sd, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD)); -#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \ -load_memory(sd,cia,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD) - -void store_memory PARAMS ((SIM_DESC sd, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr)); -#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \ -store_memory(sd,cia,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr) - -void cache_op PARAMS ((SIM_DESC sd, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction)); -#define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,cia,op,pAddr,vAddr,instruction) - -void sync_operation PARAMS ((SIM_DESC sd, address_word cia, int stype)); -#define SyncOperation(stype) sync_operation (sd, cia, (stype)) - -void prefetch PARAMS ((SIM_DESC sd, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint)); -#define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,cia,CCA,pAddr,vAddr,DATA,hint) - -unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia, address_word vaddr)); -#define IMEM(CIA) ifetch32 (SD, (CIA), (CIA)) - -void dotrace PARAMS ((SIM_DESC sd, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...)); -FILE *tracefh; - -#endif |