aboutsummaryrefslogtreecommitdiff
path: root/sim/mn10300
diff options
context:
space:
mode:
Diffstat (limited to 'sim/mn10300')
-rw-r--r--sim/mn10300/dv-mn103tim.c823
1 files changed, 823 insertions, 0 deletions
diff --git a/sim/mn10300/dv-mn103tim.c b/sim/mn10300/dv-mn103tim.c
new file mode 100644
index 0000000..6347db6
--- /dev/null
+++ b/sim/mn10300/dv-mn103tim.c
@@ -0,0 +1,823 @@
+/* This file is part of the program GDB, the GNU debugger.
+
+ Copyright (C) 1998 Free Software Foundation, Inc.
+ Contributed by Cygnus Solutions.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ */
+
+#include "sim-main.h"
+#include "hw-main.h"
+
+/* DEVICE
+
+
+ mn103tim - mn103002 timers (8 and 16 bit)
+
+
+ DESCRIPTION
+
+ Implements the mn103002 8 and 16 bit timers as described in the mn103002 user guide.
+
+
+ PROPERTIES
+
+ reg = <8bit-timers-addr> <8bit-timers-size> <16bit-timers-addr> <16bit-timers-size>
+
+
+ BUGS
+
+ */
+
+
+/* The timers' register address blocks */
+
+struct mn103tim_block {
+ unsigned_word base;
+ unsigned_word bound;
+};
+
+enum { TIMER8_BLOCK, TIMER16_BLOCK, NR_TIMER_BLOCKS };
+
+enum timer_register_types {
+ FIRST_MODE_REG = 0,
+ TM0MD = FIRST_MODE_REG,
+ TM1MD,
+ TM2MD,
+ TM3MD,
+ TM4MD,
+ TM5MD,
+ TM6MD,
+ LAST_MODE_REG = TM6MD,
+ FIRST_BASE_REG,
+ TM0BR = FIRST_BASE_REG,
+ TM1BR,
+ TM2BR,
+ TM3BR,
+ TM4BR,
+ TM5BR,
+ LAST_BASE_REG = TM5BR,
+ FIRST_COUNTER,
+ TM0BC = FIRST_COUNTER,
+ TM1BC,
+ TM2BC,
+ TM3BC,
+ TM4BC,
+ TM5BC,
+ TM6BC,
+ LAST_COUNTER = TM6BC,
+ TM6MDA,
+ TM6MDB,
+ TM6CA,
+ TM6CB,
+};
+
+
+/* Don't include timer 6 because it's handled specially. */
+#define NR_8BIT_TIMERS 4
+#define NR_16BIT_TIMERS 2
+#define NR_TIMERS 6
+
+typedef struct _mn10300_timer {
+ unsigned32 div_ratio, start, base;
+ unsigned8 mode;
+ struct hw_event *event;
+} mn10300_timer;
+
+
+struct mn103tim {
+ struct mn103tim_block block[NR_TIMER_BLOCKS];
+ mn10300_timer timer[NR_TIMERS];
+
+ /* treat timer 6 registers specially. */
+ unsigned16 tm6md, tm6bc, tm6mca, tm6mcb;
+ unsigned8 tm6mda, tm6mdb; /* compare/capture mode regs for timer 6 */
+ struct hw_event *event6;
+};
+
+/* output port ID's */
+
+/* for mn103002 */
+enum {
+ TIMER0_UFLOW,
+ TIMER1_UFLOW,
+ TIMER2_UFLOW,
+ TIMER3_UFLOW,
+ TIMER4_UFLOW,
+ TIMER5_UFLOW,
+ TIMER6_UFLOW,
+ TIMER6_CMPA,
+ TIMER6_CMPB,
+};
+
+
+static const struct hw_port_descriptor mn103tim_ports[] = {
+
+ { "timer-0-underflow", TIMER0_UFLOW, 0, output_port, },
+ { "timer-1-underflow", TIMER1_UFLOW, 0, output_port, },
+ { "timer-2-underflow", TIMER2_UFLOW, 0, output_port, },
+ { "timer-3-underflow", TIMER3_UFLOW, 0, output_port, },
+ { "timer-4-underflow", TIMER4_UFLOW, 0, output_port, },
+ { "timer-5-underflow", TIMER5_UFLOW, 0, output_port, },
+
+ { "timer-6-underflow", TIMER6_UFLOW, 0, output_port, },
+ { "timer-6-compare-a", TIMER6_CMPA, 0, output_port, },
+ { "timer-6-compare-b", TIMER6_CMPB, 0, output_port, },
+
+ { NULL, },
+};
+
+#define bits2to5_mask 0x3c
+#define load_mask 0x40
+#define count_mask 0x80
+#define count_and_load_mask (load_mask | count_mask)
+#define clock_mask 0x03
+#define clk_ioclk 0x00
+#define clk_cascaded 0x03
+
+
+/* Finish off the partially created hw device. Attach our local
+ callbacks. Wire up our port names etc */
+
+static hw_io_read_buffer_method mn103tim_io_read_buffer;
+static hw_io_write_buffer_method mn103tim_io_write_buffer;
+
+static void
+attach_mn103tim_regs (struct hw *me,
+ struct mn103tim *timers)
+{
+ int i;
+ if (hw_find_property (me, "reg") == NULL)
+ hw_abort (me, "Missing \"reg\" property");
+ for (i = 0; i < NR_TIMER_BLOCKS; i++)
+ {
+ unsigned_word attach_address;
+ int attach_space;
+ unsigned attach_size;
+ reg_property_spec reg;
+ if (!hw_find_reg_array_property (me, "reg", i, &reg))
+ hw_abort (me, "\"reg\" property must contain three addr/size entries");
+ hw_unit_address_to_attach_address (hw_parent (me),
+ &reg.address,
+ &attach_space,
+ &attach_address,
+ me);
+ timers->block[i].base = attach_address;
+ hw_unit_size_to_attach_size (hw_parent (me),
+ &reg.size,
+ &attach_size, me);
+ timers->block[i].bound = attach_address + (attach_size - 1);
+ hw_attach_address (hw_parent (me),
+ 0,
+ attach_space, attach_address, attach_size,
+ me);
+ }
+}
+
+static void
+mn103tim_finish (struct hw *me)
+{
+ struct mn103tim *timers;
+ int i;
+
+ timers = HW_ZALLOC (me, struct mn103tim);
+ set_hw_data (me, timers);
+ set_hw_io_read_buffer (me, mn103tim_io_read_buffer);
+ set_hw_io_write_buffer (me, mn103tim_io_write_buffer);
+ set_hw_ports (me, mn103tim_ports);
+
+ /* Attach ourself to our parent bus */
+ attach_mn103tim_regs (me, timers);
+
+ /* Initialize the timers */
+ for ( i=0; i < NR_TIMERS; ++i )
+ {
+ timers->timer[i].event = NULL;
+ timers->timer[i].mode = 0x00;
+ timers->timer[i].base = 0;
+ timers->timer[i].div_ratio = 0;
+ timers->timer[i].start = 0;
+ }
+ timers->tm6md = 0x0000;
+ timers->tm6bc = 0x0000;
+ timers->tm6mca = 0x0000;
+ timers->tm6mcb = 0x0000;
+ timers->tm6mda = 0x00;
+ timers->tm6mdb = 0x00;
+}
+
+
+
+/* read and write */
+
+static int
+decode_addr (struct hw *me,
+ struct mn103tim *timers,
+ unsigned_word address)
+{
+ unsigned_word offset;
+ offset = address - timers->block[0].base;
+
+ switch (offset)
+ {
+ case 0x00: return TM0MD;
+ case 0x01: return TM1MD;
+ case 0x02: return TM2MD;
+ case 0x03: return TM3MD;
+ case 0x10: return TM0BR;
+ case 0x11: return TM1BR;
+ case 0x12: return TM2BR;
+ case 0x13: return TM3BR;
+ case 0x20: return TM0BC;
+ case 0x21: return TM1BC;
+ case 0x22: return TM2BC;
+ case 0x23: return TM3BC;
+ case 0x80: return TM4MD;
+ case 0x82: return TM5MD;
+ case 0x84: return TM6MD;
+ case 0x90: return TM4BR;
+ case 0x92: return TM5BR;
+ case 0xa0: return TM4BC;
+ case 0xa2: return TM5BC;
+ case 0xa4: return TM6BC;
+ case 0xb4: return TM6MDA;
+ case 0xb5: return TM6MDB;
+ case 0xc4: return TM6CA;
+ case 0xd4: return TM6CB;
+ default:
+ {
+ hw_abort (me, "bad address");
+ return -1;
+ }
+ }
+}
+
+static void
+read_mode_reg (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ void *dest,
+ unsigned nr_bytes)
+{
+ unsigned16 val16;
+ unsigned32 val32;
+
+ switch ( nr_bytes )
+ {
+ case 1:
+ /* Accessing 1 byte is ok for all mode registers. */
+ *(unsigned8*)dest = timers->timer[timer_nr].mode;
+ break;
+
+ case 2:
+ if ( timer_nr == 6 )
+ {
+ *(unsigned16 *)dest = timers->tm6md;
+ }
+ else if ( timer_nr == 0 || timer_nr == 2 )
+ {
+ val16 = (timers->timer[timer_nr].mode << 8)
+ | timers->timer[timer_nr+1].mode;
+ *(unsigned16*)dest = val16;
+ }
+ else
+ {
+ hw_abort (me, "bad read size of 2 bytes to TM%dMD.", timer_nr);
+ }
+ break;
+
+ case 4:
+ if ( timer_nr == 0 )
+ {
+ val32 = (timers->timer[0].mode << 24 )
+ | (timers->timer[1].mode << 16)
+ | (timers->timer[2].mode << 8)
+ | timers->timer[3].mode;
+ *(unsigned32*)dest = val32;
+ }
+ else
+ {
+ hw_abort (me, "bad read size of 4 bytes to TM%dMD.", timer_nr);
+ }
+ break;
+
+ default:
+ hw_abort (me, "bad read size of %d bytes to TM%dMD.",
+ nr_bytes, timer_nr);
+ }
+}
+
+
+static void
+read_base_reg (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ void *dest,
+ unsigned nr_bytes)
+{
+ unsigned16 val16;
+ unsigned32 val32;
+
+ /* Check nr_bytes: accesses of 1, 2 and 4 bytes allowed depending on timer. */
+ switch ( nr_bytes )
+ {
+ case 1:
+ /* Reading 1 byte is ok for all registers. */
+ if ( timer_nr < NR_8BIT_TIMERS )
+ {
+ *(unsigned8*)dest = timers->timer[timer_nr].base;
+ }
+ break;
+
+ case 2:
+ if ( timer_nr == 1 || timer_nr == 3 )
+ {
+ hw_abort (me, "bad read size of 2 bytes to TM%dBR.", timer_nr);
+ }
+ else
+ {
+ if ( timer_nr < NR_8BIT_TIMERS )
+ {
+ val16 = (timers->timer[timer_nr].base<<8)
+ | timers->timer[timer_nr+1].base;
+ }
+ else
+ {
+ val16 = timers->timer[timer_nr].base;
+ }
+ *(unsigned16*)dest = val16;
+ }
+ break;
+
+ case 4:
+ if ( timer_nr == 0 )
+ {
+ val32 = (timers->timer[0].base << 24) | (timers->timer[1].base << 16)
+ | (timers->timer[2].base << 8) | timers->timer[3].base;
+ *(unsigned32*)dest = val32;
+ }
+ else if ( timer_nr == 4 )
+ {
+ val32 = (timers->timer[4].base << 16) | timers->timer[5].base;
+ *(unsigned32*)dest = val32;
+ }
+ else
+ {
+ hw_abort (me, "bad read size of 4 bytes to TM%dBR.", timer_nr);
+ }
+ break;
+
+ default:
+ hw_abort (me, "bad read size must of %d bytes to TM%dBR.",
+ nr_bytes, timer_nr);
+ }
+}
+
+
+static void
+read_counter (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ void *dest,
+ unsigned nr_bytes)
+{
+ unsigned32 val;
+
+ if ( NULL == timers->timer[timer_nr].event )
+ {
+ /* Timer is not counting, use value in base register. */
+ val = timers->timer[timer_nr].base;
+ }
+ else
+ {
+ /* ticks left = start time + div ratio - curr time */
+ /* Cannot use base register because it can be written during counting and it
+ doesn't affect counter until underflow occurs. */
+
+ val = timers->timer[timer_nr].start + timers->timer[timer_nr].div_ratio
+ - hw_event_queue_time(me);
+ }
+
+ switch (nr_bytes) {
+ case 1:
+ *(unsigned8 *)dest = val;
+ break;
+
+ case 2:
+ *(unsigned16 *)dest = val;
+ break;
+
+ case 4:
+ *(unsigned32 *)dest = val;
+ break;
+
+ default:
+ hw_abort(me, "bad read size for reading counter");
+ }
+
+}
+
+
+static unsigned
+mn103tim_io_read_buffer (struct hw *me,
+ void *dest,
+ int space,
+ unsigned_word base,
+ unsigned nr_bytes)
+{
+ struct mn103tim *timers = hw_data (me);
+ enum timer_register_types timer_reg;
+
+ HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
+
+ timer_reg = decode_addr (me, timers, base);
+
+ /* It can be either a mode register, a base register or a binary counter. */
+ /* Check in that order. */
+ if ( timer_reg >= FIRST_MODE_REG && timer_reg <= LAST_MODE_REG )
+ {
+ read_mode_reg(me, timers, timer_reg-FIRST_MODE_REG, dest, nr_bytes);
+ }
+ else if ( timer_reg <= LAST_BASE_REG )
+ {
+ read_base_reg(me, timers, timer_reg-FIRST_BASE_REG, dest, nr_bytes);
+ }
+ else if ( timer_reg <= LAST_COUNTER )
+ {
+ read_counter(me, timers, timer_reg-FIRST_COUNTER, dest, nr_bytes);
+ }
+ else
+ {
+ hw_abort(me, "invalid timer register address.");
+ }
+
+ return nr_bytes;
+}
+
+
+static void
+do_counter_event (struct hw *me,
+ void *data)
+{
+ struct mn103tim *timers = hw_data(me);
+ int timer_nr = (int) data;
+
+ /* Check if counting is still enabled. */
+ if ( (timers->timer[timer_nr].mode & count_mask) != 0 )
+ {
+ /* Generate an interrupt for the timer underflow (TIMERn_UFLOW). */
+ hw_port_event (me, timer_nr /*uflow_port[timer_nr]*/, 1 /* level */);
+
+ /* Schedule next timeout. */
+
+ timers->timer[timer_nr].start = hw_event_queue_time(me);
+ /* FIX: Check if div_ ratio has changed and if it's now 0. */
+ timers->timer[timer_nr].event
+ = hw_event_queue_schedule (me, timers->timer[timer_nr].div_ratio,
+ do_counter_event, (void *)timer_nr);
+ }
+
+}
+
+static void
+write_base_reg (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ const void *source,
+ unsigned nr_bytes)
+{
+ unsigned i;
+ const unsigned8 *buf8 = source;
+ const unsigned16 *buf16 = source;
+ unsigned8 mode_val;
+
+ /* If TMnCNE == 0 (counting is off), writing to the base register
+ (TMnBR) causes a simultaneous write to the counter reg (TMnBC).
+ Else, the TMnBC is reloaded with the value from TMnBR when
+ underflow occurs. Since the counter register is not explicitly
+ maintained, this functionality is handled in read_counter. */
+
+ mode_val = timers->timer[timer_nr].mode;
+
+ /* Check nr_bytes: write of 1, 2 or 4 bytes allowed depending on timer. */
+ switch ( nr_bytes )
+ {
+ case 1:
+ /* Storing 1 byte is ok for all registers. */
+ timers->timer[timer_nr].base = buf8[0];
+ break;
+
+ case 2:
+ if ( timer_nr == 1 || timer_nr == 3 )
+ {
+ hw_abort (me, "bad write size of 2 bytes to TM%dBR.", timer_nr);
+ }
+ else
+ {
+ if ( timer_nr < NR_8BIT_TIMERS )
+ {
+ timers->timer[timer_nr].base = buf8[0];
+ timers->timer[timer_nr+1].base = buf8[1];
+ }
+ else
+ {
+ timers->timer[timer_nr].base = buf16[0];
+ }
+ }
+ break;
+
+ case 4:
+ if ( timer_nr == 0 )
+ {
+ ASSERT(0);
+ timers->timer[0].base = buf8[0];
+ timers->timer[1].base = buf8[1];
+ timers->timer[2].base = buf8[2];
+ timers->timer[3].base = buf8[3];
+ }
+ else if ( timer_nr == 4 )
+ {
+ timers->timer[4].base = buf16[0];
+ timers->timer[5].base = buf16[1];
+ }
+ else
+ {
+ hw_abort (me, "bad write size of 4 bytes to TM%dBR.", timer_nr);
+ }
+ break;
+
+ default:
+ hw_abort (me, "bad write size must of %d bytes to TM%dBR.",
+ nr_bytes, timer_nr);
+ }
+
+}
+
+static void
+write_8bit_mode_reg (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ const void *source,
+ unsigned nr_bytes)
+ /* for timers 0 to 3 */
+{
+ unsigned i;
+ unsigned8 mode_val, next_mode_val;
+ unsigned32 div_ratio;
+
+ if ( nr_bytes != 1 )
+ {
+ hw_abort (me, "bad write size of %d bytes to TM%dMD.", nr_bytes, timer_nr);
+ }
+
+ mode_val = *(unsigned8 *)source;
+ timers->timer[timer_nr].mode = mode_val;
+
+ if ( ( mode_val & count_and_load_mask ) == count_and_load_mask )
+ {
+ hw_abort(me, "Cannot load base reg and start counting simultaneously.");
+ }
+ if ( ( mode_val & bits2to5_mask ) != 0 )
+ {
+ hw_abort(me, "Cannot write to bits 2 to 5 of mode register");
+ }
+
+ if ( mode_val & count_mask )
+ {
+ /* - de-schedule any previous event. */
+ /* - add new event to queue to start counting. */
+ /* - assert that counter == base reg? */
+
+ /* For cascaded timers, */
+ if ( (mode_val & clock_mask) == clk_cascaded )
+ {
+ if ( timer_nr == 0 )
+ {
+ hw_abort(me, "Timer 0 cannot be cascaded.");
+ }
+ }
+ else
+ {
+ div_ratio = timers->timer[timer_nr].base;
+
+ /* Check for cascading. */
+ next_mode_val = timers->timer[timer_nr+1].mode;
+ if ( ( next_mode_val & clock_mask ) == clk_cascaded )
+ {
+ /* Check that CNE is on. */
+ if ( ( next_mode_val & count_mask ) == 0 )
+ {
+ hw_abort (me, "cascaded timer not ready for counting");
+ }
+ ASSERT(timers->timer[timer_nr+1].event == NULL);
+ ASSERT(timers->timer[timer_nr+1].div_ratio == 0);
+ div_ratio = div_ratio | (timers->timer[timer_nr+1].base << 8);
+ }
+
+ timers->timer[timer_nr].div_ratio = div_ratio;
+
+ if ( NULL != timers->timer[timer_nr].event )
+ {
+ hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
+ timers->timer[timer_nr].event = NULL;
+ }
+
+ if ( div_ratio > 0 )
+ {
+ /* Set start time. */
+ timers->timer[timer_nr].start = hw_event_queue_time(me);
+
+ timers->timer[timer_nr].event
+ = hw_event_queue_schedule(me, div_ratio,
+ do_counter_event,
+ (void *)(timer_nr));
+ }
+ }
+ }
+ else
+ {
+ /* Turn off counting */
+ if ( NULL != timers->timer[timer_nr].event )
+ {
+ ASSERT((timers->timer[timer_nr].mode & clock_mask) != clk_cascaded);
+ hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
+ timers->timer[timer_nr].event = NULL;
+ }
+ else
+ {
+ if ( (timers->timer[timer_nr].mode & clock_mask) == clk_cascaded )
+ {
+ ASSERT(timers->timer[timer_nr].event == NULL);
+ }
+ }
+
+ }
+
+}
+
+static void
+write_16bit_mode_reg (struct hw *me,
+ struct mn103tim *timers,
+ int timer_nr,
+ const void *source,
+ unsigned nr_bytes)
+ /* for timers 4 and 5, not 6 */
+{
+ unsigned i;
+ unsigned8 mode_val, next_mode_val;
+ unsigned32 div_ratio;
+
+ if ( nr_bytes != 1 )
+ {
+ hw_abort (me, "bad write size of %d bytes to TM%dMD.", nr_bytes, timer_nr);
+ }
+
+ mode_val = *(unsigned8 *)source;
+ timers->timer[timer_nr].mode = mode_val;
+
+ if ( ( mode_val & count_and_load_mask ) == count_and_load_mask )
+ {
+ hw_abort(me, "Cannot load base reg and start counting simultaneously.");
+ }
+ if ( ( mode_val & bits2to5_mask ) != 0 )
+ {
+ hw_abort(me, "Cannot write to bits 2 to 5 of mode register");
+ }
+
+
+ if ( mode_val & count_mask )
+ {
+ /* - de-schedule any previous event. */
+ /* - add new event to queue to start counting. */
+ /* - assert that counter == base reg? */
+
+ /* For cascaded timers, */
+ if ( (mode_val & clock_mask) == clk_cascaded )
+ {
+ if ( timer_nr == 4 )
+ {
+ hw_abort(me, "Timer 4 cannot be cascaded.");
+ }
+ }
+ else
+ {
+ div_ratio = timers->timer[timer_nr].base;
+
+ /* Check for cascading. */
+ next_mode_val = timers->timer[timer_nr+1].mode;
+ if ( ( next_mode_val & clock_mask ) == clk_cascaded )
+ {
+ /* Check that CNE is on. */
+ if ( ( next_mode_val & count_mask ) == 0 )
+ {
+ hw_abort (me, "cascaded timer not ready for counting");
+ }
+ ASSERT(timers->timer[timer_nr+1].event == NULL);
+ ASSERT(timers->timer[timer_nr+1].div_ratio == 0);
+ div_ratio = div_ratio | (timers->timer[timer_nr+1].base << 16);
+ }
+
+ timers->timer[timer_nr].div_ratio = div_ratio;
+
+ if ( NULL != timers->timer[timer_nr].event )
+ {
+ hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
+ timers->timer[timer_nr].event = NULL;
+ }
+
+ if ( div_ratio > 0 )
+ {
+ /* Set start time. */
+ timers->timer[timer_nr].start = hw_event_queue_time(me);
+
+ timers->timer[timer_nr].event
+ = hw_event_queue_schedule(me, div_ratio, do_counter_event,
+ (void *)(timer_nr));
+ }
+ }
+ }
+ else
+ {
+ /* Turn off counting */
+ if ( NULL != timers->timer[timer_nr].event )
+ {
+ ASSERT((timers->timer[timer_nr].mode & clock_mask) != clk_cascaded);
+ hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
+ timers->timer[timer_nr].event = NULL;
+ }
+ else
+ {
+ if ( (timers->timer[timer_nr].mode & clock_mask) == clk_cascaded )
+ {
+ ASSERT(timers->timer[timer_nr].event == NULL);
+ }
+ }
+
+ }
+
+}
+
+static unsigned
+mn103tim_io_write_buffer (struct hw *me,
+ const void *source,
+ int space,
+ unsigned_word base,
+ unsigned nr_bytes)
+{
+ struct mn103tim *timers = hw_data (me);
+ enum timer_register_types timer_reg;
+
+ HW_TRACE ((me, "write to 0x%08lx length %d with 0x%x", (long) base,
+ (int) nr_bytes, *(unsigned32 *)source));
+
+ timer_reg = decode_addr (me, timers, base);
+
+ /* It can be either a mode register, a base register or a binary counter. */
+ /* Check in that order. */
+ if ( timer_reg <= LAST_MODE_REG )
+ {
+ if ( timer_reg > 3 )
+ {
+ write_16bit_mode_reg(me, timers, timer_reg-FIRST_MODE_REG,
+ source, nr_bytes);
+ }
+ else
+ {
+ write_8bit_mode_reg(me, timers, timer_reg-FIRST_MODE_REG,
+ source, nr_bytes);
+ }
+ }
+ else if ( timer_reg <= LAST_BASE_REG )
+ {
+ write_base_reg(me, timers, timer_reg-FIRST_BASE_REG, source, nr_bytes);
+ }
+ else if ( timer_reg <= LAST_COUNTER )
+ {
+ hw_abort(me, "cannot write to counter");
+ }
+ else
+ {
+ hw_abort(me, "invalid reg type");
+ }
+
+ return nr_bytes;
+}
+
+
+const struct hw_descriptor dv_mn103tim_descriptor[] = {
+ { "mn103tim", mn103tim_finish, },
+ { NULL },
+};