aboutsummaryrefslogtreecommitdiff
path: root/sim/mips/cp1.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/mips/cp1.c')
-rw-r--r--sim/mips/cp1.c1095
1 files changed, 1095 insertions, 0 deletions
diff --git a/sim/mips/cp1.c b/sim/mips/cp1.c
new file mode 100644
index 0000000..66ae508
--- /dev/null
+++ b/sim/mips/cp1.c
@@ -0,0 +1,1095 @@
+/*> cp1.c <*/
+/* Floating Point Support for gdb MIPS simulators
+
+ This file is part of the MIPS sim
+
+ THIS SOFTWARE IS NOT COPYRIGHTED
+
+ Cygnus offers the following for use in the public domain. Cygnus
+ makes no warranty with regard to the software or it's performance
+ and the user accepts the software "AS IS" with all faults.
+
+ CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
+ THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+
+ (Originally, this code was in interp.c)
+*/
+
+#include "sim-main.h"
+#include "sim-fpu.h"
+
+/* Within cp1.c we refer to sim_cpu directly. */
+#define CPU cpu
+#define SD sd
+
+/*-- FPU support routines ---------------------------------------------------*/
+
+/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
+ formats conform to ANSI/IEEE Std 754-1985. */
+/* SINGLE precision floating:
+ * seeeeeeeefffffffffffffffffffffff
+ * s = 1bit = sign
+ * e = 8bits = exponent
+ * f = 23bits = fraction
+ */
+/* SINGLE precision fixed:
+ * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
+ * s = 1bit = sign
+ * i = 31bits = integer
+ */
+/* DOUBLE precision floating:
+ * seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
+ * s = 1bit = sign
+ * e = 11bits = exponent
+ * f = 52bits = fraction
+ */
+/* DOUBLE precision fixed:
+ * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
+ * s = 1bit = sign
+ * i = 63bits = integer
+ */
+
+/* Extract sign-bit: */
+#define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0)
+#define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0)
+/* Extract biased exponent: */
+#define FP_S_be(v) (((v) >> 23) & 0xFF)
+#define FP_D_be(v) (((v) >> 52) & 0x7FF)
+/* Extract unbiased Exponent: */
+#define FP_S_e(v) (FP_S_be(v) - 0x7F)
+#define FP_D_e(v) (FP_D_be(v) - 0x3FF)
+/* Extract complete fraction field: */
+#define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23))
+#define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52))
+/* Extract numbered fraction bit: */
+#define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
+#define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)
+
+/* Explicit QNaN values used when value required: */
+#define FPQNaN_SINGLE (0x7FBFFFFF)
+#define FPQNaN_WORD (0x7FFFFFFF)
+#define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
+#define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)
+
+/* Explicit Infinity values used when required: */
+#define FPINF_SINGLE (0x7F800000)
+#define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000)
+
+#define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
+#define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : (((v) == fmt_uninterpreted_32) ? "<uninterpreted_32>" : (((v) == fmt_uninterpreted_64) ? "<uninterpreted_64>" : "<format error>"))))))))
+
+uword64
+value_fpr (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int fpr,
+ FP_formats fmt)
+{
+ uword64 value = 0;
+ int err = 0;
+
+ /* Treat unused register values, as fixed-point 64bit values: */
+ if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
+#if 1
+ /* If request to read data as "uninterpreted", then use the current
+ encoding: */
+ fmt = FPR_STATE[fpr];
+#else
+ fmt = fmt_long;
+#endif
+
+ /* For values not yet accessed, set to the desired format: */
+ if (FPR_STATE[fpr] == fmt_uninterpreted) {
+ FPR_STATE[fpr] = fmt;
+#ifdef DEBUG
+ printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
+#endif /* DEBUG */
+ }
+ if (fmt != FPR_STATE[fpr]) {
+ sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia));
+ FPR_STATE[fpr] = fmt_unknown;
+ }
+
+ if (FPR_STATE[fpr] == fmt_unknown) {
+ /* Set QNaN value: */
+ switch (fmt) {
+ case fmt_single:
+ value = FPQNaN_SINGLE;
+ break;
+
+ case fmt_double:
+ value = FPQNaN_DOUBLE;
+ break;
+
+ case fmt_word:
+ value = FPQNaN_WORD;
+ break;
+
+ case fmt_long:
+ value = FPQNaN_LONG;
+ break;
+
+ default:
+ err = -1;
+ break;
+ }
+ } else if (SizeFGR() == 64) {
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ value = (FGR[fpr] & 0xFFFFFFFF);
+ break;
+
+ case fmt_uninterpreted:
+ case fmt_double:
+ case fmt_long:
+ value = FGR[fpr];
+ break;
+
+ default :
+ err = -1;
+ break;
+ }
+ } else {
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ value = (FGR[fpr] & 0xFFFFFFFF);
+ break;
+
+ case fmt_uninterpreted:
+ case fmt_double:
+ case fmt_long:
+ if ((fpr & 1) == 0) { /* even registers only */
+#ifdef DEBUG
+ printf("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
+ fpr+1, pr_uword64( (uword64) FGR[fpr+1] ),
+ fpr, pr_uword64( (uword64) FGR[fpr] ));
+#endif
+ value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
+ } else {
+ SignalException(ReservedInstruction,0);
+ }
+ break;
+
+ default :
+ err = -1;
+ break;
+ }
+ }
+
+ if (err)
+ SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()");
+
+#ifdef DEBUG
+ printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
+#endif /* DEBUG */
+
+ return(value);
+}
+
+void
+store_fpr (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int fpr,
+ FP_formats fmt,
+ uword64 value)
+{
+ int err = 0;
+
+#ifdef DEBUG
+ printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d,\n",fpr,DOFMT(fmt),pr_uword64(value),pr_addr(cia),SizeFGR());
+#endif /* DEBUG */
+
+ if (SizeFGR() == 64) {
+ switch (fmt) {
+ case fmt_uninterpreted_32:
+ fmt = fmt_uninterpreted;
+ case fmt_single :
+ case fmt_word :
+ if (STATE_VERBOSE_P(SD))
+ sim_io_eprintf (SD, "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n",
+ pr_addr(cia));
+ FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ case fmt_uninterpreted_64:
+ fmt = fmt_uninterpreted;
+ case fmt_uninterpreted:
+ case fmt_double :
+ case fmt_long :
+ FGR[fpr] = value;
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ default :
+ FPR_STATE[fpr] = fmt_unknown;
+ err = -1;
+ break;
+ }
+ } else {
+ switch (fmt) {
+ case fmt_uninterpreted_32:
+ fmt = fmt_uninterpreted;
+ case fmt_single :
+ case fmt_word :
+ FGR[fpr] = (value & 0xFFFFFFFF);
+ FPR_STATE[fpr] = fmt;
+ break;
+
+ case fmt_uninterpreted_64:
+ fmt = fmt_uninterpreted;
+ case fmt_uninterpreted:
+ case fmt_double :
+ case fmt_long :
+ if ((fpr & 1) == 0) { /* even register number only */
+ FGR[fpr+1] = (value >> 32);
+ FGR[fpr] = (value & 0xFFFFFFFF);
+ FPR_STATE[fpr + 1] = fmt;
+ FPR_STATE[fpr] = fmt;
+ } else {
+ FPR_STATE[fpr] = fmt_unknown;
+ FPR_STATE[fpr + 1] = fmt_unknown;
+ SignalException(ReservedInstruction,0);
+ }
+ break;
+
+ default :
+ FPR_STATE[fpr] = fmt_unknown;
+ err = -1;
+ break;
+ }
+ }
+#if defined(WARN_RESULT)
+ else
+ UndefinedResult();
+#endif /* WARN_RESULT */
+
+ if (err)
+ SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()");
+
+#ifdef DEBUG
+ printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_uword64(FGR[fpr]),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return;
+}
+
+int
+NaN(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ int boolean = 0;
+ switch (fmt) {
+ case fmt_single:
+ case fmt_word:
+ {
+ sim_fpu wop;
+ sim_fpu_32to (&wop, op);
+ boolean = sim_fpu_is_nan (&wop);
+ break;
+ }
+ case fmt_double:
+ case fmt_long:
+ {
+ sim_fpu wop;
+ sim_fpu_64to (&wop, op);
+ boolean = sim_fpu_is_nan (&wop);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Infinity(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+#ifdef DEBUG
+ printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu_32to (&wop, op);
+ boolean = sim_fpu_is_infinity (&wop);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu_64to (&wop, op);
+ boolean = sim_fpu_is_infinity (&wop);
+ break;
+ }
+ default:
+ printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
+ break;
+ }
+
+#ifdef DEBUG
+ printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Less(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+ /* Argument checking already performed by the FPCOMPARE code */
+
+#ifdef DEBUG
+ printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ boolean = sim_fpu_is_lt (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ boolean = sim_fpu_is_lt (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+int
+Equal(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ int boolean = 0;
+
+ /* Argument checking already performed by the FPCOMPARE code */
+
+#ifdef DEBUG
+ printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ boolean = sim_fpu_is_eq (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ boolean = sim_fpu_is_eq (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(boolean);
+}
+
+uword64
+AbsoluteValue(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ unsigned32 ans;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_abs (&wop, &wop);
+ sim_fpu_to32 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ unsigned64 ans;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_abs (&wop, &wop);
+ sim_fpu_to64 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ return(result);
+}
+
+uword64
+Negate(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ unsigned32 ans;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_neg (&wop, &wop);
+ sim_fpu_to32 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ unsigned64 ans;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_neg (&wop, &wop);
+ sim_fpu_to64 (&ans, &wop);
+ result = ans;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ return(result);
+}
+
+uword64
+Add(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_add (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_add (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Sub(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_sub (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ }
+ break;
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_sub (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ }
+ break;
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Multiply(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_mul (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_mul (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+Divide(op1,op2,fmt)
+ uword64 op1;
+ uword64 op2;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ sim_fpu_div (&ans, &wop1, &wop2);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ sim_fpu_div (&ans, &wop1, &wop2);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64 UNUSED
+Recip(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_inv (&ans, &wop);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_inv (&ans, &wop);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+uword64
+SquareRoot(op,fmt)
+ uword64 op;
+ FP_formats fmt;
+{
+ uword64 result = 0;
+
+#ifdef DEBUG
+ printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt) {
+ case fmt_single:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned32 res;
+ sim_fpu_32to (&wop, op);
+ sim_fpu_sqrt (&ans, &wop);
+ sim_fpu_to32 (&res, &ans);
+ result = res;
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop;
+ sim_fpu ans;
+ unsigned64 res;
+ sim_fpu_64to (&wop, op);
+ sim_fpu_sqrt (&ans, &wop);
+ sim_fpu_to64 (&res, &ans);
+ result = res;
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+
+#if 0
+uword64
+Max (uword64 op1,
+ uword64 op2,
+ FP_formats fmt)
+{
+ int cmp;
+ unsigned64 result;
+
+#ifdef DEBUG
+ printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt)
+ {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ switch (cmp)
+ {
+ case SIM_FPU_IS_SNAN:
+ case SIM_FPU_IS_QNAN:
+ result = op1;
+ case SIM_FPU_IS_NINF:
+ case SIM_FPU_IS_NNUMBER:
+ case SIM_FPU_IS_NDENORM:
+ case SIM_FPU_IS_NZERO:
+ result = op2; /* op1 - op2 < 0 */
+ case SIM_FPU_IS_PINF:
+ case SIM_FPU_IS_PNUMBER:
+ case SIM_FPU_IS_PDENORM:
+ case SIM_FPU_IS_PZERO:
+ result = op1; /* op1 - op2 > 0 */
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+#endif
+
+#if 0
+uword64
+Min (uword64 op1,
+ uword64 op2,
+ FP_formats fmt)
+{
+ int cmp;
+ unsigned64 result;
+
+#ifdef DEBUG
+ printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
+#endif /* DEBUG */
+
+ /* The registers must specify FPRs valid for operands of type
+ "fmt". If they are not valid, the result is undefined. */
+
+ /* The format type should already have been checked: */
+ switch (fmt)
+ {
+ case fmt_single:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_32to (&wop1, op1);
+ sim_fpu_32to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ case fmt_double:
+ {
+ sim_fpu wop1;
+ sim_fpu wop2;
+ sim_fpu_64to (&wop1, op1);
+ sim_fpu_64to (&wop2, op2);
+ cmp = sim_fpu_cmp (&wop1, &wop2);
+ break;
+ }
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ switch (cmp)
+ {
+ case SIM_FPU_IS_SNAN:
+ case SIM_FPU_IS_QNAN:
+ result = op1;
+ case SIM_FPU_IS_NINF:
+ case SIM_FPU_IS_NNUMBER:
+ case SIM_FPU_IS_NDENORM:
+ case SIM_FPU_IS_NZERO:
+ result = op1; /* op1 - op2 < 0 */
+ case SIM_FPU_IS_PINF:
+ case SIM_FPU_IS_PNUMBER:
+ case SIM_FPU_IS_PDENORM:
+ case SIM_FPU_IS_PZERO:
+ result = op2; /* op1 - op2 > 0 */
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
+#endif /* DEBUG */
+
+ return(result);
+}
+#endif
+
+uword64
+convert (SIM_DESC sd,
+ sim_cpu *cpu,
+ address_word cia,
+ int rm,
+ uword64 op,
+ FP_formats from,
+ FP_formats to)
+{
+ sim_fpu wop;
+ sim_fpu_round round;
+ unsigned32 result32;
+ unsigned64 result64;
+
+#ifdef DEBUG
+#if 0 /* FIXME: doesn't compile */
+ printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
+#endif
+#endif /* DEBUG */
+
+ switch (rm)
+ {
+ case FP_RM_NEAREST:
+ /* Round result to nearest representable value. When two
+ representable values are equally near, round to the value
+ that has a least significant bit of zero (i.e. is even). */
+ round = sim_fpu_round_near;
+ break;
+ case FP_RM_TOZERO:
+ /* Round result to the value closest to, and not greater in
+ magnitude than, the result. */
+ round = sim_fpu_round_zero;
+ break;
+ case FP_RM_TOPINF:
+ /* Round result to the value closest to, and not less than,
+ the result. */
+ round = sim_fpu_round_up;
+ break;
+
+ case FP_RM_TOMINF:
+ /* Round result to the value closest to, and not greater than,
+ the result. */
+ round = sim_fpu_round_down;
+ break;
+ default:
+ round = 0;
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ /* Convert the input to sim_fpu internal format */
+ switch (from)
+ {
+ case fmt_double:
+ sim_fpu_64to (&wop, op);
+ break;
+ case fmt_single:
+ sim_fpu_32to (&wop, op);
+ break;
+ case fmt_word:
+ sim_fpu_i32to (&wop, op, round);
+ break;
+ case fmt_long:
+ sim_fpu_i64to (&wop, op, round);
+ break;
+ default:
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+ /* Convert sim_fpu format into the output */
+ /* The value WOP is converted to the destination format, rounding
+ using mode RM. When the destination is a fixed-point format, then
+ a source value of Infinity, NaN or one which would round to an
+ integer outside the fixed point range then an IEEE Invalid
+ Operation condition is raised. */
+ switch (to)
+ {
+ case fmt_single:
+ sim_fpu_round_32 (&wop, round, 0);
+ sim_fpu_to32 (&result32, &wop);
+ result64 = result32;
+ break;
+ case fmt_double:
+ sim_fpu_round_64 (&wop, round, 0);
+ sim_fpu_to64 (&result64, &wop);
+ break;
+ case fmt_word:
+ sim_fpu_to32i (&result32, &wop, round);
+ result64 = result32;
+ break;
+ case fmt_long:
+ sim_fpu_to64i (&result64, &wop, round);
+ break;
+ default:
+ result64 = 0;
+ fprintf (stderr, "Bad switch\n");
+ abort ();
+ }
+
+#ifdef DEBUG
+ printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to));
+#endif /* DEBUG */
+
+ return(result64);
+}
+
+