diff options
Diffstat (limited to 'sim/frv/interrupts.c')
-rw-r--r-- | sim/frv/interrupts.c | 1329 |
1 files changed, 1329 insertions, 0 deletions
diff --git a/sim/frv/interrupts.c b/sim/frv/interrupts.c new file mode 100644 index 0000000..1f5547e --- /dev/null +++ b/sim/frv/interrupts.c @@ -0,0 +1,1329 @@ +/* frv exception and interrupt support + Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc. + Contributed by Red Hat. + +This file is part of the GNU simulators. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License along +with this program; if not, write to the Free Software Foundation, Inc., +59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#define WANT_CPU frvbf +#define WANT_CPU_FRVBF + +#include "sim-main.h" +#include "bfd.h" + +/* FR-V Interrupt table. + Describes the interrupts supported by the FR-V. + This table *must* be maintained in order of interrupt priority as defined by + frv_interrupt_kind. */ +#define DEFERRED 1 +#define PRECISE 1 +#define ITABLE_ENTRY(name, class, deferral, precision, offset) \ + {FRV_##name, FRV_EC_##name, class, deferral, precision, offset} + +struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] = +{ + /* External interrupts */ + ITABLE_ENTRY(INTERRUPT_LEVEL_1, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21), + ITABLE_ENTRY(INTERRUPT_LEVEL_2, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22), + ITABLE_ENTRY(INTERRUPT_LEVEL_3, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23), + ITABLE_ENTRY(INTERRUPT_LEVEL_4, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24), + ITABLE_ENTRY(INTERRUPT_LEVEL_5, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25), + ITABLE_ENTRY(INTERRUPT_LEVEL_6, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26), + ITABLE_ENTRY(INTERRUPT_LEVEL_7, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27), + ITABLE_ENTRY(INTERRUPT_LEVEL_8, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28), + ITABLE_ENTRY(INTERRUPT_LEVEL_9, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29), + ITABLE_ENTRY(INTERRUPT_LEVEL_10, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a), + ITABLE_ENTRY(INTERRUPT_LEVEL_11, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b), + ITABLE_ENTRY(INTERRUPT_LEVEL_12, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c), + ITABLE_ENTRY(INTERRUPT_LEVEL_13, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d), + ITABLE_ENTRY(INTERRUPT_LEVEL_14, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e), + ITABLE_ENTRY(INTERRUPT_LEVEL_15, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f), + /* Software interrupt */ + ITABLE_ENTRY(TRAP_INSTRUCTION, FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80), + /* Program interrupts */ + ITABLE_ENTRY(COMMIT_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x19), + ITABLE_ENTRY(DIVISION_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x17), + ITABLE_ENTRY(DATA_STORE_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x14), + ITABLE_ENTRY(DATA_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x13), + ITABLE_ENTRY(DATA_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x12), + ITABLE_ENTRY(DATA_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x11), + ITABLE_ENTRY(MP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0e), + ITABLE_ENTRY(FP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0d), + ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x10), + ITABLE_ENTRY(REGISTER_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x08), + ITABLE_ENTRY(MP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0b), + ITABLE_ENTRY(FP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0a), + ITABLE_ENTRY(PRIVILEGED_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x06), + ITABLE_ENTRY(ILLEGAL_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x07), + ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x03), + ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x02), + ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x01), + ITABLE_ENTRY(COMPOUND_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x20), + /* Break interrupt */ + ITABLE_ENTRY(BREAK_EXCEPTION, FRV_BREAK_INTERRUPT, !DEFERRED, !PRECISE, 0xff), + /* Reset interrupt */ + ITABLE_ENTRY(RESET, FRV_RESET_INTERRUPT, !DEFERRED, !PRECISE, 0x00) +}; + +/* The current interrupt state. */ +struct frv_interrupt_state frv_interrupt_state; + +/* maintain the address of the start of the previous VLIW insn sequence. */ +IADDR previous_vliw_pc; + +/* Add a break interrupt to the interrupt queue. */ +struct frv_interrupt_queue_element * +frv_queue_break_interrupt (SIM_CPU *current_cpu) +{ + return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION); +} + +/* Add a software interrupt to the interrupt queue. */ +struct frv_interrupt_queue_element * +frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset) +{ + struct frv_interrupt_queue_element *new_element + = frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION); + + struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind]; + interrupt->handler_offset = offset; + + return new_element; +} + +/* Add a program interrupt to the interrupt queue. */ +struct frv_interrupt_queue_element * +frv_queue_program_interrupt ( + SIM_CPU *current_cpu, enum frv_interrupt_kind kind +) +{ + return frv_queue_interrupt (current_cpu, kind); +} + +/* Add an external interrupt to the interrupt queue. */ +struct frv_interrupt_queue_element * +frv_queue_external_interrupt ( + SIM_CPU *current_cpu, enum frv_interrupt_kind kind +) +{ + if (! GET_H_PSR_ET () + || (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ())) + return NULL; /* Leave it for later. */ + + return frv_queue_interrupt (current_cpu, kind); +} + +/* Add any interrupt to the interrupt queue. It will be added in reverse + priority order. This makes it easy to find the highest priority interrupt + at the end of the queue and to remove it after processing. */ +struct frv_interrupt_queue_element * +frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind) +{ + int i; + int j; + int limit = frv_interrupt_state.queue_index; + struct frv_interrupt_queue_element *new_element; + enum frv_interrupt_class iclass; + + if (limit >= FRV_INTERRUPT_QUEUE_SIZE) + abort (); /* TODO: Make the queue dynamic */ + + /* Find the right place in the queue. */ + for (i = 0; i < limit; ++i) + { + if (frv_interrupt_state.queue[i].kind >= kind) + break; + } + + /* Don't queue two external interrupts of the same priority. */ + iclass = frv_interrupt_table[kind].iclass; + if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT) + { + if (frv_interrupt_state.queue[i].kind == kind) + return & frv_interrupt_state.queue[i]; + } + + /* Make room for the new interrupt in this spot. */ + for (j = limit - 1; j >= i; --j) + frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j]; + + /* Add the new interrupt. */ + frv_interrupt_state.queue_index++; + new_element = & frv_interrupt_state.queue[i]; + new_element->kind = kind; + new_element->vpc = CPU_PC_GET (current_cpu); + new_element->u.data_written.length = 0; + frv_set_interrupt_queue_slot (current_cpu, new_element); + + return new_element; +} + +struct frv_interrupt_queue_element * +frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec) +{ + struct frv_interrupt_queue_element *new_element = + frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION); + + new_element->u.rec = rec; + + return new_element; +} + +struct frv_interrupt_queue_element * +frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr) +{ + struct frv_interrupt_queue_element *new_element; + USI isr = GET_ISR (); + + /* Make sure that this exception is not masked. */ + if (GET_ISR_EMAM (isr)) + return NULL; + + /* Queue the interrupt. */ + new_element = frv_queue_program_interrupt (current_cpu, + FRV_MEM_ADDRESS_NOT_ALIGNED); + new_element->eaddress = addr; + new_element->u.data_written = frv_interrupt_state.data_written; + frv_interrupt_state.data_written.length = 0; + + return new_element; +} + +struct frv_interrupt_queue_element * +frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr) +{ + struct frv_interrupt_queue_element *new_element; + new_element = frv_queue_program_interrupt (current_cpu, + FRV_DATA_ACCESS_ERROR); + new_element->eaddress = addr; + return new_element; +} + +struct frv_interrupt_queue_element * +frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu) +{ + return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION); +} + +struct frv_interrupt_queue_element * +frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu) +{ + return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR); +} + +struct frv_interrupt_queue_element * +frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu) +{ + return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION); +} + +struct frv_interrupt_queue_element * +frv_queue_illegal_instruction_interrupt ( + SIM_CPU *current_cpu, const CGEN_INSN *insn +) +{ + /* The fr400 does not have the fp_exception. */ + SIM_DESC sd = CPU_STATE (current_cpu); + if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400) + { + if (frv_is_float_insn (insn) || frv_is_media_insn (insn)) + { + struct frv_fp_exception_info fp_info = { + FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR + }; + return frv_queue_fp_exception_interrupt (current_cpu, & fp_info); + } + } + + return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); +} + +struct frv_interrupt_queue_element * +frv_queue_non_implemented_instruction_interrupt ( + SIM_CPU *current_cpu, const CGEN_INSN *insn +) +{ + /* The fr400 does not have the fp_exception, nor does it generate mp_exception + for this case. */ + SIM_DESC sd = CPU_STATE (current_cpu); + if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400) + { + if (frv_is_float_insn (insn)) + { + struct frv_fp_exception_info fp_info = { + FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP + }; + return frv_queue_fp_exception_interrupt (current_cpu, & fp_info); + } + + if (frv_is_media_insn (insn)) + { + frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP, + 0); + return NULL; /* no interrupt queued at this time. */ + } + + } + + return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); +} + +/* Queue the given fp_exception interrupt. Also update fp_info by removing + masked interrupts and updating the 'slot' flield. */ +struct frv_interrupt_queue_element * +frv_queue_fp_exception_interrupt ( + SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info +) +{ + SI fsr0 = GET_FSR (0); + int tem = GET_FSR_TEM (fsr0); + int aexc = GET_FSR_AEXC (fsr0); + struct frv_interrupt_queue_element *new_element = NULL; + + /* Update AEXC with the interrupts that are masked. */ + aexc |= fp_info->fsr_mask & ~tem; + SET_FSR_AEXC (fsr0, aexc); + SET_FSR (0, fsr0); + + /* update fsr_mask with the exceptions that are enabled. */ + fp_info->fsr_mask &= tem; + + /* If there is an unmasked interrupt then queue it, unless + this was a non-excepting insn, in which case simply set the NE + status registers. */ + if (frv_interrupt_state.ne_index != NE_NOFLAG + && fp_info->fsr_mask != FSR_NO_EXCEPTION) + { + SET_NE_FLAG (frv_interrupt_state.f_ne_flags, + frv_interrupt_state.ne_index); + /* TODO -- Set NESR for chips which support it. */ + new_element = NULL; + } + else if (fp_info->fsr_mask != FSR_NO_EXCEPTION + || fp_info->ftt == FTT_UNIMPLEMENTED_FPOP + || fp_info->ftt == FTT_SEQUENCE_ERROR + || fp_info->ftt == FTT_INVALID_FR) + { + new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION); + new_element->u.fp_info = *fp_info; + } + + return new_element; +} + +struct frv_interrupt_queue_element * +frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt) +{ + struct frv_interrupt_queue_element *new_element = + frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION); + + new_element->u.dtt = dtt; + + return new_element; +} + +/* Check for interrupts caused by illegal insn access. These conditions are + checked in the order specified by the fr400 and fr500 LSI specs. */ +void +frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc) +{ + + const CGEN_INSN *insn = sc->argbuf.idesc->idata; + SIM_DESC sd = CPU_STATE (current_cpu); + FRV_VLIW *vliw = CPU_VLIW (current_cpu); + + /* Check for vliw constraints. */ + if (vliw->constraint_violation) + frv_queue_illegal_instruction_interrupt (current_cpu, insn); + /* Check for non-excepting insns. */ + else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING) + && ! GET_H_PSR_NEM ()) + frv_queue_non_implemented_instruction_interrupt (current_cpu, insn); + /* Check for conditional insns. */ + else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL) + && ! GET_H_PSR_CM ()) + frv_queue_non_implemented_instruction_interrupt (current_cpu, insn); + /* Make sure floating point support is enabled. */ + else if (! GET_H_PSR_EF ()) + { + /* Generate fp_disabled if it is a floating point insn or if PSR.EM is + off and the insns accesses a fp register. */ + if (frv_is_float_insn (insn) + || (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS) + && ! GET_H_PSR_EM ())) + frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED); + } + /* Make sure media support is enabled. */ + else if (! GET_H_PSR_EM ()) + { + /* Generate mp_disabled if it is a media insn. */ + if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP) + frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED); + } + /* Check for privileged insns. */ + else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) && + ! GET_H_PSR_S ()) + frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION); +#if 0 /* disable for now until we find out how FSR0.QNE gets reset. */ + else + { + /* Enter the halt state if FSR0.QNE is set and we are executing a + floating point insn, a media insn or an insn which access a FR + register. */ + SI fsr0 = GET_FSR (0); + if (GET_FSR_QNE (fsr0) + && (frv_is_float_insn (insn) || frv_is_media_insn (insn) + || CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS))) + { + sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped, + SIM_SIGINT); + } + } +#endif +} + +/* Record the current VLIW slot in the given interrupt queue element. */ +void +frv_set_interrupt_queue_slot ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + FRV_VLIW *vliw = CPU_VLIW (current_cpu); + int slot = vliw->next_slot - 1; + item->slot = (*vliw->current_vliw)[slot]; +} + +/* Handle an individual interrupt. */ +static void +handle_interrupt (SIM_CPU *current_cpu, IADDR pc) +{ + struct frv_interrupt *interrupt; + int writeback_done = 0; + while (1) + { + /* Interrupts are queued in priority order with the highest priority + last. */ + int index = frv_interrupt_state.queue_index - 1; + struct frv_interrupt_queue_element *item + = & frv_interrupt_state.queue[index]; + interrupt = & frv_interrupt_table[item->kind]; + + switch (interrupt->iclass) + { + case FRV_EXTERNAL_INTERRUPT: + /* Perform writeback first. This may cause a higher priority + interrupt. */ + if (! writeback_done) + { + frvbf_perform_writeback (current_cpu); + writeback_done = 1; + continue; + } + frv_external_interrupt (current_cpu, item, pc); + return; + case FRV_SOFTWARE_INTERRUPT: + frv_interrupt_state.queue_index = index; + frv_software_interrupt (current_cpu, item, pc); + return; + case FRV_PROGRAM_INTERRUPT: + /* If the program interrupt is not strict (imprecise), then perform + writeback first. This may, in turn, cause a higher priority + interrupt. */ + if (! interrupt->precise && ! writeback_done) + { + frv_interrupt_state.imprecise_interrupt = item; + frvbf_perform_writeback (current_cpu); + writeback_done = 1; + continue; + } + frv_interrupt_state.queue_index = index; + frv_program_interrupt (current_cpu, item, pc); + return; + case FRV_BREAK_INTERRUPT: + frv_interrupt_state.queue_index = index; + frv_break_interrupt (current_cpu, interrupt, pc); + return; + case FRV_RESET_INTERRUPT: + break; + default: + break; + } + frv_interrupt_state.queue_index = index; + break; /* out of loop. */ + } + + /* We should never get here. */ + { + SIM_DESC sd = CPU_STATE (current_cpu); + sim_engine_abort (sd, current_cpu, pc, + "interrupt class not supported %d\n", + interrupt->iclass); + } +} + +/* Check to see the if the RSTR.HR or RSTR.SR bits have been set. If so, handle + the appropriate reset interrupt. */ +static int +check_reset (SIM_CPU *current_cpu, IADDR pc) +{ + int hsr0; + int hr; + int sr; + SI rstr; + FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); + IADDR address = RSTR_ADDRESS; + + /* We don't want this to show up in the cache statistics, so read the + cache passively. */ + if (! frv_cache_read_passive_SI (cache, address, & rstr)) + rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address); + + hr = GET_RSTR_HR (rstr); + sr = GET_RSTR_SR (rstr); + + if (! hr && ! sr) + return 0; /* no reset. */ + + /* Reinitialize the machine state. */ + if (hr) + frv_hardware_reset (current_cpu); + else + frv_software_reset (current_cpu); + + /* Branch to the reset address. */ + hsr0 = GET_HSR0 (); + if (GET_HSR0_SA (hsr0)) + SET_H_PC (0xff000000); + else + SET_H_PC (0); + + return 1; /* reset */ +} + +/* Process any pending interrupt(s) after a group of parallel insns. */ +void +frv_process_interrupts (SIM_CPU *current_cpu) +{ + SI NE_flags[2]; + /* Need to save the pc here because writeback may change it (due to a + branch). */ + IADDR pc = CPU_PC_GET (current_cpu); + + /* Check for a reset before anything else. */ + if (check_reset (current_cpu, pc)) + return; + + /* First queue the writes for any accumulated NE flags. */ + if (frv_interrupt_state.f_ne_flags[0] != 0 + || frv_interrupt_state.f_ne_flags[1] != 0) + { + GET_NE_FLAGS (NE_flags, H_SPR_FNER0); + NE_flags[0] |= frv_interrupt_state.f_ne_flags[0]; + NE_flags[1] |= frv_interrupt_state.f_ne_flags[1]; + SET_NE_FLAGS (H_SPR_FNER0, NE_flags); + } + + /* If there is no interrupt pending, then perform parallel writeback. This + may cause an interrupt. */ + if (frv_interrupt_state.queue_index <= 0) + frvbf_perform_writeback (current_cpu); + + /* If there is an interrupt pending, then process it. */ + if (frv_interrupt_state.queue_index > 0) + handle_interrupt (current_cpu, pc); +} + +/* Find the next available ESR and return its index */ +static int +esr_for_data_access_exception ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + if (item->slot == UNIT_I0) + return 8; /* Use ESR8, EPCR8, EAR8, EDR8. */ + + return 9; /* Use ESR9, EPCR9, EAR9. */ +} + +/* Set the next available EDR register with the data which was to be stored + and return the index of the register. */ +static int +set_edr_register ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index +) +{ + /* EDR0, EDR4 and EDR8 are available as blocks of 4. + SI data uses EDR3, EDR7 and EDR11 + DI data uses EDR2, EDR6 and EDR10 + XI data uses EDR0, EDR4 and EDR8. */ + int i; + edr_index += 4 - item->u.data_written.length; + for (i = 0; i < item->u.data_written.length; ++i) + SET_EDR (edr_index + i, item->u.data_written.words[i]); + + return edr_index; +}; + +/* Clear ESFR0, EPCRx, ESRx, EARx and EDRx. */ +static void +clear_exception_status_registers (SIM_CPU *current_cpu) +{ + int i; + /* It is only necessary to clear the flag bits indicating which registers + are valid. */ + SET_ESFR (0, 0); + SET_ESFR (1, 0); + + for (i = 0; i <= 2; ++i) + { + SI esr = GET_ESR (i); + CLEAR_ESR_VALID (esr); + SET_ESR (i, esr); + } + for (i = 8; i <= 13; ++i) + { + SI esr = GET_ESR (i); + CLEAR_ESR_VALID (esr); + SET_ESR (i, esr); + } +} + +/* Record state for media exception. */ +void +frv_set_mp_exception_registers ( + SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie +) +{ + /* Record the interrupt factor in MSR0. */ + SI msr0 = GET_MSR (0); + if (GET_MSR_MTT (msr0) == MTT_NONE) + SET_MSR_MTT (msr0, mtt); + + /* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF. */ + if (mtt == MTT_OVERFLOW) + { + FRV_VLIW *vliw = CPU_VLIW (current_cpu); + int slot = vliw->next_slot - 1; + + /* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE, + otherwise set MSR0.OVF and MSR0.SIE. */ + if ((*vliw->current_vliw)[slot] == UNIT_FM1) + { + SI msr = GET_MSR (1); + OR_MSR_SIE (msr, sie); + SET_MSR_OVF (msr); + SET_MSR (1, msr); + } + else + { + OR_MSR_SIE (msr0, sie); + SET_MSR_OVF (msr0); + } + + /* Regardless of the slot, set MSR0.AOVF. */ + SET_MSR_AOVF (msr0); + } + + SET_MSR (0, msr0); +} + +/* Determine the correct FQ register to use for the given exception. + Return -1 if a register is not available. */ +static int +fq_for_exception ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + SI fq; + struct frv_fp_exception_info *fp_info = & item->u.fp_info; + + /* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1. */ + if (fp_info->ftt == FTT_IEEE_754_EXCEPTION + && (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT))) + { + fq = GET_FQ (0); + if (! GET_FQ_VALID (fq)) + return 0; /* FQ0 is available. */ + fq = GET_FQ (1); + if (! GET_FQ_VALID (fq)) + return 1; /* FQ1 is available. */ + + /* No FQ register is available */ + { + SIM_DESC sd = CPU_STATE (current_cpu); + IADDR pc = CPU_PC_GET (current_cpu); + sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n"); + } + return -1; + } + /* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3 + otherwise. */ + if (item->slot == UNIT_FM0 || item->slot == UNIT_I0) + return 2; + + return 3; +} + +/* Set FSR0, FQ0-FQ9, depending on the interrupt. */ +static void +set_fp_exception_registers ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + int fq_index; + SI fq; + SI insn; + SI fsr0; + IADDR pc; + struct frv_fp_exception_info *fp_info; + + /* Select an FQ and update it with the exception information. */ + fq_index = fq_for_exception (current_cpu, item); + if (fq_index == -1) + return; + + fp_info = & item->u.fp_info; + fq = GET_FQ (fq_index); + SET_FQ_MIV (fq, MIV_FLOAT); + SET_FQ_SIE (fq, SIE_NIL); + SET_FQ_FTT (fq, fp_info->ftt); + SET_FQ_CEXC (fq, fp_info->fsr_mask); + SET_FQ_VALID (fq); + SET_FQ (fq_index, fq); + + /* Write the failing insn into FQx.OPC. */ + pc = item->vpc; + insn = GETMEMSI (current_cpu, pc, pc); + SET_FQ_OPC (fq_index, insn); + + /* Update the fsr. */ + fsr0 = GET_FSR (0); + SET_FSR_QNE (fsr0); /* FQ not empty */ + SET_FSR_FTT (fsr0, fp_info->ftt); + SET_FSR (0, fsr0); +} + +/* Record the state of a division exception in the ISR. */ +static void +set_isr_exception_fields ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + USI isr = GET_ISR (); + int dtt = GET_ISR_DTT (isr); + dtt |= item->u.dtt; + SET_ISR_DTT (isr, dtt); + SET_ISR (isr); +} + +/* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program + interrupt. */ +static void +set_exception_status_registers ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; + int slot = (item->vpc - previous_vliw_pc) / 4; + int reg_index = -1; + int set_ear = 0; + int set_edr = 0; + int set_daec = 0; + int set_epcr = 0; + SI esr = 0; + SIM_DESC sd = CPU_STATE (current_cpu); + + /* If the interrupt is strict (precise) or the interrupt is on the insns + in the I0 pipe, then set the 0 registers. */ + if (interrupt->precise) + { + reg_index = 0; + if (interrupt->kind == FRV_REGISTER_EXCEPTION) + SET_ESR_REC (esr, item->u.rec); + else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION) + SET_ESR_IAEC (esr, item->u.iaec); + set_epcr = 1; + } + else + { + switch (interrupt->kind) + { + case FRV_DIVISION_EXCEPTION: + set_isr_exception_fields (current_cpu, item); + /* fall thru to set reg_index. */ + case FRV_COMMIT_EXCEPTION: + if (item->slot == UNIT_I0) + reg_index = 0; + else if (item->slot == UNIT_I1) + reg_index = 1; + set_epcr = 1; + break; + case FRV_DATA_STORE_ERROR: + reg_index = 14; /* Use ESR15, EPCR15. */ + break; + case FRV_DATA_ACCESS_ERROR: + reg_index = 15; /* Use ESR15, EPCR15. */ + if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400) + set_ear = 1; + break; + case FRV_DATA_ACCESS_EXCEPTION: + set_daec = 1; + /* fall through */ + case FRV_DATA_ACCESS_MMU_MISS: + case FRV_MEM_ADDRESS_NOT_ALIGNED: + /* Get the appropriate ESR, EPCR, EAR and EDR. + EAR will be set. EDR will not be set if this is a store insn. */ + set_ear = 1; + if (item->u.data_written.length != 0) + set_edr = 1; + reg_index = esr_for_data_access_exception (current_cpu, item); + set_epcr = 1; + break; + case FRV_MP_EXCEPTION: + break; /* MSR0-1, FQ0-9 are already set. */ + case FRV_FP_EXCEPTION: + set_fp_exception_registers (current_cpu, item); + break; + default: + { + SIM_DESC sd = CPU_STATE (current_cpu); + IADDR pc = CPU_PC_GET (current_cpu); + sim_engine_abort (sd, current_cpu, pc, + "invalid non-strict program interrupt kind: %d\n", + interrupt->kind); + break; + } + } + } /* non-strict (imprecise) interrupt */ + + /* Now fill in the selected exception status registers. */ + if (reg_index != -1) + { + /* Now set the exception status registers. */ + SET_ESFR_FLAG (reg_index); + SET_ESR_EC (esr, interrupt->ec); + + if (set_epcr) + { + if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) + SET_EPCR (reg_index, previous_vliw_pc); + else + SET_EPCR (reg_index, item->vpc); + } + + if (set_ear) + { + SET_EAR (reg_index, item->eaddress); + SET_ESR_EAV (esr); + } + else + CLEAR_ESR_EAV (esr); + + if (set_edr) + { + int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */); + SET_ESR_EDN (esr, edn); + SET_ESR_EDV (esr); + } + else + CLEAR_ESR_EDV (esr); + + if (set_daec) + SET_ESR_DAEC (esr, item->u.daec); + + SET_ESR_VALID (esr); + SET_ESR (reg_index, esr); + } +} + +/* Check for compound interrupts. + Returns NULL if no interrupt is to be processed. */ +static struct frv_interrupt * +check_for_compound_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item +) +{ + struct frv_interrupt *interrupt; + + /* Set the exception status registers for the original interrupt. */ + set_exception_status_registers (current_cpu, item); + interrupt = & frv_interrupt_table[item->kind]; + + if (! interrupt->precise) + { + IADDR vpc = 0; + int mask = 0; + + vpc = item->vpc; + mask = (1 << item->kind); + + /* Look for more queued program interrupts which are non-deferred + (pending inhibit), imprecise (non-strict) different than an interrupt + already found and caused by a different insn. A bit mask is used + to keep track of interrupts which have already been detected. */ + while (item != frv_interrupt_state.queue) + { + enum frv_interrupt_kind kind; + struct frv_interrupt *next_interrupt; + --item; + kind = item->kind; + next_interrupt = & frv_interrupt_table[kind]; + + if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT) + break; /* no program interrupts left. */ + + if (item->vpc == vpc) + continue; /* caused by the same insn. */ + + vpc = item->vpc; + if (! next_interrupt->precise && ! next_interrupt->deferred) + { + if (! (mask & (1 << kind))) + { + /* Set the exception status registers for the additional + interrupt. */ + set_exception_status_registers (current_cpu, item); + mask |= (1 << kind); + interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION]; + } + } + } + } + + /* Return with either the original interrupt, a compound_exception, + or no exception. */ + return interrupt; +} + +/* Handle a program interrupt. */ +void +frv_program_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc +) +{ + struct frv_interrupt *interrupt; + + clear_exception_status_registers (current_cpu); + /* If two or more non-deferred imprecise (non-strict) interrupts occur + on two or more insns, then generate a compound_exception. */ + interrupt = check_for_compound_interrupt (current_cpu, item); + if (interrupt != NULL) + { + frv_program_or_software_interrupt (current_cpu, interrupt, pc); + frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT, + FRV_PROGRAM_INTERRUPT); + } +} + +/* Handle a software interrupt. */ +void +frv_software_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc +) +{ + struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; + frv_program_or_software_interrupt (current_cpu, interrupt, pc); +} + +/* Handle a program interrupt or a software interrupt in non-operating mode. */ +void +frv_non_operating_interrupt ( + SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc +) +{ + SIM_DESC sd = CPU_STATE (current_cpu); + switch (kind) + { + case FRV_INTERRUPT_LEVEL_1: + case FRV_INTERRUPT_LEVEL_2: + case FRV_INTERRUPT_LEVEL_3: + case FRV_INTERRUPT_LEVEL_4: + case FRV_INTERRUPT_LEVEL_5: + case FRV_INTERRUPT_LEVEL_6: + case FRV_INTERRUPT_LEVEL_7: + case FRV_INTERRUPT_LEVEL_8: + case FRV_INTERRUPT_LEVEL_9: + case FRV_INTERRUPT_LEVEL_10: + case FRV_INTERRUPT_LEVEL_11: + case FRV_INTERRUPT_LEVEL_12: + case FRV_INTERRUPT_LEVEL_13: + case FRV_INTERRUPT_LEVEL_14: + case FRV_INTERRUPT_LEVEL_15: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: external %d\n", kind + 1); + break; + case FRV_TRAP_INSTRUCTION: + break; /* handle as in operating mode. */ + case FRV_COMMIT_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: commit_exception\n"); + break; + case FRV_DIVISION_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: division_exception\n"); + break; + case FRV_DATA_STORE_ERROR: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: data_store_error\n"); + break; + case FRV_DATA_ACCESS_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: data_access_exception\n"); + break; + case FRV_DATA_ACCESS_MMU_MISS: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: data_access_mmu_miss\n"); + break; + case FRV_DATA_ACCESS_ERROR: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: data_access_error\n"); + break; + case FRV_MP_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: mp_exception\n"); + break; + case FRV_FP_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: fp_exception\n"); + break; + case FRV_MEM_ADDRESS_NOT_ALIGNED: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: mem_address_not_aligned\n"); + break; + case FRV_REGISTER_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: register_exception\n"); + break; + case FRV_MP_DISABLED: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: mp_disabled\n"); + break; + case FRV_FP_DISABLED: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: fp_disabled\n"); + break; + case FRV_PRIVILEGED_INSTRUCTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: privileged_instruction\n"); + break; + case FRV_ILLEGAL_INSTRUCTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: illegal_instruction\n"); + break; + case FRV_INSTRUCTION_ACCESS_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: instruction_access_exception\n"); + break; + case FRV_INSTRUCTION_ACCESS_MMU_MISS: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: instruction_access_mmu_miss\n"); + break; + case FRV_INSTRUCTION_ACCESS_ERROR: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: insn_access_error\n"); + break; + case FRV_COMPOUND_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: compound_exception\n"); + break; + case FRV_BREAK_EXCEPTION: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: break_exception\n"); + break; + case FRV_RESET: + sim_engine_abort (sd, current_cpu, pc, + "interrupt: reset\n"); + break; + default: + sim_engine_abort (sd, current_cpu, pc, + "unhandled interrupt kind: %d\n", kind); + break; + } +} + +/* Handle a break interrupt. */ +void +frv_break_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc +) +{ + IADDR new_pc; + + /* BPCSR=PC + BPSR.BS=PSR.S + BPSR.BET=PSR.ET + PSR.S=1 + PSR.ET=0 + TBR.TT=0xff + PC=TBR + */ + /* Must set PSR.S first to allow access to supervisor-only spr registers. */ + SET_H_BPSR_BS (GET_H_PSR_S ()); + SET_H_BPSR_BET (GET_H_PSR_ET ()); + SET_H_PSR_S (1); + SET_H_PSR_ET (0); + /* Must set PSR.S first to allow access to supervisor-only spr registers. */ + SET_H_SPR (H_SPR_BPCSR, current_pc); + + /* Set the new PC in the TBR. */ + SET_H_TBR_TT (interrupt->handler_offset); + new_pc = GET_H_SPR (H_SPR_TBR); + SET_H_PC (new_pc); + + CPU_DEBUG_STATE (current_cpu) = 1; +} + +/* Handle a program interrupt or a software interrupt. */ +void +frv_program_or_software_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc +) +{ + USI new_pc; + int original_psr_et; + + /* PCSR=PC + PSR.PS=PSR.S + PSR.ET=0 + PSR.S=1 + if PSR.ESR==1 + SR0 through SR3=GR4 through GR7 + TBR.TT=interrupt handler offset + PC=TBR + */ + original_psr_et = GET_H_PSR_ET (); + + SET_H_PSR_PS (GET_H_PSR_S ()); + SET_H_PSR_ET (0); + SET_H_PSR_S (1); + + /* Must set PSR.S first to allow access to supervisor-only spr registers. */ + /* The PCSR depends on the precision of the interrupt. */ + if (interrupt->precise) + SET_H_SPR (H_SPR_PCSR, previous_vliw_pc); + else + SET_H_SPR (H_SPR_PCSR, current_pc); + + /* Set the new PC in the TBR. */ + SET_H_TBR_TT (interrupt->handler_offset); + new_pc = GET_H_SPR (H_SPR_TBR); + SET_H_PC (new_pc); + + /* If PSR.ET was not originally set, then enter the stopped state. */ + if (! original_psr_et) + { + SIM_DESC sd = CPU_STATE (current_cpu); + frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc); + sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT); + } +} + +/* Handle a program interrupt or a software interrupt. */ +void +frv_external_interrupt ( + SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc +) +{ + USI new_pc; + struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind]; + + /* Don't process the interrupt if PSR.ET is not set or if it is masked. + Interrupt 15 is processed even if it appears to be masked. */ + if (! GET_H_PSR_ET () + || (interrupt->kind != FRV_INTERRUPT_LEVEL_15 + && interrupt->kind < GET_H_PSR_PIL ())) + return; /* Leave it for later. */ + + /* Remove the interrupt from the queue. */ + --frv_interrupt_state.queue_index; + + /* PCSR=PC + PSR.PS=PSR.S + PSR.ET=0 + PSR.S=1 + if PSR.ESR==1 + SR0 through SR3=GR4 through GR7 + TBR.TT=interrupt handler offset + PC=TBR + */ + SET_H_PSR_PS (GET_H_PSR_S ()); + SET_H_PSR_ET (0); + SET_H_PSR_S (1); + /* Must set PSR.S first to allow access to supervisor-only spr registers. */ + SET_H_SPR (H_SPR_PCSR, GET_H_PC ()); + + /* Set the new PC in the TBR. */ + SET_H_TBR_TT (interrupt->handler_offset); + new_pc = GET_H_SPR (H_SPR_TBR); + SET_H_PC (new_pc); +} + +/* Clear interrupts which fall within the range of classes given. */ +void +frv_clear_interrupt_classes ( + enum frv_interrupt_class low_class, enum frv_interrupt_class high_class +) +{ + int i; + int j; + int limit = frv_interrupt_state.queue_index; + + /* Find the lowest priority interrupt to be removed. */ + for (i = 0; i < limit; ++i) + { + enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind; + struct frv_interrupt* interrupt = & frv_interrupt_table[kind]; + if (interrupt->iclass >= low_class) + break; + } + + /* Find the highest priority interrupt to be removed. */ + for (j = limit - 1; j >= i; --j) + { + enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind; + struct frv_interrupt* interrupt = & frv_interrupt_table[kind]; + if (interrupt->iclass <= high_class) + break; + } + + /* Shuffle the remaining high priority interrupts down into the empty space + left by the deleted interrupts. */ + if (j >= i) + { + for (++j; j < limit; ++j) + frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j]; + frv_interrupt_state.queue_index -= (j - i); + } +} + +/* Save data written to memory into the interrupt state so that it can be + copied to the appropriate EDR register, if necessary, in the event of an + interrupt. */ +void +frv_save_data_written_for_interrupts ( + SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item +) +{ + /* Record the slot containing the insn doing the write in the + interrupt state. */ + frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item); + + /* Now record any data written to memory in the interrupt state. */ + switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item)) + { + case CGEN_BI_WRITE: + case CGEN_QI_WRITE: + case CGEN_SI_WRITE: + case CGEN_SF_WRITE: + case CGEN_PC_WRITE: + case CGEN_FN_HI_WRITE: + case CGEN_FN_SI_WRITE: + case CGEN_FN_SF_WRITE: + case CGEN_FN_DI_WRITE: + case CGEN_FN_DF_WRITE: + case CGEN_FN_XI_WRITE: + case CGEN_FN_PC_WRITE: + break; /* Ignore writes to registers. */ + case CGEN_MEM_QI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_qi_write.value; + break; + case CGEN_MEM_HI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_hi_write.value; + break; + case CGEN_MEM_SI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_si_write.value; + break; + case CGEN_MEM_DI_WRITE: + frv_interrupt_state.data_written.length = 2; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_di_write.value >> 32; + frv_interrupt_state.data_written.words[1] + = item->kinds.mem_di_write.value; + break; + case CGEN_MEM_DF_WRITE: + frv_interrupt_state.data_written.length = 2; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_df_write.value >> 32; + frv_interrupt_state.data_written.words[1] + = item->kinds.mem_df_write.value; + break; + case CGEN_MEM_XI_WRITE: + frv_interrupt_state.data_written.length = 4; + frv_interrupt_state.data_written.words[0] + = item->kinds.mem_xi_write.value[0]; + frv_interrupt_state.data_written.words[1] + = item->kinds.mem_xi_write.value[1]; + frv_interrupt_state.data_written.words[2] + = item->kinds.mem_xi_write.value[2]; + frv_interrupt_state.data_written.words[3] + = item->kinds.mem_xi_write.value[3]; + break; + case CGEN_FN_MEM_QI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_qi_write.value; + break; + case CGEN_FN_MEM_HI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_hi_write.value; + break; + case CGEN_FN_MEM_SI_WRITE: + frv_interrupt_state.data_written.length = 1; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_si_write.value; + break; + case CGEN_FN_MEM_DI_WRITE: + frv_interrupt_state.data_written.length = 2; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_di_write.value >> 32; + frv_interrupt_state.data_written.words[1] + = item->kinds.fn_mem_di_write.value; + break; + case CGEN_FN_MEM_DF_WRITE: + frv_interrupt_state.data_written.length = 2; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_df_write.value >> 32; + frv_interrupt_state.data_written.words[1] + = item->kinds.fn_mem_df_write.value; + break; + case CGEN_FN_MEM_XI_WRITE: + frv_interrupt_state.data_written.length = 4; + frv_interrupt_state.data_written.words[0] + = item->kinds.fn_mem_xi_write.value[0]; + frv_interrupt_state.data_written.words[1] + = item->kinds.fn_mem_xi_write.value[1]; + frv_interrupt_state.data_written.words[2] + = item->kinds.fn_mem_xi_write.value[2]; + frv_interrupt_state.data_written.words[3] + = item->kinds.fn_mem_xi_write.value[3]; + break; + default: + { + SIM_DESC sd = CPU_STATE (current_cpu); + IADDR pc = CPU_PC_GET (current_cpu); + sim_engine_abort (sd, current_cpu, pc, + "unknown write kind during save for interrupt\n"); + } + break; + } +} |