aboutsummaryrefslogtreecommitdiff
path: root/sim/common/sim-fpu.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/common/sim-fpu.c')
-rw-r--r--sim/common/sim-fpu.c2578
1 files changed, 2578 insertions, 0 deletions
diff --git a/sim/common/sim-fpu.c b/sim/common/sim-fpu.c
new file mode 100644
index 0000000..abf746a
--- /dev/null
+++ b/sim/common/sim-fpu.c
@@ -0,0 +1,2578 @@
+/* This is a software floating point library which can be used instead
+ of the floating point routines in libgcc1.c for targets without
+ hardware floating point. */
+
+/* Copyright (C) 1994,1997-1998 Free Software Foundation, Inc.
+
+This file is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file with other programs, and to distribute
+those programs without any restriction coming from the use of this
+file. (The General Public License restrictions do apply in other
+respects; for example, they cover modification of the file, and
+distribution when not linked into another program.)
+
+This file is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* As a special exception, if you link this library with other files,
+ some of which are compiled with GCC, to produce an executable,
+ this library does not by itself cause the resulting executable
+ to be covered by the GNU General Public License.
+ This exception does not however invalidate any other reasons why
+ the executable file might be covered by the GNU General Public License. */
+
+/* This implements IEEE 754 format arithmetic, but does not provide a
+ mechanism for setting the rounding mode, or for generating or handling
+ exceptions.
+
+ The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
+ Wilson, all of Cygnus Support. */
+
+
+#ifndef SIM_FPU_C
+#define SIM_FPU_C
+
+#include "sim-basics.h"
+#include "sim-fpu.h"
+
+#include "sim-io.h"
+#include "sim-assert.h"
+
+
+/* Debugging support. */
+
+static void
+print_bits (unsigned64 x,
+ int msbit,
+ sim_fpu_print_func print,
+ void *arg)
+{
+ unsigned64 bit = LSBIT64 (msbit);
+ int i = 4;
+ while (bit)
+ {
+ if (i == 0)
+ print (arg, ",");
+ if ((x & bit))
+ print (arg, "1");
+ else
+ print (arg, "0");
+ bit >>= 1;
+ i = (i + 1) % 4;
+ }
+}
+
+
+
+/* Quick and dirty conversion between a host double and host 64bit int */
+
+typedef union {
+ double d;
+ unsigned64 i;
+} sim_fpu_map;
+
+
+/* A packed IEEE floating point number.
+
+ Form is <SIGN:1><BIASEDEXP:NR_EXPBITS><FRAC:NR_FRACBITS> for both
+ 32 and 64 bit numbers. This number is interpreted as:
+
+ Normalized (0 < BIASEDEXP && BIASEDEXP < EXPMAX):
+ (sign ? '-' : '+') 1.<FRAC> x 2 ^ (BIASEDEXP - EXPBIAS)
+
+ Denormalized (0 == BIASEDEXP && FRAC != 0):
+ (sign ? "-" : "+") 0.<FRAC> x 2 ^ (- EXPBIAS)
+
+ Zero (0 == BIASEDEXP && FRAC == 0):
+ (sign ? "-" : "+") 0.0
+
+ Infinity (BIASEDEXP == EXPMAX && FRAC == 0):
+ (sign ? "-" : "+") "infinity"
+
+ SignalingNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC < QUIET_NAN):
+ SNaN.FRAC
+
+ QuietNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC > QUIET_NAN):
+ QNaN.FRAC
+
+ */
+
+#define NR_EXPBITS (is_double ? 11 : 8)
+#define NR_FRACBITS (is_double ? 52 : 23)
+#define SIGNBIT (is_double ? MSBIT64 (0) : MSBIT64 (32))
+
+#define EXPMAX32 (255)
+#define EXMPAX64 (2047)
+#define EXPMAX ((unsigned) (is_double ? EXMPAX64 : EXPMAX32))
+
+#define EXPBIAS32 (127)
+#define EXPBIAS64 (1023)
+#define EXPBIAS (is_double ? EXPBIAS64 : EXPBIAS32)
+
+#define QUIET_NAN LSBIT64 (NR_FRACBITS - 1)
+
+
+
+/* An unpacked floating point number.
+
+ When unpacked, the fraction of both a 32 and 64 bit floating point
+ number is stored using the same format:
+
+ 64 bit - <IMPLICIT_1:1><FRACBITS:52><GUARDS:8><PAD:00>
+ 32 bit - <IMPLICIT_1:1><FRACBITS:23><GUARDS:7><PAD:30> */
+
+#define NR_PAD32 (30)
+#define NR_PAD64 (0)
+#define NR_PAD (is_double ? NR_PAD64 : NR_PAD32)
+#define PADMASK (is_double ? 0 : LSMASK64 (NR_PAD32 - 1, 0))
+
+#define NR_GUARDS32 (7 + NR_PAD32)
+#define NR_GUARDS64 (8 + NR_PAD64)
+#define NR_GUARDS (is_double ? NR_GUARDS64 : NR_GUARDS32)
+#define GUARDMASK LSMASK64 (NR_GUARDS - 1, 0)
+
+#define GUARDMSB LSBIT64 (NR_GUARDS - 1)
+#define GUARDLSB LSBIT64 (NR_PAD)
+#define GUARDROUND LSMASK64 (NR_GUARDS - 2, 0)
+
+#define NR_FRAC_GUARD (60)
+#define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
+#define IMPLICIT_2 LSBIT64 (NR_FRAC_GUARD + 1)
+#define IMPLICIT_4 LSBIT64 (NR_FRAC_GUARD + 2)
+#define NR_SPARE 2
+
+#define FRAC32MASK LSMASK64 (63, NR_FRAC_GUARD - 32 + 1)
+
+#define NORMAL_EXPMIN (-(EXPBIAS)+1)
+
+#define NORMAL_EXPMAX32 (EXPBIAS32)
+#define NORMAL_EXPMAX64 (EXPBIAS64)
+#define NORMAL_EXPMAX (EXPBIAS)
+
+
+/* Integer constants */
+
+#define MAX_INT32 ((signed64) LSMASK64 (30, 0))
+#define MAX_UINT32 LSMASK64 (31, 0)
+#define MIN_INT32 ((signed64) LSMASK64 (63, 31))
+
+#define MAX_INT64 ((signed64) LSMASK64 (62, 0))
+#define MAX_UINT64 LSMASK64 (63, 0)
+#define MIN_INT64 ((signed64) LSMASK64 (63, 63))
+
+#define MAX_INT (is_64bit ? MAX_INT64 : MAX_INT32)
+#define MIN_INT (is_64bit ? MIN_INT64 : MIN_INT32)
+#define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
+#define NR_INTBITS (is_64bit ? 64 : 32)
+
+/* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
+STATIC_INLINE_SIM_FPU (unsigned64)
+pack_fpu (const sim_fpu *src,
+ int is_double)
+{
+ int sign;
+ unsigned64 exp;
+ unsigned64 fraction;
+ unsigned64 packed;
+
+ switch (src->class)
+ {
+ /* create a NaN */
+ case sim_fpu_class_qnan:
+ sign = src->sign;
+ exp = EXPMAX;
+ /* force fraction to correct class */
+ fraction = src->fraction;
+ fraction >>= NR_GUARDS;
+ fraction |= QUIET_NAN;
+ break;
+ case sim_fpu_class_snan:
+ sign = src->sign;
+ exp = EXPMAX;
+ /* force fraction to correct class */
+ fraction = src->fraction;
+ fraction >>= NR_GUARDS;
+ fraction &= ~QUIET_NAN;
+ break;
+ case sim_fpu_class_infinity:
+ sign = src->sign;
+ exp = EXPMAX;
+ fraction = 0;
+ break;
+ case sim_fpu_class_zero:
+ sign = src->sign;
+ exp = 0;
+ fraction = 0;
+ break;
+ case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
+ ASSERT (src->fraction >= IMPLICIT_1);
+ ASSERT (src->fraction < IMPLICIT_2);
+ if (src->normal_exp < NORMAL_EXPMIN)
+ {
+ /* This number's exponent is too low to fit into the bits
+ available in the number We'll denormalize the number by
+ storing zero in the exponent and shift the fraction to
+ the right to make up for it. */
+ int nr_shift = NORMAL_EXPMIN - src->normal_exp;
+ if (nr_shift > NR_FRACBITS)
+ {
+ /* underflow, just make the number zero */
+ sign = src->sign;
+ exp = 0;
+ fraction = 0;
+ }
+ else
+ {
+ sign = src->sign;
+ exp = 0;
+ /* Shift by the value */
+ fraction = src->fraction;
+ fraction >>= NR_GUARDS;
+ fraction >>= nr_shift;
+ }
+ }
+ else if (src->normal_exp > NORMAL_EXPMAX)
+ {
+ /* Infinity */
+ sign = src->sign;
+ exp = EXPMAX;
+ fraction = 0;
+ }
+ else
+ {
+ exp = (src->normal_exp + EXPBIAS);
+ sign = src->sign;
+ fraction = src->fraction;
+ /* FIXME: Need to round according to WITH_SIM_FPU_ROUNDING
+ or some such */
+ /* Round to nearest: If the guard bits are the all zero, but
+ the first, then we're half way between two numbers,
+ choose the one which makes the lsb of the answer 0. */
+ if ((fraction & GUARDMASK) == GUARDMSB)
+ {
+ if ((fraction & (GUARDMSB << 1)))
+ fraction += (GUARDMSB << 1);
+ }
+ else
+ {
+ /* Add a one to the guards to force round to nearest */
+ fraction += GUARDROUND;
+ }
+ if ((fraction & IMPLICIT_2)) /* rounding resulted in carry */
+ {
+ exp += 1;
+ fraction >>= 1;
+ }
+ fraction >>= NR_GUARDS;
+ /* When exp == EXPMAX (overflow from carry) fraction must
+ have been made zero */
+ ASSERT ((exp == EXPMAX) <= ((fraction & ~IMPLICIT_1) == 0));
+ }
+ break;
+ default:
+ abort ();
+ }
+
+ packed = ((sign ? SIGNBIT : 0)
+ | (exp << NR_FRACBITS)
+ | LSMASKED64 (fraction, NR_FRACBITS - 1, 0));
+
+ /* trace operation */
+#if 0
+ if (is_double)
+ {
+ }
+ else
+ {
+ printf ("pack_fpu: ");
+ printf ("-> %c%0lX.%06lX\n",
+ LSMASKED32 (packed, 31, 31) ? '8' : '0',
+ (long) LSEXTRACTED32 (packed, 30, 23),
+ (long) LSEXTRACTED32 (packed, 23 - 1, 0));
+ }
+#endif
+
+ return packed;
+}
+
+
+/* Unpack a 32/64 bit integer into a sim_fpu structure */
+STATIC_INLINE_SIM_FPU (void)
+unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
+{
+ unsigned64 fraction = LSMASKED64 (packed, NR_FRACBITS - 1, 0);
+ unsigned exp = LSEXTRACTED64 (packed, NR_EXPBITS + NR_FRACBITS - 1, NR_FRACBITS);
+ int sign = (packed & SIGNBIT) != 0;
+
+ if (exp == 0)
+ {
+ /* Hmm. Looks like 0 */
+ if (fraction == 0)
+ {
+ /* tastes like zero */
+ dst->class = sim_fpu_class_zero;
+ dst->sign = sign;
+ }
+ else
+ {
+ /* Zero exponent with non zero fraction - it's denormalized,
+ so there isn't a leading implicit one - we'll shift it so
+ it gets one. */
+ dst->normal_exp = exp - EXPBIAS + 1;
+ dst->class = sim_fpu_class_denorm;
+ dst->sign = sign;
+ fraction <<= NR_GUARDS;
+ while (fraction < IMPLICIT_1)
+ {
+ fraction <<= 1;
+ dst->normal_exp--;
+ }
+ dst->fraction = fraction;
+ }
+ }
+ else if (exp == EXPMAX)
+ {
+ /* Huge exponent*/
+ if (fraction == 0)
+ {
+ /* Attached to a zero fraction - means infinity */
+ dst->class = sim_fpu_class_infinity;
+ dst->sign = sign;
+ /* dst->normal_exp = EXPBIAS; */
+ /* dst->fraction = 0; */
+ }
+ else
+ {
+ /* Non zero fraction, means NaN */
+ dst->sign = sign;
+ dst->fraction = (fraction << NR_GUARDS);
+ if (fraction >= QUIET_NAN)
+ dst->class = sim_fpu_class_qnan;
+ else
+ dst->class = sim_fpu_class_snan;
+ }
+ }
+ else
+ {
+ /* Nothing strange about this number */
+ dst->class = sim_fpu_class_number;
+ dst->sign = sign;
+ dst->fraction = ((fraction << NR_GUARDS) | IMPLICIT_1);
+ dst->normal_exp = exp - EXPBIAS;
+ }
+
+ /* trace operation */
+#if 0
+ if (is_double)
+ {
+ }
+ else
+ {
+ printf ("unpack_fpu: %c%02lX.%06lX ->\n",
+ LSMASKED32 (packed, 31, 31) ? '8' : '0',
+ (long) LSEXTRACTED32 (packed, 30, 23),
+ (long) LSEXTRACTED32 (packed, 23 - 1, 0));
+ }
+#endif
+
+ /* sanity checks */
+ {
+ sim_fpu_map val;
+ val.i = pack_fpu (dst, 1);
+ if (is_double)
+ {
+ ASSERT (val.i == packed);
+ }
+ else
+ {
+ unsigned32 val = pack_fpu (dst, 0);
+ unsigned32 org = packed;
+ ASSERT (val == org);
+ }
+ }
+}
+
+
+/* Convert a floating point into an integer */
+STATIC_INLINE_SIM_FPU (int)
+fpu2i (signed64 *i,
+ const sim_fpu *s,
+ int is_64bit,
+ sim_fpu_round round)
+{
+ unsigned64 tmp;
+ int shift;
+ int status = 0;
+ if (sim_fpu_is_zero (s))
+ {
+ *i = 0;
+ return 0;
+ }
+ if (sim_fpu_is_snan (s))
+ {
+ *i = MIN_INT; /* FIXME */
+ return sim_fpu_status_invalid_cvi;
+ }
+ if (sim_fpu_is_qnan (s))
+ {
+ *i = MIN_INT; /* FIXME */
+ return sim_fpu_status_invalid_cvi;
+ }
+ /* map infinity onto MAX_INT... */
+ if (sim_fpu_is_infinity (s))
+ {
+ *i = s->sign ? MIN_INT : MAX_INT;
+ return sim_fpu_status_invalid_cvi;
+ }
+ /* it is a number, but a small one */
+ if (s->normal_exp < 0)
+ {
+ *i = 0;
+ return sim_fpu_status_inexact;
+ }
+ /* Is the floating point MIN_INT or just close? */
+ if (s->sign && s->normal_exp == (NR_INTBITS - 1))
+ {
+ *i = MIN_INT;
+ ASSERT (s->fraction >= IMPLICIT_1);
+ if (s->fraction == IMPLICIT_1)
+ return 0; /* exact */
+ if (is_64bit) /* can't round */
+ return sim_fpu_status_invalid_cvi; /* must be overflow */
+ /* For a 32bit with MAX_INT, rounding is possible */
+ switch (round)
+ {
+ case sim_fpu_round_default:
+ abort ();
+ case sim_fpu_round_zero:
+ if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
+ return sim_fpu_status_invalid_cvi;
+ else
+ return sim_fpu_status_inexact;
+ break;
+ case sim_fpu_round_near:
+ {
+ if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
+ return sim_fpu_status_invalid_cvi;
+ else if ((s->fraction & !FRAC32MASK) >= (~FRAC32MASK >> 1))
+ return sim_fpu_status_invalid_cvi;
+ else
+ return sim_fpu_status_inexact;
+ }
+ case sim_fpu_round_up:
+ if ((s->fraction & FRAC32MASK) == IMPLICIT_1)
+ return sim_fpu_status_inexact;
+ else
+ return sim_fpu_status_invalid_cvi;
+ case sim_fpu_round_down:
+ return sim_fpu_status_invalid_cvi;
+ }
+ }
+ /* Would right shifting result in the FRAC being shifted into
+ (through) the integer's sign bit? */
+ if (s->normal_exp > (NR_INTBITS - 2))
+ {
+ *i = s->sign ? MIN_INT : MAX_INT;
+ return sim_fpu_status_invalid_cvi;
+ }
+ /* normal number shift it into place */
+ tmp = s->fraction;
+ shift = (s->normal_exp - (NR_FRAC_GUARD));
+ if (shift > 0)
+ {
+ tmp <<= shift;
+ }
+ else
+ {
+ shift = -shift;
+ if (tmp & ((SIGNED64 (1) << shift) - 1))
+ status |= sim_fpu_status_inexact;
+ tmp >>= shift;
+ }
+ *i = s->sign ? (-tmp) : (tmp);
+ return status;
+}
+
+/* convert an integer into a floating point */
+STATIC_INLINE_SIM_FPU (int)
+i2fpu (sim_fpu *f, signed64 i, int is_64bit)
+{
+ int status = 0;
+ if (i == 0)
+ {
+ f->class = sim_fpu_class_zero;
+ f->sign = 0;
+ }
+ else
+ {
+ f->class = sim_fpu_class_number;
+ f->sign = (i < 0);
+ f->normal_exp = NR_FRAC_GUARD;
+
+ if (f->sign)
+ {
+ /* Special case for minint, since there is no corresponding
+ +ve integer representation for it */
+ if (i == MIN_INT)
+ {
+ f->fraction = IMPLICIT_1;
+ f->normal_exp = NR_INTBITS - 1;
+ }
+ else
+ f->fraction = (-i);
+ }
+ else
+ f->fraction = i;
+
+ if (f->fraction >= IMPLICIT_2)
+ {
+ do
+ {
+ f->fraction >>= 1;
+ f->normal_exp += 1;
+ }
+ while (f->fraction >= IMPLICIT_2);
+ }
+ else if (f->fraction < IMPLICIT_1)
+ {
+ do
+ {
+ f->fraction <<= 1;
+ f->normal_exp -= 1;
+ }
+ while (f->fraction < IMPLICIT_1);
+ }
+ }
+
+ /* trace operation */
+#if 0
+ {
+ printf ("i2fpu: 0x%08lX ->\n", (long) i);
+ }
+#endif
+
+ /* sanity check */
+ {
+ signed64 val;
+ fpu2i (&val, f, is_64bit, sim_fpu_round_zero);
+ if (i >= MIN_INT32 && i <= MAX_INT32)
+ {
+ ASSERT (val == i);
+ }
+ }
+
+ return status;
+}
+
+
+/* Convert a floating point into an integer */
+STATIC_INLINE_SIM_FPU (int)
+fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
+{
+ const int is_double = 1;
+ unsigned64 tmp;
+ int shift;
+ if (sim_fpu_is_zero (s))
+ {
+ *u = 0;
+ return 0;
+ }
+ if (sim_fpu_is_nan (s))
+ {
+ *u = 0;
+ return 0;
+ }
+ /* it is a negative number */
+ if (s->sign)
+ {
+ *u = 0;
+ return 0;
+ }
+ /* get reasonable MAX_USI_INT... */
+ if (sim_fpu_is_infinity (s))
+ {
+ *u = MAX_UINT;
+ return 0;
+ }
+ /* it is a number, but a small one */
+ if (s->normal_exp < 0)
+ {
+ *u = 0;
+ return 0;
+ }
+ /* overflow */
+ if (s->normal_exp > (NR_INTBITS - 1))
+ {
+ *u = MAX_UINT;
+ return 0;
+ }
+ /* normal number */
+ tmp = (s->fraction & ~PADMASK);
+ shift = (s->normal_exp - (NR_FRACBITS + NR_GUARDS));
+ if (shift > 0)
+ {
+ tmp <<= shift;
+ }
+ else
+ {
+ shift = -shift;
+ tmp >>= shift;
+ }
+ *u = tmp;
+ return 0;
+}
+
+/* Convert an unsigned integer into a floating point */
+STATIC_INLINE_SIM_FPU (int)
+u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
+{
+ if (u == 0)
+ {
+ f->class = sim_fpu_class_zero;
+ f->sign = 0;
+ }
+ else
+ {
+ f->class = sim_fpu_class_number;
+ f->sign = 0;
+ f->normal_exp = NR_FRAC_GUARD;
+ f->fraction = u;
+
+ while (f->fraction < IMPLICIT_1)
+ {
+ f->fraction <<= 1;
+ f->normal_exp -= 1;
+ }
+ }
+ return 0;
+}
+
+
+/* register <-> sim_fpu */
+
+INLINE_SIM_FPU (void)
+sim_fpu_32to (sim_fpu *f, unsigned32 s)
+{
+ unpack_fpu (f, s, 0);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l)
+{
+ unsigned64 s = h;
+ s = (s << 32) | l;
+ unpack_fpu (f, s, 1);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_64to (sim_fpu *f, unsigned64 s)
+{
+ unpack_fpu (f, s, 1);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_to32 (unsigned32 *s,
+ const sim_fpu *f)
+{
+ *s = pack_fpu (f, 0);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_to232 (unsigned32 *h, unsigned32 *l,
+ const sim_fpu *f)
+{
+ unsigned64 s = pack_fpu (f, 1);
+ *l = s;
+ *h = (s >> 32);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_to64 (unsigned64 *u,
+ const sim_fpu *f)
+{
+ *u = pack_fpu (f, 1);
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_fractionto (sim_fpu *f,
+ int sign,
+ int normal_exp,
+ unsigned64 fraction,
+ int precision)
+{
+ int shift = (NR_FRAC_GUARD - precision);
+ f->class = sim_fpu_class_number;
+ f->sign = sign;
+ f->normal_exp = normal_exp;
+ /* shift the fraction to where sim-fpu expects it */
+ if (shift >= 0)
+ f->fraction = (fraction << shift);
+ else
+ f->fraction = (fraction >> -shift);
+ f->fraction |= IMPLICIT_1;
+}
+
+
+INLINE_SIM_FPU (unsigned64)
+sim_fpu_tofraction (const sim_fpu *d,
+ int precision)
+{
+ /* we have NR_FRAC_GUARD bits, we want only PRECISION bits */
+ int shift = (NR_FRAC_GUARD - precision);
+ unsigned64 fraction = (d->fraction & ~IMPLICIT_1);
+ if (shift >= 0)
+ return fraction >> shift;
+ else
+ return fraction << -shift;
+}
+
+
+/* Rounding */
+
+STATIC_INLINE_SIM_FPU (int)
+do_normal_overflow (sim_fpu *f,
+ int is_double,
+ sim_fpu_round round)
+{
+ switch (round)
+ {
+ case sim_fpu_round_default:
+ return 0;
+ case sim_fpu_round_near:
+ f->class = sim_fpu_class_infinity;
+ break;
+ case sim_fpu_round_up:
+ if (!f->sign)
+ f->class = sim_fpu_class_infinity;
+ break;
+ case sim_fpu_round_down:
+ if (f->sign)
+ f->class = sim_fpu_class_infinity;
+ break;
+ case sim_fpu_round_zero:
+ break;
+ }
+ f->normal_exp = NORMAL_EXPMAX;
+ f->fraction = LSMASK64 (NR_FRAC_GUARD, NR_GUARDS);
+ return (sim_fpu_status_overflow | sim_fpu_status_inexact);
+}
+
+STATIC_INLINE_SIM_FPU (int)
+do_normal_underflow (sim_fpu *f,
+ int is_double,
+ sim_fpu_round round)
+{
+ switch (round)
+ {
+ case sim_fpu_round_default:
+ return 0;
+ case sim_fpu_round_near:
+ f->class = sim_fpu_class_zero;
+ break;
+ case sim_fpu_round_up:
+ if (f->sign)
+ f->class = sim_fpu_class_zero;
+ break;
+ case sim_fpu_round_down:
+ if (!f->sign)
+ f->class = sim_fpu_class_zero;
+ break;
+ case sim_fpu_round_zero:
+ f->class = sim_fpu_class_zero;
+ break;
+ }
+ f->normal_exp = NORMAL_EXPMIN - NR_FRACBITS;
+ f->fraction = IMPLICIT_1;
+ return (sim_fpu_status_inexact | sim_fpu_status_underflow);
+}
+
+
+
+/* Round a number using NR_GUARDS.
+ Will return the rounded number or F->FRACTION == 0 when underflow */
+
+STATIC_INLINE_SIM_FPU (int)
+do_normal_round (sim_fpu *f,
+ int nr_guards,
+ sim_fpu_round round)
+{
+ unsigned64 guardmask = LSMASK64 (nr_guards - 1, 0);
+ unsigned64 guardmsb = LSBIT64 (nr_guards - 1);
+ unsigned64 fraclsb = guardmsb << 1;
+ if ((f->fraction & guardmask))
+ {
+ int status = sim_fpu_status_inexact;
+ switch (round)
+ {
+ case sim_fpu_round_default:
+ return 0;
+ case sim_fpu_round_near:
+ if ((f->fraction & guardmsb))
+ {
+ if ((f->fraction & fraclsb))
+ {
+ status |= sim_fpu_status_rounded;
+ }
+ else if ((f->fraction & (guardmask >> 1)))
+ {
+ status |= sim_fpu_status_rounded;
+ }
+ }
+ break;
+ case sim_fpu_round_up:
+ if (!f->sign)
+ status |= sim_fpu_status_rounded;
+ break;
+ case sim_fpu_round_down:
+ if (f->sign)
+ status |= sim_fpu_status_rounded;
+ break;
+ case sim_fpu_round_zero:
+ break;
+ }
+ f->fraction &= ~guardmask;
+ /* round if needed, handle resulting overflow */
+ if ((status & sim_fpu_status_rounded))
+ {
+ f->fraction += fraclsb;
+ if ((f->fraction & IMPLICIT_2))
+ {
+ f->fraction >>= 1;
+ f->normal_exp += 1;
+ }
+ }
+ return status;
+ }
+ else
+ return 0;
+}
+
+
+STATIC_INLINE_SIM_FPU (int)
+do_round (sim_fpu *f,
+ int is_double,
+ sim_fpu_round round,
+ sim_fpu_denorm denorm)
+{
+ switch (f->class)
+ {
+ case sim_fpu_class_qnan:
+ case sim_fpu_class_zero:
+ case sim_fpu_class_infinity:
+ return 0;
+ break;
+ case sim_fpu_class_snan:
+ /* Quieten a SignalingNaN */
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ break;
+ case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
+ {
+ int status;
+ ASSERT (f->fraction < IMPLICIT_2);
+ ASSERT (f->fraction >= IMPLICIT_1);
+ if (f->normal_exp < NORMAL_EXPMIN)
+ {
+ /* This number's exponent is too low to fit into the bits
+ available in the number. Round off any bits that will be
+ discarded as a result of denormalization. Edge case is
+ the implicit bit shifted to GUARD0 and then rounded
+ up. */
+ int shift = NORMAL_EXPMIN - f->normal_exp;
+ if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
+ && !(denorm & sim_fpu_denorm_zero))
+ {
+ status = do_normal_round (f, shift + NR_GUARDS, round);
+ if (f->fraction == 0) /* rounding underflowed */
+ {
+ status |= do_normal_underflow (f, is_double, round);
+ }
+ else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
+ {
+ status |= sim_fpu_status_denorm;
+ /* Any loss of precision when denormalizing is
+ underflow. Some processors check for underflow
+ before rounding, some after! */
+ if (status & sim_fpu_status_inexact)
+ status |= sim_fpu_status_underflow;
+ /* Flag that resultant value has been denormalized */
+ f->class = sim_fpu_class_denorm;
+ }
+ else if ((denorm & sim_fpu_denorm_underflow_inexact))
+ {
+ if ((status & sim_fpu_status_inexact))
+ status |= sim_fpu_status_underflow;
+ }
+ }
+ else
+ {
+ status = do_normal_underflow (f, is_double, round);
+ }
+ }
+ else if (f->normal_exp > NORMAL_EXPMAX)
+ {
+ /* Infinity */
+ status = do_normal_overflow (f, is_double, round);
+ }
+ else
+ {
+ status = do_normal_round (f, NR_GUARDS, round);
+ if (f->fraction == 0)
+ /* f->class = sim_fpu_class_zero; */
+ status |= do_normal_underflow (f, is_double, round);
+ else if (f->normal_exp > NORMAL_EXPMAX)
+ /* oops! rounding caused overflow */
+ status |= do_normal_overflow (f, is_double, round);
+ }
+ ASSERT ((f->class == sim_fpu_class_number
+ || f->class == sim_fpu_class_denorm)
+ <= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
+ return status;
+ }
+ }
+ return 0;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_round_32 (sim_fpu *f,
+ sim_fpu_round round,
+ sim_fpu_denorm denorm)
+{
+ return do_round (f, 0, round, denorm);
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_round_64 (sim_fpu *f,
+ sim_fpu_round round,
+ sim_fpu_denorm denorm)
+{
+ return do_round (f, 1, round, denorm);
+}
+
+
+
+/* Arithmetic ops */
+
+INLINE_SIM_FPU (int)
+sim_fpu_add (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_infinity (r)
+ && l->sign != r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_isi;
+ }
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_zero (l))
+ {
+ if (sim_fpu_is_zero (r))
+ {
+ *f = sim_fpu_zero;
+ f->sign = l->sign & r->sign;
+ }
+ else
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_zero (r))
+ {
+ *f = *l;
+ return 0;
+ }
+ {
+ int status = 0;
+ int shift = l->normal_exp - r->normal_exp;
+ unsigned64 lfraction;
+ unsigned64 rfraction;
+ /* use exp of larger */
+ if (shift >= NR_FRAC_GUARD)
+ {
+ /* left has much bigger magnitute */
+ *f = *l;
+ return sim_fpu_status_inexact;
+ }
+ if (shift <= - NR_FRAC_GUARD)
+ {
+ /* right has much bigger magnitute */
+ *f = *r;
+ return sim_fpu_status_inexact;
+ }
+ lfraction = l->fraction;
+ rfraction = r->fraction;
+ if (shift > 0)
+ {
+ f->normal_exp = l->normal_exp;
+ if (rfraction & LSMASK64 (shift - 1, 0))
+ {
+ status |= sim_fpu_status_inexact;
+ rfraction |= LSBIT64 (shift); /* stick LSBit */
+ }
+ rfraction >>= shift;
+ }
+ else if (shift < 0)
+ {
+ f->normal_exp = r->normal_exp;
+ if (lfraction & LSMASK64 (- shift - 1, 0))
+ {
+ status |= sim_fpu_status_inexact;
+ lfraction |= LSBIT64 (- shift); /* stick LSBit */
+ }
+ lfraction >>= -shift;
+ }
+ else
+ {
+ f->normal_exp = r->normal_exp;
+ }
+
+ /* perform the addition */
+ if (l->sign)
+ lfraction = - lfraction;
+ if (r->sign)
+ rfraction = - rfraction;
+ f->fraction = lfraction + rfraction;
+
+ /* zero? */
+ if (f->fraction == 0)
+ {
+ *f = sim_fpu_zero;
+ return 0;
+ }
+
+ /* sign? */
+ f->class = sim_fpu_class_number;
+ if ((signed64) f->fraction >= 0)
+ f->sign = 0;
+ else
+ {
+ f->sign = 1;
+ f->fraction = - f->fraction;
+ }
+
+ /* normalize it */
+ if ((f->fraction & IMPLICIT_2))
+ {
+ f->fraction = (f->fraction >> 1) | (f->fraction & 1);
+ f->normal_exp ++;
+ }
+ else if (f->fraction < IMPLICIT_1)
+ {
+ do
+ {
+ f->fraction <<= 1;
+ f->normal_exp --;
+ }
+ while (f->fraction < IMPLICIT_1);
+ }
+ ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
+ return status;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_sub (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_infinity (r)
+ && l->sign == r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_isi;
+ }
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ *f = *r;
+ f->sign = !r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_zero (l))
+ {
+ if (sim_fpu_is_zero (r))
+ {
+ *f = sim_fpu_zero;
+ f->sign = l->sign & !r->sign;
+ }
+ else
+ {
+ *f = *r;
+ f->sign = !r->sign;
+ }
+ return 0;
+ }
+ if (sim_fpu_is_zero (r))
+ {
+ *f = *l;
+ return 0;
+ }
+ {
+ int status = 0;
+ int shift = l->normal_exp - r->normal_exp;
+ unsigned64 lfraction;
+ unsigned64 rfraction;
+ /* use exp of larger */
+ if (shift >= NR_FRAC_GUARD)
+ {
+ /* left has much bigger magnitute */
+ *f = *l;
+ return sim_fpu_status_inexact;
+ }
+ if (shift <= - NR_FRAC_GUARD)
+ {
+ /* right has much bigger magnitute */
+ *f = *r;
+ f->sign = !r->sign;
+ return sim_fpu_status_inexact;
+ }
+ lfraction = l->fraction;
+ rfraction = r->fraction;
+ if (shift > 0)
+ {
+ f->normal_exp = l->normal_exp;
+ if (rfraction & LSMASK64 (shift - 1, 0))
+ {
+ status |= sim_fpu_status_inexact;
+ rfraction |= LSBIT64 (shift); /* stick LSBit */
+ }
+ rfraction >>= shift;
+ }
+ else if (shift < 0)
+ {
+ f->normal_exp = r->normal_exp;
+ if (lfraction & LSMASK64 (- shift - 1, 0))
+ {
+ status |= sim_fpu_status_inexact;
+ lfraction |= LSBIT64 (- shift); /* stick LSBit */
+ }
+ lfraction >>= -shift;
+ }
+ else
+ {
+ f->normal_exp = r->normal_exp;
+ }
+
+ /* perform the subtraction */
+ if (l->sign)
+ lfraction = - lfraction;
+ if (!r->sign)
+ rfraction = - rfraction;
+ f->fraction = lfraction + rfraction;
+
+ /* zero? */
+ if (f->fraction == 0)
+ {
+ *f = sim_fpu_zero;
+ return 0;
+ }
+
+ /* sign? */
+ f->class = sim_fpu_class_number;
+ if ((signed64) f->fraction >= 0)
+ f->sign = 0;
+ else
+ {
+ f->sign = 1;
+ f->fraction = - f->fraction;
+ }
+
+ /* normalize it */
+ if ((f->fraction & IMPLICIT_2))
+ {
+ f->fraction = (f->fraction >> 1) | (f->fraction & 1);
+ f->normal_exp ++;
+ }
+ else if (f->fraction < IMPLICIT_1)
+ {
+ do
+ {
+ f->fraction <<= 1;
+ f->normal_exp --;
+ }
+ while (f->fraction < IMPLICIT_1);
+ }
+ ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
+ return status;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_mul (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_zero (r))
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_imz;
+ }
+ *f = *l;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ if (sim_fpu_is_zero (l))
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_imz;
+ }
+ *f = *r;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_zero (l) || sim_fpu_is_zero (r))
+ {
+ *f = sim_fpu_zero;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ /* Calculate the mantissa by multiplying both 64bit numbers to get a
+ 128 bit number */
+ {
+ unsigned64 low;
+ unsigned64 high;
+ unsigned64 nl = l->fraction & 0xffffffff;
+ unsigned64 nh = l->fraction >> 32;
+ unsigned64 ml = r->fraction & 0xffffffff;
+ unsigned64 mh = r->fraction >>32;
+ unsigned64 pp_ll = ml * nl;
+ unsigned64 pp_hl = mh * nl;
+ unsigned64 pp_lh = ml * nh;
+ unsigned64 pp_hh = mh * nh;
+ unsigned64 res2 = 0;
+ unsigned64 res0 = 0;
+ unsigned64 ps_hh__ = pp_hl + pp_lh;
+ if (ps_hh__ < pp_hl)
+ res2 += UNSIGNED64 (0x100000000);
+ pp_hl = (ps_hh__ << 32) & UNSIGNED64 (0xffffffff00000000);
+ res0 = pp_ll + pp_hl;
+ if (res0 < pp_ll)
+ res2++;
+ res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh;
+ high = res2;
+ low = res0;
+
+ f->normal_exp = l->normal_exp + r->normal_exp;
+ f->sign = l->sign ^ r->sign;
+ f->class = sim_fpu_class_number;
+
+ /* Input is bounded by [1,2) ; [2^60,2^61)
+ Output is bounded by [1,4) ; [2^120,2^122) */
+
+ /* Adjust the exponent according to where the decimal point ended
+ up in the high 64 bit word. In the source the decimal point
+ was at NR_FRAC_GUARD. */
+ f->normal_exp += NR_FRAC_GUARD + 64 - (NR_FRAC_GUARD * 2);
+
+ /* The high word is bounded according to the above. Consequently
+ it has never overflowed into IMPLICIT_2. */
+ ASSERT (high < LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64));
+ ASSERT (high >= LSBIT64 ((NR_FRAC_GUARD * 2) - 64));
+ ASSERT (LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64) < IMPLICIT_1);
+
+#if 0
+ printf ("\n");
+ print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf (";");
+ print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf ("\n");
+#endif
+
+ /* normalize */
+ do
+ {
+ f->normal_exp--;
+ high <<= 1;
+ if (low & LSBIT64 (63))
+ high |= 1;
+ low <<= 1;
+ }
+ while (high < IMPLICIT_1);
+
+#if 0
+ print_bits (high, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf (";");
+ print_bits (low, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf ("\n");
+#endif
+
+ ASSERT (high >= IMPLICIT_1 && high < IMPLICIT_2);
+ if (low != 0)
+ {
+ f->fraction = (high | 1); /* sticky */
+ return sim_fpu_status_inexact;
+ }
+ else
+ {
+ f->fraction = high;
+ return 0;
+ }
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_div (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_infinity (r))
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_idi;
+ }
+ else
+ {
+ *f = *l;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ }
+ if (sim_fpu_is_zero (l))
+ {
+ if (sim_fpu_is_zero (r))
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_zdz;
+ }
+ else
+ {
+ *f = *l;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ *f = sim_fpu_zero;
+ f->sign = l->sign ^ r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_zero (r))
+ {
+ f->class = sim_fpu_class_infinity;
+ f->sign = l->sign ^ r->sign;
+ return sim_fpu_status_invalid_div0;
+ }
+
+ /* Calculate the mantissa by multiplying both 64bit numbers to get a
+ 128 bit number */
+ {
+ /* quotient = ( ( numerator / denominator)
+ x 2^(numerator exponent - denominator exponent)
+ */
+ unsigned64 numerator;
+ unsigned64 denominator;
+ unsigned64 quotient;
+ unsigned64 bit;
+
+ f->class = sim_fpu_class_number;
+ f->sign = l->sign ^ r->sign;
+ f->normal_exp = l->normal_exp - r->normal_exp;
+
+ numerator = l->fraction;
+ denominator = r->fraction;
+
+ /* Fraction will be less than 1.0 */
+ if (numerator < denominator)
+ {
+ numerator <<= 1;
+ f->normal_exp--;
+ }
+ ASSERT (numerator >= denominator);
+
+ /* Gain extra precision, already used one spare bit */
+ numerator <<= NR_SPARE;
+ denominator <<= NR_SPARE;
+
+ /* Does divide one bit at a time. Optimize??? */
+ quotient = 0;
+ bit = (IMPLICIT_1 << NR_SPARE);
+ while (bit)
+ {
+ if (numerator >= denominator)
+ {
+ quotient |= bit;
+ numerator -= denominator;
+ }
+ bit >>= 1;
+ numerator <<= 1;
+ }
+
+#if 0
+ printf ("\n");
+ print_bits (quotient, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf ("\n");
+ print_bits (numerator, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf ("\n");
+ print_bits (denominator, 63, (sim_fpu_print_func*)fprintf, stdout);
+ printf ("\n");
+#endif
+
+ /* discard (but save) the extra bits */
+ if ((quotient & LSMASK64 (NR_SPARE -1, 0)))
+ quotient = (quotient >> NR_SPARE) | 1;
+ else
+ quotient = (quotient >> NR_SPARE);
+
+ f->fraction = quotient;
+ ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
+ if (numerator != 0)
+ {
+ f->fraction |= 1; /* stick remaining bits */
+ return sim_fpu_status_inexact;
+ }
+ else
+ return 0;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_max (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_infinity (r)
+ && l->sign == r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_isi;
+ }
+ if (l->sign)
+ *f = *r; /* -inf < anything */
+ else
+ *f = *l; /* +inf > anthing */
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ if (r->sign)
+ *f = *l; /* anything > -inf */
+ else
+ *f = *r; /* anthing < +inf */
+ return 0;
+ }
+ if (l->sign > r->sign)
+ {
+ *f = *r; /* -ve < +ve */
+ return 0;
+ }
+ if (l->sign < r->sign)
+ {
+ *f = *l; /* +ve > -ve */
+ return 0;
+ }
+ ASSERT (l->sign == r->sign);
+ if (l->normal_exp > r->normal_exp
+ || (l->normal_exp == r->normal_exp &&
+ l->fraction > r->fraction))
+ {
+ /* |l| > |r| */
+ if (l->sign)
+ *f = *r; /* -ve < -ve */
+ else
+ *f = *l; /* +ve > +ve */
+ return 0;
+ }
+ else
+ {
+ /* |l| <= |r| */
+ if (l->sign)
+ *f = *l; /* -ve > -ve */
+ else
+ *f = *r; /* +ve < +ve */
+ return 0;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_min (sim_fpu *f,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (l))
+ {
+ *f = *l;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (l))
+ {
+ *f = *l;
+ return 0;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (l))
+ {
+ if (sim_fpu_is_infinity (r)
+ && l->sign == r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_isi;
+ }
+ if (l->sign)
+ *f = *l; /* -inf < anything */
+ else
+ *f = *r; /* +inf > anthing */
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ if (r->sign)
+ *f = *r; /* anything > -inf */
+ else
+ *f = *l; /* anything < +inf */
+ return 0;
+ }
+ if (l->sign > r->sign)
+ {
+ *f = *l; /* -ve < +ve */
+ return 0;
+ }
+ if (l->sign < r->sign)
+ {
+ *f = *r; /* +ve > -ve */
+ return 0;
+ }
+ ASSERT (l->sign == r->sign);
+ if (l->normal_exp > r->normal_exp
+ || (l->normal_exp == r->normal_exp &&
+ l->fraction > r->fraction))
+ {
+ /* |l| > |r| */
+ if (l->sign)
+ *f = *l; /* -ve < -ve */
+ else
+ *f = *r; /* +ve > +ve */
+ return 0;
+ }
+ else
+ {
+ /* |l| <= |r| */
+ if (l->sign)
+ *f = *r; /* -ve > -ve */
+ else
+ *f = *l; /* +ve < +ve */
+ return 0;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_neg (sim_fpu *f,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ *f = *r;
+ f->sign = !r->sign;
+ return 0;
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_abs (sim_fpu *f,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ return 0;
+ }
+ *f = *r;
+ f->sign = 0;
+ return 0;
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_inv (sim_fpu *f,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = *r;
+ f->class = sim_fpu_class_qnan;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ *f = sim_fpu_zero;
+ f->sign = r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_zero (r))
+ {
+ f->class = sim_fpu_class_infinity;
+ f->sign = r->sign;
+ return sim_fpu_status_invalid_div0;
+ }
+ *f = *r;
+ f->normal_exp = - r->normal_exp;
+ return 0;
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_sqrt (sim_fpu *f,
+ const sim_fpu *r)
+{
+ if (sim_fpu_is_snan (r))
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_snan;
+ }
+ if (sim_fpu_is_qnan (r))
+ {
+ *f = sim_fpu_qnan;
+ return 0;
+ }
+ if (sim_fpu_is_zero (r))
+ {
+ f->class = sim_fpu_class_zero;
+ f->sign = r->sign;
+ return 0;
+ }
+ if (sim_fpu_is_infinity (r))
+ {
+ if (r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_sqrt;
+ }
+ else
+ {
+ f->class = sim_fpu_class_infinity;
+ f->sign = 0;
+ f->sign = 0;
+ return 0;
+ }
+ }
+ if (r->sign)
+ {
+ *f = sim_fpu_qnan;
+ return sim_fpu_status_invalid_sqrt;
+ }
+
+ /* @(#)e_sqrt.c 5.1 93/09/24 */
+ /*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+ /* __ieee754_sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ -
+ - Since:
+ - sqrt ( x*2^(2m) ) = sqrt(x).2^m ; m even
+ - sqrt ( x*2^(2m + 1) ) = sqrt(2.x).2^m ; m odd
+ - Define:
+ - y = ((m even) ? x : 2.x)
+ - Then:
+ - y in [1, 4) ; [IMPLICIT_1,IMPLICIT_4)
+ - And:
+ - sqrt (y) in [1, 2) ; [IMPLICIT_1,IMPLICIT_2)
+ -
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebric manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ -
+ - NOTE: y = 2*y
+ - i+1 i
+ -
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ -
+ - -(i+1)
+ - NOTE: y = 2 (y - s - 2 )
+ - i+1 i i
+ -
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ *
+ * Other methods : see the appended file at the end of the program below.
+ *---------------
+ */
+
+ {
+ /* generate sqrt(x) bit by bit */
+ unsigned64 y;
+ unsigned64 q;
+ unsigned64 s;
+ unsigned64 b;
+
+ f->class = sim_fpu_class_number;
+ f->sign = 0;
+ y = r->fraction;
+ f->normal_exp = (r->normal_exp >> 1); /* exp = [exp/2] */
+
+ /* odd exp, double x to make it even */
+ ASSERT (y >= IMPLICIT_1 && y < IMPLICIT_4);
+ if ((r->normal_exp & 1))
+ {
+ y += y;
+ }
+ ASSERT (y >= IMPLICIT_1 && y < (IMPLICIT_2 << 1));
+
+ /* Let loop determine first value of s (either 1 or 2) */
+ b = IMPLICIT_1;
+ q = 0;
+ s = 0;
+
+ while (b)
+ {
+ unsigned64 t = s + b;
+ if (t <= y)
+ {
+ s |= (b << 1);
+ y -= t;
+ q |= b;
+ }
+ y <<= 1;
+ b >>= 1;
+ }
+
+ ASSERT (q >= IMPLICIT_1 && q < IMPLICIT_2);
+ f->fraction = q;
+ if (y != 0)
+ {
+ f->fraction |= 1; /* stick remaining bits */
+ return sim_fpu_status_inexact;
+ }
+ else
+ return 0;
+ }
+}
+
+
+/* int/long <-> sim_fpu */
+
+INLINE_SIM_FPU (int)
+sim_fpu_i32to (sim_fpu *f,
+ signed32 i,
+ sim_fpu_round round)
+{
+ i2fpu (f, i, 0);
+ return 0;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_u32to (sim_fpu *f,
+ unsigned32 u,
+ sim_fpu_round round)
+{
+ u2fpu (f, u, 0);
+ return 0;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_i64to (sim_fpu *f,
+ signed64 i,
+ sim_fpu_round round)
+{
+ i2fpu (f, i, 1);
+ return 0;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_u64to (sim_fpu *f,
+ unsigned64 u,
+ sim_fpu_round round)
+{
+ u2fpu (f, u, 1);
+ return 0;
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_to32i (signed32 *i,
+ const sim_fpu *f,
+ sim_fpu_round round)
+{
+ signed64 i64;
+ int status = fpu2i (&i64, f, 0, round);
+ *i = i64;
+ return status;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_to32u (unsigned32 *u,
+ const sim_fpu *f,
+ sim_fpu_round round)
+{
+ unsigned64 u64;
+ int status = fpu2u (&u64, f, 0);
+ *u = u64;
+ return status;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_to64i (signed64 *i,
+ const sim_fpu *f,
+ sim_fpu_round round)
+{
+ return fpu2i (i, f, 1, round);
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_to64u (unsigned64 *u,
+ const sim_fpu *f,
+ sim_fpu_round round)
+{
+ return fpu2u (u, f, 1);
+}
+
+
+
+/* sim_fpu -> host format */
+
+#if 0
+INLINE_SIM_FPU (float)
+sim_fpu_2f (const sim_fpu *f)
+{
+ return fval.d;
+}
+#endif
+
+
+INLINE_SIM_FPU (double)
+sim_fpu_2d (const sim_fpu *s)
+{
+ sim_fpu_map val;
+ if (sim_fpu_is_snan (s))
+ {
+ /* gag SNaN's */
+ sim_fpu n = *s;
+ n.class = sim_fpu_class_qnan;
+ val.i = pack_fpu (&n, 1);
+ }
+ else
+ {
+ val.i = pack_fpu (s, 1);
+ }
+ return val.d;
+}
+
+
+#if 0
+INLINE_SIM_FPU (void)
+sim_fpu_f2 (sim_fpu *f,
+ float s)
+{
+ sim_fpu_map val;
+ val.d = s;
+ unpack_fpu (f, val.i, 1);
+}
+#endif
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_d2 (sim_fpu *f,
+ double d)
+{
+ sim_fpu_map val;
+ val.d = d;
+ unpack_fpu (f, val.i, 1);
+}
+
+
+/* General */
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_nan (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_qnan:
+ case sim_fpu_class_snan:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_qnan (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_qnan:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_snan (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_snan:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_zero (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_zero:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_infinity (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_infinity:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_number (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_denorm:
+ case sim_fpu_class_number:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_denorm (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_denorm:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_sign (const sim_fpu *d)
+{
+ return d->sign;
+}
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_exp (const sim_fpu *d)
+{
+ return d->normal_exp;
+}
+
+
+
+INLINE_SIM_FPU (int)
+sim_fpu_is (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_qnan:
+ return SIM_FPU_IS_QNAN;
+ case sim_fpu_class_snan:
+ return SIM_FPU_IS_SNAN;
+ case sim_fpu_class_infinity:
+ if (d->sign)
+ return SIM_FPU_IS_NINF;
+ else
+ return SIM_FPU_IS_PINF;
+ case sim_fpu_class_number:
+ if (d->sign)
+ return SIM_FPU_IS_NNUMBER;
+ else
+ return SIM_FPU_IS_PNUMBER;
+ case sim_fpu_class_denorm:
+ if (d->sign)
+ return SIM_FPU_IS_NDENORM;
+ else
+ return SIM_FPU_IS_PDENORM;
+ case sim_fpu_class_zero:
+ if (d->sign)
+ return SIM_FPU_IS_NZERO;
+ else
+ return SIM_FPU_IS_PZERO;
+ default:
+ return -1;
+ abort ();
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r)
+{
+ sim_fpu res;
+ sim_fpu_sub (&res, l, r);
+ return sim_fpu_is (&res);
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r)
+{
+ int status;
+ sim_fpu_lt (&status, l, r);
+ return status;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r)
+{
+ int is;
+ sim_fpu_le (&is, l, r);
+ return is;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r)
+{
+ int is;
+ sim_fpu_eq (&is, l, r);
+ return is;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r)
+{
+ int is;
+ sim_fpu_ne (&is, l, r);
+ return is;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r)
+{
+ int is;
+ sim_fpu_ge (&is, l, r);
+ return is;
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r)
+{
+ int is;
+ sim_fpu_gt (&is, l, r);
+ return is;
+}
+
+
+/* Compare operators */
+
+INLINE_SIM_FPU (int)
+sim_fpu_lt (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
+ {
+ sim_fpu_map lval;
+ sim_fpu_map rval;
+ lval.i = pack_fpu (l, 1);
+ rval.i = pack_fpu (r, 1);
+ (*is) = (lval.d < rval.d);
+ return 0;
+ }
+ else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_snan;
+ }
+ else
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_qnan;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_le (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
+ {
+ sim_fpu_map lval;
+ sim_fpu_map rval;
+ lval.i = pack_fpu (l, 1);
+ rval.i = pack_fpu (r, 1);
+ *is = (lval.d <= rval.d);
+ return 0;
+ }
+ else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_snan;
+ }
+ else
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_qnan;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_eq (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
+ {
+ sim_fpu_map lval;
+ sim_fpu_map rval;
+ lval.i = pack_fpu (l, 1);
+ rval.i = pack_fpu (r, 1);
+ (*is) = (lval.d == rval.d);
+ return 0;
+ }
+ else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_snan;
+ }
+ else
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_qnan;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_ne (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
+ {
+ sim_fpu_map lval;
+ sim_fpu_map rval;
+ lval.i = pack_fpu (l, 1);
+ rval.i = pack_fpu (r, 1);
+ (*is) = (lval.d != rval.d);
+ return 0;
+ }
+ else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_snan;
+ }
+ else
+ {
+ *is = 0;
+ return sim_fpu_status_invalid_qnan;
+ }
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_ge (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ return sim_fpu_le (is, r, l);
+}
+
+INLINE_SIM_FPU (int)
+sim_fpu_gt (int *is,
+ const sim_fpu *l,
+ const sim_fpu *r)
+{
+ return sim_fpu_lt (is, r, l);
+}
+
+
+/* A number of useful constants */
+
+#if EXTERN_SIM_FPU_P
+const sim_fpu sim_fpu_zero = {
+ sim_fpu_class_zero,
+};
+const sim_fpu sim_fpu_qnan = {
+ sim_fpu_class_qnan,
+};
+const sim_fpu sim_fpu_one = {
+ sim_fpu_class_number, 0, IMPLICIT_1, 1
+};
+const sim_fpu sim_fpu_two = {
+ sim_fpu_class_number, 0, IMPLICIT_1, 2
+};
+const sim_fpu sim_fpu_max32 = {
+ sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS32), NORMAL_EXPMAX32
+};
+const sim_fpu sim_fpu_max64 = {
+ sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS64), NORMAL_EXPMAX64
+};
+#endif
+
+
+/* For debugging */
+
+INLINE_SIM_FPU (void)
+sim_fpu_print_fpu (const sim_fpu *f,
+ sim_fpu_print_func *print,
+ void *arg)
+{
+ print (arg, "%s", f->sign ? "-" : "+");
+ switch (f->class)
+ {
+ case sim_fpu_class_qnan:
+ print (arg, "0.");
+ print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
+ print (arg, "*QuietNaN");
+ break;
+ case sim_fpu_class_snan:
+ print (arg, "0.");
+ print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
+ print (arg, "*SignalNaN");
+ break;
+ case sim_fpu_class_zero:
+ print (arg, "0.0");
+ break;
+ case sim_fpu_class_infinity:
+ print (arg, "INF");
+ break;
+ case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
+ print (arg, "1.");
+ print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
+ print (arg, "*2^%+-5d", f->normal_exp);
+ ASSERT (f->fraction >= IMPLICIT_1);
+ ASSERT (f->fraction < IMPLICIT_2);
+ }
+}
+
+
+INLINE_SIM_FPU (void)
+sim_fpu_print_status (int status,
+ sim_fpu_print_func *print,
+ void *arg)
+{
+ int i = 1;
+ char *prefix = "";
+ while (status >= i)
+ {
+ switch ((sim_fpu_status) (status & i))
+ {
+ case sim_fpu_status_denorm:
+ print (arg, "%sD", prefix);
+ break;
+ case sim_fpu_status_invalid_snan:
+ print (arg, "%sSNaN", prefix);
+ break;
+ case sim_fpu_status_invalid_qnan:
+ print (arg, "%sQNaN", prefix);
+ break;
+ case sim_fpu_status_invalid_isi:
+ print (arg, "%sISI", prefix);
+ break;
+ case sim_fpu_status_invalid_idi:
+ print (arg, "%sIDI", prefix);
+ break;
+ case sim_fpu_status_invalid_zdz:
+ print (arg, "%sZDZ", prefix);
+ break;
+ case sim_fpu_status_invalid_imz:
+ print (arg, "%sIMZ", prefix);
+ break;
+ case sim_fpu_status_invalid_cvi:
+ print (arg, "%sCVI", prefix);
+ break;
+ case sim_fpu_status_invalid_cmp:
+ print (arg, "%sCMP", prefix);
+ break;
+ case sim_fpu_status_invalid_sqrt:
+ print (arg, "%sSQRT", prefix);
+ break;
+ break;
+ case sim_fpu_status_inexact:
+ print (arg, "%sX", prefix);
+ break;
+ break;
+ case sim_fpu_status_overflow:
+ print (arg, "%sO", prefix);
+ break;
+ break;
+ case sim_fpu_status_underflow:
+ print (arg, "%sU", prefix);
+ break;
+ break;
+ case sim_fpu_status_invalid_div0:
+ print (arg, "%s/", prefix);
+ break;
+ break;
+ case sim_fpu_status_rounded:
+ print (arg, "%sR", prefix);
+ break;
+ break;
+ }
+ i <<= 1;
+ prefix = ",";
+ }
+}
+
+#endif