aboutsummaryrefslogtreecommitdiff
path: root/gdb/valops.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/valops.c')
-rw-r--r--gdb/valops.c3536
1 files changed, 3536 insertions, 0 deletions
diff --git a/gdb/valops.c b/gdb/valops.c
new file mode 100644
index 0000000..eaf4295
--- /dev/null
+++ b/gdb/valops.c
@@ -0,0 +1,3536 @@
+/* Perform non-arithmetic operations on values, for GDB.
+ Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
+ 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "value.h"
+#include "frame.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "target.h"
+#include "demangle.h"
+#include "language.h"
+#include "gdbcmd.h"
+#include "regcache.h"
+#include "cp-abi.h"
+
+#include <errno.h>
+#include "gdb_string.h"
+#include "gdb_assert.h"
+
+/* Flag indicating HP compilers were used; needed to correctly handle some
+ value operations with HP aCC code/runtime. */
+extern int hp_som_som_object_present;
+
+extern int overload_debug;
+/* Local functions. */
+
+static int typecmp (int staticp, int varargs, int nargs,
+ struct field t1[], struct value *t2[]);
+
+static CORE_ADDR find_function_addr (struct value *, struct type **);
+static struct value *value_arg_coerce (struct value *, struct type *, int);
+
+
+static CORE_ADDR value_push (CORE_ADDR, struct value *);
+
+static struct value *search_struct_field (char *, struct value *, int,
+ struct type *, int);
+
+static struct value *search_struct_method (char *, struct value **,
+ struct value **,
+ int, int *, struct type *);
+
+static int check_field_in (struct type *, const char *);
+
+static CORE_ADDR allocate_space_in_inferior (int);
+
+static struct value *cast_into_complex (struct type *, struct value *);
+
+static struct fn_field *find_method_list (struct value ** argp, char *method,
+ int offset,
+ struct type *type, int *num_fns,
+ struct type **basetype,
+ int *boffset);
+
+void _initialize_valops (void);
+
+/* Flag for whether we want to abandon failed expression evals by default. */
+
+#if 0
+static int auto_abandon = 0;
+#endif
+
+int overload_resolution = 0;
+
+/* This boolean tells what gdb should do if a signal is received while in
+ a function called from gdb (call dummy). If set, gdb unwinds the stack
+ and restore the context to what as it was before the call.
+ The default is to stop in the frame where the signal was received. */
+
+int unwind_on_signal_p = 0;
+
+
+
+/* Find the address of function name NAME in the inferior. */
+
+struct value *
+find_function_in_inferior (const char *name)
+{
+ register struct symbol *sym;
+ sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
+ if (sym != NULL)
+ {
+ if (SYMBOL_CLASS (sym) != LOC_BLOCK)
+ {
+ error ("\"%s\" exists in this program but is not a function.",
+ name);
+ }
+ return value_of_variable (sym, NULL);
+ }
+ else
+ {
+ struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
+ if (msymbol != NULL)
+ {
+ struct type *type;
+ CORE_ADDR maddr;
+ type = lookup_pointer_type (builtin_type_char);
+ type = lookup_function_type (type);
+ type = lookup_pointer_type (type);
+ maddr = SYMBOL_VALUE_ADDRESS (msymbol);
+ return value_from_pointer (type, maddr);
+ }
+ else
+ {
+ if (!target_has_execution)
+ error ("evaluation of this expression requires the target program to be active");
+ else
+ error ("evaluation of this expression requires the program to have a function \"%s\".", name);
+ }
+ }
+}
+
+/* Allocate NBYTES of space in the inferior using the inferior's malloc
+ and return a value that is a pointer to the allocated space. */
+
+struct value *
+value_allocate_space_in_inferior (int len)
+{
+ struct value *blocklen;
+ struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
+
+ blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
+ val = call_function_by_hand (val, 1, &blocklen);
+ if (value_logical_not (val))
+ {
+ if (!target_has_execution)
+ error ("No memory available to program now: you need to start the target first");
+ else
+ error ("No memory available to program: call to malloc failed");
+ }
+ return val;
+}
+
+static CORE_ADDR
+allocate_space_in_inferior (int len)
+{
+ return value_as_long (value_allocate_space_in_inferior (len));
+}
+
+/* Cast value ARG2 to type TYPE and return as a value.
+ More general than a C cast: accepts any two types of the same length,
+ and if ARG2 is an lvalue it can be cast into anything at all. */
+/* In C++, casts may change pointer or object representations. */
+
+struct value *
+value_cast (struct type *type, struct value *arg2)
+{
+ register enum type_code code1;
+ register enum type_code code2;
+ register int scalar;
+ struct type *type2;
+
+ int convert_to_boolean = 0;
+
+ if (VALUE_TYPE (arg2) == type)
+ return arg2;
+
+ CHECK_TYPEDEF (type);
+ code1 = TYPE_CODE (type);
+ COERCE_REF (arg2);
+ type2 = check_typedef (VALUE_TYPE (arg2));
+
+ /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
+ is treated like a cast to (TYPE [N])OBJECT,
+ where N is sizeof(OBJECT)/sizeof(TYPE). */
+ if (code1 == TYPE_CODE_ARRAY)
+ {
+ struct type *element_type = TYPE_TARGET_TYPE (type);
+ unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
+ if (element_length > 0
+ && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
+ {
+ struct type *range_type = TYPE_INDEX_TYPE (type);
+ int val_length = TYPE_LENGTH (type2);
+ LONGEST low_bound, high_bound, new_length;
+ if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
+ low_bound = 0, high_bound = 0;
+ new_length = val_length / element_length;
+ if (val_length % element_length != 0)
+ warning ("array element type size does not divide object size in cast");
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ range_type = create_range_type ((struct type *) NULL,
+ TYPE_TARGET_TYPE (range_type),
+ low_bound,
+ new_length + low_bound - 1);
+ VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
+ element_type, range_type);
+ return arg2;
+ }
+ }
+
+ if (current_language->c_style_arrays
+ && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
+ arg2 = value_coerce_array (arg2);
+
+ if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
+ arg2 = value_coerce_function (arg2);
+
+ type2 = check_typedef (VALUE_TYPE (arg2));
+ COERCE_VARYING_ARRAY (arg2, type2);
+ code2 = TYPE_CODE (type2);
+
+ if (code1 == TYPE_CODE_COMPLEX)
+ return cast_into_complex (type, arg2);
+ if (code1 == TYPE_CODE_BOOL)
+ {
+ code1 = TYPE_CODE_INT;
+ convert_to_boolean = 1;
+ }
+ if (code1 == TYPE_CODE_CHAR)
+ code1 = TYPE_CODE_INT;
+ if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
+ code2 = TYPE_CODE_INT;
+
+ scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
+ || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
+
+ if (code1 == TYPE_CODE_STRUCT
+ && code2 == TYPE_CODE_STRUCT
+ && TYPE_NAME (type) != 0)
+ {
+ /* Look in the type of the source to see if it contains the
+ type of the target as a superclass. If so, we'll need to
+ offset the object in addition to changing its type. */
+ struct value *v = search_struct_field (type_name_no_tag (type),
+ arg2, 0, type2, 1);
+ if (v)
+ {
+ VALUE_TYPE (v) = type;
+ return v;
+ }
+ }
+ if (code1 == TYPE_CODE_FLT && scalar)
+ return value_from_double (type, value_as_double (arg2));
+ else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
+ || code1 == TYPE_CODE_RANGE)
+ && (scalar || code2 == TYPE_CODE_PTR))
+ {
+ LONGEST longest;
+
+ if (hp_som_som_object_present && /* if target compiled by HP aCC */
+ (code2 == TYPE_CODE_PTR))
+ {
+ unsigned int *ptr;
+ struct value *retvalp;
+
+ switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
+ {
+ /* With HP aCC, pointers to data members have a bias */
+ case TYPE_CODE_MEMBER:
+ retvalp = value_from_longest (type, value_as_long (arg2));
+ /* force evaluation */
+ ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
+ *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
+ return retvalp;
+
+ /* While pointers to methods don't really point to a function */
+ case TYPE_CODE_METHOD:
+ error ("Pointers to methods not supported with HP aCC");
+
+ default:
+ break; /* fall out and go to normal handling */
+ }
+ }
+
+ /* When we cast pointers to integers, we mustn't use
+ POINTER_TO_ADDRESS to find the address the pointer
+ represents, as value_as_long would. GDB should evaluate
+ expressions just as the compiler would --- and the compiler
+ sees a cast as a simple reinterpretation of the pointer's
+ bits. */
+ if (code2 == TYPE_CODE_PTR)
+ longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
+ TYPE_LENGTH (type2));
+ else
+ longest = value_as_long (arg2);
+ return value_from_longest (type, convert_to_boolean ?
+ (LONGEST) (longest ? 1 : 0) : longest);
+ }
+ else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
+ code2 == TYPE_CODE_ENUM ||
+ code2 == TYPE_CODE_RANGE))
+ {
+ /* TYPE_LENGTH (type) is the length of a pointer, but we really
+ want the length of an address! -- we are really dealing with
+ addresses (i.e., gdb representations) not pointers (i.e.,
+ target representations) here.
+
+ This allows things like "print *(int *)0x01000234" to work
+ without printing a misleading message -- which would
+ otherwise occur when dealing with a target having two byte
+ pointers and four byte addresses. */
+
+ int addr_bit = TARGET_ADDR_BIT;
+
+ LONGEST longest = value_as_long (arg2);
+ if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
+ {
+ if (longest >= ((LONGEST) 1 << addr_bit)
+ || longest <= -((LONGEST) 1 << addr_bit))
+ warning ("value truncated");
+ }
+ return value_from_longest (type, longest);
+ }
+ else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
+ {
+ if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
+ {
+ struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
+ struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
+ if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
+ && TYPE_CODE (t2) == TYPE_CODE_STRUCT
+ && !value_logical_not (arg2))
+ {
+ struct value *v;
+
+ /* Look in the type of the source to see if it contains the
+ type of the target as a superclass. If so, we'll need to
+ offset the pointer rather than just change its type. */
+ if (TYPE_NAME (t1) != NULL)
+ {
+ v = search_struct_field (type_name_no_tag (t1),
+ value_ind (arg2), 0, t2, 1);
+ if (v)
+ {
+ v = value_addr (v);
+ VALUE_TYPE (v) = type;
+ return v;
+ }
+ }
+
+ /* Look in the type of the target to see if it contains the
+ type of the source as a superclass. If so, we'll need to
+ offset the pointer rather than just change its type.
+ FIXME: This fails silently with virtual inheritance. */
+ if (TYPE_NAME (t2) != NULL)
+ {
+ v = search_struct_field (type_name_no_tag (t2),
+ value_zero (t1, not_lval), 0, t1, 1);
+ if (v)
+ {
+ CORE_ADDR addr2 = value_as_address (arg2);
+ addr2 -= (VALUE_ADDRESS (v)
+ + VALUE_OFFSET (v)
+ + VALUE_EMBEDDED_OFFSET (v));
+ return value_from_pointer (type, addr2);
+ }
+ }
+ }
+ /* No superclass found, just fall through to change ptr type. */
+ }
+ VALUE_TYPE (arg2) = type;
+ arg2 = value_change_enclosing_type (arg2, type);
+ VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
+ return arg2;
+ }
+ /* OBSOLETE else if (chill_varying_type (type)) */
+ /* OBSOLETE { */
+ /* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
+ /* OBSOLETE struct value *val; */
+ /* OBSOLETE int count1, count2; */
+ /* OBSOLETE LONGEST low_bound, high_bound; */
+ /* OBSOLETE char *valaddr, *valaddr_data; */
+ /* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
+ /* OBSOLETE eltype2 = NULL; */
+ /* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
+ /* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
+ /* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
+ /* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
+ /* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
+ /* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
+ /* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
+ /* OBSOLETE error ("Invalid conversion to varying type"); */
+ /* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
+ /* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
+ /* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
+ /* OBSOLETE count1 = -1; */
+ /* OBSOLETE else */
+ /* OBSOLETE count1 = high_bound - low_bound + 1; */
+ /* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
+ /* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
+ /* OBSOLETE else */
+ /* OBSOLETE count2 = high_bound - low_bound + 1; */
+ /* OBSOLETE if (count2 > count1) */
+ /* OBSOLETE error ("target varying type is too small"); */
+ /* OBSOLETE val = allocate_value (type); */
+ /* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
+ /* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
+ /* OBSOLETE *//* Set val's __var_length field to count2. */
+ /* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
+ /* OBSOLETE count2); */
+ /* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
+ /* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
+ /* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
+ /* OBSOLETE *//* Zero the rest of the __var_data field of val. */
+ /* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
+ /* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
+ /* OBSOLETE return val; */
+ /* OBSOLETE } */
+ else if (VALUE_LVAL (arg2) == lval_memory)
+ {
+ return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
+ VALUE_BFD_SECTION (arg2));
+ }
+ else if (code1 == TYPE_CODE_VOID)
+ {
+ return value_zero (builtin_type_void, not_lval);
+ }
+ else
+ {
+ error ("Invalid cast.");
+ return 0;
+ }
+}
+
+/* Create a value of type TYPE that is zero, and return it. */
+
+struct value *
+value_zero (struct type *type, enum lval_type lv)
+{
+ struct value *val = allocate_value (type);
+
+ memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
+ VALUE_LVAL (val) = lv;
+
+ return val;
+}
+
+/* Return a value with type TYPE located at ADDR.
+
+ Call value_at only if the data needs to be fetched immediately;
+ if we can be 'lazy' and defer the fetch, perhaps indefinately, call
+ value_at_lazy instead. value_at_lazy simply records the address of
+ the data and sets the lazy-evaluation-required flag. The lazy flag
+ is tested in the VALUE_CONTENTS macro, which is used if and when
+ the contents are actually required.
+
+ Note: value_at does *NOT* handle embedded offsets; perform such
+ adjustments before or after calling it. */
+
+struct value *
+value_at (struct type *type, CORE_ADDR addr, asection *sect)
+{
+ struct value *val;
+
+ if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
+ error ("Attempt to dereference a generic pointer.");
+
+ val = allocate_value (type);
+
+ read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
+
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = addr;
+ VALUE_BFD_SECTION (val) = sect;
+
+ return val;
+}
+
+/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
+
+struct value *
+value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
+{
+ struct value *val;
+
+ if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
+ error ("Attempt to dereference a generic pointer.");
+
+ val = allocate_value (type);
+
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = addr;
+ VALUE_LAZY (val) = 1;
+ VALUE_BFD_SECTION (val) = sect;
+
+ return val;
+}
+
+/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
+ if the current data for a variable needs to be loaded into
+ VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
+ clears the lazy flag to indicate that the data in the buffer is valid.
+
+ If the value is zero-length, we avoid calling read_memory, which would
+ abort. We mark the value as fetched anyway -- all 0 bytes of it.
+
+ This function returns a value because it is used in the VALUE_CONTENTS
+ macro as part of an expression, where a void would not work. The
+ value is ignored. */
+
+int
+value_fetch_lazy (struct value *val)
+{
+ CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
+ int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
+
+ struct type *type = VALUE_TYPE (val);
+ if (length)
+ read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
+
+ VALUE_LAZY (val) = 0;
+ return 0;
+}
+
+
+/* Store the contents of FROMVAL into the location of TOVAL.
+ Return a new value with the location of TOVAL and contents of FROMVAL. */
+
+struct value *
+value_assign (struct value *toval, struct value *fromval)
+{
+ register struct type *type;
+ struct value *val;
+ char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
+ int use_buffer = 0;
+
+ if (!toval->modifiable)
+ error ("Left operand of assignment is not a modifiable lvalue.");
+
+ COERCE_REF (toval);
+
+ type = VALUE_TYPE (toval);
+ if (VALUE_LVAL (toval) != lval_internalvar)
+ fromval = value_cast (type, fromval);
+ else
+ COERCE_ARRAY (fromval);
+ CHECK_TYPEDEF (type);
+
+ /* If TOVAL is a special machine register requiring conversion
+ of program values to a special raw format,
+ convert FROMVAL's contents now, with result in `raw_buffer',
+ and set USE_BUFFER to the number of bytes to write. */
+
+ if (VALUE_REGNO (toval) >= 0)
+ {
+ int regno = VALUE_REGNO (toval);
+ if (CONVERT_REGISTER_P (regno))
+ {
+ struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
+ VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
+ use_buffer = REGISTER_RAW_SIZE (regno);
+ }
+ }
+
+ switch (VALUE_LVAL (toval))
+ {
+ case lval_internalvar:
+ set_internalvar (VALUE_INTERNALVAR (toval), fromval);
+ val = value_copy (VALUE_INTERNALVAR (toval)->value);
+ val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
+ VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
+ VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
+ return val;
+
+ case lval_internalvar_component:
+ set_internalvar_component (VALUE_INTERNALVAR (toval),
+ VALUE_OFFSET (toval),
+ VALUE_BITPOS (toval),
+ VALUE_BITSIZE (toval),
+ fromval);
+ break;
+
+ case lval_memory:
+ {
+ char *dest_buffer;
+ CORE_ADDR changed_addr;
+ int changed_len;
+
+ if (VALUE_BITSIZE (toval))
+ {
+ char buffer[sizeof (LONGEST)];
+ /* We assume that the argument to read_memory is in units of
+ host chars. FIXME: Is that correct? */
+ changed_len = (VALUE_BITPOS (toval)
+ + VALUE_BITSIZE (toval)
+ + HOST_CHAR_BIT - 1)
+ / HOST_CHAR_BIT;
+
+ if (changed_len > (int) sizeof (LONGEST))
+ error ("Can't handle bitfields which don't fit in a %d bit word.",
+ (int) sizeof (LONGEST) * HOST_CHAR_BIT);
+
+ read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, changed_len);
+ modify_field (buffer, value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ dest_buffer = buffer;
+ }
+ else if (use_buffer)
+ {
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ changed_len = use_buffer;
+ dest_buffer = raw_buffer;
+ }
+ else
+ {
+ changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
+ changed_len = TYPE_LENGTH (type);
+ dest_buffer = VALUE_CONTENTS (fromval);
+ }
+
+ write_memory (changed_addr, dest_buffer, changed_len);
+ if (memory_changed_hook)
+ memory_changed_hook (changed_addr, changed_len);
+ target_changed_event ();
+ }
+ break;
+
+ case lval_register:
+ if (VALUE_BITSIZE (toval))
+ {
+ char buffer[sizeof (LONGEST)];
+ int len =
+ REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
+
+ if (len > (int) sizeof (LONGEST))
+ error ("Can't handle bitfields in registers larger than %d bits.",
+ (int) sizeof (LONGEST) * HOST_CHAR_BIT);
+
+ if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
+ > len * HOST_CHAR_BIT)
+ /* Getting this right would involve being very careful about
+ byte order. */
+ error ("Can't assign to bitfields that cross register "
+ "boundaries.");
+
+ read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, len);
+ modify_field (buffer, value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ buffer, len);
+ }
+ else if (use_buffer)
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ raw_buffer, use_buffer);
+ else
+ {
+ /* Do any conversion necessary when storing this type to more
+ than one register. */
+#ifdef REGISTER_CONVERT_FROM_TYPE
+ memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+ REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ raw_buffer, TYPE_LENGTH (type));
+#else
+ write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+ VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+#endif
+ }
+
+ target_changed_event ();
+
+ /* Assigning to the stack pointer, frame pointer, and other
+ (architecture and calling convention specific) registers may
+ cause the frame cache to be out of date. We just do this
+ on all assignments to registers for simplicity; I doubt the slowdown
+ matters. */
+ reinit_frame_cache ();
+ break;
+
+ case lval_reg_frame_relative:
+ {
+ /* value is stored in a series of registers in the frame
+ specified by the structure. Copy that value out, modify
+ it, and copy it back in. */
+ int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
+ int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
+ int byte_offset = VALUE_OFFSET (toval) % reg_size;
+ int reg_offset = VALUE_OFFSET (toval) / reg_size;
+ int amount_copied;
+
+ /* Make the buffer large enough in all cases. */
+ /* FIXME (alloca): Not safe for very large data types. */
+ char *buffer = (char *) alloca (amount_to_copy
+ + sizeof (LONGEST)
+ + MAX_REGISTER_RAW_SIZE);
+
+ int regno;
+ struct frame_info *frame;
+
+ /* Figure out which frame this is in currently. */
+ for (frame = get_current_frame ();
+ frame && FRAME_FP (frame) != VALUE_FRAME (toval);
+ frame = get_prev_frame (frame))
+ ;
+
+ if (!frame)
+ error ("Value being assigned to is no longer active.");
+
+ amount_to_copy += (reg_size - amount_to_copy % reg_size);
+
+ /* Copy it out. */
+ for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
+ amount_copied = 0);
+ amount_copied < amount_to_copy;
+ amount_copied += reg_size, regno++)
+ {
+ get_saved_register (buffer + amount_copied,
+ (int *) NULL, (CORE_ADDR *) NULL,
+ frame, regno, (enum lval_type *) NULL);
+ }
+
+ /* Modify what needs to be modified. */
+ if (VALUE_BITSIZE (toval))
+ modify_field (buffer + byte_offset,
+ value_as_long (fromval),
+ VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+ else if (use_buffer)
+ memcpy (buffer + byte_offset, raw_buffer, use_buffer);
+ else
+ memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
+ TYPE_LENGTH (type));
+
+ /* Copy it back. */
+ for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
+ amount_copied = 0);
+ amount_copied < amount_to_copy;
+ amount_copied += reg_size, regno++)
+ {
+ enum lval_type lval;
+ CORE_ADDR addr;
+ int optim;
+
+ /* Just find out where to put it. */
+ get_saved_register ((char *) NULL,
+ &optim, &addr, frame, regno, &lval);
+
+ if (optim)
+ error ("Attempt to assign to a value that was optimized out.");
+ if (lval == lval_memory)
+ write_memory (addr, buffer + amount_copied, reg_size);
+ else if (lval == lval_register)
+ write_register_bytes (addr, buffer + amount_copied, reg_size);
+ else
+ error ("Attempt to assign to an unmodifiable value.");
+ }
+
+ if (register_changed_hook)
+ register_changed_hook (-1);
+ target_changed_event ();
+ }
+ break;
+
+
+ default:
+ error ("Left operand of assignment is not an lvalue.");
+ }
+
+ /* If the field does not entirely fill a LONGEST, then zero the sign bits.
+ If the field is signed, and is negative, then sign extend. */
+ if ((VALUE_BITSIZE (toval) > 0)
+ && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
+ {
+ LONGEST fieldval = value_as_long (fromval);
+ LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
+
+ fieldval &= valmask;
+ if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
+ fieldval |= ~valmask;
+
+ fromval = value_from_longest (type, fieldval);
+ }
+
+ val = value_copy (toval);
+ memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
+ TYPE_LENGTH (type));
+ VALUE_TYPE (val) = type;
+ val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
+ VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
+ VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
+
+ return val;
+}
+
+/* Extend a value VAL to COUNT repetitions of its type. */
+
+struct value *
+value_repeat (struct value *arg1, int count)
+{
+ struct value *val;
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Only values in memory can be extended with '@'.");
+ if (count < 1)
+ error ("Invalid number %d of repetitions.", count);
+
+ val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
+
+ read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
+ VALUE_CONTENTS_ALL_RAW (val),
+ TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
+ VALUE_LVAL (val) = lval_memory;
+ VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
+
+ return val;
+}
+
+struct value *
+value_of_variable (struct symbol *var, struct block *b)
+{
+ struct value *val;
+ struct frame_info *frame = NULL;
+
+ if (!b)
+ frame = NULL; /* Use selected frame. */
+ else if (symbol_read_needs_frame (var))
+ {
+ frame = block_innermost_frame (b);
+ if (!frame)
+ {
+ if (BLOCK_FUNCTION (b)
+ && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
+ error ("No frame is currently executing in block %s.",
+ SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
+ else
+ error ("No frame is currently executing in specified block");
+ }
+ }
+
+ val = read_var_value (var, frame);
+ if (!val)
+ error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
+
+ return val;
+}
+
+/* Given a value which is an array, return a value which is a pointer to its
+ first element, regardless of whether or not the array has a nonzero lower
+ bound.
+
+ FIXME: A previous comment here indicated that this routine should be
+ substracting the array's lower bound. It's not clear to me that this
+ is correct. Given an array subscripting operation, it would certainly
+ work to do the adjustment here, essentially computing:
+
+ (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
+
+ However I believe a more appropriate and logical place to account for
+ the lower bound is to do so in value_subscript, essentially computing:
+
+ (&array[0] + ((index - lowerbound) * sizeof array[0]))
+
+ As further evidence consider what would happen with operations other
+ than array subscripting, where the caller would get back a value that
+ had an address somewhere before the actual first element of the array,
+ and the information about the lower bound would be lost because of
+ the coercion to pointer type.
+ */
+
+struct value *
+value_coerce_array (struct value *arg1)
+{
+ register struct type *type = check_typedef (VALUE_TYPE (arg1));
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
+ (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
+}
+
+/* Given a value which is a function, return a value which is a pointer
+ to it. */
+
+struct value *
+value_coerce_function (struct value *arg1)
+{
+ struct value *retval;
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
+ (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
+ VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
+ return retval;
+}
+
+/* Return a pointer value for the object for which ARG1 is the contents. */
+
+struct value *
+value_addr (struct value *arg1)
+{
+ struct value *arg2;
+
+ struct type *type = check_typedef (VALUE_TYPE (arg1));
+ if (TYPE_CODE (type) == TYPE_CODE_REF)
+ {
+ /* Copy the value, but change the type from (T&) to (T*).
+ We keep the same location information, which is efficient,
+ and allows &(&X) to get the location containing the reference. */
+ arg2 = value_copy (arg1);
+ VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
+ return arg2;
+ }
+ if (TYPE_CODE (type) == TYPE_CODE_FUNC)
+ return value_coerce_function (arg1);
+
+ if (VALUE_LVAL (arg1) != lval_memory)
+ error ("Attempt to take address of value not located in memory.");
+
+ /* Get target memory address */
+ arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
+ (VALUE_ADDRESS (arg1)
+ + VALUE_OFFSET (arg1)
+ + VALUE_EMBEDDED_OFFSET (arg1)));
+
+ /* This may be a pointer to a base subobject; so remember the
+ full derived object's type ... */
+ arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
+ /* ... and also the relative position of the subobject in the full object */
+ VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
+ VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
+ return arg2;
+}
+
+/* Given a value of a pointer type, apply the C unary * operator to it. */
+
+struct value *
+value_ind (struct value *arg1)
+{
+ struct type *base_type;
+ struct value *arg2;
+
+ COERCE_ARRAY (arg1);
+
+ base_type = check_typedef (VALUE_TYPE (arg1));
+
+ if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
+ error ("not implemented: member types in value_ind");
+
+ /* Allow * on an integer so we can cast it to whatever we want.
+ This returns an int, which seems like the most C-like thing
+ to do. "long long" variables are rare enough that
+ BUILTIN_TYPE_LONGEST would seem to be a mistake. */
+ if (TYPE_CODE (base_type) == TYPE_CODE_INT)
+ return value_at_lazy (builtin_type_int,
+ (CORE_ADDR) value_as_long (arg1),
+ VALUE_BFD_SECTION (arg1));
+ else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
+ {
+ struct type *enc_type;
+ /* We may be pointing to something embedded in a larger object */
+ /* Get the real type of the enclosing object */
+ enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
+ enc_type = TYPE_TARGET_TYPE (enc_type);
+ /* Retrieve the enclosing object pointed to */
+ arg2 = value_at_lazy (enc_type,
+ value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
+ VALUE_BFD_SECTION (arg1));
+ /* Re-adjust type */
+ VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
+ /* Add embedding info */
+ arg2 = value_change_enclosing_type (arg2, enc_type);
+ VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
+
+ /* We may be pointing to an object of some derived type */
+ arg2 = value_full_object (arg2, NULL, 0, 0, 0);
+ return arg2;
+ }
+
+ error ("Attempt to take contents of a non-pointer value.");
+ return 0; /* For lint -- never reached */
+}
+
+/* Pushing small parts of stack frames. */
+
+/* Push one word (the size of object that a register holds). */
+
+CORE_ADDR
+push_word (CORE_ADDR sp, ULONGEST word)
+{
+ register int len = REGISTER_SIZE;
+ char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
+
+ store_unsigned_integer (buffer, len, word);
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ write_memory (sp, buffer, len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp, buffer, len);
+ sp += len;
+ }
+
+ return sp;
+}
+
+/* Push LEN bytes with data at BUFFER. */
+
+CORE_ADDR
+push_bytes (CORE_ADDR sp, char *buffer, int len)
+{
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= len;
+ write_memory (sp, buffer, len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp, buffer, len);
+ sp += len;
+ }
+
+ return sp;
+}
+
+#ifndef PARM_BOUNDARY
+#define PARM_BOUNDARY (0)
+#endif
+
+/* Push onto the stack the specified value VALUE. Pad it correctly for
+ it to be an argument to a function. */
+
+static CORE_ADDR
+value_push (register CORE_ADDR sp, struct value *arg)
+{
+ register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
+ register int container_len = len;
+ register int offset;
+
+ /* How big is the container we're going to put this value in? */
+ if (PARM_BOUNDARY)
+ container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
+ & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
+
+ /* Are we going to put it at the high or low end of the container? */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = container_len - len;
+ else
+ offset = 0;
+
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= container_len;
+ write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
+ }
+ else
+ {
+ /* stack grows upward */
+ write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
+ sp += container_len;
+ }
+
+ return sp;
+}
+
+CORE_ADDR
+default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ /* ASSERT ( !struct_return); */
+ int i;
+ for (i = nargs - 1; i >= 0; i--)
+ sp = value_push (sp, args[i]);
+ return sp;
+}
+
+
+/* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
+
+ How you should pass arguments to a function depends on whether it
+ was defined in K&R style or prototype style. If you define a
+ function using the K&R syntax that takes a `float' argument, then
+ callers must pass that argument as a `double'. If you define the
+ function using the prototype syntax, then you must pass the
+ argument as a `float', with no promotion.
+
+ Unfortunately, on certain older platforms, the debug info doesn't
+ indicate reliably how each function was defined. A function type's
+ TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
+ defined in prototype style. When calling a function whose
+ TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
+ COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
+
+ For modern targets, it is proper to assume that, if the prototype
+ flag is clear, that can be trusted: `float' arguments should be
+ promoted to `double'. You should register the function
+ `standard_coerce_float_to_double' to get this behavior.
+
+ For some older targets, if the prototype flag is clear, that
+ doesn't tell us anything. So we guess that, if we don't have a
+ type for the formal parameter (i.e., the first argument to
+ COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
+ otherwise, we should leave it alone. The function
+ `default_coerce_float_to_double' provides this behavior; it is the
+ default value, for compatibility with older configurations. */
+int
+default_coerce_float_to_double (struct type *formal, struct type *actual)
+{
+ return formal == NULL;
+}
+
+
+int
+standard_coerce_float_to_double (struct type *formal, struct type *actual)
+{
+ return 1;
+}
+
+
+/* Perform the standard coercions that are specified
+ for arguments to be passed to C functions.
+
+ If PARAM_TYPE is non-NULL, it is the expected parameter type.
+ IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
+
+static struct value *
+value_arg_coerce (struct value *arg, struct type *param_type,
+ int is_prototyped)
+{
+ register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
+ register struct type *type
+ = param_type ? check_typedef (param_type) : arg_type;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_REF:
+ if (TYPE_CODE (arg_type) != TYPE_CODE_REF
+ && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
+ {
+ arg = value_addr (arg);
+ VALUE_TYPE (arg) = param_type;
+ return arg;
+ }
+ break;
+ case TYPE_CODE_INT:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_ENUM:
+ /* If we don't have a prototype, coerce to integer type if necessary. */
+ if (!is_prototyped)
+ {
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
+ type = builtin_type_int;
+ }
+ /* Currently all target ABIs require at least the width of an integer
+ type for an argument. We may have to conditionalize the following
+ type coercion for future targets. */
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
+ type = builtin_type_int;
+ break;
+ case TYPE_CODE_FLT:
+ /* FIXME: We should always convert floats to doubles in the
+ non-prototyped case. As many debugging formats include
+ no information about prototyping, we have to live with
+ COERCE_FLOAT_TO_DOUBLE for now. */
+ if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
+ {
+ if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
+ type = builtin_type_double;
+ else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
+ type = builtin_type_long_double;
+ }
+ break;
+ case TYPE_CODE_FUNC:
+ type = lookup_pointer_type (type);
+ break;
+ case TYPE_CODE_ARRAY:
+ /* Arrays are coerced to pointers to their first element, unless
+ they are vectors, in which case we want to leave them alone,
+ because they are passed by value. */
+ if (current_language->c_style_arrays)
+ if (!TYPE_VECTOR (type))
+ type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
+ break;
+ case TYPE_CODE_UNDEF:
+ case TYPE_CODE_PTR:
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_VOID:
+ case TYPE_CODE_SET:
+ case TYPE_CODE_RANGE:
+ case TYPE_CODE_STRING:
+ case TYPE_CODE_BITSTRING:
+ case TYPE_CODE_ERROR:
+ case TYPE_CODE_MEMBER:
+ case TYPE_CODE_METHOD:
+ case TYPE_CODE_COMPLEX:
+ default:
+ break;
+ }
+
+ return value_cast (type, arg);
+}
+
+/* Determine a function's address and its return type from its value.
+ Calls error() if the function is not valid for calling. */
+
+static CORE_ADDR
+find_function_addr (struct value *function, struct type **retval_type)
+{
+ register struct type *ftype = check_typedef (VALUE_TYPE (function));
+ register enum type_code code = TYPE_CODE (ftype);
+ struct type *value_type;
+ CORE_ADDR funaddr;
+
+ /* If it's a member function, just look at the function
+ part of it. */
+
+ /* Determine address to call. */
+ if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
+ {
+ funaddr = VALUE_ADDRESS (function);
+ value_type = TYPE_TARGET_TYPE (ftype);
+ }
+ else if (code == TYPE_CODE_PTR)
+ {
+ funaddr = value_as_address (function);
+ ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
+ if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
+ || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
+ {
+ funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
+ value_type = TYPE_TARGET_TYPE (ftype);
+ }
+ else
+ value_type = builtin_type_int;
+ }
+ else if (code == TYPE_CODE_INT)
+ {
+ /* Handle the case of functions lacking debugging info.
+ Their values are characters since their addresses are char */
+ if (TYPE_LENGTH (ftype) == 1)
+ funaddr = value_as_address (value_addr (function));
+ else
+ /* Handle integer used as address of a function. */
+ funaddr = (CORE_ADDR) value_as_long (function);
+
+ value_type = builtin_type_int;
+ }
+ else
+ error ("Invalid data type for function to be called.");
+
+ *retval_type = value_type;
+ return funaddr;
+}
+
+/* All this stuff with a dummy frame may seem unnecessarily complicated
+ (why not just save registers in GDB?). The purpose of pushing a dummy
+ frame which looks just like a real frame is so that if you call a
+ function and then hit a breakpoint (get a signal, etc), "backtrace"
+ will look right. Whether the backtrace needs to actually show the
+ stack at the time the inferior function was called is debatable, but
+ it certainly needs to not display garbage. So if you are contemplating
+ making dummy frames be different from normal frames, consider that. */
+
+/* Perform a function call in the inferior.
+ ARGS is a vector of values of arguments (NARGS of them).
+ FUNCTION is a value, the function to be called.
+ Returns a value representing what the function returned.
+ May fail to return, if a breakpoint or signal is hit
+ during the execution of the function.
+
+ ARGS is modified to contain coerced values. */
+
+static struct value *
+hand_function_call (struct value *function, int nargs, struct value **args)
+{
+ register CORE_ADDR sp;
+ register int i;
+ int rc;
+ CORE_ADDR start_sp;
+ /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
+ is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
+ and remove any extra bytes which might exist because ULONGEST is
+ bigger than REGISTER_SIZE.
+
+ NOTE: This is pretty wierd, as the call dummy is actually a
+ sequence of instructions. But CISC machines will have
+ to pack the instructions into REGISTER_SIZE units (and
+ so will RISC machines for which INSTRUCTION_SIZE is not
+ REGISTER_SIZE).
+
+ NOTE: This is pretty stupid. CALL_DUMMY should be in strict
+ target byte order. */
+
+ static ULONGEST *dummy;
+ int sizeof_dummy1;
+ char *dummy1;
+ CORE_ADDR old_sp;
+ struct type *value_type;
+ unsigned char struct_return;
+ CORE_ADDR struct_addr = 0;
+ struct regcache *retbuf;
+ struct cleanup *retbuf_cleanup;
+ struct inferior_status *inf_status;
+ struct cleanup *inf_status_cleanup;
+ CORE_ADDR funaddr;
+ int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
+ CORE_ADDR real_pc;
+ struct type *param_type = NULL;
+ struct type *ftype = check_typedef (SYMBOL_TYPE (function));
+ int n_method_args = 0;
+
+ dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
+ sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
+ dummy1 = alloca (sizeof_dummy1);
+ memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
+
+ if (!target_has_execution)
+ noprocess ();
+
+ /* Create a cleanup chain that contains the retbuf (buffer
+ containing the register values). This chain is create BEFORE the
+ inf_status chain so that the inferior status can cleaned up
+ (restored or discarded) without having the retbuf freed. */
+ retbuf = regcache_xmalloc (current_gdbarch);
+ retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
+
+ /* A cleanup for the inferior status. Create this AFTER the retbuf
+ so that this can be discarded or applied without interfering with
+ the regbuf. */
+ inf_status = save_inferior_status (1);
+ inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
+
+ /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
+ (and POP_FRAME for restoring them). (At least on most machines)
+ they are saved on the stack in the inferior. */
+ PUSH_DUMMY_FRAME;
+
+ old_sp = read_sp ();
+
+ /* Ensure that the initial SP is correctly aligned. */
+ if (gdbarch_frame_align_p (current_gdbarch))
+ {
+ /* NOTE: cagney/2002-09-18:
+
+ On a RISC architecture, a void parameterless generic dummy
+ frame (i.e., no parameters, no result) typically does not
+ need to push anything the stack and hence can leave SP and
+ FP. Similarly, a framelss (possibly leaf) function does not
+ push anything on the stack and, hence, that too can leave FP
+ and SP unchanged. As a consequence, a sequence of void
+ parameterless generic dummy frame calls to frameless
+ functions will create a sequence of effectively identical
+ frames (SP, FP and TOS and PC the same). This, not
+ suprisingly, results in what appears to be a stack in an
+ infinite loop --- when GDB tries to find a generic dummy
+ frame on the internal dummy frame stack, it will always find
+ the first one.
+
+ To avoid this problem, the code below always grows the stack.
+ That way, two dummy frames can never be identical. It does
+ burn a few bytes of stack but that is a small price to pay
+ :-). */
+ sp = gdbarch_frame_align (current_gdbarch, old_sp);
+ if (sp == old_sp)
+ {
+ if (INNER_THAN (1, 2))
+ /* Stack grows down. */
+ sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
+ else
+ /* Stack grows up. */
+ sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
+ }
+ gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
+ || (INNER_THAN (2, 1) && sp >= old_sp));
+ }
+ else
+ /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
+ aligned the SP is! Further, per comment above, if the generic
+ dummy frame ends up empty (because nothing is pushed) GDB won't
+ be able to correctly perform back traces. If a target is
+ having trouble with backtraces, first thing to do is add
+ FRAME_ALIGN() to its architecture vector. After that, try
+ adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
+ when the next outer frame is a generic dummy, it returns the
+ current frame's base. */
+ sp = old_sp;
+
+ if (INNER_THAN (1, 2))
+ {
+ /* Stack grows down */
+ sp -= sizeof_dummy1;
+ start_sp = sp;
+ }
+ else
+ {
+ /* Stack grows up */
+ start_sp = sp;
+ sp += sizeof_dummy1;
+ }
+
+ /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
+ after allocating space for the call dummy. A target can specify
+ a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
+ alignment requirements are met. */
+
+ funaddr = find_function_addr (function, &value_type);
+ CHECK_TYPEDEF (value_type);
+
+ {
+ struct block *b = block_for_pc (funaddr);
+ /* If compiled without -g, assume GCC 2. */
+ using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
+ }
+
+ /* Are we returning a value using a structure return or a normal
+ value return? */
+
+ struct_return = using_struct_return (function, funaddr, value_type,
+ using_gcc);
+
+ /* Create a call sequence customized for this function
+ and the number of arguments for it. */
+ for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
+ store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
+ REGISTER_SIZE,
+ (ULONGEST) dummy[i]);
+
+#ifdef GDB_TARGET_IS_HPPA
+ real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
+ value_type, using_gcc);
+#else
+ FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
+ value_type, using_gcc);
+ real_pc = start_sp;
+#endif
+
+ if (CALL_DUMMY_LOCATION == ON_STACK)
+ {
+ write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
+ if (USE_GENERIC_DUMMY_FRAMES)
+ generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
+ }
+
+ if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
+ {
+ /* Convex Unix prohibits executing in the stack segment. */
+ /* Hope there is empty room at the top of the text segment. */
+ extern CORE_ADDR text_end;
+ static int checked = 0;
+ if (!checked)
+ for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
+ if (read_memory_integer (start_sp, 1) != 0)
+ error ("text segment full -- no place to put call");
+ checked = 1;
+ sp = old_sp;
+ real_pc = text_end - sizeof_dummy1;
+ write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
+ if (USE_GENERIC_DUMMY_FRAMES)
+ generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
+ }
+
+ if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
+ {
+ extern CORE_ADDR text_end;
+ int errcode;
+ sp = old_sp;
+ real_pc = text_end;
+ errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
+ if (errcode != 0)
+ error ("Cannot write text segment -- call_function failed");
+ if (USE_GENERIC_DUMMY_FRAMES)
+ generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
+ }
+
+ if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
+ {
+ real_pc = funaddr;
+ if (USE_GENERIC_DUMMY_FRAMES)
+ /* NOTE: cagney/2002-04-13: The entry point is going to be
+ modified with a single breakpoint. */
+ generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
+ CALL_DUMMY_ADDRESS () + 1);
+ }
+
+#ifdef lint
+ sp = old_sp; /* It really is used, for some ifdef's... */
+#endif
+
+ if (nargs < TYPE_NFIELDS (ftype))
+ error ("too few arguments in function call");
+
+ for (i = nargs - 1; i >= 0; i--)
+ {
+ int prototyped;
+
+ /* FIXME drow/2002-05-31: Should just always mark methods as
+ prototyped. Can we respect TYPE_VARARGS? Probably not. */
+ if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
+ prototyped = 1;
+ else
+ prototyped = TYPE_PROTOTYPED (ftype);
+
+ if (i < TYPE_NFIELDS (ftype))
+ args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
+ prototyped);
+ else
+ args[i] = value_arg_coerce (args[i], NULL, 0);
+
+ /*elz: this code is to handle the case in which the function to be called
+ has a pointer to function as parameter and the corresponding actual argument
+ is the address of a function and not a pointer to function variable.
+ In aCC compiled code, the calls through pointers to functions (in the body
+ of the function called by hand) are made via $$dyncall_external which
+ requires some registers setting, this is taken care of if we call
+ via a function pointer variable, but not via a function address.
+ In cc this is not a problem. */
+
+ if (using_gcc == 0)
+ if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
+ /* if this parameter is a pointer to function */
+ if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
+ if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
+ /* elz: FIXME here should go the test about the compiler used
+ to compile the target. We want to issue the error
+ message only if the compiler used was HP's aCC.
+ If we used HP's cc, then there is no problem and no need
+ to return at this point */
+ if (using_gcc == 0) /* && compiler == aCC */
+ /* go see if the actual parameter is a variable of type
+ pointer to function or just a function */
+ if (args[i]->lval == not_lval)
+ {
+ char *arg_name;
+ if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
+ error ("\
+You cannot use function <%s> as argument. \n\
+You must use a pointer to function type variable. Command ignored.", arg_name);
+ }
+ }
+
+ if (REG_STRUCT_HAS_ADDR_P ())
+ {
+ /* This is a machine like the sparc, where we may need to pass a
+ pointer to the structure, not the structure itself. */
+ for (i = nargs - 1; i >= 0; i--)
+ {
+ struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
+ if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (arg_type) == TYPE_CODE_UNION
+ || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
+ || TYPE_CODE (arg_type) == TYPE_CODE_STRING
+ || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
+ || TYPE_CODE (arg_type) == TYPE_CODE_SET
+ || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
+ && TYPE_LENGTH (arg_type) > 8)
+ )
+ && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
+ {
+ CORE_ADDR addr;
+ int len; /* = TYPE_LENGTH (arg_type); */
+ int aligned_len;
+ arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
+ len = TYPE_LENGTH (arg_type);
+
+ if (STACK_ALIGN_P ())
+ /* MVS 11/22/96: I think at least some of this
+ stack_align code is really broken. Better to let
+ PUSH_ARGUMENTS adjust the stack in a target-defined
+ manner. */
+ aligned_len = STACK_ALIGN (len);
+ else
+ aligned_len = len;
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= aligned_len;
+ /* ... so the address of the thing we push is the
+ stack pointer after we push it. */
+ addr = sp;
+ }
+ else
+ {
+ /* The stack grows up, so the address of the thing
+ we push is the stack pointer before we push it. */
+ addr = sp;
+ sp += aligned_len;
+ }
+ /* Push the structure. */
+ write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
+ /* The value we're going to pass is the address of the
+ thing we just pushed. */
+ /*args[i] = value_from_longest (lookup_pointer_type (value_type),
+ (LONGEST) addr); */
+ args[i] = value_from_pointer (lookup_pointer_type (arg_type),
+ addr);
+ }
+ }
+ }
+
+
+ /* Reserve space for the return structure to be written on the
+ stack, if necessary. Make certain that the value is correctly
+ aligned. */
+
+ if (struct_return)
+ {
+ int len = TYPE_LENGTH (value_type);
+ if (STACK_ALIGN_P ())
+ /* MVS 11/22/96: I think at least some of this stack_align
+ code is really broken. Better to let PUSH_ARGUMENTS adjust
+ the stack in a target-defined manner. */
+ len = STACK_ALIGN (len);
+ if (INNER_THAN (1, 2))
+ {
+ /* Stack grows downward. Align STRUCT_ADDR and SP after
+ making space for the return value. */
+ sp -= len;
+ if (gdbarch_frame_align_p (current_gdbarch))
+ sp = gdbarch_frame_align (current_gdbarch, sp);
+ struct_addr = sp;
+ }
+ else
+ {
+ /* Stack grows upward. Align the frame, allocate space, and
+ then again, re-align the frame??? */
+ if (gdbarch_frame_align_p (current_gdbarch))
+ sp = gdbarch_frame_align (current_gdbarch, sp);
+ struct_addr = sp;
+ sp += len;
+ if (gdbarch_frame_align_p (current_gdbarch))
+ sp = gdbarch_frame_align (current_gdbarch, sp);
+ }
+ }
+
+ /* elz: on HPPA no need for this extra alignment, maybe it is needed
+ on other architectures. This is because all the alignment is
+ taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
+ in hppa_push_arguments */
+ if (EXTRA_STACK_ALIGNMENT_NEEDED)
+ {
+ /* MVS 11/22/96: I think at least some of this stack_align code
+ is really broken. Better to let PUSH_ARGUMENTS adjust the
+ stack in a target-defined manner. */
+ if (STACK_ALIGN_P () && INNER_THAN (1, 2))
+ {
+ /* If stack grows down, we must leave a hole at the top. */
+ int len = 0;
+
+ for (i = nargs - 1; i >= 0; i--)
+ len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
+ if (CALL_DUMMY_STACK_ADJUST_P)
+ len += CALL_DUMMY_STACK_ADJUST;
+ sp -= STACK_ALIGN (len) - len;
+ }
+ }
+
+ sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
+
+ if (PUSH_RETURN_ADDRESS_P ())
+ /* for targets that use no CALL_DUMMY */
+ /* There are a number of targets now which actually don't write
+ any CALL_DUMMY instructions into the target, but instead just
+ save the machine state, push the arguments, and jump directly
+ to the callee function. Since this doesn't actually involve
+ executing a JSR/BSR instruction, the return address must be set
+ up by hand, either by pushing onto the stack or copying into a
+ return-address register as appropriate. Formerly this has been
+ done in PUSH_ARGUMENTS, but that's overloading its
+ functionality a bit, so I'm making it explicit to do it here. */
+ sp = PUSH_RETURN_ADDRESS (real_pc, sp);
+
+ if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
+ {
+ /* If stack grows up, we must leave a hole at the bottom, note
+ that sp already has been advanced for the arguments! */
+ if (CALL_DUMMY_STACK_ADJUST_P)
+ sp += CALL_DUMMY_STACK_ADJUST;
+ sp = STACK_ALIGN (sp);
+ }
+
+/* XXX This seems wrong. For stacks that grow down we shouldn't do
+ anything here! */
+ /* MVS 11/22/96: I think at least some of this stack_align code is
+ really broken. Better to let PUSH_ARGUMENTS adjust the stack in
+ a target-defined manner. */
+ if (CALL_DUMMY_STACK_ADJUST_P)
+ if (INNER_THAN (1, 2))
+ {
+ /* stack grows downward */
+ sp -= CALL_DUMMY_STACK_ADJUST;
+ }
+
+ /* Store the address at which the structure is supposed to be
+ written. Note that this (and the code which reserved the space
+ above) assumes that gcc was used to compile this function. Since
+ it doesn't cost us anything but space and if the function is pcc
+ it will ignore this value, we will make that assumption.
+
+ Also note that on some machines (like the sparc) pcc uses a
+ convention like gcc's. */
+
+ if (struct_return)
+ STORE_STRUCT_RETURN (struct_addr, sp);
+
+ /* Write the stack pointer. This is here because the statements above
+ might fool with it. On SPARC, this write also stores the register
+ window into the right place in the new stack frame, which otherwise
+ wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
+ write_sp (sp);
+
+ if (SAVE_DUMMY_FRAME_TOS_P ())
+ SAVE_DUMMY_FRAME_TOS (sp);
+
+ {
+ char *name;
+ struct symbol *symbol;
+
+ name = NULL;
+ symbol = find_pc_function (funaddr);
+ if (symbol)
+ {
+ name = SYMBOL_SOURCE_NAME (symbol);
+ }
+ else
+ {
+ /* Try the minimal symbols. */
+ struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
+
+ if (msymbol)
+ {
+ name = SYMBOL_SOURCE_NAME (msymbol);
+ }
+ }
+ if (name == NULL)
+ {
+ char format[80];
+ sprintf (format, "at %s", local_hex_format ());
+ name = alloca (80);
+ /* FIXME-32x64: assumes funaddr fits in a long. */
+ sprintf (name, format, (unsigned long) funaddr);
+ }
+
+ /* Execute the stack dummy routine, calling FUNCTION.
+ When it is done, discard the empty frame
+ after storing the contents of all regs into retbuf. */
+ rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
+
+ if (rc == 1)
+ {
+ /* We stopped inside the FUNCTION because of a random signal.
+ Further execution of the FUNCTION is not allowed. */
+
+ if (unwind_on_signal_p)
+ {
+ /* The user wants the context restored. */
+
+ /* We must get back to the frame we were before the dummy call. */
+ POP_FRAME;
+
+ /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
+ a C++ name with arguments and stuff. */
+ error ("\
+The program being debugged was signaled while in a function called from GDB.\n\
+GDB has restored the context to what it was before the call.\n\
+To change this behavior use \"set unwindonsignal off\"\n\
+Evaluation of the expression containing the function (%s) will be abandoned.",
+ name);
+ }
+ else
+ {
+ /* The user wants to stay in the frame where we stopped (default).*/
+
+ /* If we restored the inferior status (via the cleanup),
+ we would print a spurious error message (Unable to
+ restore previously selected frame), would write the
+ registers from the inf_status (which is wrong), and
+ would do other wrong things. */
+ discard_cleanups (inf_status_cleanup);
+ discard_inferior_status (inf_status);
+
+ /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
+ a C++ name with arguments and stuff. */
+ error ("\
+The program being debugged was signaled while in a function called from GDB.\n\
+GDB remains in the frame where the signal was received.\n\
+To change this behavior use \"set unwindonsignal on\"\n\
+Evaluation of the expression containing the function (%s) will be abandoned.",
+ name);
+ }
+ }
+
+ if (rc == 2)
+ {
+ /* We hit a breakpoint inside the FUNCTION. */
+
+ /* If we restored the inferior status (via the cleanup), we
+ would print a spurious error message (Unable to restore
+ previously selected frame), would write the registers from
+ the inf_status (which is wrong), and would do other wrong
+ things. */
+ discard_cleanups (inf_status_cleanup);
+ discard_inferior_status (inf_status);
+
+ /* The following error message used to say "The expression
+ which contained the function call has been discarded." It
+ is a hard concept to explain in a few words. Ideally, GDB
+ would be able to resume evaluation of the expression when
+ the function finally is done executing. Perhaps someday
+ this will be implemented (it would not be easy). */
+
+ /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
+ a C++ name with arguments and stuff. */
+ error ("\
+The program being debugged stopped while in a function called from GDB.\n\
+When the function (%s) is done executing, GDB will silently\n\
+stop (instead of continuing to evaluate the expression containing\n\
+the function call).", name);
+ }
+
+ /* If we get here the called FUNCTION run to completion. */
+
+ /* Restore the inferior status, via its cleanup. At this stage,
+ leave the RETBUF alone. */
+ do_cleanups (inf_status_cleanup);
+
+ /* Figure out the value returned by the function. */
+ /* elz: I defined this new macro for the hppa architecture only.
+ this gives us a way to get the value returned by the function
+ from the stack, at the same address we told the function to put
+ it. We cannot assume on the pa that r28 still contains the
+ address of the returned structure. Usually this will be
+ overwritten by the callee. I don't know about other
+ architectures, so I defined this macro */
+#ifdef VALUE_RETURNED_FROM_STACK
+ if (struct_return)
+ {
+ do_cleanups (retbuf_cleanup);
+ return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
+ }
+#endif
+ /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
+ aligned (using frame_align()) do we can trust STRUCT_ADDR and
+ fetch the return value direct from the stack. This lack of
+ trust comes about because legacy targets have a nasty habit of
+ silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
+ For such targets, just hope that value_being_returned() can
+ find the adjusted value. */
+ if (struct_return && gdbarch_frame_align_p (current_gdbarch))
+ {
+ struct value *retval = value_at (value_type, struct_addr, NULL);
+ do_cleanups (retbuf_cleanup);
+ return retval;
+ }
+ else
+ {
+ struct value *retval = value_being_returned (value_type, retbuf,
+ struct_return);
+ do_cleanups (retbuf_cleanup);
+ return retval;
+ }
+ }
+}
+
+struct value *
+call_function_by_hand (struct value *function, int nargs, struct value **args)
+{
+ if (CALL_DUMMY_P)
+ {
+ return hand_function_call (function, nargs, args);
+ }
+ else
+ {
+ error ("Cannot invoke functions on this machine.");
+ }
+}
+
+
+
+/* Create a value for an array by allocating space in the inferior, copying
+ the data into that space, and then setting up an array value.
+
+ The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
+ populated from the values passed in ELEMVEC.
+
+ The element type of the array is inherited from the type of the
+ first element, and all elements must have the same size (though we
+ don't currently enforce any restriction on their types). */
+
+struct value *
+value_array (int lowbound, int highbound, struct value **elemvec)
+{
+ int nelem;
+ int idx;
+ unsigned int typelength;
+ struct value *val;
+ struct type *rangetype;
+ struct type *arraytype;
+ CORE_ADDR addr;
+
+ /* Validate that the bounds are reasonable and that each of the elements
+ have the same size. */
+
+ nelem = highbound - lowbound + 1;
+ if (nelem <= 0)
+ {
+ error ("bad array bounds (%d, %d)", lowbound, highbound);
+ }
+ typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
+ for (idx = 1; idx < nelem; idx++)
+ {
+ if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
+ {
+ error ("array elements must all be the same size");
+ }
+ }
+
+ rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+ lowbound, highbound);
+ arraytype = create_array_type ((struct type *) NULL,
+ VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
+
+ if (!current_language->c_style_arrays)
+ {
+ val = allocate_value (arraytype);
+ for (idx = 0; idx < nelem; idx++)
+ {
+ memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
+ VALUE_CONTENTS_ALL (elemvec[idx]),
+ typelength);
+ }
+ VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
+ return val;
+ }
+
+ /* Allocate space to store the array in the inferior, and then initialize
+ it by copying in each element. FIXME: Is it worth it to create a
+ local buffer in which to collect each value and then write all the
+ bytes in one operation? */
+
+ addr = allocate_space_in_inferior (nelem * typelength);
+ for (idx = 0; idx < nelem; idx++)
+ {
+ write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
+ typelength);
+ }
+
+ /* Create the array type and set up an array value to be evaluated lazily. */
+
+ val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
+ return (val);
+}
+
+/* Create a value for a string constant by allocating space in the inferior,
+ copying the data into that space, and returning the address with type
+ TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
+ of characters.
+ Note that string types are like array of char types with a lower bound of
+ zero and an upper bound of LEN - 1. Also note that the string may contain
+ embedded null bytes. */
+
+struct value *
+value_string (char *ptr, int len)
+{
+ struct value *val;
+ int lowbound = current_language->string_lower_bound;
+ struct type *rangetype = create_range_type ((struct type *) NULL,
+ builtin_type_int,
+ lowbound, len + lowbound - 1);
+ struct type *stringtype
+ = create_string_type ((struct type *) NULL, rangetype);
+ CORE_ADDR addr;
+
+ if (current_language->c_style_arrays == 0)
+ {
+ val = allocate_value (stringtype);
+ memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
+ return val;
+ }
+
+
+ /* Allocate space to store the string in the inferior, and then
+ copy LEN bytes from PTR in gdb to that address in the inferior. */
+
+ addr = allocate_space_in_inferior (len);
+ write_memory (addr, ptr, len);
+
+ val = value_at_lazy (stringtype, addr, NULL);
+ return (val);
+}
+
+struct value *
+value_bitstring (char *ptr, int len)
+{
+ struct value *val;
+ struct type *domain_type = create_range_type (NULL, builtin_type_int,
+ 0, len - 1);
+ struct type *type = create_set_type ((struct type *) NULL, domain_type);
+ TYPE_CODE (type) = TYPE_CODE_BITSTRING;
+ val = allocate_value (type);
+ memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
+ return val;
+}
+
+/* See if we can pass arguments in T2 to a function which takes arguments
+ of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
+ vector. If some arguments need coercion of some sort, then the coerced
+ values are written into T2. Return value is 0 if the arguments could be
+ matched, or the position at which they differ if not.
+
+ STATICP is nonzero if the T1 argument list came from a
+ static member function. T2 will still include the ``this'' pointer,
+ but it will be skipped.
+
+ For non-static member functions, we ignore the first argument,
+ which is the type of the instance variable. This is because we want
+ to handle calls with objects from derived classes. This is not
+ entirely correct: we should actually check to make sure that a
+ requested operation is type secure, shouldn't we? FIXME. */
+
+static int
+typecmp (int staticp, int varargs, int nargs,
+ struct field t1[], struct value *t2[])
+{
+ int i;
+
+ if (t2 == 0)
+ internal_error (__FILE__, __LINE__, "typecmp: no argument list");
+
+ /* Skip ``this'' argument if applicable. T2 will always include THIS. */
+ if (staticp)
+ t2 ++;
+
+ for (i = 0;
+ (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
+ i++)
+ {
+ struct type *tt1, *tt2;
+
+ if (!t2[i])
+ return i + 1;
+
+ tt1 = check_typedef (t1[i].type);
+ tt2 = check_typedef (VALUE_TYPE (t2[i]));
+
+ if (TYPE_CODE (tt1) == TYPE_CODE_REF
+ /* We should be doing hairy argument matching, as below. */
+ && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
+ {
+ if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
+ t2[i] = value_coerce_array (t2[i]);
+ else
+ t2[i] = value_addr (t2[i]);
+ continue;
+ }
+
+ /* djb - 20000715 - Until the new type structure is in the
+ place, and we can attempt things like implicit conversions,
+ we need to do this so you can take something like a map<const
+ char *>, and properly access map["hello"], because the
+ argument to [] will be a reference to a pointer to a char,
+ and the argument will be a pointer to a char. */
+ while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
+ TYPE_CODE (tt1) == TYPE_CODE_PTR)
+ {
+ tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
+ }
+ while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
+ TYPE_CODE(tt2) == TYPE_CODE_PTR ||
+ TYPE_CODE(tt2) == TYPE_CODE_REF)
+ {
+ tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
+ }
+ if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
+ continue;
+ /* Array to pointer is a `trivial conversion' according to the ARM. */
+
+ /* We should be doing much hairier argument matching (see section 13.2
+ of the ARM), but as a quick kludge, just check for the same type
+ code. */
+ if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
+ return i + 1;
+ }
+ if (varargs || t2[i] == NULL)
+ return 0;
+ return i + 1;
+}
+
+/* Helper function used by value_struct_elt to recurse through baseclasses.
+ Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
+ and search in it assuming it has (class) type TYPE.
+ If found, return value, else return NULL.
+
+ If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
+ look for a baseclass named NAME. */
+
+static struct value *
+search_struct_field (char *name, struct value *arg1, int offset,
+ register struct type *type, int looking_for_baseclass)
+{
+ int i;
+ int nbases = TYPE_N_BASECLASSES (type);
+
+ CHECK_TYPEDEF (type);
+
+ if (!looking_for_baseclass)
+ for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (type, i);
+
+ if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
+ {
+ struct value *v;
+ if (TYPE_FIELD_STATIC (type, i))
+ {
+ v = value_static_field (type, i);
+ if (v == 0)
+ error ("field %s is nonexistent or has been optimised out",
+ name);
+ }
+ else
+ {
+ v = value_primitive_field (arg1, offset, i, type);
+ if (v == 0)
+ error ("there is no field named %s", name);
+ }
+ return v;
+ }
+
+ if (t_field_name
+ && (t_field_name[0] == '\0'
+ || (TYPE_CODE (type) == TYPE_CODE_UNION
+ && (strcmp_iw (t_field_name, "else") == 0))))
+ {
+ struct type *field_type = TYPE_FIELD_TYPE (type, i);
+ if (TYPE_CODE (field_type) == TYPE_CODE_UNION
+ || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
+ {
+ /* Look for a match through the fields of an anonymous union,
+ or anonymous struct. C++ provides anonymous unions.
+
+ In the GNU Chill (OBSOLETE) implementation of
+ variant record types, each <alternative field> has
+ an (anonymous) union type, each member of the union
+ represents a <variant alternative>. Each <variant
+ alternative> is represented as a struct, with a
+ member for each <variant field>. */
+
+ struct value *v;
+ int new_offset = offset;
+
+ /* This is pretty gross. In G++, the offset in an
+ anonymous union is relative to the beginning of the
+ enclosing struct. In the GNU Chill (OBSOLETE)
+ implementation of variant records, the bitpos is
+ zero in an anonymous union field, so we have to add
+ the offset of the union here. */
+ if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
+ || (TYPE_NFIELDS (field_type) > 0
+ && TYPE_FIELD_BITPOS (field_type, 0) == 0))
+ new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
+
+ v = search_struct_field (name, arg1, new_offset, field_type,
+ looking_for_baseclass);
+ if (v)
+ return v;
+ }
+ }
+ }
+
+ for (i = 0; i < nbases; i++)
+ {
+ struct value *v;
+ struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
+ /* If we are looking for baseclasses, this is what we get when we
+ hit them. But it could happen that the base part's member name
+ is not yet filled in. */
+ int found_baseclass = (looking_for_baseclass
+ && TYPE_BASECLASS_NAME (type, i) != NULL
+ && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
+
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ int boffset;
+ struct value *v2 = allocate_value (basetype);
+
+ boffset = baseclass_offset (type, i,
+ VALUE_CONTENTS (arg1) + offset,
+ VALUE_ADDRESS (arg1)
+ + VALUE_OFFSET (arg1) + offset);
+ if (boffset == -1)
+ error ("virtual baseclass botch");
+
+ /* The virtual base class pointer might have been clobbered by the
+ user program. Make sure that it still points to a valid memory
+ location. */
+
+ boffset += offset;
+ if (boffset < 0 || boffset >= TYPE_LENGTH (type))
+ {
+ CORE_ADDR base_addr;
+
+ base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
+ if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
+ TYPE_LENGTH (basetype)) != 0)
+ error ("virtual baseclass botch");
+ VALUE_LVAL (v2) = lval_memory;
+ VALUE_ADDRESS (v2) = base_addr;
+ }
+ else
+ {
+ VALUE_LVAL (v2) = VALUE_LVAL (arg1);
+ VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
+ VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
+ if (VALUE_LAZY (arg1))
+ VALUE_LAZY (v2) = 1;
+ else
+ memcpy (VALUE_CONTENTS_RAW (v2),
+ VALUE_CONTENTS_RAW (arg1) + boffset,
+ TYPE_LENGTH (basetype));
+ }
+
+ if (found_baseclass)
+ return v2;
+ v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
+ looking_for_baseclass);
+ }
+ else if (found_baseclass)
+ v = value_primitive_field (arg1, offset, i, type);
+ else
+ v = search_struct_field (name, arg1,
+ offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
+ basetype, looking_for_baseclass);
+ if (v)
+ return v;
+ }
+ return NULL;
+}
+
+
+/* Return the offset (in bytes) of the virtual base of type BASETYPE
+ * in an object pointed to by VALADDR (on the host), assumed to be of
+ * type TYPE. OFFSET is number of bytes beyond start of ARG to start
+ * looking (in case VALADDR is the contents of an enclosing object).
+ *
+ * This routine recurses on the primary base of the derived class because
+ * the virtual base entries of the primary base appear before the other
+ * virtual base entries.
+ *
+ * If the virtual base is not found, a negative integer is returned.
+ * The magnitude of the negative integer is the number of entries in
+ * the virtual table to skip over (entries corresponding to various
+ * ancestral classes in the chain of primary bases).
+ *
+ * Important: This assumes the HP / Taligent C++ runtime
+ * conventions. Use baseclass_offset() instead to deal with g++
+ * conventions. */
+
+void
+find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
+ int offset, int *boffset_p, int *skip_p)
+{
+ int boffset; /* offset of virtual base */
+ int index; /* displacement to use in virtual table */
+ int skip;
+
+ struct value *vp;
+ CORE_ADDR vtbl; /* the virtual table pointer */
+ struct type *pbc; /* the primary base class */
+
+ /* Look for the virtual base recursively in the primary base, first.
+ * This is because the derived class object and its primary base
+ * subobject share the primary virtual table. */
+
+ boffset = 0;
+ pbc = TYPE_PRIMARY_BASE (type);
+ if (pbc)
+ {
+ find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
+ if (skip < 0)
+ {
+ *boffset_p = boffset;
+ *skip_p = -1;
+ return;
+ }
+ }
+ else
+ skip = 0;
+
+
+ /* Find the index of the virtual base according to HP/Taligent
+ runtime spec. (Depth-first, left-to-right.) */
+ index = virtual_base_index_skip_primaries (basetype, type);
+
+ if (index < 0)
+ {
+ *skip_p = skip + virtual_base_list_length_skip_primaries (type);
+ *boffset_p = 0;
+ return;
+ }
+
+ /* pai: FIXME -- 32x64 possible problem */
+ /* First word (4 bytes) in object layout is the vtable pointer */
+ vtbl = *(CORE_ADDR *) (valaddr + offset);
+
+ /* Before the constructor is invoked, things are usually zero'd out. */
+ if (vtbl == 0)
+ error ("Couldn't find virtual table -- object may not be constructed yet.");
+
+
+ /* Find virtual base's offset -- jump over entries for primary base
+ * ancestors, then use the index computed above. But also adjust by
+ * HP_ACC_VBASE_START for the vtable slots before the start of the
+ * virtual base entries. Offset is negative -- virtual base entries
+ * appear _before_ the address point of the virtual table. */
+
+ /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
+ & use long type */
+
+ /* epstein : FIXME -- added param for overlay section. May not be correct */
+ vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
+ boffset = value_as_long (vp);
+ *skip_p = -1;
+ *boffset_p = boffset;
+ return;
+}
+
+
+/* Helper function used by value_struct_elt to recurse through baseclasses.
+ Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
+ and search in it assuming it has (class) type TYPE.
+ If found, return value, else if name matched and args not return (value)-1,
+ else return NULL. */
+
+static struct value *
+search_struct_method (char *name, struct value **arg1p,
+ struct value **args, int offset,
+ int *static_memfuncp, register struct type *type)
+{
+ int i;
+ struct value *v;
+ int name_matched = 0;
+ char dem_opname[64];
+
+ CHECK_TYPEDEF (type);
+ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
+ {
+ char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
+ /* FIXME! May need to check for ARM demangling here */
+ if (strncmp (t_field_name, "__", 2) == 0 ||
+ strncmp (t_field_name, "op", 2) == 0 ||
+ strncmp (t_field_name, "type", 4) == 0)
+ {
+ if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
+ t_field_name = dem_opname;
+ else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
+ t_field_name = dem_opname;
+ }
+ if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
+ {
+ int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
+ struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
+ name_matched = 1;
+
+ check_stub_method_group (type, i);
+ if (j > 0 && args == 0)
+ error ("cannot resolve overloaded method `%s': no arguments supplied", name);
+ else if (j == 0 && args == 0)
+ {
+ v = value_fn_field (arg1p, f, j, type, offset);
+ if (v != NULL)
+ return v;
+ }
+ else
+ while (j >= 0)
+ {
+ if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
+ TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
+ TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
+ TYPE_FN_FIELD_ARGS (f, j), args))
+ {
+ if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+ return value_virtual_fn_field (arg1p, f, j, type, offset);
+ if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
+ *static_memfuncp = 1;
+ v = value_fn_field (arg1p, f, j, type, offset);
+ if (v != NULL)
+ return v;
+ }
+ j--;
+ }
+ }
+ }
+
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ {
+ int base_offset;
+
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ if (TYPE_HAS_VTABLE (type))
+ {
+ /* HP aCC compiled type, search for virtual base offset
+ according to HP/Taligent runtime spec. */
+ int skip;
+ find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
+ VALUE_CONTENTS_ALL (*arg1p),
+ offset + VALUE_EMBEDDED_OFFSET (*arg1p),
+ &base_offset, &skip);
+ if (skip >= 0)
+ error ("Virtual base class offset not found in vtable");
+ }
+ else
+ {
+ struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
+ char *base_valaddr;
+
+ /* The virtual base class pointer might have been clobbered by the
+ user program. Make sure that it still points to a valid memory
+ location. */
+
+ if (offset < 0 || offset >= TYPE_LENGTH (type))
+ {
+ base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
+ if (target_read_memory (VALUE_ADDRESS (*arg1p)
+ + VALUE_OFFSET (*arg1p) + offset,
+ base_valaddr,
+ TYPE_LENGTH (baseclass)) != 0)
+ error ("virtual baseclass botch");
+ }
+ else
+ base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
+
+ base_offset =
+ baseclass_offset (type, i, base_valaddr,
+ VALUE_ADDRESS (*arg1p)
+ + VALUE_OFFSET (*arg1p) + offset);
+ if (base_offset == -1)
+ error ("virtual baseclass botch");
+ }
+ }
+ else
+ {
+ base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
+ }
+ v = search_struct_method (name, arg1p, args, base_offset + offset,
+ static_memfuncp, TYPE_BASECLASS (type, i));
+ if (v == (struct value *) - 1)
+ {
+ name_matched = 1;
+ }
+ else if (v)
+ {
+/* FIXME-bothner: Why is this commented out? Why is it here? */
+/* *arg1p = arg1_tmp; */
+ return v;
+ }
+ }
+ if (name_matched)
+ return (struct value *) - 1;
+ else
+ return NULL;
+}
+
+/* Given *ARGP, a value of type (pointer to a)* structure/union,
+ extract the component named NAME from the ultimate target structure/union
+ and return it as a value with its appropriate type.
+ ERR is used in the error message if *ARGP's type is wrong.
+
+ C++: ARGS is a list of argument types to aid in the selection of
+ an appropriate method. Also, handle derived types.
+
+ STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
+ where the truthvalue of whether the function that was resolved was
+ a static member function or not is stored.
+
+ ERR is an error message to be printed in case the field is not found. */
+
+struct value *
+value_struct_elt (struct value **argp, struct value **args,
+ char *name, int *static_memfuncp, char *err)
+{
+ register struct type *t;
+ struct value *v;
+
+ COERCE_ARRAY (*argp);
+
+ t = check_typedef (VALUE_TYPE (*argp));
+
+ /* Follow pointers until we get to a non-pointer. */
+
+ while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
+ {
+ *argp = value_ind (*argp);
+ /* Don't coerce fn pointer to fn and then back again! */
+ if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
+ COERCE_ARRAY (*argp);
+ t = check_typedef (VALUE_TYPE (*argp));
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("not implemented: member type in value_struct_elt");
+
+ if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Attempt to extract a component of a value that is not a %s.", err);
+
+ /* Assume it's not, unless we see that it is. */
+ if (static_memfuncp)
+ *static_memfuncp = 0;
+
+ if (!args)
+ {
+ /* if there are no arguments ...do this... */
+
+ /* Try as a field first, because if we succeed, there
+ is less work to be done. */
+ v = search_struct_field (name, *argp, 0, t, 0);
+ if (v)
+ return v;
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ if (destructor_name_p (name, t))
+ error ("Cannot get value of destructor");
+
+ v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
+
+ if (v == (struct value *) - 1)
+ error ("Cannot take address of a method");
+ else if (v == 0)
+ {
+ if (TYPE_NFN_FIELDS (t))
+ error ("There is no member or method named %s.", name);
+ else
+ error ("There is no member named %s.", name);
+ }
+ return v;
+ }
+
+ if (destructor_name_p (name, t))
+ {
+ if (!args[1])
+ {
+ /* Destructors are a special case. */
+ int m_index, f_index;
+
+ v = NULL;
+ if (get_destructor_fn_field (t, &m_index, &f_index))
+ {
+ v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
+ f_index, NULL, 0);
+ }
+ if (v == NULL)
+ error ("could not find destructor function named %s.", name);
+ else
+ return v;
+ }
+ else
+ {
+ error ("destructor should not have any argument");
+ }
+ }
+ else
+ v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
+
+ if (v == (struct value *) - 1)
+ {
+ error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
+ }
+ else if (v == 0)
+ {
+ /* See if user tried to invoke data as function. If so,
+ hand it back. If it's not callable (i.e., a pointer to function),
+ gdb should give an error. */
+ v = search_struct_field (name, *argp, 0, t, 0);
+ }
+
+ if (!v)
+ error ("Structure has no component named %s.", name);
+ return v;
+}
+
+/* Search through the methods of an object (and its bases)
+ * to find a specified method. Return the pointer to the
+ * fn_field list of overloaded instances.
+ * Helper function for value_find_oload_list.
+ * ARGP is a pointer to a pointer to a value (the object)
+ * METHOD is a string containing the method name
+ * OFFSET is the offset within the value
+ * TYPE is the assumed type of the object
+ * NUM_FNS is the number of overloaded instances
+ * BASETYPE is set to the actual type of the subobject where the method is found
+ * BOFFSET is the offset of the base subobject where the method is found */
+
+static struct fn_field *
+find_method_list (struct value **argp, char *method, int offset,
+ struct type *type, int *num_fns,
+ struct type **basetype, int *boffset)
+{
+ int i;
+ struct fn_field *f;
+ CHECK_TYPEDEF (type);
+
+ *num_fns = 0;
+
+ /* First check in object itself */
+ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
+ {
+ /* pai: FIXME What about operators and type conversions? */
+ char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
+ if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
+ {
+ int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
+ struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
+
+ *num_fns = len;
+ *basetype = type;
+ *boffset = offset;
+
+ /* Resolve any stub methods. */
+ check_stub_method_group (type, i);
+
+ return f;
+ }
+ }
+
+ /* Not found in object, check in base subobjects */
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ {
+ int base_offset;
+ if (BASETYPE_VIA_VIRTUAL (type, i))
+ {
+ if (TYPE_HAS_VTABLE (type))
+ {
+ /* HP aCC compiled type, search for virtual base offset
+ * according to HP/Taligent runtime spec. */
+ int skip;
+ find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
+ VALUE_CONTENTS_ALL (*argp),
+ offset + VALUE_EMBEDDED_OFFSET (*argp),
+ &base_offset, &skip);
+ if (skip >= 0)
+ error ("Virtual base class offset not found in vtable");
+ }
+ else
+ {
+ /* probably g++ runtime model */
+ base_offset = VALUE_OFFSET (*argp) + offset;
+ base_offset =
+ baseclass_offset (type, i,
+ VALUE_CONTENTS (*argp) + base_offset,
+ VALUE_ADDRESS (*argp) + base_offset);
+ if (base_offset == -1)
+ error ("virtual baseclass botch");
+ }
+ }
+ else
+ /* non-virtual base, simply use bit position from debug info */
+ {
+ base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
+ }
+ f = find_method_list (argp, method, base_offset + offset,
+ TYPE_BASECLASS (type, i), num_fns, basetype,
+ boffset);
+ if (f)
+ return f;
+ }
+ return NULL;
+}
+
+/* Return the list of overloaded methods of a specified name.
+ * ARGP is a pointer to a pointer to a value (the object)
+ * METHOD is the method name
+ * OFFSET is the offset within the value contents
+ * NUM_FNS is the number of overloaded instances
+ * BASETYPE is set to the type of the base subobject that defines the method
+ * BOFFSET is the offset of the base subobject which defines the method */
+
+struct fn_field *
+value_find_oload_method_list (struct value **argp, char *method, int offset,
+ int *num_fns, struct type **basetype,
+ int *boffset)
+{
+ struct type *t;
+
+ t = check_typedef (VALUE_TYPE (*argp));
+
+ /* code snarfed from value_struct_elt */
+ while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
+ {
+ *argp = value_ind (*argp);
+ /* Don't coerce fn pointer to fn and then back again! */
+ if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
+ COERCE_ARRAY (*argp);
+ t = check_typedef (VALUE_TYPE (*argp));
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("Not implemented: member type in value_find_oload_lis");
+
+ if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Attempt to extract a component of a value that is not a struct or union");
+
+ return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
+}
+
+/* Given an array of argument types (ARGTYPES) (which includes an
+ entry for "this" in the case of C++ methods), the number of
+ arguments NARGS, the NAME of a function whether it's a method or
+ not (METHOD), and the degree of laxness (LAX) in conforming to
+ overload resolution rules in ANSI C++, find the best function that
+ matches on the argument types according to the overload resolution
+ rules.
+
+ In the case of class methods, the parameter OBJ is an object value
+ in which to search for overloaded methods.
+
+ In the case of non-method functions, the parameter FSYM is a symbol
+ corresponding to one of the overloaded functions.
+
+ Return value is an integer: 0 -> good match, 10 -> debugger applied
+ non-standard coercions, 100 -> incompatible.
+
+ If a method is being searched for, VALP will hold the value.
+ If a non-method is being searched for, SYMP will hold the symbol for it.
+
+ If a method is being searched for, and it is a static method,
+ then STATICP will point to a non-zero value.
+
+ Note: This function does *not* check the value of
+ overload_resolution. Caller must check it to see whether overload
+ resolution is permitted.
+ */
+
+int
+find_overload_match (struct type **arg_types, int nargs, char *name, int method,
+ int lax, struct value **objp, struct symbol *fsym,
+ struct value **valp, struct symbol **symp, int *staticp)
+{
+ int nparms;
+ struct type **parm_types;
+ int champ_nparms = 0;
+ struct value *obj = (objp ? *objp : NULL);
+
+ short oload_champ = -1; /* Index of best overloaded function */
+ short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
+ /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
+ short oload_ambig_champ = -1; /* 2nd contender for best match */
+ short oload_non_standard = 0; /* did we have to use non-standard conversions? */
+ short oload_incompatible = 0; /* are args supplied incompatible with any function? */
+
+ struct badness_vector *bv; /* A measure of how good an overloaded instance is */
+ struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
+
+ struct value *temp = obj;
+ struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
+ struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
+ int num_fns = 0; /* Number of overloaded instances being considered */
+ struct type *basetype = NULL;
+ int boffset;
+ register int jj;
+ register int ix;
+ int static_offset;
+ struct cleanup *cleanups = NULL;
+
+ char *obj_type_name = NULL;
+ char *func_name = NULL;
+
+ /* Get the list of overloaded methods or functions */
+ if (method)
+ {
+ obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
+ /* Hack: evaluate_subexp_standard often passes in a pointer
+ value rather than the object itself, so try again */
+ if ((!obj_type_name || !*obj_type_name) &&
+ (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
+ obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
+
+ fns_ptr = value_find_oload_method_list (&temp, name, 0,
+ &num_fns,
+ &basetype, &boffset);
+ if (!fns_ptr || !num_fns)
+ error ("Couldn't find method %s%s%s",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ /* If we are dealing with stub method types, they should have
+ been resolved by find_method_list via value_find_oload_method_list
+ above. */
+ gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
+ }
+ else
+ {
+ int i = -1;
+ func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
+
+ /* If the name is NULL this must be a C-style function.
+ Just return the same symbol. */
+ if (!func_name)
+ {
+ *symp = fsym;
+ return 0;
+ }
+
+ oload_syms = make_symbol_overload_list (fsym);
+ cleanups = make_cleanup (xfree, oload_syms);
+ while (oload_syms[++i])
+ num_fns++;
+ if (!num_fns)
+ error ("Couldn't find function %s", func_name);
+ }
+
+ oload_champ_bv = NULL;
+
+ /* Consider each candidate in turn */
+ for (ix = 0; ix < num_fns; ix++)
+ {
+ static_offset = 0;
+ if (method)
+ {
+ if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
+ static_offset = 1;
+ nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
+ }
+ else
+ {
+ /* If it's not a method, this is the proper place */
+ nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
+ }
+
+ /* Prepare array of parameter types */
+ parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
+ for (jj = 0; jj < nparms; jj++)
+ parm_types[jj] = (method
+ ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
+ : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
+
+ /* Compare parameter types to supplied argument types. Skip THIS for
+ static methods. */
+ bv = rank_function (parm_types, nparms, arg_types + static_offset,
+ nargs - static_offset);
+
+ if (!oload_champ_bv)
+ {
+ oload_champ_bv = bv;
+ oload_champ = 0;
+ champ_nparms = nparms;
+ }
+ else
+ /* See whether current candidate is better or worse than previous best */
+ switch (compare_badness (bv, oload_champ_bv))
+ {
+ case 0:
+ oload_ambiguous = 1; /* top two contenders are equally good */
+ oload_ambig_champ = ix;
+ break;
+ case 1:
+ oload_ambiguous = 2; /* incomparable top contenders */
+ oload_ambig_champ = ix;
+ break;
+ case 2:
+ oload_champ_bv = bv; /* new champion, record details */
+ oload_ambiguous = 0;
+ oload_champ = ix;
+ oload_ambig_champ = -1;
+ champ_nparms = nparms;
+ break;
+ case 3:
+ default:
+ break;
+ }
+ xfree (parm_types);
+ if (overload_debug)
+ {
+ if (method)
+ fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
+ else
+ fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
+ for (jj = 0; jj < nargs - static_offset; jj++)
+ fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
+ fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
+ }
+ } /* end loop over all candidates */
+ /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
+ if they have the exact same goodness. This is because there is no
+ way to differentiate based on return type, which we need to in
+ cases like overloads of .begin() <It's both const and non-const> */
+#if 0
+ if (oload_ambiguous)
+ {
+ if (method)
+ error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
+ func_name);
+ }
+#endif
+
+ /* Check how bad the best match is. */
+ static_offset = 0;
+ if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
+ static_offset = 1;
+ for (ix = 1; ix <= nargs - static_offset; ix++)
+ {
+ if (oload_champ_bv->rank[ix] >= 100)
+ oload_incompatible = 1; /* truly mismatched types */
+
+ else if (oload_champ_bv->rank[ix] >= 10)
+ oload_non_standard = 1; /* non-standard type conversions needed */
+ }
+ if (oload_incompatible)
+ {
+ if (method)
+ error ("Cannot resolve method %s%s%s to any overloaded instance",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ error ("Cannot resolve function %s to any overloaded instance",
+ func_name);
+ }
+ else if (oload_non_standard)
+ {
+ if (method)
+ warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
+ obj_type_name,
+ (obj_type_name && *obj_type_name) ? "::" : "",
+ name);
+ else
+ warning ("Using non-standard conversion to match function %s to supplied arguments",
+ func_name);
+ }
+
+ if (method)
+ {
+ if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
+ *staticp = 1;
+ else if (staticp)
+ *staticp = 0;
+ if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
+ *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
+ else
+ *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
+ }
+ else
+ {
+ *symp = oload_syms[oload_champ];
+ xfree (func_name);
+ }
+
+ if (objp)
+ {
+ if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
+ && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
+ {
+ temp = value_addr (temp);
+ }
+ *objp = temp;
+ }
+ if (cleanups != NULL)
+ do_cleanups (cleanups);
+
+ return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
+}
+
+/* C++: return 1 is NAME is a legitimate name for the destructor
+ of type TYPE. If TYPE does not have a destructor, or
+ if NAME is inappropriate for TYPE, an error is signaled. */
+int
+destructor_name_p (const char *name, const struct type *type)
+{
+ /* destructors are a special case. */
+
+ if (name[0] == '~')
+ {
+ char *dname = type_name_no_tag (type);
+ char *cp = strchr (dname, '<');
+ unsigned int len;
+
+ /* Do not compare the template part for template classes. */
+ if (cp == NULL)
+ len = strlen (dname);
+ else
+ len = cp - dname;
+ if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
+ error ("name of destructor must equal name of class");
+ else
+ return 1;
+ }
+ return 0;
+}
+
+/* Helper function for check_field: Given TYPE, a structure/union,
+ return 1 if the component named NAME from the ultimate
+ target structure/union is defined, otherwise, return 0. */
+
+static int
+check_field_in (register struct type *type, const char *name)
+{
+ register int i;
+
+ for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (type, i);
+ if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
+ return 1;
+ }
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ /* Destructors are a special case. */
+ if (destructor_name_p (name, type))
+ {
+ int m_index, f_index;
+
+ return get_destructor_fn_field (type, &m_index, &f_index);
+ }
+
+ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
+ {
+ if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
+ return 1;
+ }
+
+ for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
+ if (check_field_in (TYPE_BASECLASS (type, i), name))
+ return 1;
+
+ return 0;
+}
+
+
+/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
+ return 1 if the component named NAME from the ultimate
+ target structure/union is defined, otherwise, return 0. */
+
+int
+check_field (struct value *arg1, const char *name)
+{
+ register struct type *t;
+
+ COERCE_ARRAY (arg1);
+
+ t = VALUE_TYPE (arg1);
+
+ /* Follow pointers until we get to a non-pointer. */
+
+ for (;;)
+ {
+ CHECK_TYPEDEF (t);
+ if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
+ break;
+ t = TYPE_TARGET_TYPE (t);
+ }
+
+ if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
+ error ("not implemented: member type in check_field");
+
+ if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Internal error: `this' is not an aggregate");
+
+ return check_field_in (t, name);
+}
+
+/* C++: Given an aggregate type CURTYPE, and a member name NAME,
+ return the address of this member as a "pointer to member"
+ type. If INTYPE is non-null, then it will be the type
+ of the member we are looking for. This will help us resolve
+ "pointers to member functions". This function is used
+ to resolve user expressions of the form "DOMAIN::NAME". */
+
+struct value *
+value_struct_elt_for_reference (struct type *domain, int offset,
+ struct type *curtype, char *name,
+ struct type *intype)
+{
+ register struct type *t = curtype;
+ register int i;
+ struct value *v;
+
+ if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+ && TYPE_CODE (t) != TYPE_CODE_UNION)
+ error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
+
+ for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
+ {
+ char *t_field_name = TYPE_FIELD_NAME (t, i);
+
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ if (TYPE_FIELD_STATIC (t, i))
+ {
+ v = value_static_field (t, i);
+ if (v == NULL)
+ error ("static field %s has been optimized out",
+ name);
+ return v;
+ }
+ if (TYPE_FIELD_PACKED (t, i))
+ error ("pointers to bitfield members not allowed");
+
+ return value_from_longest
+ (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
+ domain)),
+ offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
+ }
+ }
+
+ /* C++: If it was not found as a data field, then try to
+ return it as a pointer to a method. */
+
+ /* Destructors are a special case. */
+ if (destructor_name_p (name, t))
+ {
+ error ("member pointers to destructors not implemented yet");
+ }
+
+ /* Perform all necessary dereferencing. */
+ while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
+ intype = TYPE_TARGET_TYPE (intype);
+
+ for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
+ {
+ char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
+ char dem_opname[64];
+
+ if (strncmp (t_field_name, "__", 2) == 0 ||
+ strncmp (t_field_name, "op", 2) == 0 ||
+ strncmp (t_field_name, "type", 4) == 0)
+ {
+ if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
+ t_field_name = dem_opname;
+ else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
+ t_field_name = dem_opname;
+ }
+ if (t_field_name && STREQ (t_field_name, name))
+ {
+ int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
+ struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
+
+ check_stub_method_group (t, i);
+
+ if (intype == 0 && j > 1)
+ error ("non-unique member `%s' requires type instantiation", name);
+ if (intype)
+ {
+ while (j--)
+ if (TYPE_FN_FIELD_TYPE (f, j) == intype)
+ break;
+ if (j < 0)
+ error ("no member function matches that type instantiation");
+ }
+ else
+ j = 0;
+
+ if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+ {
+ return value_from_longest
+ (lookup_reference_type
+ (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+ domain)),
+ (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
+ }
+ else
+ {
+ struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
+ 0, VAR_NAMESPACE, 0, NULL);
+ if (s == NULL)
+ {
+ v = 0;
+ }
+ else
+ {
+ v = read_var_value (s, 0);
+#if 0
+ VALUE_TYPE (v) = lookup_reference_type
+ (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+ domain));
+#endif
+ }
+ return v;
+ }
+ }
+ }
+ for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
+ {
+ struct value *v;
+ int base_offset;
+
+ if (BASETYPE_VIA_VIRTUAL (t, i))
+ base_offset = 0;
+ else
+ base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
+ v = value_struct_elt_for_reference (domain,
+ offset + base_offset,
+ TYPE_BASECLASS (t, i),
+ name,
+ intype);
+ if (v)
+ return v;
+ }
+ return 0;
+}
+
+
+/* Given a pointer value V, find the real (RTTI) type
+ of the object it points to.
+ Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
+ and refer to the values computed for the object pointed to. */
+
+struct type *
+value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
+{
+ struct value *target;
+
+ target = value_ind (v);
+
+ return value_rtti_type (target, full, top, using_enc);
+}
+
+/* Given a value pointed to by ARGP, check its real run-time type, and
+ if that is different from the enclosing type, create a new value
+ using the real run-time type as the enclosing type (and of the same
+ type as ARGP) and return it, with the embedded offset adjusted to
+ be the correct offset to the enclosed object
+ RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
+ parameters, computed by value_rtti_type(). If these are available,
+ they can be supplied and a second call to value_rtti_type() is avoided.
+ (Pass RTYPE == NULL if they're not available */
+
+struct value *
+value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
+ int xusing_enc)
+{
+ struct type *real_type;
+ int full = 0;
+ int top = -1;
+ int using_enc = 0;
+ struct value *new_val;
+
+ if (rtype)
+ {
+ real_type = rtype;
+ full = xfull;
+ top = xtop;
+ using_enc = xusing_enc;
+ }
+ else
+ real_type = value_rtti_type (argp, &full, &top, &using_enc);
+
+ /* If no RTTI data, or if object is already complete, do nothing */
+ if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
+ return argp;
+
+ /* If we have the full object, but for some reason the enclosing
+ type is wrong, set it *//* pai: FIXME -- sounds iffy */
+ if (full)
+ {
+ argp = value_change_enclosing_type (argp, real_type);
+ return argp;
+ }
+
+ /* Check if object is in memory */
+ if (VALUE_LVAL (argp) != lval_memory)
+ {
+ warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
+
+ return argp;
+ }
+
+ /* All other cases -- retrieve the complete object */
+ /* Go back by the computed top_offset from the beginning of the object,
+ adjusting for the embedded offset of argp if that's what value_rtti_type
+ used for its computation. */
+ new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
+ (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
+ VALUE_BFD_SECTION (argp));
+ VALUE_TYPE (new_val) = VALUE_TYPE (argp);
+ VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
+ return new_val;
+}
+
+
+
+
+/* C++: return the value of the class instance variable, if one exists.
+ Flag COMPLAIN signals an error if the request is made in an
+ inappropriate context. */
+
+struct value *
+value_of_this (int complain)
+{
+ struct symbol *func, *sym;
+ struct block *b;
+ int i;
+ static const char funny_this[] = "this";
+ struct value *this;
+
+ if (selected_frame == 0)
+ {
+ if (complain)
+ error ("no frame selected");
+ else
+ return 0;
+ }
+
+ func = get_frame_function (selected_frame);
+ if (!func)
+ {
+ if (complain)
+ error ("no `this' in nameless context");
+ else
+ return 0;
+ }
+
+ b = SYMBOL_BLOCK_VALUE (func);
+ i = BLOCK_NSYMS (b);
+ if (i <= 0)
+ {
+ if (complain)
+ error ("no args, no `this'");
+ else
+ return 0;
+ }
+
+ /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
+ symbol instead of the LOC_ARG one (if both exist). */
+ sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
+ if (sym == NULL)
+ {
+ if (complain)
+ error ("current stack frame not in method");
+ else
+ return NULL;
+ }
+
+ this = read_var_value (sym, selected_frame);
+ if (this == 0 && complain)
+ error ("`this' argument at unknown address");
+ return this;
+}
+
+/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
+ long, starting at LOWBOUND. The result has the same lower bound as
+ the original ARRAY. */
+
+struct value *
+value_slice (struct value *array, int lowbound, int length)
+{
+ struct type *slice_range_type, *slice_type, *range_type;
+ LONGEST lowerbound, upperbound, offset;
+ struct value *slice;
+ struct type *array_type;
+ array_type = check_typedef (VALUE_TYPE (array));
+ COERCE_VARYING_ARRAY (array, array_type);
+ if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
+ && TYPE_CODE (array_type) != TYPE_CODE_STRING
+ && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
+ error ("cannot take slice of non-array");
+ range_type = TYPE_INDEX_TYPE (array_type);
+ if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
+ error ("slice from bad array or bitstring");
+ if (lowbound < lowerbound || length < 0
+ || lowbound + length - 1 > upperbound)
+ /* OBSOLETE Chill allows zero-length strings but not arrays. */
+ /* OBSOLETE || (current_language->la_language == language_chill */
+ /* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
+ error ("slice out of range");
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ slice_range_type = create_range_type ((struct type *) NULL,
+ TYPE_TARGET_TYPE (range_type),
+ lowbound, lowbound + length - 1);
+ if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
+ {
+ int i;
+ slice_type = create_set_type ((struct type *) NULL, slice_range_type);
+ TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
+ slice = value_zero (slice_type, not_lval);
+ for (i = 0; i < length; i++)
+ {
+ int element = value_bit_index (array_type,
+ VALUE_CONTENTS (array),
+ lowbound + i);
+ if (element < 0)
+ error ("internal error accessing bitstring");
+ else if (element > 0)
+ {
+ int j = i % TARGET_CHAR_BIT;
+ if (BITS_BIG_ENDIAN)
+ j = TARGET_CHAR_BIT - 1 - j;
+ VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
+ }
+ }
+ /* We should set the address, bitssize, and bitspos, so the clice
+ can be used on the LHS, but that may require extensions to
+ value_assign. For now, just leave as a non_lval. FIXME. */
+ }
+ else
+ {
+ struct type *element_type = TYPE_TARGET_TYPE (array_type);
+ offset
+ = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
+ slice_type = create_array_type ((struct type *) NULL, element_type,
+ slice_range_type);
+ TYPE_CODE (slice_type) = TYPE_CODE (array_type);
+ slice = allocate_value (slice_type);
+ if (VALUE_LAZY (array))
+ VALUE_LAZY (slice) = 1;
+ else
+ memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
+ TYPE_LENGTH (slice_type));
+ if (VALUE_LVAL (array) == lval_internalvar)
+ VALUE_LVAL (slice) = lval_internalvar_component;
+ else
+ VALUE_LVAL (slice) = VALUE_LVAL (array);
+ VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
+ VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
+ }
+ return slice;
+}
+
+/* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
+ equivalent value as a fixed-length array. */
+
+struct value *
+varying_to_slice (struct value *varray)
+{
+ struct type *vtype = check_typedef (VALUE_TYPE (varray));
+ LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
+ VALUE_CONTENTS (varray)
+ + TYPE_FIELD_BITPOS (vtype, 0) / 8);
+ return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
+}
+
+/* Create a value for a FORTRAN complex number. Currently most of
+ the time values are coerced to COMPLEX*16 (i.e. a complex number
+ composed of 2 doubles. This really should be a smarter routine
+ that figures out precision inteligently as opposed to assuming
+ doubles. FIXME: fmb */
+
+struct value *
+value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
+{
+ struct value *val;
+ struct type *real_type = TYPE_TARGET_TYPE (type);
+
+ val = allocate_value (type);
+ arg1 = value_cast (real_type, arg1);
+ arg2 = value_cast (real_type, arg2);
+
+ memcpy (VALUE_CONTENTS_RAW (val),
+ VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
+ memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
+ VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
+ return val;
+}
+
+/* Cast a value into the appropriate complex data type. */
+
+static struct value *
+cast_into_complex (struct type *type, struct value *val)
+{
+ struct type *real_type = TYPE_TARGET_TYPE (type);
+ if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
+ {
+ struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
+ struct value *re_val = allocate_value (val_real_type);
+ struct value *im_val = allocate_value (val_real_type);
+
+ memcpy (VALUE_CONTENTS_RAW (re_val),
+ VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
+ memcpy (VALUE_CONTENTS_RAW (im_val),
+ VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
+ TYPE_LENGTH (val_real_type));
+
+ return value_literal_complex (re_val, im_val, type);
+ }
+ else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
+ || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
+ return value_literal_complex (val, value_zero (real_type, not_lval), type);
+ else
+ error ("cannot cast non-number to complex");
+}
+
+void
+_initialize_valops (void)
+{
+#if 0
+ add_show_from_set
+ (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
+ "Set automatic abandonment of expressions upon failure.",
+ &setlist),
+ &showlist);
+#endif
+
+ add_show_from_set
+ (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
+ "Set overload resolution in evaluating C++ functions.",
+ &setlist),
+ &showlist);
+ overload_resolution = 1;
+
+ add_show_from_set (
+ add_set_cmd ("unwindonsignal", no_class, var_boolean,
+ (char *) &unwind_on_signal_p,
+"Set unwinding of stack if a signal is received while in a call dummy.\n\
+The unwindonsignal lets the user determine what gdb should do if a signal\n\
+is received while in a function called from gdb (call dummy). If set, gdb\n\
+unwinds the stack and restore the context to what as it was before the call.\n\
+The default is to stop in the frame where the signal was received.", &setlist),
+ &showlist);
+}