diff options
Diffstat (limited to 'gdb/tm-29k.h')
-rw-r--r-- | gdb/tm-29k.h | 653 |
1 files changed, 653 insertions, 0 deletions
diff --git a/gdb/tm-29k.h b/gdb/tm-29k.h new file mode 100644 index 0000000..4594622 --- /dev/null +++ b/gdb/tm-29k.h @@ -0,0 +1,653 @@ +/* Parameters for target machine of AMD 29000, for GDB, the GNU debugger. + Copyright 1990, 1991 Free Software Foundation, Inc. + Contributed by Cygnus Support. Written by Jim Kingdon. + +This file is part of GDB. + +GDB is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 1, or (at your option) +any later version. + +GDB is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GDB; see the file COPYING. If not, write to +the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + +/* Parameters for an EB29K (a board which plugs into a PC and is + accessed through EBMON software running on the PC, which we + use as we'd use a remote stub (see remote-eb.c). + + If gdb is ported to other 29k machines/systems, the + machine/system-specific parts should be removed from this file (a + la tm-68k.h). */ + +/* Byte order is configurable, but this machine runs big-endian. */ +#define TARGET_BYTE_ORDER BIG_ENDIAN + +/* Floating point uses IEEE representations. */ +#define IEEE_FLOAT + +/* We can either use a.out, encapsulated, or can use COFF */ +#ifndef COFF_ENCAPSULATE +#define COFF_FORMAT +/* This just has to do with what coff header files are in use. */ +#define COFF_CHECK_X_ZEROES +#endif + +/* Recognize our magic number. */ +#define BADMAG(x) ((x)->f_magic != 0572) + +/* Define this if the C compiler puts an underscore at the front + of external names before giving them to the linker. */ + +#define NAMES_HAVE_UNDERSCORE + +/* Offset from address of function to start of its code. + Zero on most machines. */ + +#define FUNCTION_START_OFFSET 0 + +/* Advance PC across any function entry prologue instructions + to reach some "real" code. */ + +#define SKIP_PROLOGUE(pc) \ + { pc = skip_prologue (pc); } +CORE_ADDR skip_prologue (); + +/* Immediately after a function call, return the saved pc. + Can't go through the frames for this because on some machines + the new frame is not set up until the new function executes + some instructions. */ + +#define SAVED_PC_AFTER_CALL(frame) (read_register (LR0_REGNUM)) + +/* I'm not sure about the exact value of this, but based on looking + at the stack pointer when we get to main this seems to be right. + + This is the register stack; We call it "CONTROL" in GDB for consistency + with Pyramid. */ +#define CONTROL_END_ADDR 0x80200000 + +/* Memory stack. This is for the default register stack size, which is + only 0x800 bytes. Perhaps we should let the user specify stack sizes + (and tell EBMON with the "ZS" command). */ +#define STACK_END_ADDR 0x801ff800 + +/* Stack grows downward. */ + +#define INNER_THAN < + +/* Stack must be aligned on 32-bit word boundaries. */ +#define STACK_ALIGN(ADDR) (((ADDR) + 3) & ~3) + +/* Sequence of bytes for breakpoint instruction. */ +/* ASNEQ 0x50, gr1, gr1 + The trap number 0x50 is chosen arbitrarily. */ +#if TARGET_BYTE_ORDER == BIG_ENDIAN +#define BREAKPOINT {0x72, 0x50, 0x01, 0x01} +#else /* Target is little-endian. */ +#define BREAKPOINT {0x01, 0x01, 0x50, 0x72} +#endif /* Target is little-endian. */ + +/* Amount PC must be decremented by after a breakpoint. + This is often the number of bytes in BREAKPOINT + but not always. */ + +#define DECR_PC_AFTER_BREAK 4 + +/* Nonzero if instruction at PC is a return instruction. + On the 29k, this is a "jmpi l0" instruction. */ + +#define ABOUT_TO_RETURN(pc) \ + ((read_memory_integer (pc, 4) & 0xff0000ff) == 0xc0000080) + +/* Return 1 if P points to an invalid floating point value. */ + +#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */ + +/* Say how long (ordinary) registers are. */ + +#define REGISTER_TYPE long + +/* Number of machine registers */ + +#define NUM_REGS 205 + +/* Initializer for an array of names of registers. + There should be NUM_REGS strings in this initializer. + + FIXME, add floating point registers and support here. + + Also note that this list does not attempt to deal with kernel + debugging (in which the first 32 registers are gr64-gr95). */ + +#define REGISTER_NAMES \ +{"gr96", "gr97", "gr98", "gr99", "gr100", "gr101", "gr102", "gr103", "gr104", \ + "gr105", "gr106", "gr107", "gr108", "gr109", "gr110", "gr111", "gr112", \ + "gr113", "gr114", "gr115", "gr116", "gr117", "gr118", "gr119", "gr120", \ + "gr121", "gr122", "gr123", "gr124", "gr125", "gr126", "gr127", \ + "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", "lr8", "lr9", \ + "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", "lr16", "lr17", "lr18", \ + "lr19", "lr20", "lr21", "lr22", "lr23", "lr24", "lr25", "lr26", "lr27", \ + "lr28", "lr29", "lr30", "lr31", "lr32", "lr33", "lr34", "lr35", "lr36", \ + "lr37", "lr38", "lr39", "lr40", "lr41", "lr42", "lr43", "lr44", "lr45", \ + "lr46", "lr47", "lr48", "lr49", "lr50", "lr51", "lr52", "lr53", "lr54", \ + "lr55", "lr56", "lr57", "lr58", "lr59", "lr60", "lr61", "lr62", "lr63", \ + "lr64", "lr65", "lr66", "lr67", "lr68", "lr69", "lr70", "lr71", "lr72", \ + "lr73", "lr74", "lr75", "lr76", "lr77", "lr78", "lr79", "lr80", "lr81", \ + "lr82", "lr83", "lr84", "lr85", "lr86", "lr87", "lr88", "lr89", "lr90", \ + "lr91", "lr92", "lr93", "lr94", "lr95", "lr96", "lr97", "lr98", "lr99", \ + "lr100", "lr101", "lr102", "lr103", "lr104", "lr105", "lr106", "lr107", \ + "lr108", "lr109", "lr110", "lr111", "lr112", "lr113", "lr114", "lr115", \ + "lr116", "lr117", "lr118", "lr119", "lr120", "lr121", "lr122", "lr123", \ + "lr124", "lr125", "lr126", "lr127", \ + "AI0", "AI1", "AI2", "AI3", "AI4", "AI5", "AI6", "AI7", "AI8", "AI9", \ + "AI10", "AI11", "AI12", "AI13", "AI14", "AI15", "FP", \ + "bp", "fc", "cr", "q", \ + "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", \ + "pc0", "pc1", "pc2", "mmu", "lru", "fpe", "int", "fps", "exo", "gr1", \ + "alu", "ipc", "ipa", "ipb" } + +/* Special register #x. */ +#define SR_REGNUM(x) \ + ((x) < 15 ? VAB_REGNUM + (x) \ + : (x) >= 128 && (x) < 131 ? IPC_REGNUM + (x) \ + : (x) == 131 ? Q_REGNUM \ + : (x) == 132 ? ALU_REGNUM \ + : (x) >= 133 && (x) < 136 ? BP_REGNUM + (x) \ + : (x) >= 160 && (x) < 163 ? FPE_REGNUM + (x) \ + : (x) == 164 ? EXO_REGNUM \ + : (error ("Internal error in SR_REGNUM"), 0)) +#define GR96_REGNUM 0 +#define GR1_REGNUM 200 +/* This needs to be the memory stack pointer, not the register stack pointer, + to make call_function work right. */ +#define SP_REGNUM MSP_REGNUM +#define FP_REGNUM 33 /* lr1 */ +/* Large Return Pointer (gr123). */ +#define LRP_REGNUM (123 - 96 + GR96_REGNUM) +/* Static link pointer (gr124). */ +#define SLP_REGNUM (124 - 96 + GR96_REGNUM) +/* Memory Stack Pointer (gr125). */ +#define MSP_REGNUM (125 - 96 + GR96_REGNUM) +/* Register allocate bound (gr126). */ +#define RAB_REGNUM (126 - 96 + GR96_REGNUM) +/* Register Free Bound (gr127). */ +#define RFB_REGNUM (127 - 96 + GR96_REGNUM) +/* Register Stack Pointer. */ +#define RSP_REGNUM GR1_REGNUM +#define LR0_REGNUM 32 +#define PC_REGNUM 192 /* pc1 */ +#define NPC_REGNUM 191 /* pc0 */ +#define PC2_REGNUM 193 +#define BP_REGNUM 177 +#define FC_REGNUM 178 +#define CR_REGNUM 179 +#define Q_REGNUM 180 +#define VAB_REGNUM 181 +#define LRU_REGNUM 195 +#define FPE_REGNUM 196 +#define INT_REGNUM 197 +#define FPS_REGNUM 198 +#define EXO_REGNUM 199 +#define PS_REGNUM 201 +#define ALU_REGNUM 201 +#define IPC_REGNUM 202 +#define IPB_REGNUM 204 + +/* Total amount of space needed to store our copies of the machine's + register state, the array `registers'. */ +#define REGISTER_BYTES (NUM_REGS * 4) + +/* Index within `registers' of the first byte of the space for + register N. */ +#define REGISTER_BYTE(N) ((N)*4) + +/* Number of bytes of storage in the actual machine representation + for register N. */ + +/* All regs are 4 bytes. */ + +#define REGISTER_RAW_SIZE(N) (4) + +/* Number of bytes of storage in the program's representation + for register N. */ + +/* All regs are 4 bytes. */ + +#define REGISTER_VIRTUAL_SIZE(N) (4) + +/* Largest value REGISTER_RAW_SIZE can have. */ + +#define MAX_REGISTER_RAW_SIZE (4) + +/* Largest value REGISTER_VIRTUAL_SIZE can have. */ + +#define MAX_REGISTER_VIRTUAL_SIZE (4) + +/* Nonzero if register N requires conversion + from raw format to virtual format. */ + +#define REGISTER_CONVERTIBLE(N) (0) + +/* Convert data from raw format for register REGNUM + to virtual format for register REGNUM. */ + +#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ +{ bcopy ((FROM), (TO), 4); } + +/* Convert data from virtual format for register REGNUM + to raw format for register REGNUM. */ + +#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ +{ bcopy ((FROM), (TO), 4); } + +/* Return the GDB type object for the "standard" data type + of data in register N. */ + +#define REGISTER_VIRTUAL_TYPE(N) \ + (((N) == PC_REGNUM || (N) == LRP_REGNUM || (N) == SLP_REGNUM \ + || (N) == MSP_REGNUM || (N) == RAB_REGNUM || (N) == RFB_REGNUM \ + || (N) == GR1_REGNUM || (N) == FP_REGNUM || (N) == LR0_REGNUM \ + || (N) == NPC_REGNUM || (N) == PC2_REGNUM) \ + ? lookup_pointer_type (builtin_type_void) : builtin_type_int) + +/* Store the address of the place in which to copy the structure the + subroutine will return. This is called from call_function. */ +/* On the 29k the LRP points to the part of the structure beyond the first + 16 words. */ +#define STORE_STRUCT_RETURN(ADDR, SP) \ + write_register (LRP_REGNUM, (ADDR) + 16 * 4); + +/* Should call_function allocate stack space for a struct return? */ +/* On the 29k objects over 16 words require the caller to allocate space. */ +#define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 16 * 4) + +/* Extract from an array REGBUF containing the (raw) register state + a function return value of type TYPE, and copy that, in virtual format, + into VALBUF. */ + +#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ + { \ + int reg_length = TYPE_LENGTH (TYPE); \ + if (reg_length > 16 * 4) \ + { \ + reg_length = 16 * 4; \ + read_memory (*((int *)(REGBUF) + LRP_REGNUM), (VALBUF) + 16 * 4, \ + TYPE_LENGTH (TYPE) - 16 * 4); \ + } \ + bcopy (((int *)(REGBUF))+GR96_REGNUM, (VALBUF), reg_length); \ + } + +/* Write into appropriate registers a function return value + of type TYPE, given in virtual format. */ + +#define STORE_RETURN_VALUE(TYPE,VALBUF) \ + { \ + int reg_length = TYPE_LENGTH (TYPE); \ + if (reg_length > 16 * 4) \ + { \ + reg_length = 16 * 4; \ + write_memory (read_register (LRP_REGNUM), \ + (char *)(VALBUF) + 16 * 4, \ + TYPE_LENGTH (TYPE) - 16 * 4); \ + } \ + write_register_bytes (REGISTER_BYTE (GR96_REGNUM), (char *)(VALBUF), \ + TYPE_LENGTH (TYPE)); \ + } + +/* The am29k user's guide documents well what the stacks look like. + But what isn't so clear there is how this interracts with the + symbols, or with GDB. + In the following saved_msp, saved memory stack pointer (which functions + as a memory frame pointer), means either + a register containing the memory frame pointer or, in the case of + functions with fixed size memory frames (i.e. those who don't use + alloca()), the result of the calculation msp + msize. + + LOC_ARG, LOC_LOCAL - For GCC, these are relative to saved_msp. + For high C, these are relative to msp (making alloca impossible). + LOC_REGISTER, LOC_REGPARM - The register number is the number at the + time the function is running (after the prologue), or in the case + of LOC_REGPARM, may be a register number in the range 160-175. + + The compilers do things like store an argument into memory, and then put out + a LOC_ARG for it, or put it into global registers and put out a + LOC_REGPARM. Thus is it important to execute the first line of + code (i.e. the line of the open brace, i.e. the prologue) of a function + before trying to print arguments or anything. + + The following diagram attempts to depict what is going on in memory + (see also the _am29k user's guide_) and also how that interacts with + GDB frames. We arbitrarily pick fci->frame to point the same place + as the register stack pointer; since we set it ourself in + INIT_EXTRA_FRAME_INFO, and access it only through the FRAME_* + macros, it doesn't really matter exactly how we + do it. However, note that FRAME_FP is used in two ways in GDB: + (1) as a "magic cookie" which uniquely identifies frames (even over + calls to the inferior), (2) (in PC_IN_CALL_DUMMY [!CANNOT_EXECUTE_STACK]) + as the value of SP_REGNUM before the dummy frame was pushed. These + two meanings would be incompatible for the 29k if we didn't define + CANNOT_EXECUTE_STACK (but we do, so don't worry about it). + Also note that "lr1" below, while called a frame pointer + in the user's guide, has only one function: To determine whether + registers need to be filled in the function epilogue. + + Consider the code: + < call bar> + loc1: . . . + bar: sub gr1,gr1,rsize_b + . . . + add mfp,msp,0 + sub msp,msp,msize_b + . . . + < call foo > + loc2: . . . + foo: sub gr1,gr1,rsize_f + . . . + add mfp,msp,0 + sub msp,msp,msize_f + . . . + loc3: < suppose the inferior stops here > + + memory stack register stack + | | |____________| + | | |____loc1____| + +------->|___________| | | ^ + | | ^ | | locals_b | | + | | | | |____________| | + | | | | | | | rsize_b + | | | msize_b | | args_to_f | | + | | | | |____________| | + | | | | |____lr1_____| V + | | V | |____loc2____|<----------------+ + | +--->|___________|<---------mfp | ^ | + | | | ^ | | locals_f | | | + | | | | msize_f | |____________| | | + | | | | | | | | rsize_f | + | | | V | | args | | | + | | |___________|<msp |____________| | | + | | |_____lr1____| V | + | | |___garbage__| <- gr1 <----+ | + | | | | + | | | | + | | pc=loc3 | | + | | | | + | | | | + | | frame cache | | + | | |_________________| | | + | | |rsize=rsize_b | | | + | | |msize=msize_b | | | + +---|--------saved_msp | | | + | |frame------------------------------------|---+ + | |pc=loc2 | | + | |_________________| | + | |rsize=rsize_f | | + | |msize=msize_f | | + +--------saved_msp | | + |frame------------------------------------+ + |pc=loc3 | + |_________________| + + So, is that sufficiently confusing? Welcome to the 29000. + Notes: + * The frame for foo uses a memory frame pointer but the frame for + bar does not. In the latter case the saved_msp is + computed by adding msize to the saved_msp of the + next frame. + * msize is in the frame cache only for high C's sake. */ + +void read_register_stack (); +long read_register_stack_integer (); + +#define EXTRA_FRAME_INFO \ + CORE_ADDR saved_msp; \ + unsigned int rsize; \ + unsigned int msize; + +/* Because INIT_FRAME_PC gets passed fromleaf, that's where we init + not only ->pc and ->frame, but all the extra stuff, when called from + get_prev_frame_info, that is. */ +#define INIT_EXTRA_FRAME_INFO(fci) \ + init_extra_frame_info(fci); +void init_extra_frame_info (); +#define INIT_FRAME_PC(fromleaf, fci) \ + init_frame_pc(fromleaf, fci); +void init_frame_pc (); + +/* FRAME_CHAIN takes a FRAME + and produces the frame's chain-pointer. + + FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address + and produces the nominal address of the caller frame. + + However, if FRAME_CHAIN_VALID returns zero, + it means the given frame is the outermost one and has no caller. + In that case, FRAME_CHAIN_COMBINE is not used. */ + +/* On the 29k, the nominal address of a frame is the address on the + register stack of the return address (the one next to the incoming + arguments, not down at the bottom so nominal address == stack pointer). + + GDB expects "nominal address" to equal contents of FP_REGNUM, + at least when it comes time to create the innermost frame. + However, that doesn't work for us, so when creating the innermost + frame we set ->frame ourselves in INIT_EXTRA_FRAME_INFO. */ + +/* These are mostly dummies for the 29k because INIT_FRAME_PC + sets prev->frame instead. */ +#define FRAME_CHAIN(thisframe) (0) + +/* Not sure how to figure out where the bottom frame is. There is + no frame for start. In my tests so far the + pc has been outside the text segment, though, so check for that. + However, allow a pc in a call dummy. */ +#define FRAME_CHAIN_VALID(chain, thisframe) \ + (outside_startup_file (FRAME_SAVED_PC (thisframe)) \ + && FRAME_SAVED_PC (thisframe) >= text_start \ + && FRAME_SAVED_PC (thisframe) < text_end + CALL_DUMMY_LENGTH) + +#define FRAME_CHAIN_COMBINE(chain, thisframe) (0) + +/* Define other aspects of the stack frame. */ + +/* A macro that tells us whether the function invocation represented + by FI does not have a frame on the stack associated with it. If it + does not, FRAMELESS is set to 1, else 0. */ +#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \ + (FRAMELESS) = frameless_look_for_prologue(FI) + +/* Saved pc (i.e. return address). */ +#define FRAME_SAVED_PC(fraim) \ + (read_register_stack_integer ((fraim)->frame + (fraim)->rsize, 4)) + +/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their + offsets being relative to the memory stack pointer (high C) or + saved_msp (gcc). */ + +#define FRAME_LOCALS_ADDRESS(fi) frame_locals_address (fi) +extern CORE_ADDR frame_locals_address (); + +/* Return number of args passed to a frame. + Can return -1, meaning no way to tell. */ +/* While we could go the effort of finding the tags word and getting + the argcount field from it, + (1) It only counts arguments in registers, i.e. the first 16 words + of arguments + (2) It gives the number of arguments the function was declared with + not how many it was called with (or some variation, like all 16 + words for varadic functions). This makes argcount pretty much + redundant with -g info, even for varadic functions. + So don't bother. */ +#define FRAME_NUM_ARGS(numargs, fi) ((numargs) = -1) + +#define FRAME_ARGS_ADDRESS(fi) FRAME_LOCALS_ADDRESS (fi) + +/* Return number of bytes at start of arglist that are not really args. */ + +#define FRAME_ARGS_SKIP 0 + +/* Provide our own get_saved_register. HAVE_REGISTER_WINDOWS is insufficient + because registers get renumbered on the 29k without getting saved. */ + +#define GET_SAVED_REGISTER + +/* Call function stuff. */ + +/* The dummy frame looks like this (see also the general frame picture + above): + + register stack + + | | frame for function + | locals_sproc | executing at time + |________________| of call_function. + | | We must not disturb + | args_out_sproc | it. + memory stack |________________| + |____lr1_sproc___| + | | |__retaddr_sproc_| <- gr1 (at start) + |____________|<-msp 0 <-----------mfp_dummy_____| + | | (at start) | | + | arg_slop | | saved regs | + | (16 words) | | gr96-gr124 | + |____________|<-msp 1--after | sr128-sr135 | + | | PUSH_DUMMY_FRAME| | + | struct ret | |________________| + | 17+ | | | + |____________|<- lrp | args_out_dummy | + | struct ret | | (16 words) | + | 16 | |________________| + | (16 words) | |____lr1_dummy___| + |____________|<- msp 2--after |_retaddr_dummy__|<- gr1 after + | | struct ret | | PUSH_DUMMY_FRAME + | margs17+ | area allocated | locals_inf | + | | |________________| called + |____________|<- msp 4--when | | function's + | | inf called | args_out_inf | frame (set up + | margs16 | |________________| by called + | (16 words) | |_____lr1_inf____| function). + |____________|<- msp 3--after | . | + | | args pushed | . | + | | | . | + | | + + arg_slop: This area is so that when the call dummy adds 16 words to + the msp, it won't end up larger than mfp_dummy (it is needed in the + case where margs and struct_ret do not add up to at least 16 words). + struct ret: This area is allocated by GDB if the return value is more + than 16 words. struct ret_16 is not used on the 29k. + margs: Pushed by GDB. The call dummy copies the first 16 words to + args_out_dummy. + retaddr_sproc: Contains the PC at the time we call the function. + set by PUSH_DUMMY_FRAME and read by POP_FRAME. + retaddr_dummy: This points to a breakpoint instruction in the dummy. */ + +/* Rsize for dummy frame, in bytes. */ + +/* Bytes for outgoing args, lr1, and retaddr. */ +#define DUMMY_ARG (2 * 4 + 16 * 4) + +/* Number of special registers (sr128-) to save. */ +#define DUMMY_SAVE_SR128 8 +/* Number of general (gr96-) registers to save. */ +#define DUMMY_SAVE_GR96 29 + +#define DUMMY_FRAME_RSIZE \ +(4 /* mfp_dummy */ \ + + DUMMY_SAVE_GR96 * 4 \ + + DUMMY_SAVE_SR128 * 4 \ + + DUMMY_ARG \ + ) + +/* Push an empty stack frame, to record the current PC, etc. */ + +#define PUSH_DUMMY_FRAME push_dummy_frame(); +extern void push_dummy_frame (); + +/* Discard from the stack the innermost frame, + restoring all saved registers. */ + +#define POP_FRAME pop_frame (); +extern void pop_frame (); + +/* This sequence of words is the instructions + mtsrim cr, 15 + loadm 0, 0, lr2, msp ; load first 16 words of arguments into registers + add msp, msp, 16 * 4 ; point to the remaining arguments + CONST_INSN: + const gr96,inf + consth gr96,inf + calli lr0, gr96 + aseq 0x40,gr1,gr1 ; nop + asneq 0x50,gr1,gr1 ; breakpoint + */ + +/* Position of the "const" instruction within CALL_DUMMY in bytes. */ +#define CONST_INSN (3 * 4) +#if TARGET_BYTE_ORDER == HOST_BYTE_ORDER +#define CALL_DUMMY {0x0400870f, 0x3600827d, 0x157d7d40, 0x03ff60ff, \ + 0x02ff60ff, 0xc8008060, 0x70400101, 0x72500101} +#else /* Byte order differs. */ + you lose +#endif /* Byte order differs. */ +#define CALL_DUMMY_LENGTH (8 * 4) + +#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */ + +/* Helper macro for FIX_CALL_DUMMY. WORDP is a long * which points to a + word in target byte order; bits 0-7 and 16-23 of *WORDP are replaced with + bits 0-7 and 8-15 of DATA (which is in host byte order). */ + +#if TARGET_BYTE_ORDER == BIG_ENDIAN +#define STUFF_I16(WORDP, DATA) \ + { \ + *((char *)(WORDP) + 3) = ((DATA) & 0xff);\ + *((char *)(WORDP) + 1) = (((DATA) >> 8) & 0xff);\ + } +#else /* Target is little endian. */ +#define STUFF_I16(WORDP, DATA) \ + { + *(char *)(WORDP) = ((DATA) & 0xff); + *((char *)(WORDP) + 2) = (((DATA) >> 8) & 0xff); + } +#endif /* Target is little endian. */ + +/* Insert the specified number of args and function address + into a call sequence of the above form stored at DUMMYNAME. */ + +/* Currently this stuffs in the address of the function that we are calling. + If different 29k systems use different breakpoint instructions, it + could also stuff BREAKPOINT in the right place (to avoid having to + duplicate CALL_DUMMY in each tm-*.h file). */ + +#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ + {\ + STUFF_I16((char *)dummyname + CONST_INSN, fun);\ + STUFF_I16((char *)dummyname + CONST_INSN + 4, fun >> 16);\ + } + +/* At least our 29k board has separate data & instruction memories and can't + execute the data memory. Also, there should be space after text_end; + we won't get a SIGSEGV or scribble on data space. */ + +#define CALL_DUMMY_LOCATION AFTER_TEXT_END + +/* How to translate register numbers in the .stab's into gdb's internal register + numbers. We don't translate them, but we warn if an invalid register + number is seen. Note that FIXME, we use the value "sym" as an implicit + argument in printing the error message. It happens to be available where + this macro is used. (This macro definition appeared in a late revision + of gdb-3.91.6 and is not well tested. Also, it should be a "complaint".) */ + +#define STAB_REG_TO_REGNUM(num) \ + (((num) > LR0_REGNUM + 127) \ + ? fprintf(stderr, \ + "Invalid register number %d in symbol table entry for %s\n", \ + (num), SYMBOL_NAME (sym)), (num) \ + : (num)) |