diff options
Diffstat (limited to 'gdb/symtab.c')
-rw-r--r-- | gdb/symtab.c | 73 |
1 files changed, 0 insertions, 73 deletions
diff --git a/gdb/symtab.c b/gdb/symtab.c index 2aae04c..df974bf 100644 --- a/gdb/symtab.c +++ b/gdb/symtab.c @@ -2954,79 +2954,6 @@ skip_prologue_sal (struct symtab_and_line *sal) } } -/* Determine if PC is in the prologue of a function. The prologue is the area - between the first instruction of a function, and the first executable line. - Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. - - If non-zero, func_start is where we think the prologue starts, possibly - by previous examination of symbol table information. */ - -int -in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start) -{ - struct symtab_and_line sal; - CORE_ADDR func_addr, func_end; - - /* We have several sources of information we can consult to figure - this out. - - Compilers usually emit line number info that marks the prologue - as its own "source line". So the ending address of that "line" - is the end of the prologue. If available, this is the most - reliable method. - - The minimal symbols and partial symbols, which can usually tell - us the starting and ending addresses of a function. - - If we know the function's start address, we can call the - architecture-defined gdbarch_skip_prologue function to analyze the - instruction stream and guess where the prologue ends. - - Our `func_start' argument; if non-zero, this is the caller's - best guess as to the function's entry point. At the time of - this writing, handle_inferior_event doesn't get this right, so - it should be our last resort. */ - - /* Consult the partial symbol table, to find which function - the PC is in. */ - if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) - { - CORE_ADDR prologue_end; - - /* We don't even have minsym information, so fall back to using - func_start, if given. */ - if (! func_start) - return 1; /* We *might* be in a prologue. */ - - prologue_end = gdbarch_skip_prologue (gdbarch, func_start); - - return func_start <= pc && pc < prologue_end; - } - - /* If we have line number information for the function, that's - usually pretty reliable. */ - sal = find_pc_line (func_addr, 0); - - /* Now sal describes the source line at the function's entry point, - which (by convention) is the prologue. The end of that "line", - sal.end, is the end of the prologue. - - Note that, for functions whose source code is all on a single - line, the line number information doesn't always end up this way. - So we must verify that our purported end-of-prologue address is - *within* the function, not at its start or end. */ - if (sal.line == 0 - || sal.end <= func_addr - || func_end <= sal.end) - { - /* We don't have any good line number info, so use the minsym - information, together with the architecture-specific prologue - scanning code. */ - CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr); - - return func_addr <= pc && pc < prologue_end; - } - - /* We have line number info, and it looks good. */ - return func_addr <= pc && pc < sal.end; -} - /* Given PC at the function's start address, attempt to find the prologue end using SAL information. Return zero if the skip fails. |