aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/sparc-tdep.c')
-rw-r--r--gdb/sparc-tdep.c2120
1 files changed, 2120 insertions, 0 deletions
diff --git a/gdb/sparc-tdep.c b/gdb/sparc-tdep.c
new file mode 100644
index 0000000..113b32c
--- /dev/null
+++ b/gdb/sparc-tdep.c
@@ -0,0 +1,2120 @@
+/* Target-dependent code for the SPARC for GDB, the GNU debugger.
+ Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
+ Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "obstack.h"
+#include "target.h"
+#include "value.h"
+#include "bfd.h"
+#include "gdb_string.h"
+
+#ifdef USE_PROC_FS
+#include <sys/procfs.h>
+#endif
+
+#include "gdbcore.h"
+
+#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
+#define SPARC_HAS_FPU 0
+#else
+#define SPARC_HAS_FPU 1
+#endif
+
+#ifdef GDB_TARGET_IS_SPARC64
+#define FP_REGISTER_BYTES (64 * 4)
+#else
+#define FP_REGISTER_BYTES (32 * 4)
+#endif
+
+/* If not defined, assume 32 bit sparc. */
+#ifndef FP_MAX_REGNUM
+#define FP_MAX_REGNUM (FP0_REGNUM + 32)
+#endif
+
+#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
+
+/* From infrun.c */
+extern int stop_after_trap;
+
+/* We don't store all registers immediately when requested, since they
+ get sent over in large chunks anyway. Instead, we accumulate most
+ of the changes and send them over once. "deferred_stores" keeps
+ track of which sets of registers we have locally-changed copies of,
+ so we only need send the groups that have changed. */
+
+int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
+
+
+/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
+ where instructions are big-endian and data are little-endian.
+ This flag is set when we detect that the target is of this type. */
+
+int bi_endian = 0;
+
+
+/* Fetch a single instruction. Even on bi-endian machines
+ such as sparc86x, instructions are always big-endian. */
+
+static unsigned long
+fetch_instruction (pc)
+ CORE_ADDR pc;
+{
+ unsigned long retval;
+ int i;
+ unsigned char buf[4];
+
+ read_memory (pc, buf, sizeof (buf));
+
+ /* Start at the most significant end of the integer, and work towards
+ the least significant. */
+ retval = 0;
+ for (i = 0; i < sizeof (buf); ++i)
+ retval = (retval << 8) | buf[i];
+ return retval;
+}
+
+
+/* Branches with prediction are treated like their non-predicting cousins. */
+/* FIXME: What about floating point branches? */
+
+/* Macros to extract fields from sparc instructions. */
+#define X_OP(i) (((i) >> 30) & 0x3)
+#define X_RD(i) (((i) >> 25) & 0x1f)
+#define X_A(i) (((i) >> 29) & 1)
+#define X_COND(i) (((i) >> 25) & 0xf)
+#define X_OP2(i) (((i) >> 22) & 0x7)
+#define X_IMM22(i) ((i) & 0x3fffff)
+#define X_OP3(i) (((i) >> 19) & 0x3f)
+#define X_RS1(i) (((i) >> 14) & 0x1f)
+#define X_I(i) (((i) >> 13) & 1)
+#define X_IMM13(i) ((i) & 0x1fff)
+/* Sign extension macros. */
+#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
+#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
+#define X_CC(i) (((i) >> 20) & 3)
+#define X_P(i) (((i) >> 19) & 1)
+#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
+#define X_RCOND(i) (((i) >> 25) & 7)
+#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
+#define X_FCN(i) (((i) >> 25) & 31)
+
+typedef enum
+{
+ Error, not_branch, bicc, bicca, ba, baa, ticc, ta,
+#ifdef GDB_TARGET_IS_SPARC64
+ done_retry
+#endif
+} branch_type;
+
+/* Simulate single-step ptrace call for sun4. Code written by Gary
+ Beihl (beihl@mcc.com). */
+
+/* npc4 and next_pc describe the situation at the time that the
+ step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
+static CORE_ADDR next_pc, npc4, target;
+static int brknpc4, brktrg;
+typedef char binsn_quantum[BREAKPOINT_MAX];
+static binsn_quantum break_mem[3];
+
+static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *));
+
+/* single_step() is called just before we want to resume the inferior,
+ if we want to single-step it but there is no hardware or kernel single-step
+ support (as on all SPARCs). We find all the possible targets of the
+ coming instruction and breakpoint them.
+
+ single_step is also called just after the inferior stops. If we had
+ set up a simulated single-step, we undo our damage. */
+
+void
+sparc_software_single_step (ignore, insert_breakpoints_p)
+ enum target_signal ignore; /* pid, but we don't need it */
+ int insert_breakpoints_p;
+{
+ branch_type br;
+ CORE_ADDR pc;
+ long pc_instruction;
+
+ if (insert_breakpoints_p)
+ {
+ /* Always set breakpoint for NPC. */
+ next_pc = read_register (NPC_REGNUM);
+ npc4 = next_pc + 4; /* branch not taken */
+
+ target_insert_breakpoint (next_pc, break_mem[0]);
+ /* printf_unfiltered ("set break at %x\n",next_pc); */
+
+ pc = read_register (PC_REGNUM);
+ pc_instruction = fetch_instruction (pc);
+ br = isbranch (pc_instruction, pc, &target);
+ brknpc4 = brktrg = 0;
+
+ if (br == bicca)
+ {
+ /* Conditional annulled branch will either end up at
+ npc (if taken) or at npc+4 (if not taken).
+ Trap npc+4. */
+ brknpc4 = 1;
+ target_insert_breakpoint (npc4, break_mem[1]);
+ }
+ else if (br == baa && target != next_pc)
+ {
+ /* Unconditional annulled branch will always end up at
+ the target. */
+ brktrg = 1;
+ target_insert_breakpoint (target, break_mem[2]);
+ }
+#ifdef GDB_TARGET_IS_SPARC64
+ else if (br == done_retry)
+ {
+ brktrg = 1;
+ target_insert_breakpoint (target, break_mem[2]);
+ }
+#endif
+ }
+ else
+ {
+ /* Remove breakpoints */
+ target_remove_breakpoint (next_pc, break_mem[0]);
+
+ if (brknpc4)
+ target_remove_breakpoint (npc4, break_mem[1]);
+
+ if (brktrg)
+ target_remove_breakpoint (target, break_mem[2]);
+ }
+}
+
+/* Call this for each newly created frame. For SPARC, we need to calculate
+ the bottom of the frame, and do some extra work if the prologue
+ has been generated via the -mflat option to GCC. In particular,
+ we need to know where the previous fp and the pc have been stashed,
+ since their exact position within the frame may vary. */
+
+void
+sparc_init_extra_frame_info (fromleaf, fi)
+ int fromleaf;
+ struct frame_info *fi;
+{
+ char *name;
+ CORE_ADDR prologue_start, prologue_end;
+ int insn;
+
+ fi->bottom =
+ (fi->next ?
+ (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) :
+ read_sp ());
+
+ /* If fi->next is NULL, then we already set ->frame by passing read_fp()
+ to create_new_frame. */
+ if (fi->next)
+ {
+ char buf[MAX_REGISTER_RAW_SIZE];
+
+ /* Compute ->frame as if not flat. If it is flat, we'll change
+ it later. */
+ if (fi->next->next != NULL
+ && (fi->next->next->signal_handler_caller
+ || frame_in_dummy (fi->next->next))
+ && frameless_look_for_prologue (fi->next))
+ {
+ /* A frameless function interrupted by a signal did not change
+ the frame pointer, fix up frame pointer accordingly. */
+ fi->frame = FRAME_FP (fi->next);
+ fi->bottom = fi->next->bottom;
+ }
+ else
+ {
+ /* Should we adjust for stack bias here? */
+ get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
+ fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
+#ifdef GDB_TARGET_IS_SPARC64
+ if (fi->frame & 1)
+ fi->frame += 2047;
+#endif
+
+ }
+ }
+
+ /* Decide whether this is a function with a ``flat register window''
+ frame. For such functions, the frame pointer is actually in %i7. */
+ fi->flat = 0;
+ fi->in_prologue = 0;
+ if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
+ {
+ /* See if the function starts with an add (which will be of a
+ negative number if a flat frame) to the sp. FIXME: Does not
+ handle large frames which will need more than one instruction
+ to adjust the sp. */
+ insn = fetch_instruction (prologue_start, 4);
+ if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
+ && X_I (insn) && X_SIMM13 (insn) < 0)
+ {
+ int offset = X_SIMM13 (insn);
+
+ /* Then look for a save of %i7 into the frame. */
+ insn = fetch_instruction (prologue_start + 4);
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 31
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ {
+ char buf[MAX_REGISTER_RAW_SIZE];
+
+ /* We definitely have a flat frame now. */
+ fi->flat = 1;
+
+ fi->sp_offset = offset;
+
+ /* Overwrite the frame's address with the value in %i7. */
+ get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
+ fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
+#ifdef GDB_TARGET_IS_SPARC64
+ if (fi->frame & 1)
+ fi->frame += 2047;
+#endif
+ /* Record where the fp got saved. */
+ fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
+
+ /* Also try to collect where the pc got saved to. */
+ fi->pc_addr = 0;
+ insn = fetch_instruction (prologue_start + 12);
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 15
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
+ }
+ }
+ else
+ {
+ /* Check if the PC is in the function prologue before a SAVE
+ instruction has been executed yet. If so, set the frame
+ to the current value of the stack pointer and set
+ the in_prologue flag. */
+ CORE_ADDR addr;
+ struct symtab_and_line sal;
+
+ sal = find_pc_line (prologue_start, 0);
+ if (sal.line == 0) /* no line info, use PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end)
+ prologue_end = sal.end;
+ if (fi->pc < prologue_end)
+ {
+ for (addr = prologue_start; addr < fi->pc; addr += 4)
+ {
+ insn = read_memory_integer (addr, 4);
+ if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
+ break; /* SAVE seen, stop searching */
+ }
+ if (addr >= fi->pc)
+ {
+ fi->in_prologue = 1;
+ fi->frame = read_register (SP_REGNUM);
+ }
+ }
+ }
+ }
+ if (fi->next && fi->frame == 0)
+ {
+ /* Kludge to cause init_prev_frame_info to destroy the new frame. */
+ fi->frame = fi->next->frame;
+ fi->pc = fi->next->pc;
+ }
+}
+
+CORE_ADDR
+sparc_frame_chain (frame)
+ struct frame_info *frame;
+{
+ /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
+ value. If it realy is zero, we detect it later in
+ sparc_init_prev_frame. */
+ return (CORE_ADDR)1;
+}
+
+CORE_ADDR
+sparc_extract_struct_value_address (regbuf)
+ char regbuf[REGISTER_BYTES];
+{
+ return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
+ REGISTER_RAW_SIZE (O0_REGNUM));
+}
+
+/* Find the pc saved in frame FRAME. */
+
+CORE_ADDR
+sparc_frame_saved_pc (frame)
+ struct frame_info *frame;
+{
+ char buf[MAX_REGISTER_RAW_SIZE];
+ CORE_ADDR addr;
+
+ if (frame->signal_handler_caller)
+ {
+ /* This is the signal trampoline frame.
+ Get the saved PC from the sigcontext structure. */
+
+#ifndef SIGCONTEXT_PC_OFFSET
+#define SIGCONTEXT_PC_OFFSET 12
+#endif
+
+ CORE_ADDR sigcontext_addr;
+ char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
+ int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
+ char *name = NULL;
+
+ /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
+ as the third parameter. The offset to the saved pc is 12. */
+ find_pc_partial_function (frame->pc, &name,
+ (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
+ if (name && STREQ (name, "ucbsigvechandler"))
+ saved_pc_offset = 12;
+
+ /* The sigcontext address is contained in register O2. */
+ get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
+ frame, O0_REGNUM + 2, (enum lval_type *)NULL);
+ sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
+
+ /* Don't cause a memory_error when accessing sigcontext in case the
+ stack layout has changed or the stack is corrupt. */
+ target_read_memory (sigcontext_addr + saved_pc_offset,
+ scbuf, sizeof (scbuf));
+ return extract_address (scbuf, sizeof (scbuf));
+ }
+ else if (frame->in_prologue ||
+ (frame->next != NULL
+ && (frame->next->signal_handler_caller
+ || frame_in_dummy (frame->next))
+ && frameless_look_for_prologue (frame)))
+ {
+ /* A frameless function interrupted by a signal did not save
+ the PC, it is still in %o7. */
+ get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
+ frame, O7_REGNUM, (enum lval_type *)NULL);
+ return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
+ }
+ if (frame->flat)
+ addr = frame->pc_addr;
+ else
+ addr = frame->bottom + FRAME_SAVED_I0 +
+ SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
+
+ if (addr == 0)
+ /* A flat frame leaf function might not save the PC anywhere,
+ just leave it in %o7. */
+ return PC_ADJUST (read_register (O7_REGNUM));
+
+ read_memory (addr, buf, SPARC_INTREG_SIZE);
+ return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
+}
+
+/* Since an individual frame in the frame cache is defined by two
+ arguments (a frame pointer and a stack pointer), we need two
+ arguments to get info for an arbitrary stack frame. This routine
+ takes two arguments and makes the cached frames look as if these
+ two arguments defined a frame on the cache. This allows the rest
+ of info frame to extract the important arguments without
+ difficulty. */
+
+struct frame_info *
+setup_arbitrary_frame (argc, argv)
+ int argc;
+ CORE_ADDR *argv;
+{
+ struct frame_info *frame;
+
+ if (argc != 2)
+ error ("Sparc frame specifications require two arguments: fp and sp");
+
+ frame = create_new_frame (argv[0], 0);
+
+ if (!frame)
+ fatal ("internal: create_new_frame returned invalid frame");
+
+ frame->bottom = argv[1];
+ frame->pc = FRAME_SAVED_PC (frame);
+ return frame;
+}
+
+/* Given a pc value, skip it forward past the function prologue by
+ disassembling instructions that appear to be a prologue.
+
+ If FRAMELESS_P is set, we are only testing to see if the function
+ is frameless. This allows a quicker answer.
+
+ This routine should be more specific in its actions; making sure
+ that it uses the same register in the initial prologue section. */
+
+static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *,
+ struct frame_saved_regs *));
+
+static CORE_ADDR
+examine_prologue (start_pc, frameless_p, fi, saved_regs)
+ CORE_ADDR start_pc;
+ int frameless_p;
+ struct frame_info *fi;
+ struct frame_saved_regs *saved_regs;
+{
+ int insn;
+ int dest = -1;
+ CORE_ADDR pc = start_pc;
+ int is_flat = 0;
+
+ insn = fetch_instruction (pc);
+
+ /* Recognize the `sethi' insn and record its destination. */
+ if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
+ {
+ dest = X_RD (insn);
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ /* Recognize an add immediate value to register to either %g1 or
+ the destination register recorded above. Actually, this might
+ well recognize several different arithmetic operations.
+ It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
+ followed by "save %sp, %g1, %sp" is a valid prologue (Not that
+ I imagine any compiler really does that, however). */
+ if (X_OP (insn) == 2
+ && X_I (insn)
+ && (X_RD (insn) == 1 || X_RD (insn) == dest))
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ /* Recognize any SAVE insn. */
+ if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
+ {
+ pc += 4;
+ if (frameless_p) /* If the save is all we care about, */
+ return pc; /* return before doing more work */
+ insn = fetch_instruction (pc);
+ }
+ /* Recognize add to %sp. */
+ else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
+ {
+ pc += 4;
+ if (frameless_p) /* If the add is all we care about, */
+ return pc; /* return before doing more work */
+ is_flat = 1;
+ insn = fetch_instruction (pc);
+ /* Recognize store of frame pointer (i7). */
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 31
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+
+ /* Recognize sub %sp, <anything>, %i7. */
+ if (X_OP (insn) == 2
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14
+ && X_RD (insn) == 31)
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+ else
+ return pc;
+ }
+ else
+ return pc;
+ }
+ else
+ /* Without a save or add instruction, it's not a prologue. */
+ return start_pc;
+
+ while (1)
+ {
+ /* Recognize stores into the frame from the input registers.
+ This recognizes all non alternate stores of input register,
+ into a location offset from the frame pointer. */
+ if ((X_OP (insn) == 3
+ && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
+ && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
+ && X_I (insn) /* Immediate mode. */
+ && X_RS1 (insn) == 30 /* Off of frame pointer. */
+ /* Into reserved stack space. */
+ && X_SIMM13 (insn) >= 0x44
+ && X_SIMM13 (insn) < 0x5b))
+ ;
+ else if (is_flat
+ && X_OP (insn) == 3
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14
+ )
+ {
+ if (saved_regs && X_I (insn))
+ saved_regs->regs[X_RD (insn)] =
+ fi->frame + fi->sp_offset + X_SIMM13 (insn);
+ }
+ else
+ break;
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ return pc;
+}
+
+CORE_ADDR
+skip_prologue (start_pc, frameless_p)
+ CORE_ADDR start_pc;
+ int frameless_p;
+{
+ return examine_prologue (start_pc, frameless_p, NULL, NULL);
+}
+
+/* Check instruction at ADDR to see if it is a branch.
+ All non-annulled instructions will go to NPC or will trap.
+ Set *TARGET if we find a candidate branch; set to zero if not.
+
+ This isn't static as it's used by remote-sa.sparc.c. */
+
+static branch_type
+isbranch (instruction, addr, target)
+ long instruction;
+ CORE_ADDR addr, *target;
+{
+ branch_type val = not_branch;
+ long int offset = 0; /* Must be signed for sign-extend. */
+
+ *target = 0;
+
+ if (X_OP (instruction) == 0
+ && (X_OP2 (instruction) == 2
+ || X_OP2 (instruction) == 6
+ || X_OP2 (instruction) == 1
+ || X_OP2 (instruction) == 3
+ || X_OP2 (instruction) == 5
+#ifndef GDB_TARGET_IS_SPARC64
+ || X_OP2 (instruction) == 7
+#endif
+ ))
+ {
+ if (X_COND (instruction) == 8)
+ val = X_A (instruction) ? baa : ba;
+ else
+ val = X_A (instruction) ? bicca : bicc;
+ switch (X_OP2 (instruction))
+ {
+ case 2:
+ case 6:
+#ifndef GDB_TARGET_IS_SPARC64
+ case 7:
+#endif
+ offset = 4 * X_DISP22 (instruction);
+ break;
+ case 1:
+ case 5:
+ offset = 4 * X_DISP19 (instruction);
+ break;
+ case 3:
+ offset = 4 * X_DISP16 (instruction);
+ break;
+ }
+ *target = addr + offset;
+ }
+#ifdef GDB_TARGET_IS_SPARC64
+ else if (X_OP (instruction) == 2
+ && X_OP3 (instruction) == 62)
+ {
+ if (X_FCN (instruction) == 0)
+ {
+ /* done */
+ *target = read_register (TNPC_REGNUM);
+ val = done_retry;
+ }
+ else if (X_FCN (instruction) == 1)
+ {
+ /* retry */
+ *target = read_register (TPC_REGNUM);
+ val = done_retry;
+ }
+ }
+#endif
+
+ return val;
+}
+
+/* Find register number REGNUM relative to FRAME and put its
+ (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
+ was optimized out (and thus can't be fetched). If the variable
+ was fetched from memory, set *ADDRP to where it was fetched from,
+ otherwise it was fetched from a register.
+
+ The argument RAW_BUFFER must point to aligned memory. */
+
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+ char *raw_buffer;
+ int *optimized;
+ CORE_ADDR *addrp;
+ struct frame_info *frame;
+ int regnum;
+ enum lval_type *lval;
+{
+ struct frame_info *frame1;
+ CORE_ADDR addr;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ if (optimized)
+ *optimized = 0;
+
+ addr = 0;
+
+ /* FIXME This code extracted from infcmd.c; should put elsewhere! */
+ if (frame == NULL)
+ {
+ /* error ("No selected frame."); */
+ if (!target_has_registers)
+ error ("The program has no registers now.");
+ if (selected_frame == NULL)
+ error ("No selected frame.");
+ /* Try to use selected frame */
+ frame = get_prev_frame (selected_frame);
+ if (frame == 0)
+ error ("Cmd not meaningful in the outermost frame.");
+ }
+
+
+ frame1 = frame->next;
+
+ /* Get saved PC from the frame info if not in innermost frame. */
+ if (regnum == PC_REGNUM && frame1 != NULL)
+ {
+ if (lval != NULL)
+ *lval = not_lval;
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+
+ while (frame1 != NULL)
+ {
+ if (frame1->pc >= (frame1->bottom ? frame1->bottom :
+ read_sp ())
+ && frame1->pc <= FRAME_FP (frame1))
+ {
+ /* Dummy frame. All but the window regs are in there somewhere.
+ The window registers are saved on the stack, just like in a
+ normal frame. */
+ if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
+ addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
+ else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
+ addr = (frame1->prev->bottom
+ + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
+ addr = (frame1->prev->bottom
+ + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
+ addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
+#ifdef FP0_REGNUM
+ else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
+ addr = frame1->frame + (regnum - FP0_REGNUM) * 4
+ - (FP_REGISTER_BYTES);
+#ifdef GDB_TARGET_IS_SPARC64
+ else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
+ addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
+ - (FP_REGISTER_BYTES);
+#endif
+#endif /* FP0_REGNUM */
+ else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
+ addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
+ }
+ else if (frame1->flat)
+ {
+
+ if (regnum == RP_REGNUM)
+ addr = frame1->pc_addr;
+ else if (regnum == I7_REGNUM)
+ addr = frame1->fp_addr;
+ else
+ {
+ CORE_ADDR func_start;
+ struct frame_saved_regs regs;
+ memset (&regs, 0, sizeof (regs));
+
+ find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
+ examine_prologue (func_start, 0, frame1, &regs);
+ addr = regs.regs[regnum];
+ }
+ }
+ else
+ {
+ /* Normal frame. Local and In registers are saved on stack. */
+ if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
+ addr = (frame1->prev->bottom
+ + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
+ addr = (frame1->prev->bottom
+ + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
+ {
+ /* Outs become ins. */
+ get_saved_register (raw_buffer, optimized, addrp, frame1,
+ (regnum - O0_REGNUM + I0_REGNUM), lval);
+ return;
+ }
+ }
+ if (addr != 0)
+ break;
+ frame1 = frame1->next;
+ }
+ if (addr != 0)
+ {
+ if (lval != NULL)
+ *lval = lval_memory;
+ if (regnum == SP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+ if (raw_buffer != NULL)
+ read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
+ }
+ else
+ {
+ if (lval != NULL)
+ *lval = lval_register;
+ addr = REGISTER_BYTE (regnum);
+ if (raw_buffer != NULL)
+ read_register_gen (regnum, raw_buffer);
+ }
+ if (addrp != NULL)
+ *addrp = addr;
+}
+
+/* Push an empty stack frame, and record in it the current PC, regs, etc.
+
+ We save the non-windowed registers and the ins. The locals and outs
+ are new; they don't need to be saved. The i's and l's of
+ the last frame were already saved on the stack. */
+
+/* Definitely see tm-sparc.h for more doc of the frame format here. */
+
+#ifdef GDB_TARGET_IS_SPARC64
+#define DUMMY_REG_SAVE_OFFSET (128 + 16)
+#else
+#define DUMMY_REG_SAVE_OFFSET 0x60
+#endif
+
+/* See tm-sparc.h for how this is calculated. */
+#ifdef FP0_REGNUM
+#define DUMMY_STACK_REG_BUF_SIZE \
+(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
+#else
+#define DUMMY_STACK_REG_BUF_SIZE \
+(((8+8+8) * SPARC_INTREG_SIZE) )
+#endif /* FP0_REGNUM */
+#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
+
+void
+sparc_push_dummy_frame ()
+{
+ CORE_ADDR sp, old_sp;
+ char register_temp[DUMMY_STACK_SIZE];
+
+ old_sp = sp = read_sp ();
+
+#ifdef GDB_TARGET_IS_SPARC64
+ /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
+ read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
+ REGISTER_RAW_SIZE (PC_REGNUM) * 7);
+ read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), &register_temp[8],
+ REGISTER_RAW_SIZE (PSTATE_REGNUM));
+ /* FIXME: not sure what needs to be saved here. */
+#else
+ /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
+ read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
+ REGISTER_RAW_SIZE (Y_REGNUM) * 8);
+#endif
+
+ read_register_bytes (REGISTER_BYTE (O0_REGNUM),
+ &register_temp[8 * SPARC_INTREG_SIZE],
+ SPARC_INTREG_SIZE * 8);
+
+ read_register_bytes (REGISTER_BYTE (G0_REGNUM),
+ &register_temp[16 * SPARC_INTREG_SIZE],
+ SPARC_INTREG_SIZE * 8);
+
+#ifdef FP0_REGNUM
+ read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
+ &register_temp[24 * SPARC_INTREG_SIZE],
+ FP_REGISTER_BYTES);
+#endif /* FP0_REGNUM */
+
+ sp -= DUMMY_STACK_SIZE;
+
+ write_sp (sp);
+
+ write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
+ DUMMY_STACK_REG_BUF_SIZE);
+
+ if (strcmp (target_shortname, "sim") != 0)
+ {
+ write_fp (old_sp);
+
+ /* Set return address register for the call dummy to the current PC. */
+ write_register (I7_REGNUM, read_pc() - 8);
+ }
+ else
+ {
+ /* The call dummy will write this value to FP before executing
+ the 'save'. This ensures that register window flushes work
+ correctly in the simulator. */
+ write_register (G0_REGNUM+1, read_register (FP_REGNUM));
+
+ /* The call dummy will write this value to FP after executing
+ the 'save'. */
+ write_register (G0_REGNUM+2, old_sp);
+
+ /* The call dummy will write this value to the return address (%i7) after
+ executing the 'save'. */
+ write_register (G0_REGNUM+3, read_pc() - 8);
+
+ /* Set the FP that the call dummy will be using after the 'save'.
+ This makes backtraces from an inferior function call work properly. */
+ write_register (FP_REGNUM, old_sp);
+ }
+}
+
+/* sparc_frame_find_saved_regs (). This function is here only because
+ pop_frame uses it. Note there is an interesting corner case which
+ I think few ports of GDB get right--if you are popping a frame
+ which does not save some register that *is* saved by a more inner
+ frame (such a frame will never be a dummy frame because dummy
+ frames save all registers). Rewriting pop_frame to use
+ get_saved_register would solve this problem and also get rid of the
+ ugly duplication between sparc_frame_find_saved_regs and
+ get_saved_register.
+
+ Stores, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame.
+
+ Note that on register window machines, we are currently making the
+ assumption that window registers are being saved somewhere in the
+ frame in which they are being used. If they are stored in an
+ inferior frame, find_saved_register will break.
+
+ On the Sun 4, the only time all registers are saved is when
+ a dummy frame is involved. Otherwise, the only saved registers
+ are the LOCAL and IN registers which are saved as a result
+ of the "save/restore" opcodes. This condition is determined
+ by address rather than by value.
+
+ The "pc" is not stored in a frame on the SPARC. (What is stored
+ is a return address minus 8.) sparc_pop_frame knows how to
+ deal with that. Other routines might or might not.
+
+ See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
+ about how this works. */
+
+static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *,
+ struct frame_saved_regs *));
+
+static void
+sparc_frame_find_saved_regs (fi, saved_regs_addr)
+ struct frame_info *fi;
+ struct frame_saved_regs *saved_regs_addr;
+{
+ register int regnum;
+ CORE_ADDR frame_addr = FRAME_FP (fi);
+
+ if (!fi)
+ fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
+
+ memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
+
+ if (fi->pc >= (fi->bottom ? fi->bottom :
+ read_sp ())
+ && fi->pc <= FRAME_FP(fi))
+ {
+ /* Dummy frame. All but the window regs are in there somewhere. */
+ for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
+ saved_regs_addr->regs[regnum] =
+ frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
+ saved_regs_addr->regs[regnum] =
+ frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
+#ifdef FP0_REGNUM
+ for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
+ saved_regs_addr->regs[regnum] =
+ frame_addr + (regnum - FP0_REGNUM) * 4
+ - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
+#ifdef GDB_TARGET_IS_SPARC64
+ for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++)
+ saved_regs_addr->regs[regnum] =
+ frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4
+ - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
+#endif
+#endif /* FP0_REGNUM */
+#ifdef GDB_TARGET_IS_SPARC64
+ for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
+ {
+ saved_regs_addr->regs[regnum] =
+ frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE;
+ }
+ saved_regs_addr->regs[PSTATE_REGNUM] =
+ frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
+#else
+ for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
+ saved_regs_addr->regs[regnum] =
+ frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE;
+#endif
+ frame_addr = fi->bottom ?
+ fi->bottom : read_sp ();
+ }
+ else if (fi->flat)
+ {
+ CORE_ADDR func_start;
+ find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
+ examine_prologue (func_start, 0, fi, saved_regs_addr);
+
+ /* Flat register window frame. */
+ saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr;
+ saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr;
+ }
+ else
+ {
+ /* Normal frame. Just Local and In registers */
+ frame_addr = fi->bottom ?
+ fi->bottom : read_sp ();
+ for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++)
+ saved_regs_addr->regs[regnum] =
+ (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
+ saved_regs_addr->regs[regnum] =
+ (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ }
+ if (fi->next)
+ {
+ if (fi->flat)
+ {
+ saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr;
+ }
+ else
+ {
+ /* Pull off either the next frame pointer or the stack pointer */
+ CORE_ADDR next_next_frame_addr =
+ (fi->next->bottom ?
+ fi->next->bottom :
+ read_sp ());
+ for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
+ saved_regs_addr->regs[regnum] =
+ (next_next_frame_addr
+ + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ }
+ }
+ /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
+ /* FIXME -- should this adjust for the sparc64 offset? */
+ saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
+}
+
+/* Discard from the stack the innermost frame, restoring all saved registers.
+
+ Note that the values stored in fsr by get_frame_saved_regs are *in
+ the context of the called frame*. What this means is that the i
+ regs of fsr must be restored into the o regs of the (calling) frame that
+ we pop into. We don't care about the output regs of the calling frame,
+ since unless it's a dummy frame, it won't have any output regs in it.
+
+ We never have to bother with %l (local) regs, since the called routine's
+ locals get tossed, and the calling routine's locals are already saved
+ on its stack. */
+
+/* Definitely see tm-sparc.h for more doc of the frame format here. */
+
+void
+sparc_pop_frame ()
+{
+ register struct frame_info *frame = get_current_frame ();
+ register CORE_ADDR pc;
+ struct frame_saved_regs fsr;
+ char raw_buffer[REGISTER_BYTES];
+ int regnum;
+
+ sparc_frame_find_saved_regs (frame, &fsr);
+#ifdef FP0_REGNUM
+ if (fsr.regs[FP0_REGNUM])
+ {
+ read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
+ raw_buffer, FP_REGISTER_BYTES);
+ }
+#ifndef GDB_TARGET_IS_SPARC64
+ if (fsr.regs[FPS_REGNUM])
+ {
+ read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
+ write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
+ }
+ if (fsr.regs[CPS_REGNUM])
+ {
+ read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
+ write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
+ }
+#endif
+#endif /* FP0_REGNUM */
+ if (fsr.regs[G1_REGNUM])
+ {
+ read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
+ write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
+ 7 * SPARC_INTREG_SIZE);
+ }
+
+ if (frame->flat)
+ {
+ /* Each register might or might not have been saved, need to test
+ individually. */
+ for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
+ if (fsr.regs[regnum])
+ write_register (regnum, read_memory_integer (fsr.regs[regnum],
+ SPARC_INTREG_SIZE));
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
+ if (fsr.regs[regnum])
+ write_register (regnum, read_memory_integer (fsr.regs[regnum],
+ SPARC_INTREG_SIZE));
+
+ /* Handle all outs except stack pointer (o0-o5; o7). */
+ for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
+ if (fsr.regs[regnum])
+ write_register (regnum, read_memory_integer (fsr.regs[regnum],
+ SPARC_INTREG_SIZE));
+ if (fsr.regs[O0_REGNUM + 7])
+ write_register (O0_REGNUM + 7,
+ read_memory_integer (fsr.regs[O0_REGNUM + 7],
+ SPARC_INTREG_SIZE));
+
+ write_sp (frame->frame);
+ }
+ else if (fsr.regs[I0_REGNUM])
+ {
+ CORE_ADDR sp;
+
+ char reg_temp[REGISTER_BYTES];
+
+ read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
+
+ /* Get the ins and locals which we are about to restore. Just
+ moving the stack pointer is all that is really needed, except
+ store_inferior_registers is then going to write the ins and
+ locals from the registers array, so we need to muck with the
+ registers array. */
+ sp = fsr.regs[SP_REGNUM];
+#ifdef GDB_TARGET_IS_SPARC64
+ if (sp & 1)
+ sp += 2047;
+#endif
+ read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
+
+ /* Restore the out registers.
+ Among other things this writes the new stack pointer. */
+ write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
+ SPARC_INTREG_SIZE * 8);
+
+ write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
+ SPARC_INTREG_SIZE * 16);
+ }
+#ifndef GDB_TARGET_IS_SPARC64
+ if (fsr.regs[PS_REGNUM])
+ write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
+#endif
+ if (fsr.regs[Y_REGNUM])
+ write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM)));
+ if (fsr.regs[PC_REGNUM])
+ {
+ /* Explicitly specified PC (and maybe NPC) -- just restore them. */
+ write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM],
+ REGISTER_RAW_SIZE (PC_REGNUM)));
+ if (fsr.regs[NPC_REGNUM])
+ write_register (NPC_REGNUM,
+ read_memory_integer (fsr.regs[NPC_REGNUM],
+ REGISTER_RAW_SIZE (NPC_REGNUM)));
+ }
+ else if (frame->flat)
+ {
+ if (frame->pc_addr)
+ pc = PC_ADJUST ((CORE_ADDR)
+ read_memory_integer (frame->pc_addr,
+ REGISTER_RAW_SIZE (PC_REGNUM)));
+ else
+ {
+ /* I think this happens only in the innermost frame, if so then
+ it is a complicated way of saying
+ "pc = read_register (O7_REGNUM);". */
+ char buf[MAX_REGISTER_RAW_SIZE];
+ get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
+ pc = PC_ADJUST (extract_address
+ (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
+ }
+
+ write_register (PC_REGNUM, pc);
+ write_register (NPC_REGNUM, pc + 4);
+ }
+ else if (fsr.regs[I7_REGNUM])
+ {
+ /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
+ pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM],
+ SPARC_INTREG_SIZE));
+ write_register (PC_REGNUM, pc);
+ write_register (NPC_REGNUM, pc + 4);
+ }
+ flush_cached_frames ();
+}
+
+/* On the Sun 4 under SunOS, the compile will leave a fake insn which
+ encodes the structure size being returned. If we detect such
+ a fake insn, step past it. */
+
+CORE_ADDR
+sparc_pc_adjust(pc)
+ CORE_ADDR pc;
+{
+ unsigned long insn;
+ char buf[4];
+ int err;
+
+ err = target_read_memory (pc + 8, buf, 4);
+ insn = extract_unsigned_integer (buf, 4);
+ if ((err == 0) && (insn & 0xffc00000) == 0)
+ return pc+12;
+ else
+ return pc+8;
+}
+
+/* If pc is in a shared library trampoline, return its target.
+ The SunOs 4.x linker rewrites the jump table entries for PIC
+ compiled modules in the main executable to bypass the dynamic linker
+ with jumps of the form
+ sethi %hi(addr),%g1
+ jmp %g1+%lo(addr)
+ and removes the corresponding jump table relocation entry in the
+ dynamic relocations.
+ find_solib_trampoline_target relies on the presence of the jump
+ table relocation entry, so we have to detect these jump instructions
+ by hand. */
+
+CORE_ADDR
+sunos4_skip_trampoline_code (pc)
+ CORE_ADDR pc;
+{
+ unsigned long insn1;
+ char buf[4];
+ int err;
+
+ err = target_read_memory (pc, buf, 4);
+ insn1 = extract_unsigned_integer (buf, 4);
+ if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
+ {
+ unsigned long insn2;
+
+ err = target_read_memory (pc + 4, buf, 4);
+ insn2 = extract_unsigned_integer (buf, 4);
+ if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
+ {
+ CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
+ int delta = insn2 & 0x1fff;
+
+ /* Sign extend the displacement. */
+ if (delta & 0x1000)
+ delta |= ~0x1fff;
+ return target_pc + delta;
+ }
+ }
+ return find_solib_trampoline_target (pc);
+}
+
+#ifdef USE_PROC_FS /* Target dependent support for /proc */
+
+/* The /proc interface divides the target machine's register set up into
+ two different sets, the general register set (gregset) and the floating
+ point register set (fpregset). For each set, there is an ioctl to get
+ the current register set and another ioctl to set the current values.
+
+ The actual structure passed through the ioctl interface is, of course,
+ naturally machine dependent, and is different for each set of registers.
+ For the sparc for example, the general register set is typically defined
+ by:
+
+ typedef int gregset_t[38];
+
+ #define R_G0 0
+ ...
+ #define R_TBR 37
+
+ and the floating point set by:
+
+ typedef struct prfpregset {
+ union {
+ u_long pr_regs[32];
+ double pr_dregs[16];
+ } pr_fr;
+ void * pr_filler;
+ u_long pr_fsr;
+ u_char pr_qcnt;
+ u_char pr_q_entrysize;
+ u_char pr_en;
+ u_long pr_q[64];
+ } prfpregset_t;
+
+ These routines provide the packing and unpacking of gregset_t and
+ fpregset_t formatted data.
+
+ */
+
+/* Given a pointer to a general register set in /proc format (gregset_t *),
+ unpack the register contents and supply them as gdb's idea of the current
+ register values. */
+
+void
+supply_gregset (gregsetp)
+prgregset_t *gregsetp;
+{
+ register int regi;
+ register prgreg_t *regp = (prgreg_t *) gregsetp;
+ static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
+
+ /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
+ for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
+ {
+ supply_register (regi, (char *) (regp + regi));
+ }
+
+ /* These require a bit more care. */
+ supply_register (PS_REGNUM, (char *) (regp + R_PS));
+ supply_register (PC_REGNUM, (char *) (regp + R_PC));
+ supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
+ supply_register (Y_REGNUM, (char *) (regp + R_Y));
+
+ /* Fill inaccessible registers with zero. */
+ supply_register (WIM_REGNUM, zerobuf);
+ supply_register (TBR_REGNUM, zerobuf);
+ supply_register (CPS_REGNUM, zerobuf);
+}
+
+void
+fill_gregset (gregsetp, regno)
+prgregset_t *gregsetp;
+int regno;
+{
+ int regi;
+ register prgreg_t *regp = (prgreg_t *) gregsetp;
+
+ for (regi = 0 ; regi <= R_I7 ; regi++)
+ {
+ if ((regno == -1) || (regno == regi))
+ {
+ *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
+ }
+ }
+ if ((regno == -1) || (regno == PS_REGNUM))
+ {
+ *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
+ }
+ if ((regno == -1) || (regno == PC_REGNUM))
+ {
+ *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
+ }
+ if ((regno == -1) || (regno == NPC_REGNUM))
+ {
+ *(regp + R_nPC) = *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
+ }
+ if ((regno == -1) || (regno == Y_REGNUM))
+ {
+ *(regp + R_Y) = *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
+ }
+}
+
+#if defined (FP0_REGNUM)
+
+/* Given a pointer to a floating point register set in /proc format
+ (fpregset_t *), unpack the register contents and supply them as gdb's
+ idea of the current floating point register values. */
+
+void
+supply_fpregset (fpregsetp)
+prfpregset_t *fpregsetp;
+{
+ register int regi;
+ char *from;
+
+ for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
+ {
+ from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
+ supply_register (regi, from);
+ }
+ supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
+}
+
+/* Given a pointer to a floating point register set in /proc format
+ (fpregset_t *), update the register specified by REGNO from gdb's idea
+ of the current floating point register set. If REGNO is -1, update
+ them all. */
+/* ??? This will probably need some changes for sparc64. */
+
+void
+fill_fpregset (fpregsetp, regno)
+prfpregset_t *fpregsetp;
+int regno;
+{
+ int regi;
+ char *to;
+ char *from;
+
+ for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
+ {
+ if ((regno == -1) || (regno == regi))
+ {
+ from = (char *) &registers[REGISTER_BYTE (regi)];
+ to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
+ memcpy (to, from, REGISTER_RAW_SIZE (regi));
+ }
+ }
+ if ((regno == -1) || (regno == FPS_REGNUM))
+ {
+ fpregsetp->pr_fsr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
+ }
+}
+
+#endif /* defined (FP0_REGNUM) */
+
+#endif /* USE_PROC_FS */
+
+
+#ifdef GET_LONGJMP_TARGET
+
+/* Figure out where the longjmp will land. We expect that we have just entered
+ longjmp and haven't yet setup the stack frame, so the args are still in the
+ output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
+ extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
+ This routine returns true on success */
+
+int
+get_longjmp_target (pc)
+ CORE_ADDR *pc;
+{
+ CORE_ADDR jb_addr;
+#define LONGJMP_TARGET_SIZE 4
+ char buf[LONGJMP_TARGET_SIZE];
+
+ jb_addr = read_register (O0_REGNUM);
+
+ if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
+ LONGJMP_TARGET_SIZE))
+ return 0;
+
+ *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
+
+ return 1;
+}
+#endif /* GET_LONGJMP_TARGET */
+
+#ifdef STATIC_TRANSFORM_NAME
+/* SunPRO (3.0 at least), encodes the static variables. This is not
+ related to C++ mangling, it is done for C too. */
+
+char *
+sunpro_static_transform_name (name)
+ char *name;
+{
+ char *p;
+ if (name[0] == '$')
+ {
+ /* For file-local statics there will be a dollar sign, a bunch
+ of junk (the contents of which match a string given in the
+ N_OPT), a period and the name. For function-local statics
+ there will be a bunch of junk (which seems to change the
+ second character from 'A' to 'B'), a period, the name of the
+ function, and the name. So just skip everything before the
+ last period. */
+ p = strrchr (name, '.');
+ if (p != NULL)
+ name = p + 1;
+ }
+ return name;
+}
+#endif /* STATIC_TRANSFORM_NAME */
+
+
+/* Utilities for printing registers.
+ Page numbers refer to the SPARC Architecture Manual. */
+
+static void dump_ccreg PARAMS ((char *, int));
+
+static void
+dump_ccreg (reg, val)
+ char *reg;
+ int val;
+{
+ /* page 41 */
+ printf_unfiltered ("%s:%s,%s,%s,%s", reg,
+ val & 8 ? "N" : "NN",
+ val & 4 ? "Z" : "NZ",
+ val & 2 ? "O" : "NO",
+ val & 1 ? "C" : "NC"
+ );
+}
+
+static char *
+decode_asi (val)
+ int val;
+{
+ /* page 72 */
+ switch (val)
+ {
+ case 4 : return "ASI_NUCLEUS";
+ case 0x0c : return "ASI_NUCLEUS_LITTLE";
+ case 0x10 : return "ASI_AS_IF_USER_PRIMARY";
+ case 0x11 : return "ASI_AS_IF_USER_SECONDARY";
+ case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE";
+ case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE";
+ case 0x80 : return "ASI_PRIMARY";
+ case 0x81 : return "ASI_SECONDARY";
+ case 0x82 : return "ASI_PRIMARY_NOFAULT";
+ case 0x83 : return "ASI_SECONDARY_NOFAULT";
+ case 0x88 : return "ASI_PRIMARY_LITTLE";
+ case 0x89 : return "ASI_SECONDARY_LITTLE";
+ case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE";
+ case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE";
+ default : return NULL;
+ }
+}
+
+/* PRINT_REGISTER_HOOK routine.
+ Pretty print various registers. */
+/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
+
+void
+sparc_print_register_hook (regno)
+ int regno;
+{
+ ULONGEST val;
+
+ /* Handle double/quad versions of lower 32 fp regs. */
+ if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
+ && (regno & 1) == 0)
+ {
+ char value[16];
+
+ if (!read_relative_register_raw_bytes (regno, value)
+ && !read_relative_register_raw_bytes (regno + 1, value + 4))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_double, gdb_stdout);
+ }
+#if 0 /* FIXME: gdb doesn't handle long doubles */
+ if ((regno & 3) == 0)
+ {
+ if (!read_relative_register_raw_bytes (regno + 2, value + 8)
+ && !read_relative_register_raw_bytes (regno + 3, value + 12))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_long_double, gdb_stdout);
+ }
+ }
+#endif
+ return;
+ }
+
+#if 0 /* FIXME: gdb doesn't handle long doubles */
+ /* Print upper fp regs as long double if appropriate. */
+ if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
+ /* We test for even numbered regs and not a multiple of 4 because
+ the upper fp regs are recorded as doubles. */
+ && (regno & 1) == 0)
+ {
+ char value[16];
+
+ if (!read_relative_register_raw_bytes (regno, value)
+ && !read_relative_register_raw_bytes (regno + 1, value + 8))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_long_double, gdb_stdout);
+ }
+ return;
+ }
+#endif
+
+ /* FIXME: Some of these are priviledged registers.
+ Not sure how they should be handled. */
+
+#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
+
+ val = read_register (regno);
+
+ /* pages 40 - 60 */
+ switch (regno)
+ {
+#ifdef GDB_TARGET_IS_SPARC64
+ case CCR_REGNUM :
+ printf_unfiltered("\t");
+ dump_ccreg ("xcc", val >> 4);
+ printf_unfiltered(", ");
+ dump_ccreg ("icc", val & 15);
+ break;
+ case FPRS_REGNUM :
+ printf ("\tfef:%d, du:%d, dl:%d",
+ BITS (2, 1), BITS (1, 1), BITS (0, 1));
+ break;
+ case FSR_REGNUM :
+ {
+ static char *fcc[4] = { "=", "<", ">", "?" };
+ static char *rd[4] = { "N", "0", "+", "-" };
+ /* Long, yes, but I'd rather leave it as is and use a wide screen. */
+ printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
+ fcc[BITS (10, 3)], fcc[BITS (32, 3)],
+ fcc[BITS (34, 3)], fcc[BITS (36, 3)],
+ rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
+ BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31));
+ break;
+ }
+ case ASI_REGNUM :
+ {
+ char *asi = decode_asi (val);
+ if (asi != NULL)
+ printf ("\t%s", asi);
+ break;
+ }
+ case VER_REGNUM :
+ printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
+ BITS (48, 0xffff), BITS (32, 0xffff),
+ BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
+ break;
+ case PSTATE_REGNUM :
+ {
+ static char *mm[4] = { "tso", "pso", "rso", "?" };
+ printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
+ BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1),
+ BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1),
+ BITS (0, 1));
+ break;
+ }
+ case TSTATE_REGNUM :
+ /* FIXME: print all 4? */
+ break;
+ case TT_REGNUM :
+ /* FIXME: print all 4? */
+ break;
+ case TPC_REGNUM :
+ /* FIXME: print all 4? */
+ break;
+ case TNPC_REGNUM :
+ /* FIXME: print all 4? */
+ break;
+ case WSTATE_REGNUM :
+ printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
+ break;
+ case CWP_REGNUM :
+ printf ("\t%d", BITS (0, 31));
+ break;
+ case CANSAVE_REGNUM :
+ printf ("\t%-2d before spill", BITS (0, 31));
+ break;
+ case CANRESTORE_REGNUM :
+ printf ("\t%-2d before fill", BITS (0, 31));
+ break;
+ case CLEANWIN_REGNUM :
+ printf ("\t%-2d before clean", BITS (0, 31));
+ break;
+ case OTHERWIN_REGNUM :
+ printf ("\t%d", BITS (0, 31));
+ break;
+#else
+ case PS_REGNUM:
+ printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
+ BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
+ BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
+ BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
+ BITS (0, 31));
+ break;
+ case FPS_REGNUM:
+ {
+ static char *fcc[4] = { "=", "<", ">", "?" };
+ static char *rd[4] = { "N", "0", "+", "-" };
+ /* Long, yes, but I'd rather leave it as is and use a wide screen. */
+ printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
+ "fcc:%s, aexc:%d, cexc:%d",
+ rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
+ BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
+ BITS (0, 31));
+ break;
+ }
+
+#endif /* GDB_TARGET_IS_SPARC64 */
+ }
+
+#undef BITS
+}
+
+int
+gdb_print_insn_sparc (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info *info;
+{
+ /* It's necessary to override mach again because print_insn messes it up. */
+ info->mach = TM_PRINT_INSN_MACH;
+ return print_insn_sparc (memaddr, info);
+}
+
+/* The SPARC passes the arguments on the stack; arguments smaller
+ than an int are promoted to an int. */
+
+CORE_ADDR
+sparc_push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int i;
+ int accumulate_size = 0;
+ struct sparc_arg
+ {
+ char *contents;
+ int len;
+ int offset;
+ };
+ struct sparc_arg *sparc_args =
+ (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg));
+ struct sparc_arg *m_arg;
+
+ /* Promote arguments if necessary, and calculate their stack offsets
+ and sizes. */
+ for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
+ {
+ value_ptr arg = args[i];
+ struct type *arg_type = check_typedef (VALUE_TYPE (arg));
+ /* Cast argument to long if necessary as the compiler does it too. */
+ switch (TYPE_CODE (arg_type))
+ {
+ case TYPE_CODE_INT:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_RANGE:
+ case TYPE_CODE_ENUM:
+ if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
+ {
+ arg_type = builtin_type_long;
+ arg = value_cast (arg_type, arg);
+ }
+ break;
+ default:
+ break;
+ }
+ m_arg->len = TYPE_LENGTH (arg_type);
+ m_arg->offset = accumulate_size;
+ accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
+ m_arg->contents = VALUE_CONTENTS(arg);
+ }
+
+ /* Make room for the arguments on the stack. */
+ accumulate_size += CALL_DUMMY_STACK_ADJUST;
+ sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
+
+ /* `Push' arguments on the stack. */
+ for (i = nargs; m_arg--, --i >= 0; )
+ write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
+
+ return sp;
+}
+
+
+/* Extract from an array REGBUF containing the (raw) register state
+ a function return value of type TYPE, and copy that, in virtual format,
+ into VALBUF. */
+
+void
+sparc_extract_return_value (type, regbuf, valbuf)
+ struct type *type;
+ char *regbuf;
+ char *valbuf;
+{
+ int typelen = TYPE_LENGTH (type);
+ int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
+ else
+ memcpy (valbuf,
+ &regbuf [O0_REGNUM * regsize +
+ (typelen >= regsize
+ || TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
+ : regsize - typelen)],
+ typelen);
+}
+
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format. On SPARCs with FPUs,
+ float values are returned in %f0 (and %f1). In all other cases,
+ values are returned in register %o0. */
+
+void
+sparc_store_return_value (type, valbuf)
+ struct type *type;
+ char *valbuf;
+{
+ int regno;
+ char buffer[MAX_REGISTER_RAW_SIZE];
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ /* Floating-point values are returned in the register pair */
+ /* formed by %f0 and %f1 (doubles are, anyway). */
+ regno = FP0_REGNUM;
+ else
+ /* Other values are returned in register %o0. */
+ regno = O0_REGNUM;
+
+ /* Add leading zeros to the value. */
+ if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno))
+ {
+ bzero (buffer, REGISTER_RAW_SIZE(regno));
+ memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf,
+ TYPE_LENGTH (type));
+ write_register_bytes (REGISTER_BYTE (regno), buffer,
+ REGISTER_RAW_SIZE(regno));
+ }
+ else
+ write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
+}
+
+
+/* Insert the function address into a call dummy instruction sequence
+ stored at DUMMY.
+
+ For structs and unions, if the function was compiled with Sun cc,
+ it expects 'unimp' after the call. But gcc doesn't use that
+ (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
+ can assume it is operating on a pristine CALL_DUMMY, not one that
+ has already been customized for a different function). */
+
+void
+sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
+ char *dummy;
+ CORE_ADDR pc;
+ CORE_ADDR fun;
+ struct type *value_type;
+ int using_gcc;
+{
+ int i;
+
+ /* Store the relative adddress of the target function into the
+ 'call' instruction. */
+ store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
+ (0x40000000
+ | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
+ & 0x3fffffff)));
+
+ /* Comply with strange Sun cc calling convention for struct-returning
+ functions. */
+ if (!using_gcc
+ && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (value_type) == TYPE_CODE_UNION))
+ store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
+ TYPE_LENGTH (value_type) & 0x1fff);
+
+#ifndef GDB_TARGET_IS_SPARC64
+ /* If this is not a simulator target, change the first four instructions
+ of the call dummy to NOPs. Those instructions include a 'save'
+ instruction and are designed to work around problems with register
+ window flushing in the simulator. */
+ if (strcmp (target_shortname, "sim") != 0)
+ {
+ for (i = 0; i < 4; i++)
+ store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
+ }
+#endif
+
+ /* If this is a bi-endian target, GDB has written the call dummy
+ in little-endian order. We must byte-swap it back to big-endian. */
+ if (bi_endian)
+ {
+ for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
+ {
+ char tmp = dummy [i];
+ dummy [i] = dummy [i+3];
+ dummy [i+3] = tmp;
+ tmp = dummy [i+1];
+ dummy [i+1] = dummy [i+2];
+ dummy [i+2] = tmp;
+ }
+ }
+}
+
+
+/* Set target byte order based on machine type. */
+
+static int
+sparc_target_architecture_hook (ap)
+ const bfd_arch_info_type *ap;
+{
+ int i, j;
+
+ if (ap->mach == bfd_mach_sparc_sparclite_le)
+ {
+ if (TARGET_BYTE_ORDER_SELECTABLE_P)
+ {
+ target_byte_order = LITTLE_ENDIAN;
+ bi_endian = 1;
+ }
+ else
+ {
+ warning ("This GDB does not support little endian sparclite.");
+ }
+ }
+ else
+ bi_endian = 0;
+ return 1;
+}
+
+
+void
+_initialize_sparc_tdep ()
+{
+ tm_print_insn = gdb_print_insn_sparc;
+ tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
+ target_architecture_hook = sparc_target_architecture_hook;
+}
+
+
+#ifdef GDB_TARGET_IS_SPARC64
+
+/* Compensate for stack bias. Note that we currently don't handle mixed
+ 32/64 bit code. */
+CORE_ADDR
+sparc64_read_sp ()
+{
+ CORE_ADDR sp = read_register (SP_REGNUM);
+
+ if (sp & 1)
+ sp += 2047;
+ return sp;
+}
+
+CORE_ADDR
+sparc64_read_fp ()
+{
+ CORE_ADDR fp = read_register (FP_REGNUM);
+
+ if (fp & 1)
+ fp += 2047;
+ return fp;
+}
+
+void
+sparc64_write_sp (val)
+ CORE_ADDR val;
+{
+ CORE_ADDR oldsp = read_register (SP_REGNUM);
+ if (oldsp & 1)
+ write_register (SP_REGNUM, val - 2047);
+ else
+ write_register (SP_REGNUM, val);
+}
+
+void
+sparc64_write_fp (val)
+ CORE_ADDR val;
+{
+ CORE_ADDR oldfp = read_register (FP_REGNUM);
+ if (oldfp & 1)
+ write_register (FP_REGNUM, val - 2047);
+ else
+ write_register (FP_REGNUM, val);
+}
+
+/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are
+ also copied onto the stack in the correct places. */
+
+CORE_ADDR
+sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ unsigned char struct_return;
+ CORE_ADDR struct_retaddr;
+{
+ int x;
+ int regnum = 0;
+ CORE_ADDR tempsp;
+
+ sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL));
+
+ /* Figure out how much space we'll need. */
+ for (x = nargs - 1; x >= 0; x--)
+ {
+ int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
+ value_ptr copyarg = args[x];
+ int copylen = len;
+
+ /* This code is, of course, no longer correct. */
+ if (copylen < TYPE_LENGTH (builtin_type_long))
+ {
+ copyarg = value_cast(builtin_type_long, copyarg);
+ copylen = TYPE_LENGTH (builtin_type_long);
+ }
+ sp -= copylen;
+ }
+
+ /* Round down. */
+ sp = sp & ~7;
+ tempsp = sp;
+
+ /* Now write the arguments onto the stack, while writing FP arguments
+ into the FP registers. */
+ for (x = 0; x < nargs; x++)
+ {
+ int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
+ value_ptr copyarg = args[x];
+ int copylen = len;
+
+ /* This code is, of course, no longer correct. */
+ if (copylen < TYPE_LENGTH (builtin_type_long))
+ {
+ copyarg = value_cast(builtin_type_long, copyarg);
+ copylen = TYPE_LENGTH (builtin_type_long);
+ }
+ write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
+ tempsp += copylen;
+ if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32)
+ {
+ /* This gets copied into a FP register. */
+ int nextreg = regnum + 2;
+ char *data = VALUE_CONTENTS (args[x]);
+ /* Floats go into the lower half of a FP register pair; quads
+ use 2 pairs. */
+
+ if (len == 16)
+ nextreg += 2;
+ else if (len == 4)
+ regnum++;
+
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum),
+ data,
+ len);
+ regnum = nextreg;
+ }
+ }
+ return sp;
+}
+
+/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
+ returned in f0-f3). */
+void
+sparc64_extract_return_value (type, regbuf, valbuf, bitoffset)
+ struct type *type;
+ char *regbuf;
+ char *valbuf;
+ int bitoffset;
+{
+ int typelen = TYPE_LENGTH (type);
+ int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ {
+ memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
+ return;
+ }
+
+ if (TYPE_CODE (type) != TYPE_CODE_STRUCT
+ || (TYPE_LENGTH (type) > 32))
+ {
+ memcpy (valbuf,
+ &regbuf [O0_REGNUM * regsize +
+ (typelen >= regsize ? 0 : regsize - typelen)],
+ typelen);
+ return;
+ }
+ else
+ {
+ char *o0 = &regbuf[O0_REGNUM * regsize];
+ char *f0 = &regbuf[FP0_REGNUM * regsize];
+ int x;
+
+ for (x = 0; x < TYPE_NFIELDS (type); x++)
+ {
+ struct field *f = &TYPE_FIELDS(type)[x];
+ /* FIXME: We may need to handle static fields here. */
+ int whichreg = (f->loc.bitpos + bitoffset) / 32;
+ int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
+ int where = (f->loc.bitpos + bitoffset) / 8;
+ int size = TYPE_LENGTH (f->type);
+ int typecode = TYPE_CODE (f->type);
+
+ if (typecode == TYPE_CODE_STRUCT)
+ {
+ sparc64_extract_return_value (f->type,
+ regbuf,
+ valbuf,
+ bitoffset + f->loc.bitpos);
+ }
+ else if (typecode == TYPE_CODE_FLT)
+ {
+ memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
+ }
+ else
+ {
+ memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
+ }
+ }
+ }
+}
+#endif