diff options
Diffstat (limited to 'gdb/s390-tdep.c')
-rw-r--r-- | gdb/s390-tdep.c | 1715 |
1 files changed, 1260 insertions, 455 deletions
diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c index 9ef9837..69463ab 100644 --- a/gdb/s390-tdep.c +++ b/gdb/s390-tdep.c @@ -188,491 +188,1296 @@ s390_stab_reg_to_regnum (int regno) } -/* Return true if REGIDX is the number of a register used to pass - arguments, false otherwise. */ +/* Prologue analysis. */ + +/* When we analyze a prologue, we're really doing 'abstract + interpretation' or 'pseudo-evaluation': running the function's code + in simulation, but using conservative approximations of the values + it would have when it actually runs. For example, if our function + starts with the instruction: + + ahi r1, 42 # add halfword immediate 42 to r1 + + we don't know exactly what value will be in r1 after executing this + instruction, but we do know it'll be 42 greater than its original + value. + + If we then see an instruction like: + + ahi r1, 22 # add halfword immediate 22 to r1 + + we still don't know what r1's value is, but again, we can say it is + now 64 greater than its original value. + + If the next instruction were: + + lr r2, r1 # set r2 to r1's value + + then we can say that r2's value is now the original value of r1 + plus 64. And so on. + + Of course, this can only go so far before it gets unreasonable. If + we wanted to be able to say anything about the value of r1 after + the instruction: + + xr r1, r3 # exclusive-or r1 and r3, place result in r1 + + then things would get pretty complex. But remember, we're just + doing a conservative approximation; if exclusive-or instructions + aren't relevant to prologues, we can just say r1's value is now + 'unknown'. We can ignore things that are too complex, if that loss + of information is acceptable for our application. + + Once you've reached an instruction that you don't know how to + simulate, you stop. Now you examine the state of the registers and + stack slots you've kept track of. For example: + + - To see how large your stack frame is, just check the value of sp; + if it's the original value of sp minus a constant, then that + constant is the stack frame's size. If the sp's value has been + marked as 'unknown', then that means the prologue has done + something too complex for us to track, and we don't know the + frame size. + + - To see whether we've saved the SP in the current frame's back + chain slot, we just check whether the current value of the back + chain stack slot is the original value of the sp. + + Sure, this takes some work. But prologue analyzers aren't + quick-and-simple pattern patching to recognize a few fixed prologue + forms any more; they're big, hairy functions. Along with inferior + function calls, prologue analysis accounts for a substantial + portion of the time needed to stabilize a GDB port. So I think + it's worthwhile to look for an approach that will be easier to + understand and maintain. In the approach used here: + + - It's easier to see that the analyzer is correct: you just see + whether the analyzer properly (albiet conservatively) simulates + the effect of each instruction. + + - It's easier to extend the analyzer: you can add support for new + instructions, and know that you haven't broken anything that + wasn't already broken before. + + - It's orthogonal: to gather new information, you don't need to + complicate the code for each instruction. As long as your domain + of conservative values is already detailed enough to tell you + what you need, then all the existing instruction simulations are + already gathering the right data for you. + + A 'struct prologue_value' is a conservative approximation of the + real value the register or stack slot will have. */ + +struct prologue_value { + + /* What sort of value is this? This determines the interpretation + of subsequent fields. */ + enum { + + /* We don't know anything about the value. This is also used for + values we could have kept track of, when doing so would have + been too complex and we don't want to bother. The bottom of + our lattice. */ + pv_unknown, + + /* A known constant. K is its value. */ + pv_constant, + + /* The value that register REG originally had *UPON ENTRY TO THE + FUNCTION*, plus K. If K is zero, this means, obviously, just + the value REG had upon entry to the function. REG is a GDB + register number. Before we start interpreting, we initialize + every register R to { pv_register, R, 0 }. */ + pv_register, + + } kind; + + /* The meanings of the following fields depend on 'kind'; see the + comments for the specific 'kind' values. */ + int reg; + CORE_ADDR k; +}; + + +/* Set V to be unknown. */ +static void +pv_set_to_unknown (struct prologue_value *v) +{ + v->kind = pv_unknown; +} + + +/* Set V to the constant K. */ +static void +pv_set_to_constant (struct prologue_value *v, CORE_ADDR k) +{ + v->kind = pv_constant; + v->k = k; +} + + +/* Set V to the original value of register REG, plus K. */ +static void +pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k) +{ + v->kind = pv_register; + v->reg = reg; + v->k = k; +} + + +/* If one of *A and *B is a constant, and the other isn't, swap the + pointers as necessary to ensure that *B points to the constant. + This can reduce the number of cases we need to analyze in the + functions below. */ +static void +pv_constant_last (struct prologue_value **a, + struct prologue_value **b) +{ + if ((*a)->kind == pv_constant + && (*b)->kind != pv_constant) + { + struct prologue_value *temp = *a; + *a = *b; + *b = temp; + } +} + + +/* Set SUM to the sum of A and B. SUM, A, and B may point to the same + 'struct prologue_value' object. */ +static void +pv_add (struct prologue_value *sum, + struct prologue_value *a, + struct prologue_value *b) +{ + pv_constant_last (&a, &b); + + /* We can handle adding constants to registers, and other constants. */ + if (b->kind == pv_constant + && (a->kind == pv_register + || a->kind == pv_constant)) + { + sum->kind = a->kind; + sum->reg = a->reg; /* not meaningful if a is pv_constant, but + harmless */ + sum->k = a->k + b->k; + } + + /* Anything else we don't know how to add. We don't have a + representation for, say, the sum of two registers, or a multiple + of a register's value (adding a register to itself). */ + else + sum->kind = pv_unknown; +} + + +/* Add the constant K to V. */ +static void +pv_add_constant (struct prologue_value *v, CORE_ADDR k) +{ + struct prologue_value pv_k; + + /* Rather than thinking of all the cases we can and can't handle, + we'll just let pv_add take care of that for us. */ + pv_set_to_constant (&pv_k, k); + pv_add (v, v, &pv_k); +} + + +/* Subtract B from A, and put the result in DIFF. + + This isn't quite the same as negating B and adding it to A, since + we don't have a representation for the negation of anything but a + constant. For example, we can't negate { pv_register, R1, 10 }, + but we do know that { pv_register, R1, 10 } minus { pv_register, + R1, 5 } is { pv_constant, <ignored>, 5 }. + + This means, for example, that we can subtract two stack addresses; + they're both relative to the original SP. Since the frame pointer + is set based on the SP, its value will be the original SP plus some + constant (probably zero), so we can use its value just fine. */ +static void +pv_subtract (struct prologue_value *diff, + struct prologue_value *a, + struct prologue_value *b) +{ + pv_constant_last (&a, &b); + + /* We can subtract a constant from another constant, or from a + register. */ + if (b->kind == pv_constant + && (a->kind == pv_register + || a->kind == pv_constant)) + { + diff->kind = a->kind; + diff->reg = a->reg; /* not always meaningful, but harmless */ + diff->k = a->k - b->k; + } + + /* We can subtract a register from itself, yielding a constant. */ + else if (a->kind == pv_register + && b->kind == pv_register + && a->reg == b->reg) + { + diff->kind = pv_constant; + diff->k = a->k - b->k; + } + + /* We don't know how to subtract anything else. */ + else + diff->kind = pv_unknown; +} + + +/* Set AND to the logical and of A and B. */ +static void +pv_logical_and (struct prologue_value *and, + struct prologue_value *a, + struct prologue_value *b) +{ + pv_constant_last (&a, &b); + + /* We can 'and' two constants. */ + if (a->kind == pv_constant + && b->kind == pv_constant) + { + and->kind = pv_constant; + and->k = a->k & b->k; + } + + /* We can 'and' anything with the constant zero. */ + else if (b->kind == pv_constant + && b->k == 0) + { + and->kind = pv_constant; + and->k = 0; + } + + /* We can 'and' anything with ~0. */ + else if (b->kind == pv_constant + && b->k == ~ (CORE_ADDR) 0) + *and = *a; + + /* We can 'and' a register with itself. */ + else if (a->kind == pv_register + && b->kind == pv_register + && a->reg == b->reg + && a->k == b->k) + *and = *a; + + /* Otherwise, we don't know. */ + else + pv_set_to_unknown (and); +} + + +/* Return non-zero iff A and B are identical expressions. + + This is not the same as asking if the two values are equal; the + result of such a comparison would have to be a pv_boolean, and + asking whether two 'unknown' values were equal would give you + pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and { + pv_register, R2, 0}. Instead, this is asking whether the two + representations are the same. */ static int -is_arg_reg (int regidx) +pv_is_identical (struct prologue_value *a, + struct prologue_value *b) { - return 2 <= regidx && regidx <= 6; + if (a->kind != b->kind) + return 0; + + switch (a->kind) + { + case pv_unknown: + return 1; + case pv_constant: + return (a->k == b->k); + case pv_register: + return (a->reg == b->reg && a->k == b->k); + default: + gdb_assert (0); + } } -/* s390_get_frame_info based on Hartmuts - prologue definition in - gcc-2.8.1/config/l390/linux.c +/* Return non-zero if A is the original value of register number R + plus K, zero otherwise. */ +static int +pv_is_register (struct prologue_value *a, int r, CORE_ADDR k) +{ + return (a->kind == pv_register + && a->reg == r + && a->k == k); +} - It reads one instruction at a time & based on whether - it looks like prologue code or not it makes a decision on - whether the prologue is over, there are various state machines - in the code to determine if the prologue code is possilby valid. - - This is done to hopefully allow the code survive minor revs of - calling conventions. - */ +/* A prologue-value-esque boolean type, including "maybe", when we + can't figure out whether something is true or not. */ +enum pv_boolean { + pv_maybe, + pv_definite_yes, + pv_definite_no, +}; + + +/* Decide whether a reference to SIZE bytes at ADDR refers exactly to + an element of an array. The array starts at ARRAY_ADDR, and has + ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does + refer to an array element, set *I to the index of the referenced + element in the array, and return pv_definite_yes. If it definitely + doesn't, return pv_definite_no. If we can't tell, return pv_maybe. + + If the reference does touch the array, but doesn't fall exactly on + an element boundary, or doesn't refer to the whole element, return + pv_maybe. */ +static enum pv_boolean +pv_is_array_ref (struct prologue_value *addr, + CORE_ADDR size, + struct prologue_value *array_addr, + CORE_ADDR array_len, + CORE_ADDR elt_size, + int *i) +{ + struct prologue_value offset; + + /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned, + if addr is *before* the start of the array, then this isn't going + to be negative... */ + pv_subtract (&offset, addr, array_addr); + if (offset.kind == pv_constant) + { + /* This is a rather odd test. We want to know if the SIZE bytes + at ADDR don't overlap the array at all, so you'd expect it to + be an || expression: "if we're completely before || we're + completely after". But with unsigned arithmetic, things are + different: since it's a number circle, not a number line, the + right values for offset.k are actually one contiguous range. */ + if (offset.k <= -size + && offset.k >= array_len * elt_size) + return pv_definite_no; + else if (offset.k % elt_size != 0 + || size != elt_size) + return pv_maybe; + else + { + *i = offset.k / elt_size; + return pv_definite_yes; + } + } + else + return pv_maybe; +} + + + +/* Decoding S/390 instructions. */ + +/* Named opcode values for the S/390 instructions we recognize. Some + instructions have their opcode split across two fields; those are the + op1_* and op2_* enums. */ +enum + { + op1_aghi = 0xa7, op2_aghi = 0xb, + op1_ahi = 0xa7, op2_ahi = 0xa, + op_ar = 0x1a, + op_basr = 0x0d, + op1_bras = 0xa7, op2_bras = 0x5, + op_l = 0x58, + op_la = 0x41, + op1_larl = 0xc0, op2_larl = 0x0, + op_lgr = 0xb904, + op1_lghi = 0xa7, op2_lghi = 0x9, + op1_lhi = 0xa7, op2_lhi = 0x8, + op_lr = 0x18, + op_nr = 0x14, + op_ngr = 0xb980, + op_s = 0x5b, + op_st = 0x50, + op_std = 0x60, + op1_stg = 0xe3, op2_stg = 0x24, + op_stm = 0x90, + op1_stmg = 0xeb, op2_stmg = 0x24, + op_svc = 0x0a, + }; + + +/* The functions below are for recognizing and decoding S/390 + instructions of various formats. Each of them checks whether INSN + is an instruction of the given format, with the specified opcodes. + If it is, it sets the remaining arguments to the values of the + instruction's fields, and returns a non-zero value; otherwise, it + returns zero. + + These functions' arguments appear in the order they appear in the + instruction, not in the machine-language form. So, opcodes always + come first, even though they're sometimes scattered around the + instructions. And displacements appear before base and extension + registers, as they do in the assembly syntax, not at the end, as + they do in the machine language. */ static int -s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info, - struct frame_info *fi, int init_extra_info) +is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) { -#define CONST_POOL_REGIDX 13 -#define GOT_REGIDX 12 - bfd_byte instr[S390_MAX_INSTR_SIZE]; - CORE_ADDR test_pc = pc, test_pc2; - CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL; - int valid_prologue, good_prologue = 0; - int gprs_saved[S390_NUM_GPRS]; - int fprs_saved[S390_NUM_FPRS]; - int regidx, instrlen; - int const_pool_state; - int varargs_state; - int loop_cnt, gdb_gpr_store, gdb_fpr_store; - int offset, expected_offset; - int err = 0; - disassemble_info info; + if (insn[0] == op1 && (insn[1] & 0xf) == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + /* i2 is a 16-bit signed quantity. */ + *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; + return 1; + } + else + return 0; +} - /* Have we seen an instruction initializing the frame pointer yet? - If we've seen an `lr %r11, %r15', then frame_pointer_found is - non-zero, and frame_pointer_regidx == 11. Otherwise, - frame_pointer_found is zero and frame_pointer_regidx is 15, - indicating that we're using the stack pointer as our frame - pointer. */ - int frame_pointer_found = 0; - int frame_pointer_regidx = 0xf; - - /* What we've seen so far regarding saving the back chain link: - 0 -- nothing yet; sp still has the same value it had at the entry - point. Since not all functions allocate frames, this is a - valid state for the prologue to finish in. - 1 -- We've saved the original sp in some register other than the - frame pointer (hard-coded to be %r11, yuck). - save_link_regidx is the register we saved it in. - 2 -- We've seen the initial `bras' instruction of the sequence for - reserving more than 32k of stack: - bras %rX, .+8 - .long N - s %r15, 0(%rX) - where %rX is not the constant pool register. - subtract_sp_regidx is %rX, and fextra_info->stack_bought is N. - 3 -- We've reserved space for a new stack frame. This means we - either saw a simple `ahi %r15,-N' in state 1, or the final - `s %r15, ...' in state 2. - 4 -- The frame and link are now fully initialized. We've - reserved space for the new stack frame, and stored the old - stack pointer captured in the back chain pointer field. */ - int save_link_state = 0; - int save_link_regidx, subtract_sp_regidx; - - /* What we've seen so far regarding r12 --- the GOT (Global Offset - Table) pointer. We expect to see `l %r12, N(%r13)', which loads - r12 with the offset from the constant pool to the GOT, and then - an `ar %r12, %r13', which adds the constant pool address, - yielding the GOT's address. Here's what got_state means: - 0 -- seen nothing - 1 -- seen `l %r12, N(%r13)', but no `ar' - 2 -- seen load and add, so GOT pointer is totally initialized - When got_state is 1, then got_load_addr is the address of the - load instruction, and got_load_len is the length of that - instruction. */ - int got_state= 0; - CORE_ADDR got_load_addr = 0, got_load_len = 0; - - const_pool_state = varargs_state = 0; - - memset (gprs_saved, 0, sizeof (gprs_saved)); - memset (fprs_saved, 0, sizeof (fprs_saved)); - info.read_memory_func = deprecated_tm_print_insn_info.read_memory_func; - save_link_regidx = subtract_sp_regidx = 0; - if (fextra_info) +static int +is_ril (bfd_byte *insn, int op1, int op2, + unsigned int *r1, int *i2) +{ + if (insn[0] == op1 && (insn[1] & 0xf) == op2) { - if (fi && get_frame_base (fi)) - { - orig_sp = get_frame_base (fi); - if (! init_extra_info && fextra_info->initialised) - orig_sp += fextra_info->stack_bought; - saved_regs = get_frame_saved_regs (fi); - } - if (init_extra_info || !fextra_info->initialised) - { - s390_memset_extra_info (fextra_info); - fextra_info->function_start = pc; - fextra_info->initialised = 1; - } + *r1 = (insn[1] >> 4) & 0xf; + /* i2 is a signed quantity. If the host 'int' is 32 bits long, + no sign extension is necessary, but we don't want to assume + that. */ + *i2 = (((insn[2] << 24) + | (insn[3] << 16) + | (insn[4] << 8) + | (insn[5])) ^ 0x80000000) - 0x80000000; + return 1; } - instrlen = 0; - do + else + return 0; +} + + +static int +is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) +{ + if (insn[0] == op) { - valid_prologue = 0; - test_pc += instrlen; - /* add the previous instruction len */ - instrlen = s390_readinstruction (instr, test_pc, &info); - if (instrlen < 0) - { - good_prologue = 0; - err = -1; - break; - } - /* We probably are in a glibc syscall */ - if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc) - { - good_prologue = 1; - if (saved_regs && fextra_info && get_next_frame (fi) - && get_frame_extra_info (get_next_frame (fi)) - && get_frame_extra_info (get_next_frame (fi))->sigcontext) - { - /* We are backtracing from a signal handler */ - save_reg_addr = get_frame_extra_info (get_next_frame (fi))->sigcontext + - REGISTER_BYTE (S390_GP0_REGNUM); - for (regidx = 0; regidx < S390_NUM_GPRS; regidx++) - { - saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; - save_reg_addr += S390_GPR_SIZE; - } - save_reg_addr = get_frame_extra_info (get_next_frame (fi))->sigcontext + - (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET : - S390_SIGREGS_FP0_OFFSET); - for (regidx = 0; regidx < S390_NUM_FPRS; regidx++) - { - saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr; - save_reg_addr += S390_FPR_SIZE; - } - } - break; - } - if (save_link_state == 0) - { - /* check for a stack relative STMG or STM */ - if (((GDB_TARGET_IS_ESAME && - ((instr[0] == 0xeb) && (instr[5] == 0x24))) || - (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf)) - { - regidx = (instr[1] >> 4); - if (regidx < 6) - varargs_state = 1; - offset = ((instr[2] & 0xf) << 8) + instr[3]; - expected_offset = - S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6)); - if (offset != expected_offset) - { - good_prologue = 0; - break; - } - if (saved_regs) - save_reg_addr = orig_sp + offset; - for (; regidx <= (instr[1] & 0xf); regidx++) - { - if (gprs_saved[regidx]) - { - good_prologue = 0; - break; - } - good_prologue = 1; - gprs_saved[regidx] = 1; - if (saved_regs) - { - saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; - save_reg_addr += S390_GPR_SIZE; - } - } - valid_prologue = 1; - continue; - } - } - /* check for a stack relative STG or ST */ - if ((save_link_state == 0 || save_link_state == 3) && - ((GDB_TARGET_IS_ESAME && - ((instr[0] == 0xe3) && (instr[5] == 0x24))) || - (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf)) - { - regidx = instr[1] >> 4; - offset = ((instr[2] & 0xf) << 8) + instr[3]; - if (offset == 0) - { - if (save_link_state == 3 && regidx == save_link_regidx) - { - save_link_state = 4; - valid_prologue = 1; - continue; - } - else - break; - } - if (regidx < 6) - varargs_state = 1; - expected_offset = - S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6)); - if (offset != expected_offset) - { - good_prologue = 0; - break; - } - if (gprs_saved[regidx]) - { - good_prologue = 0; - break; - } - good_prologue = 1; - gprs_saved[regidx] = 1; - if (saved_regs) - { - save_reg_addr = orig_sp + offset; - saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; - } - valid_prologue = 1; - continue; - } + *r1 = (insn[1] >> 4) & 0xf; + *r2 = insn[1] & 0xf; + return 1; + } + else + return 0; +} + - /* Check for an fp-relative STG, ST, or STM. This is probably - spilling an argument from a register out into a stack slot. - This could be a user instruction, but if we haven't included - any other suspicious instructions in the prologue, this - could only be an initializing store, which isn't too bad to - skip. The consequences of not including arg-to-stack spills - are more serious, though --- you don't see the proper values - of the arguments. */ - if ((save_link_state == 3 || save_link_state == 4) - && ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */ - && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */ - && is_arg_reg ((instr[1] >> 4) & 0xf) - && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx) - || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */ - && is_arg_reg ((instr[1] >> 4) & 0xf) - && is_arg_reg (instr[1] & 0xf) - && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx))) +static int +is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) +{ + if (((insn[0] << 8) | insn[1]) == op) + { + /* Yes, insn[3]. insn[2] is unused in RRE format. */ + *r1 = (insn[3] >> 4) & 0xf; + *r2 = insn[3] & 0xf; + return 1; + } + else + return 0; +} + + +static int +is_rs (bfd_byte *insn, int op, + unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) +{ + if (insn[0] == op) + { + *r1 = (insn[1] >> 4) & 0xf; + *r3 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + + +static int +is_rse (bfd_byte *insn, int op1, int op2, + unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) +{ + if (insn[0] == op1 + /* Yes, insn[5]. insn[4] is unused. */ + && insn[5] == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + *r3 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + + +static int +is_rx (bfd_byte *insn, int op, + unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) +{ + if (insn[0] == op) + { + *r1 = (insn[1] >> 4) & 0xf; + *x2 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + + +static int +is_rxe (bfd_byte *insn, int op1, int op2, + unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) +{ + if (insn[0] == op1 + /* Yes, insn[5]. insn[4] is unused. */ + && insn[5] == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + *x2 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + + +/* Set ADDR to the effective address for an X-style instruction, like: + + L R1, D2(X2, B2) + + Here, X2 and B2 are registers, and D2 is an unsigned 12-bit + constant; the effective address is the sum of all three. If either + X2 or B2 are zero, then it doesn't contribute to the sum --- this + means that r0 can't be used as either X2 or B2. + + GPR is an array of general register values, indexed by GPR number, + not GDB register number. */ +static void +compute_x_addr (struct prologue_value *addr, + struct prologue_value *gpr, + unsigned int d2, unsigned int x2, unsigned int b2) +{ + /* We can't just add stuff directly in addr; it might alias some of + the registers we need to read. */ + struct prologue_value result; + + pv_set_to_constant (&result, d2); + if (x2) + pv_add (&result, &result, &gpr[x2]); + if (b2) + pv_add (&result, &result, &gpr[b2]); + + *addr = result; +} + + +/* The number of GPR and FPR spill slots in an S/390 stack frame. We + track general-purpose registers r2 -- r15, and floating-point + registers f0, f2, f4, and f6. */ +#define S390_NUM_SPILL_SLOTS (14 + 4) + + +/* If the SIZE bytes at ADDR are a stack slot we're actually tracking, + return pv_definite_yes and set *STACK to point to the slot. If + we're sure that they are not any of our stack slots, then return + pv_definite_no. Otherwise, return pv_maybe. + - GPR is an array indexed by GPR number giving the current values + of the general-purpose registers. + - SPILL is an array tracking the spill area of the caller's frame; + SPILL[i] is the i'th spill slot. The spill slots are designated + for r2 -- r15, and then f0, f2, f4, and f6. + - BACK_CHAIN is the value of the back chain slot; it's only valid + when the current frame actually has some space for a back chain + slot --- that is, when the current value of the stack pointer + (according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes + less than its original value. */ +static enum pv_boolean +s390_on_stack (struct prologue_value *addr, + CORE_ADDR size, + struct prologue_value *gpr, + struct prologue_value *spill, + struct prologue_value *back_chain, + struct prologue_value **stack) +{ + struct prologue_value gpr_spill_addr; + struct prologue_value fpr_spill_addr; + struct prologue_value back_chain_addr; + int i; + enum pv_boolean b; + + /* Construct the addresses of the spill arrays and the back chain. */ + pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE); + pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE); + back_chain_addr = gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + + /* We have to check for GPR and FPR references using two separate + calls to pv_is_array_ref, since the GPR and FPR spill slots are + different sizes. (SPILL is an array, but the thing it tracks + isn't really an array.) */ + + /* Was it a reference to the GPR spill array? */ + b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i); + if (b == pv_definite_yes) + { + *stack = &spill[i]; + return pv_definite_yes; + } + if (b == pv_maybe) + return pv_maybe; + + /* Was it a reference to the FPR spill array? */ + b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i); + if (b == pv_definite_yes) + { + *stack = &spill[14 + i]; + return pv_definite_yes; + } + if (b == pv_maybe) + return pv_maybe; + + /* Was it a reference to the back chain? + This isn't quite right. We ought to check whether we have + actually allocated any new frame at all. */ + b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i); + if (b == pv_definite_yes) + { + *stack = back_chain; + return pv_definite_yes; + } + if (b == pv_maybe) + return pv_maybe; + + /* All the above queries returned definite 'no's. */ + return pv_definite_no; +} + + +/* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN, + and the return value are as described for s390_on_stack, above. + Note that, when this returns pv_maybe, we have to assume that all + of our memory now contains unknown values. */ +static enum pv_boolean +s390_store (struct prologue_value *addr, + CORE_ADDR size, + struct prologue_value *value, + struct prologue_value *gpr, + struct prologue_value *spill, + struct prologue_value *back_chain) +{ + struct prologue_value *stack; + enum pv_boolean on_stack + = s390_on_stack (addr, size, gpr, spill, back_chain, &stack); + + if (on_stack == pv_definite_yes) + *stack = *value; + + return on_stack; +} + + +/* The current frame looks like a signal delivery frame: the first + instruction is an 'svc' opcode. If the next frame is a signal + handler's frame, set FI's saved register map to point into the + signal context structure. */ +static void +s390_get_signal_frame_info (struct frame_info *fi) +{ + struct frame_info *next_frame = get_next_frame (fi); + + if (next_frame + && get_frame_extra_info (next_frame) + && get_frame_extra_info (next_frame)->sigcontext) + { + /* We're definitely backtracing from a signal handler. */ + CORE_ADDR *saved_regs = get_frame_saved_regs (fi); + CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext + + REGISTER_BYTE (S390_GP0_REGNUM)); + int reg; + + for (reg = 0; reg < S390_NUM_GPRS; reg++) { - valid_prologue = 1; - continue; + saved_regs[S390_GP0_REGNUM + reg] = save_reg_addr; + save_reg_addr += S390_GPR_SIZE; } - /* check for STD */ - if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf) - { - regidx = instr[1] >> 4; - if (regidx == 0 || regidx == 2) - varargs_state = 1; - if (fprs_saved[regidx]) - { - good_prologue = 0; - break; - } - fprs_saved[regidx] = 1; - if (saved_regs) - { - save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]); - saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr; - } - valid_prologue = 1; - continue; - } + save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext + + (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET : + S390_SIGREGS_FP0_OFFSET)); + for (reg = 0; reg < S390_NUM_FPRS; reg++) + { + saved_regs[S390_FP0_REGNUM + reg] = save_reg_addr; + save_reg_addr += S390_FPR_SIZE; + } + } +} - if (const_pool_state == 0) - { +static int +s390_get_frame_info (CORE_ADDR start_pc, + struct frame_extra_info *fextra_info, + struct frame_info *fi, + int init_extra_info) +{ + /* Our return value: + zero if we were able to read all the instructions we wanted, or + -1 if we got an error trying to read memory. */ + int result = 0; - if (GDB_TARGET_IS_ESAME) - { - /* Check for larl CONST_POOL_REGIDX,offset on ESAME */ - if ((instr[0] == 0xc0) - && (instr[1] == (CONST_POOL_REGIDX << 4))) - { - const_pool_state = 2; - valid_prologue = 1; - continue; - } - } - else - { - /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */ - if (instr[0] == 0xd && (instr[1] & 0xf) == 0 - && ((instr[1] >> 4) == CONST_POOL_REGIDX)) - { - const_pool_state = 1; - valid_prologue = 1; - continue; - } - } - /* Check for new fangled bras %r13,newpc to load new constant pool */ - /* embedded in code, older pre abi compilers also emitted this stuff. */ - if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) && - ((instr[1] >> 4) == CONST_POOL_REGIDX) - && ((instr[2] & 0x80) == 0)) - { - const_pool_state = 2; - test_pc += - (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen); - valid_prologue = 1; - continue; - } - } - /* Check for AGHI or AHI CONST_POOL_REGIDX,val */ - if (const_pool_state == 1 && (instr[0] == 0xa7) && - ((GDB_TARGET_IS_ESAME && - (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) || - (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa)))) - { - const_pool_state = 2; - valid_prologue = 1; - continue; - } - /* Check for LGR or LR gprx,15 */ - if ((GDB_TARGET_IS_ESAME && - instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) || - (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf)) - { - if (GDB_TARGET_IS_ESAME) - regidx = instr[3] >> 4; - else - regidx = instr[1] >> 4; - if (save_link_state == 0 && regidx != 0xb) - { - /* Almost defintely code for - decrementing the stack pointer - ( i.e. a non leaf function - or else leaf with locals ) */ - save_link_regidx = regidx; - save_link_state = 1; - valid_prologue = 1; - continue; - } - /* We use this frame pointer for alloca - unfortunately we need to assume its gpr11 - otherwise we would need a smarter prologue - walker. */ - if (!frame_pointer_found && regidx == 0xb) - { - frame_pointer_regidx = 0xb; - frame_pointer_found = 1; - if (fextra_info) - fextra_info->frame_pointer_saved_pc = test_pc; - valid_prologue = 1; - continue; - } - } - /* Check for AHI or AGHI gpr15,val */ - if (save_link_state == 1 && (instr[0] == 0xa7) && - ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa))) - { - if (fextra_info) - fextra_info->stack_bought = - -extract_signed_integer (&instr[2], 2); - save_link_state = 3; - valid_prologue = 1; - continue; - } - /* Alternatively check for the complex construction for - buying more than 32k of stack - BRAS gprx,.+8 - long val - s %r15,0(%gprx) gprx currently r1 */ - if ((save_link_state == 1) && (instr[0] == 0xa7) - && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0) - && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX)) - { - subtract_sp_regidx = instr[1] >> 4; - save_link_state = 2; - if (fextra_info) - target_read_memory (test_pc + instrlen, - (char *) &fextra_info->stack_bought, - sizeof (fextra_info->stack_bought)); - test_pc += 4; - valid_prologue = 1; - continue; - } - if (save_link_state == 2 && instr[0] == 0x5b - && instr[1] == 0xf0 && - instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0) - { - save_link_state = 3; - valid_prologue = 1; - continue; - } - /* check for LA gprx,offset(15) used for varargs */ - if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) && - ((instr[1] & 0xf) == 0)) - { - /* some code uses gpr7 to point to outgoing args */ - if (((instr[1] >> 4) == 7) && (save_link_state == 0) && - ((instr[2] & 0xf) == 0) - && (instr[3] == S390_STACK_FRAME_OVERHEAD)) - { - valid_prologue = 1; - continue; - } - if (varargs_state == 1) - { - varargs_state = 2; - valid_prologue = 1; - continue; - } - } - /* Check for a GOT load */ + /* We just use this for reading instructions. */ + disassemble_info info; - if (GDB_TARGET_IS_ESAME) - { - /* Check for larl GOT_REGIDX, on ESAME */ - if ((got_state == 0) && (instr[0] == 0xc0) - && (instr[1] == (GOT_REGIDX << 4))) - { - got_state = 2; - valid_prologue = 1; - continue; - } - } - else - { - /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */ - if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58 - && (instr[2] == (CONST_POOL_REGIDX << 4)) - && ((instr[1] >> 4) == GOT_REGIDX)) - { - got_state = 1; - got_load_addr = test_pc; - got_load_len = instrlen; - valid_prologue = 1; - continue; - } - /* Check for subsequent ar got_regidx,basr_regidx */ - if (got_state == 1 && instr[0] == 0x1a && - instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX)) - { - got_state = 2; - valid_prologue = 1; - continue; - } - } - } - while (valid_prologue && good_prologue); - if (good_prologue) + /* The current PC for our abstract interpretation. */ + CORE_ADDR pc; + + /* The address of the next instruction after that. */ + CORE_ADDR next_pc; + + /* The general-purpose registers. */ + struct prologue_value gpr[S390_NUM_GPRS]; + + /* The floating-point registers. */ + struct prologue_value fpr[S390_NUM_FPRS]; + + /* The register spill stack slots in the caller's frame --- + general-purpose registers r2 through r15, and floating-point + registers. spill[i] is where gpr i+2 gets spilled; + spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */ + struct prologue_value spill[S390_NUM_SPILL_SLOTS]; + + /* The value of the back chain slot. This is only valid if the stack + pointer is known to be less than its original value --- that is, + if we have indeed allocated space on the stack. */ + struct prologue_value back_chain; + + /* The address of the instruction after the last one that changed + the SP, FP, or back chain. */ + CORE_ADDR after_last_frame_setup_insn = start_pc; + + info.read_memory_func = deprecated_tm_print_insn_info.read_memory_func; + + /* Set up everything's initial value. */ + { + int i; + + for (i = 0; i < S390_NUM_GPRS; i++) + pv_set_to_register (&gpr[i], S390_GP0_REGNUM + i, 0); + + for (i = 0; i < S390_NUM_FPRS; i++) + pv_set_to_register (&fpr[i], S390_FP0_REGNUM + i, 0); + + for (i = 0; i < S390_NUM_SPILL_SLOTS; i++) + pv_set_to_unknown (&spill[i]); + + pv_set_to_unknown (&back_chain); + } + + /* Start interpreting instructions, until we hit something we don't + know how to interpret. (Ideally, we should stop at the frame's + real current PC, but at the moment, our callers don't give us + that info.) */ + for (pc = start_pc; ; pc = next_pc) { - /* If this function doesn't reference the global offset table, - then the compiler may use r12 for other things. If the last - instruction we saw was a load of r12 from the constant pool, - with no subsequent add to make the address PC-relative, then - the load was probably a genuine body instruction; don't treat - it as part of the prologue. */ - if (got_state == 1 - && got_load_addr + got_load_len == test_pc) + bfd_byte insn[S390_MAX_INSTR_SIZE]; + int insn_len = s390_readinstruction (insn, pc, &info); + + /* Fields for various kinds of instructions. */ + unsigned int b2, r1, r2, d2, x2, r3; + int i2; + + /* The values of SP, FP, and back chain before this instruction, + for detecting instructions that change them. */ + struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain; + + /* If we got an error trying to read the instruction, report it. */ + if (insn_len < 0) + { + result = -1; + break; + } + + next_pc = pc + insn_len; + + pre_insn_sp = gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; + pre_insn_back_chain = back_chain; + + /* A special case, first --- only recognized as the very first + instruction of the function, for signal delivery frames: + SVC i --- system call */ + if (pc == start_pc + && is_rr (insn, op_svc, &r1, &r2)) + { + if (fi) + s390_get_signal_frame_info (fi); + break; + } + + /* AHI r1, i2 --- add halfword immediate */ + else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2)) + pv_add_constant (&gpr[r1], i2); + + + /* AGHI r1, i2 --- add halfword immediate (64-bit version) */ + else if (GDB_TARGET_IS_ESAME + && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2)) + pv_add_constant (&gpr[r1], i2); + + /* AR r1, r2 -- add register */ + else if (is_rr (insn, op_ar, &r1, &r2)) + pv_add (&gpr[r1], &gpr[r1], &gpr[r2]); + + /* BASR r1, 0 --- branch and save + Since r2 is zero, this saves the PC in r1, but doesn't branch. */ + else if (is_rr (insn, op_basr, &r1, &r2) + && r2 == 0) + pv_set_to_constant (&gpr[r1], next_pc); + + /* BRAS r1, i2 --- branch relative and save */ + else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) + { + pv_set_to_constant (&gpr[r1], next_pc); + next_pc = pc + i2 * 2; + + /* We'd better not interpret any backward branches. We'll + never terminate. */ + if (next_pc <= pc) + break; + } + + /* L r1, d2(x2, b2) --- load */ + else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2)) + { + struct prologue_value addr; + struct prologue_value *stack; + + compute_x_addr (&addr, gpr, d2, x2, b2); + + /* If it's a load from an in-line constant pool, then we can + simulate that, under the assumption that the code isn't + going to change between the time the processor actually + executed it creating the current frame, and the time when + we're analyzing the code to unwind past that frame. */ + if (addr.kind == pv_constant + && start_pc <= addr.k + && addr.k < next_pc) + pv_set_to_constant (&gpr[r1], + read_memory_integer (addr.k, 4)); + + /* If it's definitely a reference to something on the stack, + we can do that. */ + else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack) + == pv_definite_yes) + gpr[r1] = *stack; + + /* Otherwise, we don't know the value. */ + else + pv_set_to_unknown (&gpr[r1]); + } + + /* LA r1, d2(x2, b2) --- load address */ + else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)) + compute_x_addr (&gpr[r1], gpr, d2, x2, b2); + + /* LARL r1, i2 --- load address relative long */ + else if (GDB_TARGET_IS_ESAME + && is_ril (insn, op1_larl, op2_larl, &r1, &i2)) + pv_set_to_constant (&gpr[r1], pc + i2 * 2); + + /* LGR r1, r2 --- load from register */ + else if (GDB_TARGET_IS_ESAME + && is_rre (insn, op_lgr, &r1, &r2)) + gpr[r1] = gpr[r2]; + + /* LHI r1, i2 --- load halfword immediate */ + else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2)) + pv_set_to_constant (&gpr[r1], i2); + + /* LGHI r1, i2 --- load halfword immediate --- 64-bit version */ + else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2)) + pv_set_to_constant (&gpr[r1], i2); + + /* LR r1, r2 --- load from register */ + else if (is_rr (insn, op_lr, &r1, &r2)) + gpr[r1] = gpr[r2]; + + /* NGR r1, r2 --- logical and --- 64-bit version */ + else if (GDB_TARGET_IS_ESAME + && is_rre (insn, op_ngr, &r1, &r2)) + pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); + + /* NR r1, r2 --- logical and */ + else if (is_rr (insn, op_nr, &r1, &r2)) + pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); + + /* NGR r1, r2 --- logical and --- 64-bit version */ + else if (GDB_TARGET_IS_ESAME + && is_rre (insn, op_ngr, &r1, &r2)) + pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); + + /* NR r1, r2 --- logical and */ + else if (is_rr (insn, op_nr, &r1, &r2)) + pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); + + /* S r1, d2(x2, b2) --- subtract from memory */ + else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2)) + { + struct prologue_value addr; + struct prologue_value value; + struct prologue_value *stack; + + compute_x_addr (&addr, gpr, d2, x2, b2); + + /* If it's a load from an in-line constant pool, then we can + simulate that, under the assumption that the code isn't + going to change between the time the processor actually + executed it and the time when we're analyzing it. */ + if (addr.kind == pv_constant + && start_pc <= addr.k + && addr.k < pc) + pv_set_to_constant (&value, read_memory_integer (addr.k, 4)); + + /* If it's definitely a reference to something on the stack, + we could do that. */ + else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack) + == pv_definite_yes) + value = *stack; + + /* Otherwise, we don't know the value. */ + else + pv_set_to_unknown (&value); + + pv_subtract (&gpr[r1], &gpr[r1], &value); + } + + /* ST r1, d2(x2, b2) --- store */ + else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2)) + { + struct prologue_value addr; + + compute_x_addr (&addr, gpr, d2, x2, b2); + + /* The below really should be '4', not 'S390_GPR_SIZE'; this + instruction always stores 32 bits, regardless of the full + size of the GPR. */ + if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain) + == pv_maybe) + /* If we can't be sure that it's *not* a store to + something we're tracing, then we would have to mark all + our memory as unknown --- after all, it *could* be a + store to any of them --- so we might as well just stop + interpreting. */ + break; + } + + /* STD r1, d2(x2,b2) --- store floating-point register */ + else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) + { + struct prologue_value addr; + + compute_x_addr (&addr, gpr, d2, x2, b2); + + if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain) + == pv_maybe) + /* If we can't be sure that it's *not* a store to + something we're tracing, then we would have to mark all + our memory as unknown --- after all, it *could* be a + store to any of them --- so we might as well just stop + interpreting. */ + break; + } + + /* STG r1, d2(x2, b2) --- 64-bit store */ + else if (GDB_TARGET_IS_ESAME + && is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) + { + struct prologue_value addr; + + compute_x_addr (&addr, gpr, d2, x2, b2); + + /* The below really should be '8', not 'S390_GPR_SIZE'; this + instruction always stores 64 bits, regardless of the full + size of the GPR. */ + if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain) + == pv_maybe) + /* If we can't be sure that it's *not* a store to + something we're tracing, then we would have to mark all + our memory as unknown --- after all, it *could* be a + store to any of them --- so we might as well just stop + interpreting. */ + break; + } + + /* STM r1, r3, d2(b2) --- store multiple */ + else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2)) + { + int regnum; + int offset; + struct prologue_value addr; + + for (regnum = r1, offset = 0; + regnum <= r3; + regnum++, offset += 4) + { + compute_x_addr (&addr, gpr, d2 + offset, 0, b2); + + if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain) + == pv_maybe) + /* If we can't be sure that it's *not* a store to + something we're tracing, then we would have to mark all + our memory as unknown --- after all, it *could* be a + store to any of them --- so we might as well just stop + interpreting. */ + break; + } + + /* If we left the loop early, we should stop interpreting + altogether. */ + if (regnum <= r3) + break; + } + + /* STMG r1, r3, d2(b2) --- store multiple, 64-bit */ + else if (GDB_TARGET_IS_ESAME + && is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) { - test_pc = got_load_addr; - instrlen = got_load_len; + int regnum; + int offset; + struct prologue_value addr; + + for (regnum = r1, offset = 0; + regnum <= r3; + regnum++, offset += 8) + { + compute_x_addr (&addr, gpr, d2 + offset, 0, b2); + + if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain) + == pv_maybe) + /* If we can't be sure that it's *not* a store to + something we're tracing, then we would have to mark all + our memory as unknown --- after all, it *could* be a + store to any of them --- so we might as well just stop + interpreting. */ + break; + } + + /* If we left the loop early, we should stop interpreting + altogether. */ + if (regnum <= r3) + break; } + + else + /* An instruction we don't know how to simulate. The only + safe thing to do would be to set every value we're tracking + to 'unknown'. Instead, we'll be optimistic: we just stop + interpreting, and assume that the machine state we've got + now is good enough for unwinding the stack. */ + break; + + /* Record the address after the last instruction that changed + the FP, SP, or backlink. Ignore instructions that changed + them back to their original values --- those are probably + restore instructions. (The back chain is never restored, + just popped.) */ + { + struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; - good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) && - ((save_link_state == 0) || (save_link_state == 4)) && - ((varargs_state == 0) || (varargs_state == 2))); + if ((! pv_is_identical (&pre_insn_sp, sp) + && ! pv_is_register (sp, S390_SP_REGNUM, 0)) + || (! pv_is_identical (&pre_insn_fp, fp) + && ! pv_is_register (fp, S390_FRAME_REGNUM, 0)) + || ! pv_is_identical (&pre_insn_back_chain, &back_chain)) + after_last_frame_setup_insn = next_pc; + } } - if (fextra_info) + + /* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state + of the machine as of the first instruction we couldn't interpret + (hopefully the first non-prologue instruction). */ + { + /* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure + that out. */ + CORE_ADDR frame_size = -1; + + /* The value the SP had upon entry to the function, or + (CORE_ADDR) -1 if we can't figure that out. */ + CORE_ADDR original_sp = -1; + + /* Are we using S390_FRAME_REGNUM as a frame pointer register? */ + int using_frame_pointer = 0; + + /* If S390_FRAME_REGNUM is some constant offset from the SP, then + that strongly suggests that we're going to use that as our + frame pointer register, not the SP. */ { - fextra_info->good_prologue = good_prologue; - fextra_info->skip_prologue_function_start = - (good_prologue ? test_pc : pc); + struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; + + if (fp->kind == pv_register + && fp->reg == S390_SP_REGNUM) + using_frame_pointer = 1; } - if (saved_regs) - /* The SP's element of the saved_regs array holds the old SP, - not the address at which it is saved. */ - saved_regs[S390_SP_REGNUM] = orig_sp; - return err; + + /* If we were given a frame_info structure, we may be able to use + the frame's base address to figure out the actual value of the + original SP. */ + if (fi && get_frame_base (fi)) + { + int frame_base_regno; + struct prologue_value *frame_base; + + /* The meaning of the frame base depends on whether the + function uses a frame pointer register other than the SP or + not (see s390_read_fp): + - If the function does use a frame pointer register other + than the SP, then the frame base is that register's + value. + - If the function doesn't use a frame pointer, then the + frame base is the SP itself. + We're duplicating some of the logic of s390_fp_regnum here, + but we don't want to call that, because it would just do + exactly the same analysis we've already done above. */ + if (using_frame_pointer) + frame_base_regno = S390_FRAME_REGNUM; + else + frame_base_regno = S390_SP_REGNUM; + + frame_base = &gpr[frame_base_regno - S390_GP0_REGNUM]; + + /* We know the frame base address; if the value of whatever + register it came from is a constant offset from the + original SP, then we can reconstruct the original SP just + by subtracting off that constant. */ + if (frame_base->kind == pv_register + && frame_base->reg == S390_SP_REGNUM) + original_sp = get_frame_base (fi) - frame_base->k; + } + + /* If the analysis said that the current SP value is the original + value less some constant, then that constant is the frame size. */ + { + struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + + if (sp->kind == pv_register + && sp->reg == S390_SP_REGNUM) + frame_size = -sp->k; + } + + /* If we knew other registers' current values, we could check if + the analysis said any of those were related to the original SP + value, too. But for now, we'll just punt. */ + + /* If the caller passed in an 'extra info' structure, fill in the + parts we can. */ + if (fextra_info) + { + if (init_extra_info || ! fextra_info->initialised) + { + s390_memset_extra_info (fextra_info); + fextra_info->function_start = start_pc; + fextra_info->initialised = 1; + } + + if (frame_size != -1) + { + fextra_info->stack_bought = frame_size; + } + + /* Assume everything was okay, and indicate otherwise when we + find something amiss. */ + fextra_info->good_prologue = 1; + + if (using_frame_pointer) + /* Actually, nobody cares about the exact PC, so any + non-zero value will do here. */ + fextra_info->frame_pointer_saved_pc = 1; + + /* If we weren't able to find the size of the frame, or find + the original sp based on actual current register values, + then we're not going to be able to unwind this frame. + + (If we're just doing prologue analysis to set a breakpoint, + then frame_size might be known, but original_sp unknown; if + we're analyzing a real frame which uses alloca, then + original_sp might be known (from the frame pointer + register), but the frame size might be unknown.) */ + if (original_sp == -1 && frame_size == -1) + fextra_info->good_prologue = 0; + + if (fextra_info->good_prologue) + fextra_info->skip_prologue_function_start + = after_last_frame_setup_insn; + else + /* If the prologue was too complex for us to make sense of, + then perhaps it's better to just not skip anything at + all. */ + fextra_info->skip_prologue_function_start = start_pc; + } + + /* Indicate where registers were saved on the stack, if: + - the caller seems to want to know, + - the caller provided an actual SP, and + - the analysis gave us enough information to actually figure it + out. */ + if (fi + && get_frame_saved_regs (fi) + && original_sp != -1) + { + int slot_num; + CORE_ADDR slot_addr; + CORE_ADDR *saved_regs = get_frame_saved_regs (fi); + + /* Scan the spill array; if a spill slot says it holds the + original value of some register, then record that slot's + address as the place that register was saved. + + Just for kicks, note that, even if registers aren't saved + in their officially-sanctioned slots, this will still work + --- we know what really got put where. */ + + /* First, the slots for r2 -- r15. */ + for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE; + slot_num < 14; + slot_num++, slot_addr += S390_GPR_SIZE) + { + struct prologue_value *slot = &spill[slot_num]; + + if (slot->kind == pv_register + && slot->k == 0) + saved_regs[slot->reg] = slot_addr; + } + + /* Then, the slots for f0, f2, f4, and f6. They're a + different size. */ + for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE; + slot_num < S390_NUM_SPILL_SLOTS; + slot_num++, slot_addr += S390_FPR_SIZE) + { + struct prologue_value *slot = &spill[slot_num]; + + if (slot->kind == pv_register + && slot->k == 0) + saved_regs[slot->reg] = slot_addr; + } + + /* The stack pointer's element of saved_regs[] is special. */ + saved_regs[S390_SP_REGNUM] = original_sp; + } + } + + return result; } |