aboutsummaryrefslogtreecommitdiff
path: root/gdb/s390-linux-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/s390-linux-tdep.c')
-rw-r--r--gdb/s390-linux-tdep.c3390
1 files changed, 3390 insertions, 0 deletions
diff --git a/gdb/s390-linux-tdep.c b/gdb/s390-linux-tdep.c
new file mode 100644
index 0000000..cd41de5
--- /dev/null
+++ b/gdb/s390-linux-tdep.c
@@ -0,0 +1,3390 @@
+/* Target-dependent code for GDB, the GNU debugger.
+
+ Copyright (C) 2001-2013 Free Software Foundation, Inc.
+
+ Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
+ for IBM Deutschland Entwicklung GmbH, IBM Corporation.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "defs.h"
+#include "arch-utils.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "target.h"
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "objfiles.h"
+#include "floatformat.h"
+#include "regcache.h"
+#include "trad-frame.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
+#include "dwarf2-frame.h"
+#include "reggroups.h"
+#include "regset.h"
+#include "value.h"
+#include "gdb_assert.h"
+#include "dis-asm.h"
+#include "solib-svr4.h"
+#include "prologue-value.h"
+#include "linux-tdep.h"
+#include "s390-linux-tdep.h"
+#include "auxv.h"
+
+#include "stap-probe.h"
+#include "ax.h"
+#include "ax-gdb.h"
+#include "user-regs.h"
+#include "cli/cli-utils.h"
+#include <ctype.h>
+#include "elf/common.h"
+
+#include "features/s390-linux32.c"
+#include "features/s390-linux32v1.c"
+#include "features/s390-linux32v2.c"
+#include "features/s390-linux64.c"
+#include "features/s390-linux64v1.c"
+#include "features/s390-linux64v2.c"
+#include "features/s390-te-linux64.c"
+#include "features/s390x-linux64.c"
+#include "features/s390x-linux64v1.c"
+#include "features/s390x-linux64v2.c"
+#include "features/s390x-te-linux64.c"
+
+/* The tdep structure. */
+
+struct gdbarch_tdep
+{
+ /* ABI version. */
+ enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
+
+ /* Pseudo register numbers. */
+ int gpr_full_regnum;
+ int pc_regnum;
+ int cc_regnum;
+
+ /* Core file register sets. */
+ const struct regset *gregset;
+ int sizeof_gregset;
+
+ const struct regset *fpregset;
+ int sizeof_fpregset;
+};
+
+
+/* ABI call-saved register information. */
+
+static int
+s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ switch (tdep->abi)
+ {
+ case ABI_LINUX_S390:
+ if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+ || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
+ || regnum == S390_A0_REGNUM)
+ return 1;
+
+ break;
+
+ case ABI_LINUX_ZSERIES:
+ if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+ || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
+ || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
+ return 1;
+
+ break;
+ }
+
+ return 0;
+}
+
+static int
+s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
+{
+ /* The last-break address is read-only. */
+ return regnum == S390_LAST_BREAK_REGNUM;
+}
+
+static void
+s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
+{
+ struct gdbarch *gdbarch = get_regcache_arch (regcache);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
+
+ /* Set special SYSTEM_CALL register to 0 to prevent the kernel from
+ messing with the PC we just installed, if we happen to be within
+ an interrupted system call that the kernel wants to restart.
+
+ Note that after we return from the dummy call, the SYSTEM_CALL and
+ ORIG_R2 registers will be automatically restored, and the kernel
+ continues to restart the system call at this point. */
+ if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
+ regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
+}
+
+
+/* DWARF Register Mapping. */
+
+static const short s390_dwarf_regmap[] =
+{
+ /* General Purpose Registers. */
+ S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+ S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+ S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+ S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+
+ /* Floating Point Registers. */
+ S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
+ S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
+ S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
+ S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
+
+ /* Control Registers (not mapped). */
+ -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1,
+
+ /* Access Registers. */
+ S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
+ S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
+ S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
+ S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
+
+ /* Program Status Word. */
+ S390_PSWM_REGNUM,
+ S390_PSWA_REGNUM,
+
+ /* GPR Lower Half Access. */
+ S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+ S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+ S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+ S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+
+ /* GNU/Linux-specific registers (not mapped). */
+ -1, -1, -1,
+};
+
+/* Convert DWARF register number REG to the appropriate register
+ number used by GDB. */
+static int
+s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
+ GPRs. Note that call frame information still refers to the 32-bit
+ lower halves, because s390_adjust_frame_regnum uses register numbers
+ 66 .. 81 to access GPRs. */
+ if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
+ return tdep->gpr_full_regnum + reg;
+
+ if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
+ return s390_dwarf_regmap[reg];
+
+ warning (_("Unmapped DWARF Register #%d encountered."), reg);
+ return -1;
+}
+
+/* Translate a .eh_frame register to DWARF register, or adjust a
+ .debug_frame register. */
+static int
+s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
+{
+ /* See s390_dwarf_reg_to_regnum for comments. */
+ return (num >= 0 && num < 16)? num + 66 : num;
+}
+
+
+/* Pseudo registers. */
+
+static int
+regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
+{
+ return (tdep->gpr_full_regnum != -1
+ && regnum >= tdep->gpr_full_regnum
+ && regnum <= tdep->gpr_full_regnum + 15);
+}
+
+static const char *
+s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == tdep->pc_regnum)
+ return "pc";
+
+ if (regnum == tdep->cc_regnum)
+ return "cc";
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ static const char *full_name[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+ return full_name[regnum - tdep->gpr_full_regnum];
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static struct type *
+s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == tdep->pc_regnum)
+ return builtin_type (gdbarch)->builtin_func_ptr;
+
+ if (regnum == tdep->cc_regnum)
+ return builtin_type (gdbarch)->builtin_int;
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ return builtin_type (gdbarch)->builtin_uint64;
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static enum register_status
+s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+ int regnum, gdb_byte *buf)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ ULONGEST val;
+
+ if (regnum == tdep->pc_regnum)
+ {
+ enum register_status status;
+
+ status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
+ if (status == REG_VALID)
+ {
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val &= 0x7fffffff;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ if (regnum == tdep->cc_regnum)
+ {
+ enum register_status status;
+
+ status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
+ if (status == REG_VALID)
+ {
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val = (val >> 12) & 3;
+ else
+ val = (val >> 44) & 3;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ enum register_status status;
+ ULONGEST val_upper;
+
+ regnum -= tdep->gpr_full_regnum;
+
+ status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
+ if (status == REG_VALID)
+ status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+ &val_upper);
+ if (status == REG_VALID)
+ {
+ val |= val_upper << 32;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static void
+s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+ int regnum, const gdb_byte *buf)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ ULONGEST val, psw;
+
+ if (regnum == tdep->pc_regnum)
+ {
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ {
+ regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
+ val = (psw & 0x80000000) | (val & 0x7fffffff);
+ }
+ regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
+ return;
+ }
+
+ if (regnum == tdep->cc_regnum)
+ {
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
+ else
+ val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
+ regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
+ return;
+ }
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ regnum -= tdep->gpr_full_regnum;
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
+ val & 0xffffffff);
+ regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+ val >> 32);
+ return;
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+/* 'float' values are stored in the upper half of floating-point
+ registers, even though we are otherwise a big-endian platform. */
+
+static struct value *
+s390_value_from_register (struct type *type, int regnum,
+ struct frame_info *frame)
+{
+ struct value *value = default_value_from_register (type, regnum, frame);
+
+ check_typedef (type);
+
+ if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
+ && TYPE_LENGTH (type) < 8)
+ set_value_offset (value, 0);
+
+ return value;
+}
+
+/* Register groups. */
+
+static int
+s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+ struct reggroup *group)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ /* We usually save/restore the whole PSW, which includes PC and CC.
+ However, some older gdbservers may not support saving/restoring
+ the whole PSW yet, and will return an XML register description
+ excluding those from the save/restore register groups. In those
+ cases, we still need to explicitly save/restore PC and CC in order
+ to push or pop frames. Since this doesn't hurt anything if we
+ already save/restore the whole PSW (it's just redundant), we add
+ PC and CC at this point unconditionally. */
+ if (group == save_reggroup || group == restore_reggroup)
+ return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
+
+ return default_register_reggroup_p (gdbarch, regnum, group);
+}
+
+
+/* Maps for register sets. */
+
+const short s390_regmap_gregset[] =
+ {
+ 0x00, S390_PSWM_REGNUM,
+ 0x04, S390_PSWA_REGNUM,
+ 0x08, S390_R0_REGNUM,
+ 0x0c, S390_R1_REGNUM,
+ 0x10, S390_R2_REGNUM,
+ 0x14, S390_R3_REGNUM,
+ 0x18, S390_R4_REGNUM,
+ 0x1c, S390_R5_REGNUM,
+ 0x20, S390_R6_REGNUM,
+ 0x24, S390_R7_REGNUM,
+ 0x28, S390_R8_REGNUM,
+ 0x2c, S390_R9_REGNUM,
+ 0x30, S390_R10_REGNUM,
+ 0x34, S390_R11_REGNUM,
+ 0x38, S390_R12_REGNUM,
+ 0x3c, S390_R13_REGNUM,
+ 0x40, S390_R14_REGNUM,
+ 0x44, S390_R15_REGNUM,
+ 0x48, S390_A0_REGNUM,
+ 0x4c, S390_A1_REGNUM,
+ 0x50, S390_A2_REGNUM,
+ 0x54, S390_A3_REGNUM,
+ 0x58, S390_A4_REGNUM,
+ 0x5c, S390_A5_REGNUM,
+ 0x60, S390_A6_REGNUM,
+ 0x64, S390_A7_REGNUM,
+ 0x68, S390_A8_REGNUM,
+ 0x6c, S390_A9_REGNUM,
+ 0x70, S390_A10_REGNUM,
+ 0x74, S390_A11_REGNUM,
+ 0x78, S390_A12_REGNUM,
+ 0x7c, S390_A13_REGNUM,
+ 0x80, S390_A14_REGNUM,
+ 0x84, S390_A15_REGNUM,
+ 0x88, S390_ORIG_R2_REGNUM,
+ -1, -1
+ };
+
+const short s390x_regmap_gregset[] =
+ {
+ 0x00, S390_PSWM_REGNUM,
+ 0x08, S390_PSWA_REGNUM,
+ 0x10, S390_R0_REGNUM,
+ 0x18, S390_R1_REGNUM,
+ 0x20, S390_R2_REGNUM,
+ 0x28, S390_R3_REGNUM,
+ 0x30, S390_R4_REGNUM,
+ 0x38, S390_R5_REGNUM,
+ 0x40, S390_R6_REGNUM,
+ 0x48, S390_R7_REGNUM,
+ 0x50, S390_R8_REGNUM,
+ 0x58, S390_R9_REGNUM,
+ 0x60, S390_R10_REGNUM,
+ 0x68, S390_R11_REGNUM,
+ 0x70, S390_R12_REGNUM,
+ 0x78, S390_R13_REGNUM,
+ 0x80, S390_R14_REGNUM,
+ 0x88, S390_R15_REGNUM,
+ 0x90, S390_A0_REGNUM,
+ 0x94, S390_A1_REGNUM,
+ 0x98, S390_A2_REGNUM,
+ 0x9c, S390_A3_REGNUM,
+ 0xa0, S390_A4_REGNUM,
+ 0xa4, S390_A5_REGNUM,
+ 0xa8, S390_A6_REGNUM,
+ 0xac, S390_A7_REGNUM,
+ 0xb0, S390_A8_REGNUM,
+ 0xb4, S390_A9_REGNUM,
+ 0xb8, S390_A10_REGNUM,
+ 0xbc, S390_A11_REGNUM,
+ 0xc0, S390_A12_REGNUM,
+ 0xc4, S390_A13_REGNUM,
+ 0xc8, S390_A14_REGNUM,
+ 0xcc, S390_A15_REGNUM,
+ 0x10, S390_R0_UPPER_REGNUM,
+ 0x18, S390_R1_UPPER_REGNUM,
+ 0x20, S390_R2_UPPER_REGNUM,
+ 0x28, S390_R3_UPPER_REGNUM,
+ 0x30, S390_R4_UPPER_REGNUM,
+ 0x38, S390_R5_UPPER_REGNUM,
+ 0x40, S390_R6_UPPER_REGNUM,
+ 0x48, S390_R7_UPPER_REGNUM,
+ 0x50, S390_R8_UPPER_REGNUM,
+ 0x58, S390_R9_UPPER_REGNUM,
+ 0x60, S390_R10_UPPER_REGNUM,
+ 0x68, S390_R11_UPPER_REGNUM,
+ 0x70, S390_R12_UPPER_REGNUM,
+ 0x78, S390_R13_UPPER_REGNUM,
+ 0x80, S390_R14_UPPER_REGNUM,
+ 0x88, S390_R15_UPPER_REGNUM,
+ 0xd0, S390_ORIG_R2_REGNUM,
+ -1, -1
+ };
+
+const short s390_regmap_fpregset[] =
+ {
+ 0x00, S390_FPC_REGNUM,
+ 0x08, S390_F0_REGNUM,
+ 0x10, S390_F1_REGNUM,
+ 0x18, S390_F2_REGNUM,
+ 0x20, S390_F3_REGNUM,
+ 0x28, S390_F4_REGNUM,
+ 0x30, S390_F5_REGNUM,
+ 0x38, S390_F6_REGNUM,
+ 0x40, S390_F7_REGNUM,
+ 0x48, S390_F8_REGNUM,
+ 0x50, S390_F9_REGNUM,
+ 0x58, S390_F10_REGNUM,
+ 0x60, S390_F11_REGNUM,
+ 0x68, S390_F12_REGNUM,
+ 0x70, S390_F13_REGNUM,
+ 0x78, S390_F14_REGNUM,
+ 0x80, S390_F15_REGNUM,
+ -1, -1
+ };
+
+const short s390_regmap_upper[] =
+ {
+ 0x00, S390_R0_UPPER_REGNUM,
+ 0x04, S390_R1_UPPER_REGNUM,
+ 0x08, S390_R2_UPPER_REGNUM,
+ 0x0c, S390_R3_UPPER_REGNUM,
+ 0x10, S390_R4_UPPER_REGNUM,
+ 0x14, S390_R5_UPPER_REGNUM,
+ 0x18, S390_R6_UPPER_REGNUM,
+ 0x1c, S390_R7_UPPER_REGNUM,
+ 0x20, S390_R8_UPPER_REGNUM,
+ 0x24, S390_R9_UPPER_REGNUM,
+ 0x28, S390_R10_UPPER_REGNUM,
+ 0x2c, S390_R11_UPPER_REGNUM,
+ 0x30, S390_R12_UPPER_REGNUM,
+ 0x34, S390_R13_UPPER_REGNUM,
+ 0x38, S390_R14_UPPER_REGNUM,
+ 0x3c, S390_R15_UPPER_REGNUM,
+ -1, -1
+ };
+
+const short s390_regmap_last_break[] =
+ {
+ 0x04, S390_LAST_BREAK_REGNUM,
+ -1, -1
+ };
+
+const short s390x_regmap_last_break[] =
+ {
+ 0x00, S390_LAST_BREAK_REGNUM,
+ -1, -1
+ };
+
+const short s390_regmap_system_call[] =
+ {
+ 0x00, S390_SYSTEM_CALL_REGNUM,
+ -1, -1
+ };
+
+const short s390_regmap_tdb[] =
+ {
+ 0x00, S390_TDB_DWORD0_REGNUM,
+ 0x08, S390_TDB_ABORT_CODE_REGNUM,
+ 0x10, S390_TDB_CONFLICT_TOKEN_REGNUM,
+ 0x18, S390_TDB_ATIA_REGNUM,
+ 0x80, S390_TDB_R0_REGNUM,
+ 0x88, S390_TDB_R1_REGNUM,
+ 0x90, S390_TDB_R2_REGNUM,
+ 0x98, S390_TDB_R3_REGNUM,
+ 0xa0, S390_TDB_R4_REGNUM,
+ 0xa8, S390_TDB_R5_REGNUM,
+ 0xb0, S390_TDB_R6_REGNUM,
+ 0xb8, S390_TDB_R7_REGNUM,
+ 0xc0, S390_TDB_R8_REGNUM,
+ 0xc8, S390_TDB_R9_REGNUM,
+ 0xd0, S390_TDB_R10_REGNUM,
+ 0xd8, S390_TDB_R11_REGNUM,
+ 0xe0, S390_TDB_R12_REGNUM,
+ 0xe8, S390_TDB_R13_REGNUM,
+ 0xf0, S390_TDB_R14_REGNUM,
+ 0xf8, S390_TDB_R15_REGNUM,
+ -1, -1
+ };
+
+
+/* Supply register REGNUM from the register set REGSET to register cache
+ REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
+static void
+s390_supply_regset (const struct regset *regset, struct regcache *regcache,
+ int regnum, const void *regs, size_t len)
+{
+ const short *map;
+ for (map = regset->descr; map[0] >= 0; map += 2)
+ if (regnum == -1 || regnum == map[1])
+ regcache_raw_supply (regcache, map[1],
+ regs ? (const char *)regs + map[0] : NULL);
+}
+
+/* Supply the TDB regset. Like s390_supply_regset, but invalidate the
+ TDB registers unless the TDB format field is valid. */
+
+static void
+s390_supply_tdb_regset (const struct regset *regset, struct regcache *regcache,
+ int regnum, const void *regs, size_t len)
+{
+ ULONGEST tdw;
+ enum register_status ret;
+ int i;
+
+ s390_supply_regset (regset, regcache, regnum, regs, len);
+ ret = regcache_cooked_read_unsigned (regcache, S390_TDB_DWORD0_REGNUM, &tdw);
+ if (ret != REG_VALID || (tdw >> 56) != 1)
+ s390_supply_regset (regset, regcache, regnum, NULL, len);
+}
+
+/* Collect register REGNUM from the register cache REGCACHE and store
+ it in the buffer specified by REGS and LEN as described by the
+ general-purpose register set REGSET. If REGNUM is -1, do this for
+ all registers in REGSET. */
+static void
+s390_collect_regset (const struct regset *regset,
+ const struct regcache *regcache,
+ int regnum, void *regs, size_t len)
+{
+ const short *map;
+ for (map = regset->descr; map[0] >= 0; map += 2)
+ if (regnum == -1 || regnum == map[1])
+ regcache_raw_collect (regcache, map[1], (char *)regs + map[0]);
+}
+
+static const struct regset s390_gregset = {
+ s390_regmap_gregset,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390x_gregset = {
+ s390x_regmap_gregset,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390_fpregset = {
+ s390_regmap_fpregset,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390_upper_regset = {
+ s390_regmap_upper,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390_last_break_regset = {
+ s390_regmap_last_break,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390x_last_break_regset = {
+ s390x_regmap_last_break,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390_system_call_regset = {
+ s390_regmap_system_call,
+ s390_supply_regset,
+ s390_collect_regset
+};
+
+static const struct regset s390_tdb_regset = {
+ s390_regmap_tdb,
+ s390_supply_tdb_regset,
+ s390_collect_regset
+};
+
+static struct core_regset_section s390_linux32_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390_linux32v1_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-last-break", 8, "s390 last-break address" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390_linux32v2_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-last-break", 8, "s390 last-break address" },
+ { ".reg-s390-system-call", 4, "s390 system-call" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390_linux64_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390_linux64v1_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
+ { ".reg-s390-last-break", 8, "s930 last-break address" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390_linux64v2_regset_sections[] =
+{
+ { ".reg", s390_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
+ { ".reg-s390-last-break", 8, "s930 last-break address" },
+ { ".reg-s390-system-call", 4, "s390 system-call" },
+ { ".reg-s390-tdb", s390_sizeof_tdbregset, "s390 TDB" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390x_linux64_regset_sections[] =
+{
+ { ".reg", s390x_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390x_linux64v1_regset_sections[] =
+{
+ { ".reg", s390x_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-last-break", 8, "s930 last-break address" },
+ { NULL, 0}
+};
+
+static struct core_regset_section s390x_linux64v2_regset_sections[] =
+{
+ { ".reg", s390x_sizeof_gregset, "general-purpose" },
+ { ".reg2", s390_sizeof_fpregset, "floating-point" },
+ { ".reg-s390-last-break", 8, "s930 last-break address" },
+ { ".reg-s390-system-call", 4, "s390 system-call" },
+ { ".reg-s390-tdb", s390_sizeof_tdbregset, "s390 TDB" },
+ { NULL, 0}
+};
+
+
+/* Return the appropriate register set for the core section identified
+ by SECT_NAME and SECT_SIZE. */
+static const struct regset *
+s390_regset_from_core_section (struct gdbarch *gdbarch,
+ const char *sect_name, size_t sect_size)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
+ return tdep->gregset;
+
+ if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
+ return tdep->fpregset;
+
+ if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
+ return &s390_upper_regset;
+
+ if (strcmp (sect_name, ".reg-s390-last-break") == 0 && sect_size >= 8)
+ return (gdbarch_ptr_bit (gdbarch) == 32
+ ? &s390_last_break_regset : &s390x_last_break_regset);
+
+ if (strcmp (sect_name, ".reg-s390-system-call") == 0 && sect_size >= 4)
+ return &s390_system_call_regset;
+
+ if (strcmp (sect_name, ".reg-s390-tdb") == 0 && sect_size >= 256)
+ return &s390_tdb_regset;
+
+ return NULL;
+}
+
+static const struct target_desc *
+s390_core_read_description (struct gdbarch *gdbarch,
+ struct target_ops *target, bfd *abfd)
+{
+ asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
+ asection *v1 = bfd_get_section_by_name (abfd, ".reg-s390-last-break");
+ asection *v2 = bfd_get_section_by_name (abfd, ".reg-s390-system-call");
+ asection *section = bfd_get_section_by_name (abfd, ".reg");
+ CORE_ADDR hwcap = 0;
+
+ target_auxv_search (target, AT_HWCAP, &hwcap);
+ if (!section)
+ return NULL;
+
+ switch (bfd_section_size (abfd, section))
+ {
+ case s390_sizeof_gregset:
+ if (high_gprs)
+ return ((hwcap & HWCAP_S390_TE) ? tdesc_s390_te_linux64 :
+ v2? tdesc_s390_linux64v2 :
+ v1? tdesc_s390_linux64v1 : tdesc_s390_linux64);
+ else
+ return (v2? tdesc_s390_linux32v2 :
+ v1? tdesc_s390_linux32v1 : tdesc_s390_linux32);
+
+ case s390x_sizeof_gregset:
+ return ((hwcap & HWCAP_S390_TE) ? tdesc_s390x_te_linux64 :
+ v2? tdesc_s390x_linux64v2 :
+ v1? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);
+
+ default:
+ return NULL;
+ }
+}
+
+
+/* Decoding S/390 instructions. */
+
+/* Named opcode values for the S/390 instructions we recognize. Some
+ instructions have their opcode split across two fields; those are the
+ op1_* and op2_* enums. */
+enum
+ {
+ op1_lhi = 0xa7, op2_lhi = 0x08,
+ op1_lghi = 0xa7, op2_lghi = 0x09,
+ op1_lgfi = 0xc0, op2_lgfi = 0x01,
+ op_lr = 0x18,
+ op_lgr = 0xb904,
+ op_l = 0x58,
+ op1_ly = 0xe3, op2_ly = 0x58,
+ op1_lg = 0xe3, op2_lg = 0x04,
+ op_lm = 0x98,
+ op1_lmy = 0xeb, op2_lmy = 0x98,
+ op1_lmg = 0xeb, op2_lmg = 0x04,
+ op_st = 0x50,
+ op1_sty = 0xe3, op2_sty = 0x50,
+ op1_stg = 0xe3, op2_stg = 0x24,
+ op_std = 0x60,
+ op_stm = 0x90,
+ op1_stmy = 0xeb, op2_stmy = 0x90,
+ op1_stmg = 0xeb, op2_stmg = 0x24,
+ op1_aghi = 0xa7, op2_aghi = 0x0b,
+ op1_ahi = 0xa7, op2_ahi = 0x0a,
+ op1_agfi = 0xc2, op2_agfi = 0x08,
+ op1_afi = 0xc2, op2_afi = 0x09,
+ op1_algfi= 0xc2, op2_algfi= 0x0a,
+ op1_alfi = 0xc2, op2_alfi = 0x0b,
+ op_ar = 0x1a,
+ op_agr = 0xb908,
+ op_a = 0x5a,
+ op1_ay = 0xe3, op2_ay = 0x5a,
+ op1_ag = 0xe3, op2_ag = 0x08,
+ op1_slgfi= 0xc2, op2_slgfi= 0x04,
+ op1_slfi = 0xc2, op2_slfi = 0x05,
+ op_sr = 0x1b,
+ op_sgr = 0xb909,
+ op_s = 0x5b,
+ op1_sy = 0xe3, op2_sy = 0x5b,
+ op1_sg = 0xe3, op2_sg = 0x09,
+ op_nr = 0x14,
+ op_ngr = 0xb980,
+ op_la = 0x41,
+ op1_lay = 0xe3, op2_lay = 0x71,
+ op1_larl = 0xc0, op2_larl = 0x00,
+ op_basr = 0x0d,
+ op_bas = 0x4d,
+ op_bcr = 0x07,
+ op_bc = 0x0d,
+ op_bctr = 0x06,
+ op_bctgr = 0xb946,
+ op_bct = 0x46,
+ op1_bctg = 0xe3, op2_bctg = 0x46,
+ op_bxh = 0x86,
+ op1_bxhg = 0xeb, op2_bxhg = 0x44,
+ op_bxle = 0x87,
+ op1_bxleg= 0xeb, op2_bxleg= 0x45,
+ op1_bras = 0xa7, op2_bras = 0x05,
+ op1_brasl= 0xc0, op2_brasl= 0x05,
+ op1_brc = 0xa7, op2_brc = 0x04,
+ op1_brcl = 0xc0, op2_brcl = 0x04,
+ op1_brct = 0xa7, op2_brct = 0x06,
+ op1_brctg= 0xa7, op2_brctg= 0x07,
+ op_brxh = 0x84,
+ op1_brxhg= 0xec, op2_brxhg= 0x44,
+ op_brxle = 0x85,
+ op1_brxlg= 0xec, op2_brxlg= 0x45,
+ };
+
+
+/* Read a single instruction from address AT. */
+
+#define S390_MAX_INSTR_SIZE 6
+static int
+s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
+{
+ static int s390_instrlen[] = { 2, 4, 4, 6 };
+ int instrlen;
+
+ if (target_read_memory (at, &instr[0], 2))
+ return -1;
+ instrlen = s390_instrlen[instr[0] >> 6];
+ if (instrlen > 2)
+ {
+ if (target_read_memory (at + 2, &instr[2], instrlen - 2))
+ return -1;
+ }
+ return instrlen;
+}
+
+
+/* The functions below are for recognizing and decoding S/390
+ instructions of various formats. Each of them checks whether INSN
+ is an instruction of the given format, with the specified opcodes.
+ If it is, it sets the remaining arguments to the values of the
+ instruction's fields, and returns a non-zero value; otherwise, it
+ returns zero.
+
+ These functions' arguments appear in the order they appear in the
+ instruction, not in the machine-language form. So, opcodes always
+ come first, even though they're sometimes scattered around the
+ instructions. And displacements appear before base and extension
+ registers, as they do in the assembly syntax, not at the end, as
+ they do in the machine language. */
+static int
+is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
+{
+ if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ /* i2 is a 16-bit signed quantity. */
+ *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_ril (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, int *i2)
+{
+ if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ /* i2 is a signed quantity. If the host 'int' is 32 bits long,
+ no sign extension is necessary, but we don't want to assume
+ that. */
+ *i2 = (((insn[2] << 24)
+ | (insn[3] << 16)
+ | (insn[4] << 8)
+ | (insn[5])) ^ 0x80000000) - 0x80000000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r2 = insn[1] & 0xf;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+ if (((insn[0] << 8) | insn[1]) == op)
+ {
+ /* Yes, insn[3]. insn[2] is unused in RRE format. */
+ *r1 = (insn[3] >> 4) & 0xf;
+ *r2 = insn[3] & 0xf;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rs (bfd_byte *insn, int op,
+ unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rsy (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+ if (insn[0] == op1
+ && insn[5] == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rsi (bfd_byte *insn, int op,
+ unsigned int *r1, unsigned int *r3, int *i2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ /* i2 is a 16-bit signed quantity. */
+ *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rie (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, unsigned int *r3, int *i2)
+{
+ if (insn[0] == op1
+ && insn[5] == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ /* i2 is a 16-bit signed quantity. */
+ *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rx (bfd_byte *insn, int op,
+ unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *x2 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+static int
+is_rxy (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+ if (insn[0] == op1
+ && insn[5] == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *x2 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+
+/* Prologue analysis. */
+
+#define S390_NUM_GPRS 16
+#define S390_NUM_FPRS 16
+
+struct s390_prologue_data {
+
+ /* The stack. */
+ struct pv_area *stack;
+
+ /* The size and byte-order of a GPR or FPR. */
+ int gpr_size;
+ int fpr_size;
+ enum bfd_endian byte_order;
+
+ /* The general-purpose registers. */
+ pv_t gpr[S390_NUM_GPRS];
+
+ /* The floating-point registers. */
+ pv_t fpr[S390_NUM_FPRS];
+
+ /* The offset relative to the CFA where the incoming GPR N was saved
+ by the function prologue. 0 if not saved or unknown. */
+ int gpr_slot[S390_NUM_GPRS];
+
+ /* Likewise for FPRs. */
+ int fpr_slot[S390_NUM_FPRS];
+
+ /* Nonzero if the backchain was saved. This is assumed to be the
+ case when the incoming SP is saved at the current SP location. */
+ int back_chain_saved_p;
+};
+
+/* Return the effective address for an X-style instruction, like:
+
+ L R1, D2(X2, B2)
+
+ Here, X2 and B2 are registers, and D2 is a signed 20-bit
+ constant; the effective address is the sum of all three. If either
+ X2 or B2 are zero, then it doesn't contribute to the sum --- this
+ means that r0 can't be used as either X2 or B2. */
+static pv_t
+s390_addr (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2)
+{
+ pv_t result;
+
+ result = pv_constant (d2);
+ if (x2)
+ result = pv_add (result, data->gpr[x2]);
+ if (b2)
+ result = pv_add (result, data->gpr[b2]);
+
+ return result;
+}
+
+/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
+static void
+s390_store (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
+ pv_t value)
+{
+ pv_t addr = s390_addr (data, d2, x2, b2);
+ pv_t offset;
+
+ /* Check whether we are storing the backchain. */
+ offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
+
+ if (pv_is_constant (offset) && offset.k == 0)
+ if (size == data->gpr_size
+ && pv_is_register_k (value, S390_SP_REGNUM, 0))
+ {
+ data->back_chain_saved_p = 1;
+ return;
+ }
+
+
+ /* Check whether we are storing a register into the stack. */
+ if (!pv_area_store_would_trash (data->stack, addr))
+ pv_area_store (data->stack, addr, size, value);
+
+
+ /* Note: If this is some store we cannot identify, you might think we
+ should forget our cached values, as any of those might have been hit.
+
+ However, we make the assumption that the register save areas are only
+ ever stored to once in any given function, and we do recognize these
+ stores. Thus every store we cannot recognize does not hit our data. */
+}
+
+/* Do a SIZE-byte load from D2(X2,B2). */
+static pv_t
+s390_load (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
+
+{
+ pv_t addr = s390_addr (data, d2, x2, b2);
+
+ /* If it's a load from an in-line constant pool, then we can
+ simulate that, under the assumption that the code isn't
+ going to change between the time the processor actually
+ executed it creating the current frame, and the time when
+ we're analyzing the code to unwind past that frame. */
+ if (pv_is_constant (addr))
+ {
+ struct target_section *secp;
+ secp = target_section_by_addr (&current_target, addr.k);
+ if (secp != NULL
+ && (bfd_get_section_flags (secp->the_bfd_section->owner,
+ secp->the_bfd_section)
+ & SEC_READONLY))
+ return pv_constant (read_memory_integer (addr.k, size,
+ data->byte_order));
+ }
+
+ /* Check whether we are accessing one of our save slots. */
+ return pv_area_fetch (data->stack, addr, size);
+}
+
+/* Function for finding saved registers in a 'struct pv_area'; we pass
+ this to pv_area_scan.
+
+ If VALUE is a saved register, ADDR says it was saved at a constant
+ offset from the frame base, and SIZE indicates that the whole
+ register was saved, record its offset in the reg_offset table in
+ PROLOGUE_UNTYPED. */
+static void
+s390_check_for_saved (void *data_untyped, pv_t addr,
+ CORE_ADDR size, pv_t value)
+{
+ struct s390_prologue_data *data = data_untyped;
+ int i, offset;
+
+ if (!pv_is_register (addr, S390_SP_REGNUM))
+ return;
+
+ offset = 16 * data->gpr_size + 32 - addr.k;
+
+ /* If we are storing the original value of a register, we want to
+ record the CFA offset. If the same register is stored multiple
+ times, the stack slot with the highest address counts. */
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ if (size == data->gpr_size
+ && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
+ if (data->gpr_slot[i] == 0
+ || data->gpr_slot[i] > offset)
+ {
+ data->gpr_slot[i] = offset;
+ return;
+ }
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ if (size == data->fpr_size
+ && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
+ if (data->fpr_slot[i] == 0
+ || data->fpr_slot[i] > offset)
+ {
+ data->fpr_slot[i] = offset;
+ return;
+ }
+}
+
+/* Analyze the prologue of the function starting at START_PC,
+ continuing at most until CURRENT_PC. Initialize DATA to
+ hold all information we find out about the state of the registers
+ and stack slots. Return the address of the instruction after
+ the last one that changed the SP, FP, or back chain; or zero
+ on error. */
+static CORE_ADDR
+s390_analyze_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc,
+ CORE_ADDR current_pc,
+ struct s390_prologue_data *data)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+ /* Our return value:
+ The address of the instruction after the last one that changed
+ the SP, FP, or back chain; zero if we got an error trying to
+ read memory. */
+ CORE_ADDR result = start_pc;
+
+ /* The current PC for our abstract interpretation. */
+ CORE_ADDR pc;
+
+ /* The address of the next instruction after that. */
+ CORE_ADDR next_pc;
+
+ /* Set up everything's initial value. */
+ {
+ int i;
+
+ data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
+
+ /* For the purpose of prologue tracking, we consider the GPR size to
+ be equal to the ABI word size, even if it is actually larger
+ (i.e. when running a 32-bit binary under a 64-bit kernel). */
+ data->gpr_size = word_size;
+ data->fpr_size = 8;
+ data->byte_order = gdbarch_byte_order (gdbarch);
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ data->gpr_slot[i] = 0;
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ data->fpr_slot[i] = 0;
+
+ data->back_chain_saved_p = 0;
+ }
+
+ /* Start interpreting instructions, until we hit the frame's
+ current PC or the first branch instruction. */
+ for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
+ {
+ bfd_byte insn[S390_MAX_INSTR_SIZE];
+ int insn_len = s390_readinstruction (insn, pc);
+
+ bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
+ bfd_byte *insn32 = word_size == 4 ? insn : dummy;
+ bfd_byte *insn64 = word_size == 8 ? insn : dummy;
+
+ /* Fields for various kinds of instructions. */
+ unsigned int b2, r1, r2, x2, r3;
+ int i2, d2;
+
+ /* The values of SP and FP before this instruction,
+ for detecting instructions that change them. */
+ pv_t pre_insn_sp, pre_insn_fp;
+ /* Likewise for the flag whether the back chain was saved. */
+ int pre_insn_back_chain_saved_p;
+
+ /* If we got an error trying to read the instruction, report it. */
+ if (insn_len < 0)
+ {
+ result = 0;
+ break;
+ }
+
+ next_pc = pc + insn_len;
+
+ pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ pre_insn_back_chain_saved_p = data->back_chain_saved_p;
+
+
+ /* LHI r1, i2 --- load halfword immediate. */
+ /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
+ /* LGFI r1, i2 --- load fullword immediate. */
+ if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
+ || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
+ || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
+ data->gpr[r1] = pv_constant (i2);
+
+ /* LR r1, r2 --- load from register. */
+ /* LGR r1, r2 --- load from register (64-bit version). */
+ else if (is_rr (insn32, op_lr, &r1, &r2)
+ || is_rre (insn64, op_lgr, &r1, &r2))
+ data->gpr[r1] = data->gpr[r2];
+
+ /* L r1, d2(x2, b2) --- load. */
+ /* LY r1, d2(x2, b2) --- load (long-displacement version). */
+ /* LG r1, d2(x2, b2) --- load (64-bit version). */
+ else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
+
+ /* ST r1, d2(x2, b2) --- store. */
+ /* STY r1, d2(x2, b2) --- store (long-displacement version). */
+ /* STG r1, d2(x2, b2) --- store (64-bit version). */
+ else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
+ s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
+
+ /* STD r1, d2(x2,b2) --- store floating-point register. */
+ else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
+ s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
+
+ /* STM r1, r3, d2(b2) --- store multiple. */
+ /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
+ version). */
+ /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
+ else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
+ || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
+ || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
+ {
+ for (; r1 <= r3; r1++, d2 += data->gpr_size)
+ s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
+ }
+
+ /* AHI r1, i2 --- add halfword immediate. */
+ /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
+ /* AFI r1, i2 --- add fullword immediate. */
+ /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
+ else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
+ || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
+ || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
+ || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
+
+ /* ALFI r1, i2 --- add logical immediate. */
+ /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
+ else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
+ || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1],
+ (CORE_ADDR)i2 & 0xffffffff);
+
+ /* AR r1, r2 -- add register. */
+ /* AGR r1, r2 -- add register (64-bit version). */
+ else if (is_rr (insn32, op_ar, &r1, &r2)
+ || is_rre (insn64, op_agr, &r1, &r2))
+ data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
+
+ /* A r1, d2(x2, b2) -- add. */
+ /* AY r1, d2(x2, b2) -- add (long-displacement version). */
+ /* AG r1, d2(x2, b2) -- add (64-bit version). */
+ else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = pv_add (data->gpr[r1],
+ s390_load (data, d2, x2, b2, data->gpr_size));
+
+ /* SLFI r1, i2 --- subtract logical immediate. */
+ /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
+ else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
+ || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1],
+ -((CORE_ADDR)i2 & 0xffffffff));
+
+ /* SR r1, r2 -- subtract register. */
+ /* SGR r1, r2 -- subtract register (64-bit version). */
+ else if (is_rr (insn32, op_sr, &r1, &r2)
+ || is_rre (insn64, op_sgr, &r1, &r2))
+ data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
+
+ /* S r1, d2(x2, b2) -- subtract. */
+ /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
+ /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
+ else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = pv_subtract (data->gpr[r1],
+ s390_load (data, d2, x2, b2, data->gpr_size));
+
+ /* LA r1, d2(x2, b2) --- load address. */
+ /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
+ else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
+ || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = s390_addr (data, d2, x2, b2);
+
+ /* LARL r1, i2 --- load address relative long. */
+ else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+ data->gpr[r1] = pv_constant (pc + i2 * 2);
+
+ /* BASR r1, 0 --- branch and save.
+ Since r2 is zero, this saves the PC in r1, but doesn't branch. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ && r2 == 0)
+ data->gpr[r1] = pv_constant (next_pc);
+
+ /* BRAS r1, i2 --- branch relative and save. */
+ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
+ {
+ data->gpr[r1] = pv_constant (next_pc);
+ next_pc = pc + i2 * 2;
+
+ /* We'd better not interpret any backward branches. We'll
+ never terminate. */
+ if (next_pc <= pc)
+ break;
+ }
+
+ /* Terminate search when hitting any other branch instruction. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
+ || is_rr (insn, op_bcr, &r1, &r2)
+ || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+ || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
+ || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
+ || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
+ break;
+
+ else
+ {
+ /* An instruction we don't know how to simulate. The only
+ safe thing to do would be to set every value we're tracking
+ to 'unknown'. Instead, we'll be optimistic: we assume that
+ we *can* interpret every instruction that the compiler uses
+ to manipulate any of the data we're interested in here --
+ then we can just ignore anything else. */
+ }
+
+ /* Record the address after the last instruction that changed
+ the FP, SP, or backlink. Ignore instructions that changed
+ them back to their original values --- those are probably
+ restore instructions. (The back chain is never restored,
+ just popped.) */
+ {
+ pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+
+ if ((! pv_is_identical (pre_insn_sp, sp)
+ && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
+ && sp.kind != pvk_unknown)
+ || (! pv_is_identical (pre_insn_fp, fp)
+ && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
+ && fp.kind != pvk_unknown)
+ || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
+ result = next_pc;
+ }
+ }
+
+ /* Record where all the registers were saved. */
+ pv_area_scan (data->stack, s390_check_for_saved, data);
+
+ free_pv_area (data->stack);
+ data->stack = NULL;
+
+ return result;
+}
+
+/* Advance PC across any function entry prologue instructions to reach
+ some "real" code. */
+static CORE_ADDR
+s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ struct s390_prologue_data data;
+ CORE_ADDR skip_pc;
+ skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
+ return skip_pc ? skip_pc : pc;
+}
+
+/* Return true if we are in the functin's epilogue, i.e. after the
+ instruction that destroyed the function's stack frame. */
+static int
+s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+ /* In frameless functions, there's not frame to destroy and thus
+ we don't care about the epilogue.
+
+ In functions with frame, the epilogue sequence is a pair of
+ a LM-type instruction that restores (amongst others) the
+ return register %r14 and the stack pointer %r15, followed
+ by a branch 'br %r14' --or equivalent-- that effects the
+ actual return.
+
+ In that situation, this function needs to return 'true' in
+ exactly one case: when pc points to that branch instruction.
+
+ Thus we try to disassemble the one instructions immediately
+ preceding pc and check whether it is an LM-type instruction
+ modifying the stack pointer.
+
+ Note that disassembling backwards is not reliable, so there
+ is a slight chance of false positives here ... */
+
+ bfd_byte insn[6];
+ unsigned int r1, r3, b2;
+ int d2;
+
+ if (word_size == 4
+ && !target_read_memory (pc - 4, insn, 4)
+ && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ if (word_size == 4
+ && !target_read_memory (pc - 6, insn, 6)
+ && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ if (word_size == 8
+ && !target_read_memory (pc - 6, insn, 6)
+ && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ return 0;
+}
+
+/* Displaced stepping. */
+
+/* Fix up the state of registers and memory after having single-stepped
+ a displaced instruction. */
+static void
+s390_displaced_step_fixup (struct gdbarch *gdbarch,
+ struct displaced_step_closure *closure,
+ CORE_ADDR from, CORE_ADDR to,
+ struct regcache *regs)
+{
+ /* Since we use simple_displaced_step_copy_insn, our closure is a
+ copy of the instruction. */
+ gdb_byte *insn = (gdb_byte *) closure;
+ static int s390_instrlen[] = { 2, 4, 4, 6 };
+ int insnlen = s390_instrlen[insn[0] >> 6];
+
+ /* Fields for various kinds of instructions. */
+ unsigned int b2, r1, r2, x2, r3;
+ int i2, d2;
+
+ /* Get current PC and addressing mode bit. */
+ CORE_ADDR pc = regcache_read_pc (regs);
+ ULONGEST amode = 0;
+
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ {
+ regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
+ amode &= 0x80000000;
+ }
+
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
+ paddress (gdbarch, from), paddress (gdbarch, to),
+ paddress (gdbarch, pc), insnlen, (int) amode);
+
+ /* Handle absolute branch and save instructions. */
+ if (is_rr (insn, op_basr, &r1, &r2)
+ || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
+ {
+ /* Recompute saved return address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + insnlen));
+ }
+
+ /* Handle absolute branch instructions. */
+ else if (is_rr (insn, op_bcr, &r1, &r2)
+ || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+ || is_rr (insn, op_bctr, &r1, &r2)
+ || is_rre (insn, op_bctgr, &r1, &r2)
+ || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
+ || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
+ || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
+ || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
+ || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
+ || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
+ {
+ /* Update PC iff branch was *not* taken. */
+ if (pc == to + insnlen)
+ regcache_write_pc (regs, from + insnlen);
+ }
+
+ /* Handle PC-relative branch and save instructions. */
+ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
+ || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
+ {
+ /* Update PC. */
+ regcache_write_pc (regs, pc - to + from);
+ /* Recompute saved return address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + insnlen));
+ }
+
+ /* Handle PC-relative branch instructions. */
+ else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
+ || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
+ || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
+ || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
+ || is_rsi (insn, op_brxh, &r1, &r3, &i2)
+ || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
+ || is_rsi (insn, op_brxle, &r1, &r3, &i2)
+ || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
+ {
+ /* Update PC. */
+ regcache_write_pc (regs, pc - to + from);
+ }
+
+ /* Handle LOAD ADDRESS RELATIVE LONG. */
+ else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+ {
+ /* Update PC. */
+ regcache_write_pc (regs, from + insnlen);
+ /* Recompute output address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + i2 * 2));
+ }
+
+ /* If we executed a breakpoint instruction, point PC right back at it. */
+ else if (insn[0] == 0x0 && insn[1] == 0x1)
+ regcache_write_pc (regs, from);
+
+ /* For any other insn, PC points right after the original instruction. */
+ else
+ regcache_write_pc (regs, from + insnlen);
+
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (s390) pc is now %s\n",
+ paddress (gdbarch, regcache_read_pc (regs)));
+}
+
+
+/* Helper routine to unwind pseudo registers. */
+
+static struct value *
+s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ struct type *type = register_type (gdbarch, regnum);
+
+ /* Unwind PC via PSW address. */
+ if (regnum == tdep->pc_regnum)
+ {
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
+ if (!value_optimized_out (val))
+ {
+ LONGEST pswa = value_as_long (val);
+
+ if (TYPE_LENGTH (type) == 4)
+ return value_from_pointer (type, pswa & 0x7fffffff);
+ else
+ return value_from_pointer (type, pswa);
+ }
+ }
+
+ /* Unwind CC via PSW mask. */
+ if (regnum == tdep->cc_regnum)
+ {
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
+ if (!value_optimized_out (val))
+ {
+ LONGEST pswm = value_as_long (val);
+
+ if (TYPE_LENGTH (type) == 4)
+ return value_from_longest (type, (pswm >> 12) & 3);
+ else
+ return value_from_longest (type, (pswm >> 44) & 3);
+ }
+ }
+
+ /* Unwind full GPRs to show at least the lower halves (as the
+ upper halves are undefined). */
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ int reg = regnum - tdep->gpr_full_regnum;
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
+ if (!value_optimized_out (val))
+ return value_cast (type, val);
+ }
+
+ return allocate_optimized_out_value (type);
+}
+
+static struct value *
+s390_trad_frame_prev_register (struct frame_info *this_frame,
+ struct trad_frame_saved_reg saved_regs[],
+ int regnum)
+{
+ if (regnum < S390_NUM_REGS)
+ return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
+ else
+ return s390_unwind_pseudo_register (this_frame, regnum);
+}
+
+
+/* Normal stack frames. */
+
+struct s390_unwind_cache {
+
+ CORE_ADDR func;
+ CORE_ADDR frame_base;
+ CORE_ADDR local_base;
+
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+static int
+s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
+ struct s390_unwind_cache *info)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ struct s390_prologue_data data;
+ pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ int i;
+ CORE_ADDR cfa;
+ CORE_ADDR func;
+ CORE_ADDR result;
+ ULONGEST reg;
+ CORE_ADDR prev_sp;
+ int frame_pointer;
+ int size;
+ struct frame_info *next_frame;
+
+ /* Try to find the function start address. If we can't find it, we don't
+ bother searching for it -- with modern compilers this would be mostly
+ pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
+ or else a valid backchain ... */
+ func = get_frame_func (this_frame);
+ if (!func)
+ return 0;
+
+ /* Try to analyze the prologue. */
+ result = s390_analyze_prologue (gdbarch, func,
+ get_frame_pc (this_frame), &data);
+ if (!result)
+ return 0;
+
+ /* If this was successful, we should have found the instruction that
+ sets the stack pointer register to the previous value of the stack
+ pointer minus the frame size. */
+ if (!pv_is_register (*sp, S390_SP_REGNUM))
+ return 0;
+
+ /* A frame size of zero at this point can mean either a real
+ frameless function, or else a failure to find the prologue.
+ Perform some sanity checks to verify we really have a
+ frameless function. */
+ if (sp->k == 0)
+ {
+ /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
+ size zero. This is only possible if the next frame is a sentinel
+ frame, a dummy frame, or a signal trampoline frame. */
+ /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
+ needed, instead the code should simpliy rely on its
+ analysis. */
+ next_frame = get_next_frame (this_frame);
+ while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
+ next_frame = get_next_frame (next_frame);
+ if (next_frame
+ && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
+ return 0;
+
+ /* If we really have a frameless function, %r14 must be valid
+ -- in particular, it must point to a different function. */
+ reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
+ reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
+ if (get_pc_function_start (reg) == func)
+ {
+ /* However, there is one case where it *is* valid for %r14
+ to point to the same function -- if this is a recursive
+ call, and we have stopped in the prologue *before* the
+ stack frame was allocated.
+
+ Recognize this case by looking ahead a bit ... */
+
+ struct s390_prologue_data data2;
+ pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+
+ if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
+ && pv_is_register (*sp, S390_SP_REGNUM)
+ && sp->k != 0))
+ return 0;
+ }
+ }
+
+
+ /* OK, we've found valid prologue data. */
+ size = -sp->k;
+
+ /* If the frame pointer originally also holds the same value
+ as the stack pointer, we're probably using it. If it holds
+ some other value -- even a constant offset -- it is most
+ likely used as temp register. */
+ if (pv_is_identical (*sp, *fp))
+ frame_pointer = S390_FRAME_REGNUM;
+ else
+ frame_pointer = S390_SP_REGNUM;
+
+ /* If we've detected a function with stack frame, we'll still have to
+ treat it as frameless if we're currently within the function epilog
+ code at a point where the frame pointer has already been restored.
+ This can only happen in an innermost frame. */
+ /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
+ instead the code should simpliy rely on its analysis. */
+ next_frame = get_next_frame (this_frame);
+ while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
+ next_frame = get_next_frame (next_frame);
+ if (size > 0
+ && (next_frame == NULL
+ || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
+ {
+ /* See the comment in s390_in_function_epilogue_p on why this is
+ not completely reliable ... */
+ if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
+ {
+ memset (&data, 0, sizeof (data));
+ size = 0;
+ frame_pointer = S390_SP_REGNUM;
+ }
+ }
+
+ /* Once we know the frame register and the frame size, we can unwind
+ the current value of the frame register from the next frame, and
+ add back the frame size to arrive that the previous frame's
+ stack pointer value. */
+ prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
+ cfa = prev_sp + 16*word_size + 32;
+
+ /* Set up ABI call-saved/call-clobbered registers. */
+ for (i = 0; i < S390_NUM_REGS; i++)
+ if (!s390_register_call_saved (gdbarch, i))
+ trad_frame_set_unknown (info->saved_regs, i);
+
+ /* CC is always call-clobbered. */
+ trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
+
+ /* Record the addresses of all register spill slots the prologue parser
+ has recognized. Consider only registers defined as call-saved by the
+ ABI; for call-clobbered registers the parser may have recognized
+ spurious stores. */
+
+ for (i = 0; i < 16; i++)
+ if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
+ && data.gpr_slot[i] != 0)
+ info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
+
+ for (i = 0; i < 16; i++)
+ if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
+ && data.fpr_slot[i] != 0)
+ info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
+
+ /* Function return will set PC to %r14. */
+ info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
+
+ /* In frameless functions, we unwind simply by moving the return
+ address to the PC. However, if we actually stored to the
+ save area, use that -- we might only think the function frameless
+ because we're in the middle of the prologue ... */
+ if (size == 0
+ && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
+ {
+ info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
+ }
+
+ /* Another sanity check: unless this is a frameless function,
+ we should have found spill slots for SP and PC.
+ If not, we cannot unwind further -- this happens e.g. in
+ libc's thread_start routine. */
+ if (size > 0)
+ {
+ if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
+ || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
+ prev_sp = -1;
+ }
+
+ /* We use the current value of the frame register as local_base,
+ and the top of the register save area as frame_base. */
+ if (prev_sp != -1)
+ {
+ info->frame_base = prev_sp + 16*word_size + 32;
+ info->local_base = prev_sp - size;
+ }
+
+ info->func = func;
+ return 1;
+}
+
+static void
+s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
+ struct s390_unwind_cache *info)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ CORE_ADDR backchain;
+ ULONGEST reg;
+ LONGEST sp;
+ int i;
+
+ /* Set up ABI call-saved/call-clobbered registers. */
+ for (i = 0; i < S390_NUM_REGS; i++)
+ if (!s390_register_call_saved (gdbarch, i))
+ trad_frame_set_unknown (info->saved_regs, i);
+
+ /* CC is always call-clobbered. */
+ trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
+
+ /* Get the backchain. */
+ reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+ backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
+
+ /* A zero backchain terminates the frame chain. As additional
+ sanity check, let's verify that the spill slot for SP in the
+ save area pointed to by the backchain in fact links back to
+ the save area. */
+ if (backchain != 0
+ && safe_read_memory_integer (backchain + 15*word_size,
+ word_size, byte_order, &sp)
+ && (CORE_ADDR)sp == backchain)
+ {
+ /* We don't know which registers were saved, but it will have
+ to be at least %r14 and %r15. This will allow us to continue
+ unwinding, but other prev-frame registers may be incorrect ... */
+ info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
+ info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
+
+ /* Function return will set PC to %r14. */
+ info->saved_regs[S390_PSWA_REGNUM]
+ = info->saved_regs[S390_RETADDR_REGNUM];
+
+ /* We use the current value of the frame register as local_base,
+ and the top of the register save area as frame_base. */
+ info->frame_base = backchain + 16*word_size + 32;
+ info->local_base = reg;
+ }
+
+ info->func = get_frame_pc (this_frame);
+}
+
+static struct s390_unwind_cache *
+s390_frame_unwind_cache (struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ struct s390_unwind_cache *info;
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
+
+ info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+ info->func = -1;
+ info->frame_base = -1;
+ info->local_base = -1;
+
+ /* Try to use prologue analysis to fill the unwind cache.
+ If this fails, fall back to reading the stack backchain. */
+ if (!s390_prologue_frame_unwind_cache (this_frame, info))
+ s390_backchain_frame_unwind_cache (this_frame, info);
+
+ return info;
+}
+
+static void
+s390_frame_this_id (struct frame_info *this_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
+{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (this_frame, this_prologue_cache);
+
+ if (info->frame_base == -1)
+ return;
+
+ *this_id = frame_id_build (info->frame_base, info->func);
+}
+
+static struct value *
+s390_frame_prev_register (struct frame_info *this_frame,
+ void **this_prologue_cache, int regnum)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (this_frame, this_prologue_cache);
+
+ return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
+}
+
+static const struct frame_unwind s390_frame_unwind = {
+ NORMAL_FRAME,
+ default_frame_unwind_stop_reason,
+ s390_frame_this_id,
+ s390_frame_prev_register,
+ NULL,
+ default_frame_sniffer
+};
+
+
+/* Code stubs and their stack frames. For things like PLTs and NULL
+ function calls (where there is no true frame and the return address
+ is in the RETADDR register). */
+
+struct s390_stub_unwind_cache
+{
+ CORE_ADDR frame_base;
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+static struct s390_stub_unwind_cache *
+s390_stub_frame_unwind_cache (struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ struct s390_stub_unwind_cache *info;
+ ULONGEST reg;
+
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
+
+ info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+ /* The return address is in register %r14. */
+ info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
+
+ /* Retrieve stack pointer and determine our frame base. */
+ reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+ info->frame_base = reg + 16*word_size + 32;
+
+ return info;
+}
+
+static void
+s390_stub_frame_this_id (struct frame_info *this_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
+{
+ struct s390_stub_unwind_cache *info
+ = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
+ *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
+}
+
+static struct value *
+s390_stub_frame_prev_register (struct frame_info *this_frame,
+ void **this_prologue_cache, int regnum)
+{
+ struct s390_stub_unwind_cache *info
+ = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
+ return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
+}
+
+static int
+s390_stub_frame_sniffer (const struct frame_unwind *self,
+ struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ CORE_ADDR addr_in_block;
+ bfd_byte insn[S390_MAX_INSTR_SIZE];
+
+ /* If the current PC points to non-readable memory, we assume we
+ have trapped due to an invalid function pointer call. We handle
+ the non-existing current function like a PLT stub. */
+ addr_in_block = get_frame_address_in_block (this_frame);
+ if (in_plt_section (addr_in_block)
+ || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
+ return 1;
+ return 0;
+}
+
+static const struct frame_unwind s390_stub_frame_unwind = {
+ NORMAL_FRAME,
+ default_frame_unwind_stop_reason,
+ s390_stub_frame_this_id,
+ s390_stub_frame_prev_register,
+ NULL,
+ s390_stub_frame_sniffer
+};
+
+
+/* Signal trampoline stack frames. */
+
+struct s390_sigtramp_unwind_cache {
+ CORE_ADDR frame_base;
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+static struct s390_sigtramp_unwind_cache *
+s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ struct s390_sigtramp_unwind_cache *info;
+ ULONGEST this_sp, prev_sp;
+ CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
+ int i;
+
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
+
+ info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+ this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+ next_ra = get_frame_pc (this_frame);
+ next_cfa = this_sp + 16*word_size + 32;
+
+ /* New-style RT frame:
+ retcode + alignment (8 bytes)
+ siginfo (128 bytes)
+ ucontext (contains sigregs at offset 5 words). */
+ if (next_ra == next_cfa)
+ {
+ sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
+ /* sigregs are followed by uc_sigmask (8 bytes), then by the
+ upper GPR halves if present. */
+ sigreg_high_off = 8;
+ }
+
+ /* Old-style RT frame and all non-RT frames:
+ old signal mask (8 bytes)
+ pointer to sigregs. */
+ else
+ {
+ sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
+ word_size, byte_order);
+ /* sigregs are followed by signo (4 bytes), then by the
+ upper GPR halves if present. */
+ sigreg_high_off = 4;
+ }
+
+ /* The sigregs structure looks like this:
+ long psw_mask;
+ long psw_addr;
+ long gprs[16];
+ int acrs[16];
+ int fpc;
+ int __pad;
+ double fprs[16]; */
+
+ /* PSW mask and address. */
+ info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
+ sigreg_ptr += word_size;
+ info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
+ sigreg_ptr += word_size;
+
+ /* Then the GPRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += word_size;
+ }
+
+ /* Then the ACRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += 4;
+ }
+
+ /* The floating-point control word. */
+ info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
+ sigreg_ptr += 8;
+
+ /* And finally the FPRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += 8;
+ }
+
+ /* If we have them, the GPR upper halves are appended at the end. */
+ sigreg_ptr += sigreg_high_off;
+ if (tdep->gpr_full_regnum != -1)
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += 4;
+ }
+
+ /* Restore the previous frame's SP. */
+ prev_sp = read_memory_unsigned_integer (
+ info->saved_regs[S390_SP_REGNUM].addr,
+ word_size, byte_order);
+
+ /* Determine our frame base. */
+ info->frame_base = prev_sp + 16*word_size + 32;
+
+ return info;
+}
+
+static void
+s390_sigtramp_frame_this_id (struct frame_info *this_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
+{
+ struct s390_sigtramp_unwind_cache *info
+ = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
+ *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
+}
+
+static struct value *
+s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
+ void **this_prologue_cache, int regnum)
+{
+ struct s390_sigtramp_unwind_cache *info
+ = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
+ return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
+}
+
+static int
+s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
+ struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ CORE_ADDR pc = get_frame_pc (this_frame);
+ bfd_byte sigreturn[2];
+
+ if (target_read_memory (pc, sigreturn, 2))
+ return 0;
+
+ if (sigreturn[0] != 0x0a /* svc */)
+ return 0;
+
+ if (sigreturn[1] != 119 /* sigreturn */
+ && sigreturn[1] != 173 /* rt_sigreturn */)
+ return 0;
+
+ return 1;
+}
+
+static const struct frame_unwind s390_sigtramp_frame_unwind = {
+ SIGTRAMP_FRAME,
+ default_frame_unwind_stop_reason,
+ s390_sigtramp_frame_this_id,
+ s390_sigtramp_frame_prev_register,
+ NULL,
+ s390_sigtramp_frame_sniffer
+};
+
+
+/* Frame base handling. */
+
+static CORE_ADDR
+s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
+{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (this_frame, this_cache);
+ return info->frame_base;
+}
+
+static CORE_ADDR
+s390_local_base_address (struct frame_info *this_frame, void **this_cache)
+{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (this_frame, this_cache);
+ return info->local_base;
+}
+
+static const struct frame_base s390_frame_base = {
+ &s390_frame_unwind,
+ s390_frame_base_address,
+ s390_local_base_address,
+ s390_local_base_address
+};
+
+static CORE_ADDR
+s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ ULONGEST pc;
+ pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
+ return gdbarch_addr_bits_remove (gdbarch, pc);
+}
+
+static CORE_ADDR
+s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST sp;
+ sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ return gdbarch_addr_bits_remove (gdbarch, sp);
+}
+
+
+/* DWARF-2 frame support. */
+
+static struct value *
+s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
+ int regnum)
+{
+ return s390_unwind_pseudo_register (this_frame, regnum);
+}
+
+static void
+s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+ struct dwarf2_frame_state_reg *reg,
+ struct frame_info *this_frame)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ /* The condition code (and thus PSW mask) is call-clobbered. */
+ if (regnum == S390_PSWM_REGNUM)
+ reg->how = DWARF2_FRAME_REG_UNDEFINED;
+
+ /* The PSW address unwinds to the return address. */
+ else if (regnum == S390_PSWA_REGNUM)
+ reg->how = DWARF2_FRAME_REG_RA;
+
+ /* Fixed registers are call-saved or call-clobbered
+ depending on the ABI in use. */
+ else if (regnum < S390_NUM_REGS)
+ {
+ if (s390_register_call_saved (gdbarch, regnum))
+ reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+ else
+ reg->how = DWARF2_FRAME_REG_UNDEFINED;
+ }
+
+ /* We install a special function to unwind pseudos. */
+ else
+ {
+ reg->how = DWARF2_FRAME_REG_FN;
+ reg->loc.fn = s390_dwarf2_prev_register;
+ }
+}
+
+
+/* Dummy function calls. */
+
+/* Return non-zero if TYPE is an integer-like type, zero otherwise.
+ "Integer-like" types are those that should be passed the way
+ integers are: integers, enums, ranges, characters, and booleans. */
+static int
+is_integer_like (struct type *type)
+{
+ enum type_code code = TYPE_CODE (type);
+
+ return (code == TYPE_CODE_INT
+ || code == TYPE_CODE_ENUM
+ || code == TYPE_CODE_RANGE
+ || code == TYPE_CODE_CHAR
+ || code == TYPE_CODE_BOOL);
+}
+
+/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
+ "Pointer-like" types are those that should be passed the way
+ pointers are: pointers and references. */
+static int
+is_pointer_like (struct type *type)
+{
+ enum type_code code = TYPE_CODE (type);
+
+ return (code == TYPE_CODE_PTR
+ || code == TYPE_CODE_REF);
+}
+
+
+/* Return non-zero if TYPE is a `float singleton' or `double
+ singleton', zero otherwise.
+
+ A `T singleton' is a struct type with one member, whose type is
+ either T or a `T singleton'. So, the following are all float
+ singletons:
+
+ struct { float x };
+ struct { struct { float x; } x; };
+ struct { struct { struct { float x; } x; } x; };
+
+ ... and so on.
+
+ All such structures are passed as if they were floats or doubles,
+ as the (revised) ABI says. */
+static int
+is_float_singleton (struct type *type)
+{
+ if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
+ {
+ struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
+ CHECK_TYPEDEF (singleton_type);
+
+ return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
+ || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
+ || is_float_singleton (singleton_type));
+ }
+
+ return 0;
+}
+
+
+/* Return non-zero if TYPE is a struct-like type, zero otherwise.
+ "Struct-like" types are those that should be passed as structs are:
+ structs and unions.
+
+ As an odd quirk, not mentioned in the ABI, GCC passes float and
+ double singletons as if they were a plain float, double, etc. (The
+ corresponding union types are handled normally.) So we exclude
+ those types here. *shrug* */
+static int
+is_struct_like (struct type *type)
+{
+ enum type_code code = TYPE_CODE (type);
+
+ return (code == TYPE_CODE_UNION
+ || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
+}
+
+
+/* Return non-zero if TYPE is a float-like type, zero otherwise.
+ "Float-like" types are those that should be passed as
+ floating-point values are.
+
+ You'd think this would just be floats, doubles, long doubles, etc.
+ But as an odd quirk, not mentioned in the ABI, GCC passes float and
+ double singletons as if they were a plain float, double, etc. (The
+ corresponding union types are handled normally.) So we include
+ those types here. *shrug* */
+static int
+is_float_like (struct type *type)
+{
+ return (TYPE_CODE (type) == TYPE_CODE_FLT
+ || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
+ || is_float_singleton (type));
+}
+
+
+static int
+is_power_of_two (unsigned int n)
+{
+ return ((n & (n - 1)) == 0);
+}
+
+/* Return non-zero if TYPE should be passed as a pointer to a copy,
+ zero otherwise. */
+static int
+s390_function_arg_pass_by_reference (struct type *type)
+{
+ if (TYPE_LENGTH (type) > 8)
+ return 1;
+
+ return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type)))
+ || TYPE_CODE (type) == TYPE_CODE_COMPLEX
+ || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type));
+}
+
+/* Return non-zero if TYPE should be passed in a float register
+ if possible. */
+static int
+s390_function_arg_float (struct type *type)
+{
+ if (TYPE_LENGTH (type) > 8)
+ return 0;
+
+ return is_float_like (type);
+}
+
+/* Return non-zero if TYPE should be passed in an integer register
+ (or a pair of integer registers) if possible. */
+static int
+s390_function_arg_integer (struct type *type)
+{
+ if (TYPE_LENGTH (type) > 8)
+ return 0;
+
+ return is_integer_like (type)
+ || is_pointer_like (type)
+ || (is_struct_like (type) && is_power_of_two (TYPE_LENGTH (type)));
+}
+
+/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
+ word as required for the ABI. */
+static LONGEST
+extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ struct type *type = check_typedef (value_type (arg));
+
+ /* Even structs get passed in the least significant bits of the
+ register / memory word. It's not really right to extract them as
+ an integer, but it does take care of the extension. */
+ if (TYPE_UNSIGNED (type))
+ return extract_unsigned_integer (value_contents (arg),
+ TYPE_LENGTH (type), byte_order);
+ else
+ return extract_signed_integer (value_contents (arg),
+ TYPE_LENGTH (type), byte_order);
+}
+
+
+/* Return the alignment required by TYPE. */
+static int
+alignment_of (struct type *type)
+{
+ int alignment;
+
+ if (is_integer_like (type)
+ || is_pointer_like (type)
+ || TYPE_CODE (type) == TYPE_CODE_FLT
+ || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
+ alignment = TYPE_LENGTH (type);
+ else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (type) == TYPE_CODE_UNION)
+ {
+ int i;
+
+ alignment = 1;
+ for (i = 0; i < TYPE_NFIELDS (type); i++)
+ {
+ int field_alignment
+ = alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i)));
+
+ if (field_alignment > alignment)
+ alignment = field_alignment;
+ }
+ }
+ else
+ alignment = 1;
+
+ /* Check that everything we ever return is a power of two. Lots of
+ code doesn't want to deal with aligning things to arbitrary
+ boundaries. */
+ gdb_assert ((alignment & (alignment - 1)) == 0);
+
+ return alignment;
+}
+
+
+/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
+ place to be passed to a function, as specified by the "GNU/Linux
+ for S/390 ELF Application Binary Interface Supplement".
+
+ SP is the current stack pointer. We must put arguments, links,
+ padding, etc. whereever they belong, and return the new stack
+ pointer value.
+
+ If STRUCT_RETURN is non-zero, then the function we're calling is
+ going to return a structure by value; STRUCT_ADDR is the address of
+ a block we've allocated for it on the stack.
+
+ Our caller has taken care of any type promotions needed to satisfy
+ prototypes or the old K&R argument-passing rules. */
+static CORE_ADDR
+s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int i;
+
+ /* If the i'th argument is passed as a reference to a copy, then
+ copy_addr[i] is the address of the copy we made. */
+ CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
+
+ /* Reserve space for the reference-to-copy area. */
+ for (i = 0; i < nargs; i++)
+ {
+ struct value *arg = args[i];
+ struct type *type = check_typedef (value_type (arg));
+
+ if (s390_function_arg_pass_by_reference (type))
+ {
+ sp -= TYPE_LENGTH (type);
+ sp = align_down (sp, alignment_of (type));
+ copy_addr[i] = sp;
+ }
+ }
+
+ /* Reserve space for the parameter area. As a conservative
+ simplification, we assume that everything will be passed on the
+ stack. Since every argument larger than 8 bytes will be
+ passed by reference, we use this simple upper bound. */
+ sp -= nargs * 8;
+
+ /* After all that, make sure it's still aligned on an eight-byte
+ boundary. */
+ sp = align_down (sp, 8);
+
+ /* Allocate the standard frame areas: the register save area, the
+ word reserved for the compiler (which seems kind of meaningless),
+ and the back chain pointer. */
+ sp -= 16*word_size + 32;
+
+ /* Now we have the final SP value. Make sure we didn't underflow;
+ on 31-bit, this would result in addresses with the high bit set,
+ which causes confusion elsewhere. Note that if we error out
+ here, stack and registers remain untouched. */
+ if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
+ error (_("Stack overflow"));
+
+
+ /* Finally, place the actual parameters, working from SP towards
+ higher addresses. The code above is supposed to reserve enough
+ space for this. */
+ {
+ int fr = 0;
+ int gr = 2;
+ CORE_ADDR starg = sp + 16*word_size + 32;
+
+ /* A struct is returned using general register 2. */
+ if (struct_return)
+ {
+ regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
+ struct_addr);
+ gr++;
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ struct value *arg = args[i];
+ struct type *type = check_typedef (value_type (arg));
+ unsigned length = TYPE_LENGTH (type);
+
+ if (s390_function_arg_pass_by_reference (type))
+ {
+ /* Actually copy the argument contents to the stack slot
+ that was reserved above. */
+ write_memory (copy_addr[i], value_contents (arg), length);
+
+ if (gr <= 6)
+ {
+ regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
+ copy_addr[i]);
+ gr++;
+ }
+ else
+ {
+ write_memory_unsigned_integer (starg, word_size, byte_order,
+ copy_addr[i]);
+ starg += word_size;
+ }
+ }
+ else if (s390_function_arg_float (type))
+ {
+ /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
+ the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
+ if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
+ {
+ /* When we store a single-precision value in an FP register,
+ it occupies the leftmost bits. */
+ regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
+ 0, length, value_contents (arg));
+ fr += 2;
+ }
+ else
+ {
+ /* When we store a single-precision value in a stack slot,
+ it occupies the rightmost bits. */
+ starg = align_up (starg + length, word_size);
+ write_memory (starg - length, value_contents (arg), length);
+ }
+ }
+ else if (s390_function_arg_integer (type) && length <= word_size)
+ {
+ if (gr <= 6)
+ {
+ /* Integer arguments are always extended to word size. */
+ regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
+ extend_simple_arg (gdbarch,
+ arg));
+ gr++;
+ }
+ else
+ {
+ /* Integer arguments are always extended to word size. */
+ write_memory_signed_integer (starg, word_size, byte_order,
+ extend_simple_arg (gdbarch, arg));
+ starg += word_size;
+ }
+ }
+ else if (s390_function_arg_integer (type) && length == 2*word_size)
+ {
+ if (gr <= 5)
+ {
+ regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
+ value_contents (arg));
+ regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
+ value_contents (arg) + word_size);
+ gr += 2;
+ }
+ else
+ {
+ /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
+ in it, then don't go back and use it again later. */
+ gr = 7;
+
+ write_memory (starg, value_contents (arg), length);
+ starg += length;
+ }
+ }
+ else
+ internal_error (__FILE__, __LINE__, _("unknown argument type"));
+ }
+ }
+
+ /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
+ if (word_size == 4)
+ {
+ ULONGEST pswa;
+ regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
+ bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
+ }
+ regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
+
+ /* Store updated stack pointer. */
+ regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
+
+ /* We need to return the 'stack part' of the frame ID,
+ which is actually the top of the register save area. */
+ return sp + 16*word_size + 32;
+}
+
+/* Assuming THIS_FRAME is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ returned by push_dummy_call, and the PC match the dummy frame's
+ breakpoint. */
+static struct frame_id
+s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+ sp = gdbarch_addr_bits_remove (gdbarch, sp);
+
+ return frame_id_build (sp + 16*word_size + 32,
+ get_frame_pc (this_frame));
+}
+
+static CORE_ADDR
+s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ /* Both the 32- and 64-bit ABI's say that the stack pointer should
+ always be aligned on an eight-byte boundary. */
+ return (addr & -8);
+}
+
+
+/* Function return value access. */
+
+static enum return_value_convention
+s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
+{
+ if (TYPE_LENGTH (type) > 8)
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_ARRAY:
+ case TYPE_CODE_COMPLEX:
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ default:
+ return RETURN_VALUE_REGISTER_CONVENTION;
+ }
+}
+
+static enum return_value_convention
+s390_return_value (struct gdbarch *gdbarch, struct value *function,
+ struct type *type, struct regcache *regcache,
+ gdb_byte *out, const gdb_byte *in)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ enum return_value_convention rvc;
+ int length;
+
+ type = check_typedef (type);
+ rvc = s390_return_value_convention (gdbarch, type);
+ length = TYPE_LENGTH (type);
+
+ if (in)
+ {
+ switch (rvc)
+ {
+ case RETURN_VALUE_REGISTER_CONVENTION:
+ if (TYPE_CODE (type) == TYPE_CODE_FLT
+ || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
+ {
+ /* When we store a single-precision value in an FP register,
+ it occupies the leftmost bits. */
+ regcache_cooked_write_part (regcache, S390_F0_REGNUM,
+ 0, length, in);
+ }
+ else if (length <= word_size)
+ {
+ /* Integer arguments are always extended to word size. */
+ if (TYPE_UNSIGNED (type))
+ regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
+ extract_unsigned_integer (in, length, byte_order));
+ else
+ regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
+ extract_signed_integer (in, length, byte_order));
+ }
+ else if (length == 2*word_size)
+ {
+ regcache_cooked_write (regcache, S390_R2_REGNUM, in);
+ regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
+ }
+ else
+ internal_error (__FILE__, __LINE__, _("invalid return type"));
+ break;
+
+ case RETURN_VALUE_STRUCT_CONVENTION:
+ error (_("Cannot set function return value."));
+ break;
+ }
+ }
+ else if (out)
+ {
+ switch (rvc)
+ {
+ case RETURN_VALUE_REGISTER_CONVENTION:
+ if (TYPE_CODE (type) == TYPE_CODE_FLT
+ || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
+ {
+ /* When we store a single-precision value in an FP register,
+ it occupies the leftmost bits. */
+ regcache_cooked_read_part (regcache, S390_F0_REGNUM,
+ 0, length, out);
+ }
+ else if (length <= word_size)
+ {
+ /* Integer arguments occupy the rightmost bits. */
+ regcache_cooked_read_part (regcache, S390_R2_REGNUM,
+ word_size - length, length, out);
+ }
+ else if (length == 2*word_size)
+ {
+ regcache_cooked_read (regcache, S390_R2_REGNUM, out);
+ regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
+ }
+ else
+ internal_error (__FILE__, __LINE__, _("invalid return type"));
+ break;
+
+ case RETURN_VALUE_STRUCT_CONVENTION:
+ error (_("Function return value unknown."));
+ break;
+ }
+ }
+
+ return rvc;
+}
+
+
+/* Breakpoints. */
+
+static const gdb_byte *
+s390_breakpoint_from_pc (struct gdbarch *gdbarch,
+ CORE_ADDR *pcptr, int *lenptr)
+{
+ static const gdb_byte breakpoint[] = { 0x0, 0x1 };
+
+ *lenptr = sizeof (breakpoint);
+ return breakpoint;
+}
+
+
+/* Address handling. */
+
+static CORE_ADDR
+s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return addr & 0x7fffffff;
+}
+
+static int
+s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
+{
+ if (byte_size == 4)
+ return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+ else
+ return 0;
+}
+
+static const char *
+s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
+{
+ if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
+ return "mode32";
+ else
+ return NULL;
+}
+
+static int
+s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
+ const char *name,
+ int *type_flags_ptr)
+{
+ if (strcmp (name, "mode32") == 0)
+ {
+ *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+/* Implementation of `gdbarch_stap_is_single_operand', as defined in
+ gdbarch.h. */
+
+static int
+s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
+{
+ return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
+ or indirection. */
+ || *s == '%' /* Register access. */
+ || isdigit (*s)); /* Literal number. */
+}
+
+/* Set up gdbarch struct. */
+
+static struct gdbarch *
+s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ const struct target_desc *tdesc = info.target_desc;
+ struct tdesc_arch_data *tdesc_data = NULL;
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+ int tdep_abi;
+ int have_upper = 0;
+ int have_linux_v1 = 0;
+ int have_linux_v2 = 0;
+ int first_pseudo_reg, last_pseudo_reg;
+
+ /* Default ABI and register size. */
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_s390_31:
+ tdep_abi = ABI_LINUX_S390;
+ break;
+
+ case bfd_mach_s390_64:
+ tdep_abi = ABI_LINUX_ZSERIES;
+ break;
+
+ default:
+ return NULL;
+ }
+
+ /* Use default target description if none provided by the target. */
+ if (!tdesc_has_registers (tdesc))
+ {
+ if (tdep_abi == ABI_LINUX_S390)
+ tdesc = tdesc_s390_linux32;
+ else
+ tdesc = tdesc_s390x_linux64;
+ }
+
+ /* Check any target description for validity. */
+ if (tdesc_has_registers (tdesc))
+ {
+ static const char *const gprs[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+ static const char *const fprs[] = {
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
+ };
+ static const char *const acrs[] = {
+ "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
+ "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
+ };
+ static const char *const gprs_lower[] = {
+ "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
+ "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
+ };
+ static const char *const gprs_upper[] = {
+ "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
+ "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
+ };
+ static const char *const tdb_regs[] = {
+ "tdb0", "tac", "tct", "atia",
+ "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
+ "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
+ };
+ const struct tdesc_feature *feature;
+ int i, valid_p = 1;
+
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
+ if (feature == NULL)
+ return NULL;
+
+ tdesc_data = tdesc_data_alloc ();
+
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_PSWM_REGNUM, "pswm");
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_PSWA_REGNUM, "pswa");
+
+ if (tdesc_unnumbered_register (feature, "r0"))
+ {
+ for (i = 0; i < 16; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_R0_REGNUM + i, gprs[i]);
+ }
+ else
+ {
+ have_upper = 1;
+
+ for (i = 0; i < 16; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_R0_REGNUM + i,
+ gprs_lower[i]);
+ for (i = 0; i < 16; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_R0_UPPER_REGNUM + i,
+ gprs_upper[i]);
+ }
+
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
+ if (feature == NULL)
+ {
+ tdesc_data_cleanup (tdesc_data);
+ return NULL;
+ }
+
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_FPC_REGNUM, "fpc");
+ for (i = 0; i < 16; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_F0_REGNUM + i, fprs[i]);
+
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
+ if (feature == NULL)
+ {
+ tdesc_data_cleanup (tdesc_data);
+ return NULL;
+ }
+
+ for (i = 0; i < 16; i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_A0_REGNUM + i, acrs[i]);
+
+ /* Optional GNU/Linux-specific "registers". */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
+ if (feature)
+ {
+ tdesc_numbered_register (feature, tdesc_data,
+ S390_ORIG_R2_REGNUM, "orig_r2");
+
+ if (tdesc_numbered_register (feature, tdesc_data,
+ S390_LAST_BREAK_REGNUM, "last_break"))
+ have_linux_v1 = 1;
+
+ if (tdesc_numbered_register (feature, tdesc_data,
+ S390_SYSTEM_CALL_REGNUM, "system_call"))
+ have_linux_v2 = 1;
+
+ if (have_linux_v2 > have_linux_v1)
+ valid_p = 0;
+ }
+
+ /* Transaction diagnostic block. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
+ if (feature)
+ {
+ for (i = 0; i < ARRAY_SIZE (tdb_regs); i++)
+ valid_p &= tdesc_numbered_register (feature, tdesc_data,
+ S390_TDB_DWORD0_REGNUM + i,
+ tdb_regs[i]);
+ }
+
+ if (!valid_p)
+ {
+ tdesc_data_cleanup (tdesc_data);
+ return NULL;
+ }
+ }
+
+ /* Find a candidate among extant architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ tdep = gdbarch_tdep (arches->gdbarch);
+ if (!tdep)
+ continue;
+ if (tdep->abi != tdep_abi)
+ continue;
+ if ((tdep->gpr_full_regnum != -1) != have_upper)
+ continue;
+ if (tdesc_data != NULL)
+ tdesc_data_cleanup (tdesc_data);
+ return arches->gdbarch;
+ }
+
+ /* Otherwise create a new gdbarch for the specified machine type. */
+ tdep = XCALLOC (1, struct gdbarch_tdep);
+ tdep->abi = tdep_abi;
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ set_gdbarch_believe_pcc_promotion (gdbarch, 0);
+ set_gdbarch_char_signed (gdbarch, 0);
+
+ /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
+ We can safely let them default to 128-bit, since the debug info
+ will give the size of type actually used in each case. */
+ set_gdbarch_long_double_bit (gdbarch, 128);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
+
+ /* Amount PC must be decremented by after a breakpoint. This is
+ often the number of bytes returned by gdbarch_breakpoint_from_pc but not
+ always. */
+ set_gdbarch_decr_pc_after_break (gdbarch, 2);
+ /* Stack grows downward. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
+ set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
+ set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
+
+ set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
+ set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
+ set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
+ set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+ set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
+ set_gdbarch_regset_from_core_section (gdbarch,
+ s390_regset_from_core_section);
+ set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
+ set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
+ set_gdbarch_write_pc (gdbarch, s390_write_pc);
+ set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
+ set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
+ set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
+ set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
+ set_tdesc_pseudo_register_reggroup_p (gdbarch,
+ s390_pseudo_register_reggroup_p);
+ tdesc_use_registers (gdbarch, tdesc, tdesc_data);
+
+ /* Assign pseudo register numbers. */
+ first_pseudo_reg = gdbarch_num_regs (gdbarch);
+ last_pseudo_reg = first_pseudo_reg;
+ tdep->gpr_full_regnum = -1;
+ if (have_upper)
+ {
+ tdep->gpr_full_regnum = last_pseudo_reg;
+ last_pseudo_reg += 16;
+ }
+ tdep->pc_regnum = last_pseudo_reg++;
+ tdep->cc_regnum = last_pseudo_reg++;
+ set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
+ set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
+
+ /* Inferior function calls. */
+ set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
+ set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
+ set_gdbarch_frame_align (gdbarch, s390_frame_align);
+ set_gdbarch_return_value (gdbarch, s390_return_value);
+
+ /* Frame handling. */
+ dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
+ dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
+ dwarf2_append_unwinders (gdbarch);
+ frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
+ frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
+ frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
+ frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
+ frame_base_set_default (gdbarch, &s390_frame_base);
+ set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
+
+ /* Displaced stepping. */
+ set_gdbarch_displaced_step_copy_insn (gdbarch,
+ simple_displaced_step_copy_insn);
+ set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
+ set_gdbarch_displaced_step_free_closure (gdbarch,
+ simple_displaced_step_free_closure);
+ set_gdbarch_displaced_step_location (gdbarch,
+ displaced_step_at_entry_point);
+ set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
+
+ /* Note that GNU/Linux is the only OS supported on this
+ platform. */
+ linux_init_abi (info, gdbarch);
+
+ switch (tdep->abi)
+ {
+ case ABI_LINUX_S390:
+ tdep->gregset = &s390_gregset;
+ tdep->sizeof_gregset = s390_sizeof_gregset;
+ tdep->fpregset = &s390_fpregset;
+ tdep->sizeof_fpregset = s390_sizeof_fpregset;
+
+ set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
+ set_solib_svr4_fetch_link_map_offsets
+ (gdbarch, svr4_ilp32_fetch_link_map_offsets);
+
+ if (have_upper)
+ {
+ if (have_linux_v2)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux64v2_regset_sections);
+ else if (have_linux_v1)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux64v1_regset_sections);
+ else
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux64_regset_sections);
+ }
+ else
+ {
+ if (have_linux_v2)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux32v2_regset_sections);
+ else if (have_linux_v1)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux32v1_regset_sections);
+ else
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390_linux32_regset_sections);
+ }
+ break;
+
+ case ABI_LINUX_ZSERIES:
+ tdep->gregset = &s390x_gregset;
+ tdep->sizeof_gregset = s390x_sizeof_gregset;
+ tdep->fpregset = &s390_fpregset;
+ tdep->sizeof_fpregset = s390_sizeof_fpregset;
+
+ set_gdbarch_long_bit (gdbarch, 64);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 64);
+ set_solib_svr4_fetch_link_map_offsets
+ (gdbarch, svr4_lp64_fetch_link_map_offsets);
+ set_gdbarch_address_class_type_flags (gdbarch,
+ s390_address_class_type_flags);
+ set_gdbarch_address_class_type_flags_to_name (gdbarch,
+ s390_address_class_type_flags_to_name);
+ set_gdbarch_address_class_name_to_type_flags (gdbarch,
+ s390_address_class_name_to_type_flags);
+
+ if (have_linux_v2)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390x_linux64v2_regset_sections);
+ else if (have_linux_v1)
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390x_linux64v1_regset_sections);
+ else
+ set_gdbarch_core_regset_sections (gdbarch,
+ s390x_linux64_regset_sections);
+ break;
+ }
+
+ set_gdbarch_print_insn (gdbarch, print_insn_s390);
+
+ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
+
+ /* Enable TLS support. */
+ set_gdbarch_fetch_tls_load_module_address (gdbarch,
+ svr4_fetch_objfile_link_map);
+
+ set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
+
+ /* SystemTap functions. */
+ set_gdbarch_stap_register_prefix (gdbarch, "%");
+ set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
+ set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
+ set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
+
+ return gdbarch;
+}
+
+
+extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
+
+void
+_initialize_s390_tdep (void)
+{
+ /* Hook us into the gdbarch mechanism. */
+ register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
+
+ /* Initialize the GNU/Linux target descriptions. */
+ initialize_tdesc_s390_linux32 ();
+ initialize_tdesc_s390_linux32v1 ();
+ initialize_tdesc_s390_linux32v2 ();
+ initialize_tdesc_s390_linux64 ();
+ initialize_tdesc_s390_linux64v1 ();
+ initialize_tdesc_s390_linux64v2 ();
+ initialize_tdesc_s390_te_linux64 ();
+ initialize_tdesc_s390x_linux64 ();
+ initialize_tdesc_s390x_linux64v1 ();
+ initialize_tdesc_s390x_linux64v2 ();
+ initialize_tdesc_s390x_te_linux64 ();
+}