aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/rs6000-tdep.c')
-rw-r--r--gdb/rs6000-tdep.c1800
1 files changed, 1800 insertions, 0 deletions
diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c
new file mode 100644
index 0000000..57f1df1
--- /dev/null
+++ b/gdb/rs6000-tdep.c
@@ -0,0 +1,1800 @@
+/* Target-dependent code for GDB, the GNU debugger.
+ Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
+ Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "target.h"
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "xcoffsolib.h"
+
+extern int errno;
+
+/* Breakpoint shadows for the single step instructions will be kept here. */
+
+static struct sstep_breaks {
+ /* Address, or 0 if this is not in use. */
+ CORE_ADDR address;
+ /* Shadow contents. */
+ char data[4];
+} stepBreaks[2];
+
+/* Hook for determining the TOC address when calling functions in the
+ inferior under AIX. The initialization code in rs6000-nat.c sets
+ this hook to point to find_toc_address. */
+
+CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL;
+
+/* Static function prototypes */
+
+static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
+ CORE_ADDR safety));
+
+static void frame_get_saved_regs PARAMS ((struct frame_info *fi,
+ struct rs6000_framedata *fdatap));
+
+static void pop_dummy_frame PARAMS ((void));
+
+static CORE_ADDR frame_initial_stack_address PARAMS ((struct frame_info *));
+
+/* Fill in fi->saved_regs */
+
+struct frame_extra_info
+{
+ /* Functions calling alloca() change the value of the stack
+ pointer. We need to use initial stack pointer (which is saved in
+ r31 by gcc) in such cases. If a compiler emits traceback table,
+ then we should use the alloca register specified in traceback
+ table. FIXME. */
+ CORE_ADDR initial_sp; /* initial stack pointer. */
+};
+
+void
+rs6000_init_extra_frame_info (fromleaf, fi)
+ int fromleaf;
+ struct frame_info *fi;
+{
+ fi->extra_info = (struct frame_extra_info*)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+ fi->extra_info->initial_sp = 0;
+ if (fi->next != (CORE_ADDR) 0
+ && fi->pc < TEXT_SEGMENT_BASE)
+ /* We're in get_prev_frame_info */
+ /* and this is a special signal frame. */
+ /* (fi->pc will be some low address in the kernel, */
+ /* to which the signal handler returns). */
+ fi->signal_handler_caller = 1;
+}
+
+
+void
+rs6000_frame_init_saved_regs (fi)
+ struct frame_info *fi;
+{
+ frame_get_saved_regs (fi, NULL);
+}
+
+CORE_ADDR
+rs6000_frame_args_address (fi)
+ struct frame_info *fi;
+{
+ if (fi->extra_info->initial_sp != 0)
+ return fi->extra_info->initial_sp;
+ else
+ return frame_initial_stack_address (fi);
+}
+
+
+/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
+
+static CORE_ADDR
+branch_dest (opcode, instr, pc, safety)
+ int opcode;
+ int instr;
+ CORE_ADDR pc;
+ CORE_ADDR safety;
+{
+ CORE_ADDR dest;
+ int immediate;
+ int absolute;
+ int ext_op;
+
+ absolute = (int) ((instr >> 1) & 1);
+
+ switch (opcode) {
+ case 18 :
+ immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
+ if (absolute)
+ dest = immediate;
+ else
+ dest = pc + immediate;
+ break;
+
+ case 16 :
+ immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
+ if (absolute)
+ dest = immediate;
+ else
+ dest = pc + immediate;
+ break;
+
+ case 19 :
+ ext_op = (instr>>1) & 0x3ff;
+
+ if (ext_op == 16) /* br conditional register */
+ {
+ dest = read_register (LR_REGNUM) & ~3;
+
+ /* If we are about to return from a signal handler, dest is
+ something like 0x3c90. The current frame is a signal handler
+ caller frame, upon completion of the sigreturn system call
+ execution will return to the saved PC in the frame. */
+ if (dest < TEXT_SEGMENT_BASE)
+ {
+ struct frame_info *fi;
+
+ fi = get_current_frame ();
+ if (fi != NULL)
+ dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET,
+ 4);
+ }
+ }
+
+ else if (ext_op == 528) /* br cond to count reg */
+ {
+ dest = read_register (CTR_REGNUM) & ~3;
+
+ /* If we are about to execute a system call, dest is something
+ like 0x22fc or 0x3b00. Upon completion the system call
+ will return to the address in the link register. */
+ if (dest < TEXT_SEGMENT_BASE)
+ dest = read_register (LR_REGNUM) & ~3;
+ }
+ else return -1;
+ break;
+
+ default: return -1;
+ }
+ return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
+}
+
+
+/* Sequence of bytes for breakpoint instruction. */
+
+#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
+#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
+
+unsigned char *
+rs6000_breakpoint_from_pc (bp_addr, bp_size)
+ CORE_ADDR *bp_addr;
+ int *bp_size;
+{
+ static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
+ static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
+ *bp_size = 4;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return big_breakpoint;
+ else
+ return little_breakpoint;
+}
+
+
+/* AIX does not support PT_STEP. Simulate it. */
+
+void
+rs6000_software_single_step (signal, insert_breakpoints_p)
+ unsigned int signal;
+ int insert_breakpoints_p;
+{
+#define INSNLEN(OPCODE) 4
+
+ static char le_breakp[] = LITTLE_BREAKPOINT;
+ static char be_breakp[] = BIG_BREAKPOINT;
+ char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
+ int ii, insn;
+ CORE_ADDR loc;
+ CORE_ADDR breaks[2];
+ int opcode;
+
+ if (insert_breakpoints_p) {
+
+ loc = read_pc ();
+
+ insn = read_memory_integer (loc, 4);
+
+ breaks[0] = loc + INSNLEN(insn);
+ opcode = insn >> 26;
+ breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+
+ /* Don't put two breakpoints on the same address. */
+ if (breaks[1] == breaks[0])
+ breaks[1] = -1;
+
+ stepBreaks[1].address = 0;
+
+ for (ii=0; ii < 2; ++ii) {
+
+ /* ignore invalid breakpoint. */
+ if ( breaks[ii] == -1)
+ continue;
+
+ read_memory (breaks[ii], stepBreaks[ii].data, 4);
+
+ write_memory (breaks[ii], breakp, 4);
+ stepBreaks[ii].address = breaks[ii];
+ }
+
+ } else {
+
+ /* remove step breakpoints. */
+ for (ii=0; ii < 2; ++ii)
+ if (stepBreaks[ii].address != 0)
+ write_memory
+ (stepBreaks[ii].address, stepBreaks[ii].data, 4);
+
+ }
+ errno = 0; /* FIXME, don't ignore errors! */
+ /* What errors? {read,write}_memory call error(). */
+}
+
+
+/* return pc value after skipping a function prologue and also return
+ information about a function frame.
+
+ in struct rs6000_framedata fdata:
+ - frameless is TRUE, if function does not have a frame.
+ - nosavedpc is TRUE, if function does not save %pc value in its frame.
+ - offset is the initial size of this stack frame --- the amount by
+ which we decrement the sp to allocate the frame.
+ - saved_gpr is the number of the first saved gpr.
+ - saved_fpr is the number of the first saved fpr.
+ - alloca_reg is the number of the register used for alloca() handling.
+ Otherwise -1.
+ - gpr_offset is the offset of the first saved gpr from the previous frame.
+ - fpr_offset is the offset of the first saved fpr from the previous frame.
+ - lr_offset is the offset of the saved lr
+ - cr_offset is the offset of the saved cr
+*/
+
+#define SIGNED_SHORT(x) \
+ ((sizeof (short) == 2) \
+ ? ((int)(short)(x)) \
+ : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+
+#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+
+CORE_ADDR
+skip_prologue (pc, fdata)
+ CORE_ADDR pc;
+ struct rs6000_framedata *fdata;
+{
+ CORE_ADDR orig_pc = pc;
+ char buf[4];
+ unsigned long op;
+ long offset = 0;
+ int lr_reg = 0;
+ int cr_reg = 0;
+ int reg;
+ int framep = 0;
+ int minimal_toc_loaded = 0;
+ static struct rs6000_framedata zero_frame;
+
+ *fdata = zero_frame;
+ fdata->saved_gpr = -1;
+ fdata->saved_fpr = -1;
+ fdata->alloca_reg = -1;
+ fdata->frameless = 1;
+ fdata->nosavedpc = 1;
+
+ if (target_read_memory (pc, buf, 4))
+ return pc; /* Can't access it -- assume no prologue. */
+
+ /* Assume that subsequent fetches can fail with low probability. */
+ pc -= 4;
+ for (;;)
+ {
+ pc += 4;
+ op = read_memory_integer (pc, 4);
+
+ if ((op & 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */
+ lr_reg = (op & 0x03e00000) | 0x90010000;
+ continue;
+
+ } else if ((op & 0xfc1fffff) == 0x7c000026) { /* mfcr Rx */
+ cr_reg = (op & 0x03e00000) | 0x90010000;
+ continue;
+
+ } else if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
+ reg = GET_SRC_REG (op);
+ if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) {
+ fdata->saved_fpr = reg;
+ fdata->fpr_offset = SIGNED_SHORT (op) + offset;
+ }
+ continue;
+
+ } else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
+ ((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1),
+ rx >= r13 */
+ (op & 0x03e00000) >= 0x01a00000)) {
+
+ reg = GET_SRC_REG (op);
+ if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) {
+ fdata->saved_gpr = reg;
+ fdata->gpr_offset = SIGNED_SHORT (op) + offset;
+ }
+ continue;
+
+ } else if ((op & 0xffff0000) == 0x3c000000) { /* addis 0,0,NUM, used
+ for >= 32k frames */
+ fdata->offset = (op & 0x0000ffff) << 16;
+ fdata->frameless = 0;
+ continue;
+
+ } else if ((op & 0xffff0000) == 0x60000000) { /* ori 0,0,NUM, 2nd ha
+ lf of >= 32k frames */
+ fdata->offset |= (op & 0x0000ffff);
+ fdata->frameless = 0;
+ continue;
+
+ } else if ((op & 0xffff0000) == lr_reg) { /* st Rx,NUM(r1)
+ where Rx == lr */
+ fdata->lr_offset = SIGNED_SHORT (op) + offset;
+ fdata->nosavedpc = 0;
+ lr_reg = 0;
+ continue;
+
+ } else if ((op & 0xffff0000) == cr_reg) { /* st Rx,NUM(r1)
+ where Rx == cr */
+ fdata->cr_offset = SIGNED_SHORT (op) + offset;
+ cr_reg = 0;
+ continue;
+
+ } else if (op == 0x48000005) { /* bl .+4 used in
+ -mrelocatable */
+ continue;
+
+ } else if (op == 0x48000004) { /* b .+4 (xlc) */
+ break;
+
+ } else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
+ in V.4 -mrelocatable */
+ op == 0x7fc0f214) && /* add r30,r0,r30, used
+ in V.4 -mrelocatable */
+ lr_reg == 0x901e0000) {
+ continue;
+
+ } else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
+ in V.4 -mminimal-toc */
+ (op & 0xffff0000) == 0x3bde0000) { /* addi 30,30,foo@l */
+ continue;
+
+ } else if ((op & 0xfc000000) == 0x48000000) { /* bl foo,
+ to save fprs??? */
+
+ fdata->frameless = 0;
+ /* Don't skip over the subroutine call if it is not within the first
+ three instructions of the prologue. */
+ if ((pc - orig_pc) > 8)
+ break;
+
+ op = read_memory_integer (pc+4, 4);
+
+ /* At this point, make sure this is not a trampoline function
+ (a function that simply calls another functions, and nothing else).
+ If the next is not a nop, this branch was part of the function
+ prologue. */
+
+ if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
+ break; /* don't skip over
+ this branch */
+ continue;
+
+ /* update stack pointer */
+ } else if ((op & 0xffff0000) == 0x94210000) { /* stu r1,NUM(r1) */
+ fdata->frameless = 0;
+ fdata->offset = SIGNED_SHORT (op);
+ offset = fdata->offset;
+ continue;
+
+ } else if (op == 0x7c21016e) { /* stwux 1,1,0 */
+ fdata->frameless = 0;
+ offset = fdata->offset;
+ continue;
+
+ /* Load up minimal toc pointer */
+ } else if ((op >> 22) == 0x20f
+ && ! minimal_toc_loaded) { /* l r31,... or l r30,... */
+ minimal_toc_loaded = 1;
+ continue;
+
+ /* store parameters in stack */
+ } else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xfc010000) { /* frsp, fp?,NUM(r1) */
+ continue;
+
+ /* store parameters in stack via frame pointer */
+ } else if (framep &&
+ ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xfc1f0000)) { /* frsp, fp?,NUM(r1) */
+ continue;
+
+ /* Set up frame pointer */
+ } else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
+ || op == 0x7c3f0b78) { /* mr r31, r1 */
+ fdata->frameless = 0;
+ framep = 1;
+ fdata->alloca_reg = 31;
+ continue;
+
+ /* Another way to set up the frame pointer. */
+ } else if ((op & 0xfc1fffff) == 0x38010000) { /* addi rX, r1, 0x0 */
+ fdata->frameless = 0;
+ framep = 1;
+ fdata->alloca_reg = (op & ~0x38010000) >> 21;
+ continue;
+
+ } else {
+ break;
+ }
+ }
+
+#if 0
+/* I have problems with skipping over __main() that I need to address
+ * sometime. Previously, I used to use misc_function_vector which
+ * didn't work as well as I wanted to be. -MGO */
+
+ /* If the first thing after skipping a prolog is a branch to a function,
+ this might be a call to an initializer in main(), introduced by gcc2.
+ We'd like to skip over it as well. Fortunately, xlc does some extra
+ work before calling a function right after a prologue, thus we can
+ single out such gcc2 behaviour. */
+
+
+ if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
+ op = read_memory_integer (pc+4, 4);
+
+ if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
+
+ /* check and see if we are in main. If so, skip over this initializer
+ function as well. */
+
+ tmp = find_pc_misc_function (pc);
+ if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
+ return pc + 8;
+ }
+ }
+#endif /* 0 */
+
+ fdata->offset = - fdata->offset;
+ return pc;
+}
+
+
+/*************************************************************************
+ Support for creating pushind a dummy frame into the stack, and popping
+ frames, etc.
+*************************************************************************/
+
+/* The total size of dummy frame is 436, which is;
+
+ 32 gpr's - 128 bytes
+ 32 fpr's - 256 "
+ 7 the rest - 28 "
+ and 24 extra bytes for the callee's link area. The last 24 bytes
+ for the link area might not be necessary, since it will be taken
+ care of by push_arguments(). */
+
+#define DUMMY_FRAME_SIZE 436
+
+#define DUMMY_FRAME_ADDR_SIZE 10
+
+/* Make sure you initialize these in somewhere, in case gdb gives up what it
+ was debugging and starts debugging something else. FIXMEibm */
+
+static int dummy_frame_count = 0;
+static int dummy_frame_size = 0;
+static CORE_ADDR *dummy_frame_addr = 0;
+
+extern int stop_stack_dummy;
+
+/* push a dummy frame into stack, save all register. Currently we are saving
+ only gpr's and fpr's, which is not good enough! FIXMEmgo */
+
+void
+push_dummy_frame ()
+{
+ /* stack pointer. */
+ CORE_ADDR sp;
+ /* Same thing, target byte order. */
+ char sp_targ[4];
+
+ /* link register. */
+ CORE_ADDR pc;
+ /* Same thing, target byte order. */
+ char pc_targ[4];
+
+ /* Needed to figure out where to save the dummy link area.
+ FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
+ struct rs6000_framedata fdata;
+
+ int ii;
+
+ target_fetch_registers (-1);
+
+ if (dummy_frame_count >= dummy_frame_size) {
+ dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
+ if (dummy_frame_addr)
+ dummy_frame_addr = (CORE_ADDR*) xrealloc
+ (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
+ else
+ dummy_frame_addr = (CORE_ADDR*)
+ xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
+ }
+
+ sp = read_register(SP_REGNUM);
+ pc = read_register(PC_REGNUM);
+ store_address (pc_targ, 4, pc);
+
+ skip_prologue (get_pc_function_start (pc), &fdata);
+
+ dummy_frame_addr [dummy_frame_count++] = sp;
+
+ /* Be careful! If the stack pointer is not decremented first, then kernel
+ thinks he is free to use the space underneath it. And kernel actually
+ uses that area for IPC purposes when executing ptrace(2) calls. So
+ before writing register values into the new frame, decrement and update
+ %sp first in order to secure your frame. */
+
+ /* FIXME: We don't check if the stack really has this much space.
+ This is a problem on the ppc simulator (which only grants one page
+ (4096 bytes) by default. */
+
+ write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
+
+ /* gdb relies on the state of current_frame. We'd better update it,
+ otherwise things like do_registers_info() wouldn't work properly! */
+
+ flush_cached_frames ();
+
+ /* save program counter in link register's space. */
+ write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
+ pc_targ, 4);
+
+ /* save all floating point and general purpose registers here. */
+
+ /* fpr's, f0..f31 */
+ for (ii = 0; ii < 32; ++ii)
+ write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
+
+ /* gpr's r0..r31 */
+ for (ii=1; ii <=32; ++ii)
+ write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
+
+ /* so far, 32*2 + 32 words = 384 bytes have been written.
+ 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
+
+ for (ii=1; ii <= (LAST_UISA_SP_REGNUM-FIRST_UISA_SP_REGNUM+1); ++ii) {
+ write_memory (sp-384-(ii*4),
+ &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
+ }
+
+ /* Save sp or so called back chain right here. */
+ store_address (sp_targ, 4, sp);
+ write_memory (sp-DUMMY_FRAME_SIZE, sp_targ, 4);
+ sp -= DUMMY_FRAME_SIZE;
+
+ /* And finally, this is the back chain. */
+ write_memory (sp+8, pc_targ, 4);
+}
+
+
+/* Pop a dummy frame.
+
+ In rs6000 when we push a dummy frame, we save all of the registers. This
+ is usually done before user calls a function explicitly.
+
+ After a dummy frame is pushed, some instructions are copied into stack,
+ and stack pointer is decremented even more. Since we don't have a frame
+ pointer to get back to the parent frame of the dummy, we start having
+ trouble poping it. Therefore, we keep a dummy frame stack, keeping
+ addresses of dummy frames as such. When poping happens and when we
+ detect that was a dummy frame, we pop it back to its parent by using
+ dummy frame stack (`dummy_frame_addr' array).
+
+FIXME: This whole concept is broken. You should be able to detect
+a dummy stack frame *on the user's stack itself*. When you do,
+then you know the format of that stack frame -- including its
+saved SP register! There should *not* be a separate stack in the
+GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
+ */
+
+static void
+pop_dummy_frame ()
+{
+ CORE_ADDR sp, pc;
+ int ii;
+ sp = dummy_frame_addr [--dummy_frame_count];
+
+ /* restore all fpr's. */
+ for (ii = 1; ii <= 32; ++ii)
+ read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
+
+ /* restore all gpr's */
+ for (ii=1; ii <= 32; ++ii) {
+ read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
+ }
+
+ /* restore the rest of the registers. */
+ for (ii=1; ii <=(LAST_UISA_SP_REGNUM-FIRST_UISA_SP_REGNUM+1); ++ii)
+ read_memory (sp-384-(ii*4),
+ &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
+
+ read_memory (sp-(DUMMY_FRAME_SIZE-8),
+ &registers [REGISTER_BYTE(PC_REGNUM)], 4);
+
+ /* when a dummy frame was being pushed, we had to decrement %sp first, in
+ order to secure astack space. Thus, saved %sp (or %r1) value, is not the
+ one we should restore. Change it with the one we need. */
+
+ memcpy (&registers [REGISTER_BYTE(FP_REGNUM)], (char *) &sp, sizeof (int));
+
+ /* Now we can restore all registers. */
+
+ target_store_registers (-1);
+ pc = read_pc ();
+ flush_cached_frames ();
+}
+
+
+/* pop the innermost frame, go back to the caller. */
+
+void
+pop_frame ()
+{
+ CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
+ struct rs6000_framedata fdata;
+ struct frame_info *frame = get_current_frame ();
+ int addr, ii;
+
+ pc = read_pc ();
+ sp = FRAME_FP (frame);
+
+ if (stop_stack_dummy)
+ {
+#ifdef USE_GENERIC_DUMMY_FRAMES
+ generic_pop_dummy_frame ();
+ flush_cached_frames ();
+ return;
+#else
+ if (dummy_frame_count)
+ pop_dummy_frame ();
+ return;
+#endif
+ }
+
+ /* Make sure that all registers are valid. */
+ read_register_bytes (0, NULL, REGISTER_BYTES);
+
+ /* figure out previous %pc value. If the function is frameless, it is
+ still in the link register, otherwise walk the frames and retrieve the
+ saved %pc value in the previous frame. */
+
+ addr = get_pc_function_start (frame->pc);
+ (void) skip_prologue (addr, &fdata);
+
+ if (fdata.frameless)
+ prev_sp = sp;
+ else
+ prev_sp = read_memory_integer (sp, 4);
+ if (fdata.lr_offset == 0)
+ lr = read_register (LR_REGNUM);
+ else
+ lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);
+
+ /* reset %pc value. */
+ write_register (PC_REGNUM, lr);
+
+ /* reset register values if any was saved earlier. */
+
+ if (fdata.saved_gpr != -1)
+ {
+ addr = prev_sp + fdata.gpr_offset;
+ for (ii = fdata.saved_gpr; ii <= 31; ++ii) {
+ read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
+ addr += 4;
+ }
+ }
+
+ if (fdata.saved_fpr != -1)
+ {
+ addr = prev_sp + fdata.fpr_offset;
+ for (ii = fdata.saved_fpr; ii <= 31; ++ii) {
+ read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
+ addr += 8;
+ }
+ }
+
+ write_register (SP_REGNUM, prev_sp);
+ target_store_registers (-1);
+ flush_cached_frames ();
+}
+
+/* fixup the call sequence of a dummy function, with the real function address.
+ its argumets will be passed by gdb. */
+
+void
+rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
+ char *dummyname;
+ CORE_ADDR pc;
+ CORE_ADDR fun;
+ int nargs;
+ value_ptr *args;
+ struct type *type;
+ int gcc_p;
+{
+#define TOC_ADDR_OFFSET 20
+#define TARGET_ADDR_OFFSET 28
+
+ int ii;
+ CORE_ADDR target_addr;
+
+ if (find_toc_address_hook != NULL)
+ {
+ CORE_ADDR tocvalue;
+
+ tocvalue = (*find_toc_address_hook) (fun);
+ ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
+ ii = (ii & 0xffff0000) | (tocvalue >> 16);
+ *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
+
+ ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
+ ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
+ *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
+ }
+
+ target_addr = fun;
+ ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
+ ii = (ii & 0xffff0000) | (target_addr >> 16);
+ *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
+
+ ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
+ ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
+ *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
+}
+
+/* Pass the arguments in either registers, or in the stack. In RS6000,
+ the first eight words of the argument list (that might be less than
+ eight parameters if some parameters occupy more than one word) are
+ passed in r3..r11 registers. float and double parameters are
+ passed in fpr's, in addition to that. Rest of the parameters if any
+ are passed in user stack. There might be cases in which half of the
+ parameter is copied into registers, the other half is pushed into
+ stack.
+
+ If the function is returning a structure, then the return address is passed
+ in r3, then the first 7 words of the parameters can be passed in registers,
+ starting from r4. */
+
+CORE_ADDR
+push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int ii;
+ int len = 0;
+ int argno; /* current argument number */
+ int argbytes; /* current argument byte */
+ char tmp_buffer [50];
+ int f_argno = 0; /* current floating point argno */
+
+ value_ptr arg = 0;
+ struct type *type;
+
+ CORE_ADDR saved_sp;
+
+#ifndef USE_GENERIC_DUMMY_FRAMES
+ if ( dummy_frame_count <= 0)
+ printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
+#endif /* GENERIC_DUMMY_FRAMES */
+
+ /* The first eight words of ther arguments are passed in registers. Copy
+ them appropriately.
+
+ If the function is returning a `struct', then the first word (which
+ will be passed in r3) is used for struct return address. In that
+ case we should advance one word and start from r4 register to copy
+ parameters. */
+
+ ii = struct_return ? 1 : 0;
+
+/*
+effectively indirect call... gcc does...
+
+return_val example( float, int);
+
+eabi:
+ float in fp0, int in r3
+ offset of stack on overflow 8/16
+ for varargs, must go by type.
+power open:
+ float in r3&r4, int in r5
+ offset of stack on overflow different
+both:
+ return in r3 or f0. If no float, must study how gcc emulates floats;
+ pay attention to arg promotion.
+ User may have to cast\args to handle promotion correctly
+ since gdb won't know if prototype supplied or not.
+*/
+
+ for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
+
+ arg = args[argno];
+ type = check_typedef (VALUE_TYPE (arg));
+ len = TYPE_LENGTH (type);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT) {
+
+ /* floating point arguments are passed in fpr's, as well as gpr's.
+ There are 13 fpr's reserved for passing parameters. At this point
+ there is no way we would run out of them. */
+
+ if (len > 8)
+ printf_unfiltered (
+"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)],
+ VALUE_CONTENTS (arg),
+ len);
+ ++f_argno;
+ }
+
+ if (len > 4) {
+
+ /* Argument takes more than one register. */
+ while (argbytes < len) {
+ memset (&registers[REGISTER_BYTE(ii+3)], 0, sizeof(int));
+ memcpy (&registers[REGISTER_BYTE(ii+3)],
+ ((char*)VALUE_CONTENTS (arg))+argbytes,
+ (len - argbytes) > 4 ? 4 : len - argbytes);
+ ++ii, argbytes += 4;
+
+ if (ii >= 8)
+ goto ran_out_of_registers_for_arguments;
+ }
+ argbytes = 0;
+ --ii;
+ }
+ else { /* Argument can fit in one register. No problem. */
+ memset (&registers[REGISTER_BYTE(ii+3)], 0, sizeof(int));
+ memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
+ }
+ ++argno;
+ }
+
+ran_out_of_registers_for_arguments:
+
+#ifdef USE_GENERIC_DUMMY_FRAMES
+ saved_sp = read_sp ();
+#else
+ /* location for 8 parameters are always reserved. */
+ sp -= 4 * 8;
+
+ /* another six words for back chain, TOC register, link register, etc. */
+ sp -= 24;
+#endif /* GENERIC_DUMMY_FRAMES */
+ /* if there are more arguments, allocate space for them in
+ the stack, then push them starting from the ninth one. */
+
+ if ((argno < nargs) || argbytes) {
+ int space = 0, jj;
+
+ if (argbytes) {
+ space += ((len - argbytes + 3) & -4);
+ jj = argno + 1;
+ }
+ else
+ jj = argno;
+
+ for (; jj < nargs; ++jj) {
+ value_ptr val = args[jj];
+ space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
+ }
+
+ /* add location required for the rest of the parameters */
+ space = (space + 7) & -8;
+ sp -= space;
+
+ /* This is another instance we need to be concerned about securing our
+ stack space. If we write anything underneath %sp (r1), we might conflict
+ with the kernel who thinks he is free to use this area. So, update %sp
+ first before doing anything else. */
+
+ write_register (SP_REGNUM, sp);
+
+ /* if the last argument copied into the registers didn't fit there
+ completely, push the rest of it into stack. */
+
+ if (argbytes) {
+ write_memory (sp+24+(ii*4),
+ ((char*)VALUE_CONTENTS (arg))+argbytes,
+ len - argbytes);
+ ++argno;
+ ii += ((len - argbytes + 3) & -4) / 4;
+ }
+
+ /* push the rest of the arguments into stack. */
+ for (; argno < nargs; ++argno) {
+
+ arg = args[argno];
+ type = check_typedef (VALUE_TYPE (arg));
+ len = TYPE_LENGTH (type);
+
+
+ /* float types should be passed in fpr's, as well as in the stack. */
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) {
+
+ if (len > 8)
+ printf_unfiltered (
+"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)],
+ VALUE_CONTENTS (arg),
+ len);
+ ++f_argno;
+ }
+
+ write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
+ ii += ((len + 3) & -4) / 4;
+ }
+ }
+ else
+ /* Secure stack areas first, before doing anything else. */
+ write_register (SP_REGNUM, sp);
+
+#ifndef USE_GENERIC_DUMMY_FRAMES
+/* we want to copy 24 bytes of target's frame to dummy's frame,
+ then set back chain to point to new frame. */
+
+ saved_sp = dummy_frame_addr [dummy_frame_count - 1];
+ read_memory (saved_sp, tmp_buffer, 24);
+ write_memory (sp, tmp_buffer, 24);
+#endif /* GENERIC_DUMMY_FRAMES */
+
+ /* set back chain properly */
+ store_address (tmp_buffer, 4, saved_sp);
+ write_memory (sp, tmp_buffer, 4);
+
+ target_store_registers (-1);
+ return sp;
+}
+#ifdef ELF_OBJECT_FORMAT
+
+/* Function: ppc_push_return_address (pc, sp)
+ Set up the return address for the inferior function call. */
+
+CORE_ADDR
+ppc_push_return_address (pc, sp)
+ CORE_ADDR pc;
+ CORE_ADDR sp;
+{
+ write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
+ return sp;
+}
+
+#endif
+
+/* a given return value in `regbuf' with a type `valtype', extract and copy its
+ value into `valbuf' */
+
+void
+extract_return_value (valtype, regbuf, valbuf)
+ struct type *valtype;
+ char regbuf[REGISTER_BYTES];
+ char *valbuf;
+{
+ int offset = 0;
+
+ if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
+
+ double dd; float ff;
+ /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
+ We need to truncate the return value into float size (4 byte) if
+ necessary. */
+
+ if (TYPE_LENGTH (valtype) > 4) /* this is a double */
+ memcpy (valbuf,
+ &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
+ TYPE_LENGTH (valtype));
+ else { /* float */
+ memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
+ ff = (float)dd;
+ memcpy (valbuf, &ff, sizeof(float));
+ }
+ }
+ else {
+ /* return value is copied starting from r3. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN
+ && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
+ offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
+
+ memcpy (valbuf,
+ regbuf + REGISTER_BYTE (3) + offset,
+ TYPE_LENGTH (valtype));
+ }
+}
+
+
+/* keep structure return address in this variable.
+ FIXME: This is a horrid kludge which should not be allowed to continue
+ living. This only allows a single nested call to a structure-returning
+ function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
+
+CORE_ADDR rs6000_struct_return_address;
+
+
+/* Indirect function calls use a piece of trampoline code to do context
+ switching, i.e. to set the new TOC table. Skip such code if we are on
+ its first instruction (as when we have single-stepped to here).
+ Also skip shared library trampoline code (which is different from
+ indirect function call trampolines).
+ Result is desired PC to step until, or NULL if we are not in
+ trampoline code. */
+
+CORE_ADDR
+skip_trampoline_code (pc)
+ CORE_ADDR pc;
+{
+ register unsigned int ii, op;
+ CORE_ADDR solib_target_pc;
+
+ static unsigned trampoline_code[] = {
+ 0x800b0000, /* l r0,0x0(r11) */
+ 0x90410014, /* st r2,0x14(r1) */
+ 0x7c0903a6, /* mtctr r0 */
+ 0x804b0004, /* l r2,0x4(r11) */
+ 0x816b0008, /* l r11,0x8(r11) */
+ 0x4e800420, /* bctr */
+ 0x4e800020, /* br */
+ 0
+ };
+
+ /* If pc is in a shared library trampoline, return its target. */
+ solib_target_pc = find_solib_trampoline_target (pc);
+ if (solib_target_pc)
+ return solib_target_pc;
+
+ for (ii=0; trampoline_code[ii]; ++ii) {
+ op = read_memory_integer (pc + (ii*4), 4);
+ if (op != trampoline_code [ii])
+ return 0;
+ }
+ ii = read_register (11); /* r11 holds destination addr */
+ pc = read_memory_integer (ii, 4); /* (r11) value */
+ return pc;
+}
+
+/* Determines whether the function FI has a frame on the stack or not. */
+
+int
+frameless_function_invocation (fi)
+ struct frame_info *fi;
+{
+ CORE_ADDR func_start;
+ struct rs6000_framedata fdata;
+
+ /* Don't even think about framelessness except on the innermost frame
+ or if the function was interrupted by a signal. */
+ if (fi->next != NULL && !fi->next->signal_handler_caller)
+ return 0;
+
+ func_start = get_pc_function_start (fi->pc);
+
+ /* If we failed to find the start of the function, it is a mistake
+ to inspect the instructions. */
+
+ if (!func_start)
+ {
+ /* A frame with a zero PC is usually created by dereferencing a NULL
+ function pointer, normally causing an immediate core dump of the
+ inferior. Mark function as frameless, as the inferior has no chance
+ of setting up a stack frame. */
+ if (fi->pc == 0)
+ return 1;
+ else
+ return 0;
+ }
+
+ (void) skip_prologue (func_start, &fdata);
+ return fdata.frameless;
+}
+
+/* Return the PC saved in a frame */
+
+unsigned long
+frame_saved_pc (fi)
+ struct frame_info *fi;
+{
+ CORE_ADDR func_start;
+ struct rs6000_framedata fdata;
+
+ if (fi->signal_handler_caller)
+ return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);
+
+#ifdef USE_GENERIC_DUMMY_FRAMES
+ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+ return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
+#endif /* GENERIC_DUMMY_FRAMES */
+
+ func_start = get_pc_function_start (fi->pc);
+
+ /* If we failed to find the start of the function, it is a mistake
+ to inspect the instructions. */
+ if (!func_start)
+ return 0;
+
+ (void) skip_prologue (func_start, &fdata);
+
+ if (fdata.lr_offset == 0 && fi->next != NULL)
+ {
+ if (fi->next->signal_handler_caller)
+ return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4);
+ else
+ return read_memory_integer (rs6000_frame_chain (fi) + DEFAULT_LR_SAVE,
+ 4);
+ }
+
+ if (fdata.lr_offset == 0)
+ return read_register (LR_REGNUM);
+
+ return read_memory_integer (rs6000_frame_chain (fi) + fdata.lr_offset, 4);
+}
+
+/* If saved registers of frame FI are not known yet, read and cache them.
+ &FDATAP contains rs6000_framedata; TDATAP can be NULL,
+ in which case the framedata are read. */
+
+static void
+frame_get_saved_regs (fi, fdatap)
+ struct frame_info *fi;
+ struct rs6000_framedata *fdatap;
+{
+ int ii;
+ CORE_ADDR frame_addr;
+ struct rs6000_framedata work_fdata;
+
+ if (fi->saved_regs)
+ return;
+
+ if (fdatap == NULL)
+ {
+ fdatap = &work_fdata;
+ (void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
+ }
+
+ frame_saved_regs_zalloc (fi);
+
+ /* If there were any saved registers, figure out parent's stack
+ pointer. */
+ /* The following is true only if the frame doesn't have a call to
+ alloca(), FIXME. */
+
+ if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
+ && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
+ frame_addr = 0;
+ else if (fi->prev && fi->prev->frame)
+ frame_addr = fi->prev->frame;
+ else
+ frame_addr = read_memory_integer (fi->frame, 4);
+
+ /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
+ All fpr's from saved_fpr to fp31 are saved. */
+
+ if (fdatap->saved_fpr >= 0)
+ {
+ int i;
+ int fpr_offset = frame_addr + fdatap->fpr_offset;
+ for (i = fdatap->saved_fpr; i < 32; i++)
+ {
+ fi->saved_regs [FP0_REGNUM + i] = fpr_offset;
+ fpr_offset += 8;
+ }
+ }
+
+ /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
+ All gpr's from saved_gpr to gpr31 are saved. */
+
+ if (fdatap->saved_gpr >= 0)
+ {
+ int i;
+ int gpr_offset = frame_addr + fdatap->gpr_offset;
+ for (i = fdatap->saved_gpr; i < 32; i++)
+ {
+ fi->saved_regs [i] = gpr_offset;
+ gpr_offset += 4;
+ }
+ }
+
+ /* If != 0, fdatap->cr_offset is the offset from the frame that holds
+ the CR. */
+ if (fdatap->cr_offset != 0)
+ fi->saved_regs [CR_REGNUM] = frame_addr + fdatap->cr_offset;
+
+ /* If != 0, fdatap->lr_offset is the offset from the frame that holds
+ the LR. */
+ if (fdatap->lr_offset != 0)
+ fi->saved_regs [LR_REGNUM] = frame_addr + fdatap->lr_offset;
+}
+
+/* Return the address of a frame. This is the inital %sp value when the frame
+ was first allocated. For functions calling alloca(), it might be saved in
+ an alloca register. */
+
+static CORE_ADDR
+frame_initial_stack_address (fi)
+ struct frame_info *fi;
+{
+ CORE_ADDR tmpaddr;
+ struct rs6000_framedata fdata;
+ struct frame_info *callee_fi;
+
+ /* if the initial stack pointer (frame address) of this frame is known,
+ just return it. */
+
+ if (fi->extra_info->initial_sp)
+ return fi->extra_info->initial_sp;
+
+ /* find out if this function is using an alloca register.. */
+
+ (void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
+
+ /* if saved registers of this frame are not known yet, read and cache them. */
+
+ if (!fi->saved_regs)
+ frame_get_saved_regs (fi, &fdata);
+
+ /* If no alloca register used, then fi->frame is the value of the %sp for
+ this frame, and it is good enough. */
+
+ if (fdata.alloca_reg < 0)
+ {
+ fi->extra_info->initial_sp = fi->frame;
+ return fi->extra_info->initial_sp;
+ }
+
+ /* This function has an alloca register. If this is the top-most frame
+ (with the lowest address), the value in alloca register is good. */
+
+ if (!fi->next)
+ return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
+
+ /* Otherwise, this is a caller frame. Callee has usually already saved
+ registers, but there are exceptions (such as when the callee
+ has no parameters). Find the address in which caller's alloca
+ register is saved. */
+
+ for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
+
+ if (!callee_fi->saved_regs)
+ frame_get_saved_regs (callee_fi, NULL);
+
+ /* this is the address in which alloca register is saved. */
+
+ tmpaddr = callee_fi->saved_regs [fdata.alloca_reg];
+ if (tmpaddr) {
+ fi->extra_info->initial_sp = read_memory_integer (tmpaddr, 4);
+ return fi->extra_info->initial_sp;
+ }
+
+ /* Go look into deeper levels of the frame chain to see if any one of
+ the callees has saved alloca register. */
+ }
+
+ /* If alloca register was not saved, by the callee (or any of its callees)
+ then the value in the register is still good. */
+
+ fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
+ return fi->extra_info->initial_sp;
+}
+
+CORE_ADDR
+rs6000_frame_chain (thisframe)
+ struct frame_info *thisframe;
+{
+ CORE_ADDR fp;
+
+#ifdef USE_GENERIC_DUMMY_FRAMES
+ if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
+ return thisframe->frame; /* dummy frame same as caller's frame */
+#endif /* GENERIC_DUMMY_FRAMES */
+
+ if (inside_entry_file (thisframe->pc) ||
+ thisframe->pc == entry_point_address ())
+ return 0;
+
+ if (thisframe->signal_handler_caller)
+ fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
+ else if (thisframe->next != NULL
+ && thisframe->next->signal_handler_caller
+ && frameless_function_invocation (thisframe))
+ /* A frameless function interrupted by a signal did not change the
+ frame pointer. */
+ fp = FRAME_FP (thisframe);
+ else
+ fp = read_memory_integer ((thisframe)->frame, 4);
+
+#ifdef USE_GENERIC_DUMMY_FRAMES
+ {
+ CORE_ADDR fpp, lr;
+
+ lr = read_register (LR_REGNUM);
+ if (lr == entry_point_address ())
+ if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0)
+ if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
+ return fpp;
+ }
+#endif /* GENERIC_DUMMY_FRAMES */
+ return fp;
+}
+
+/* Return nonzero if ADDR (a function pointer) is in the data space and
+ is therefore a special function pointer. */
+
+int
+is_magic_function_pointer (addr)
+ CORE_ADDR addr;
+{
+ struct obj_section *s;
+
+ s = find_pc_section (addr);
+ if (s && s->the_bfd_section->flags & SEC_CODE)
+ return 0;
+ else
+ return 1;
+}
+
+#ifdef GDB_TARGET_POWERPC
+int
+gdb_print_insn_powerpc (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info *info;
+{
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return print_insn_big_powerpc (memaddr, info);
+ else
+ return print_insn_little_powerpc (memaddr, info);
+}
+#endif
+
+/* Function: get_saved_register
+ Just call the generic_get_saved_register function. */
+
+#ifdef USE_GENERIC_DUMMY_FRAMES
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+ char *raw_buffer;
+ int *optimized;
+ CORE_ADDR *addrp;
+ struct frame_info *frame;
+ int regnum;
+ enum lval_type *lval;
+{
+ generic_get_saved_register (raw_buffer, optimized, addrp,
+ frame, regnum, lval);
+}
+#endif
+
+
+
+/* Handling the various PowerPC/RS6000 variants. */
+
+
+/* The arrays here called register_names_MUMBLE hold names that
+ the rs6000_register_name function returns.
+
+ For each family of PPC variants, I've tried to isolate out the
+ common registers and put them up front, so that as long as you get
+ the general family right, GDB will correctly identify the registers
+ common to that family. The common register sets are:
+
+ For the 60x family: hid0 hid1 iabr dabr pir
+
+ For the 505 and 860 family: eie eid nri
+
+ For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
+ tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
+ pbu1 pbl2 pbu2
+
+ Most of these register groups aren't anything formal. I arrived at
+ them by looking at the registers that occurred in more than one
+ processor. */
+
+/* UISA register names common across all architectures, including POWER. */
+
+#define COMMON_UISA_REG_NAMES \
+ /* 0 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
+ /* 8 */ "r8", "r9", "r10","r11","r12","r13","r14","r15", \
+ /* 16 */ "r16","r17","r18","r19","r20","r21","r22","r23", \
+ /* 24 */ "r24","r25","r26","r27","r28","r29","r30","r31", \
+ /* 32 */ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
+ /* 40 */ "f8", "f9", "f10","f11","f12","f13","f14","f15", \
+ /* 48 */ "f16","f17","f18","f19","f20","f21","f22","f23", \
+ /* 56 */ "f24","f25","f26","f27","f28","f29","f30","f31", \
+ /* 64 */ "pc", "ps"
+
+/* UISA-level SPR names for PowerPC. */
+#define PPC_UISA_SPR_NAMES \
+ /* 66 */ "cr", "lr", "ctr", "xer", ""
+
+/* Segment register names, for PowerPC. */
+#define PPC_SEGMENT_REG_NAMES \
+ /* 71 */ "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", \
+ /* 79 */ "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+
+/* OEA SPR names for 32-bit PowerPC implementations.
+ The blank space is for "asr", which is only present on 64-bit
+ implementations. */
+#define PPC_32_OEA_SPR_NAMES \
+ /* 87 */ "pvr", \
+ /* 88 */ "ibat0u", "ibat0l", "ibat1u", "ibat1l", \
+ /* 92 */ "ibat2u", "ibat2l", "ibat3u", "ibat3l", \
+ /* 96 */ "dbat0u", "dbat0l", "dbat1u", "dbat1l", \
+ /* 100 */ "dbat2u", "dbat2l", "dbat3u", "dbat3l", \
+ /* 104 */ "sdr1", "", "dar", "dsisr", "sprg0", "sprg1", "sprg2", "sprg3",\
+ /* 112 */ "srr0", "srr1", "tbl", "tbu", "dec", "dabr", "ear"
+
+/* For the RS6000, we only cover user-level SPR's. */
+char *register_names_rs6000[] =
+{
+ COMMON_UISA_REG_NAMES,
+ /* 66 */ "cnd", "lr", "cnt", "xer", "mq"
+};
+
+/* a UISA-only view of the PowerPC. */
+char *register_names_uisa[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES
+};
+
+char *register_names_403[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
+ /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
+ /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2"
+};
+
+char *register_names_403GC[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
+ /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
+ /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2",
+ /* 143 */ "zpr", "pid", "sgr", "dcwr", "tbhu", "tblu"
+};
+
+char *register_names_505[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "eie", "eid", "nri"
+};
+
+char *register_names_860[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "eie", "eid", "nri", "cmpa", "cmpb", "cmpc", "cmpd", "icr",
+ /* 127 */ "der", "counta", "countb", "cmpe", "cmpf", "cmpg", "cmph",
+ /* 134 */ "lctrl1", "lctrl2", "ictrl", "bar", "ic_cst", "ic_adr", "ic_dat",
+ /* 141 */ "dc_cst", "dc_adr", "dc_dat", "dpdr", "dpir", "immr", "mi_ctr",
+ /* 148 */ "mi_ap", "mi_epn", "mi_twc", "mi_rpn", "md_ctr", "m_casid",
+ /* 154 */ "md_ap", "md_epn", "md_twb", "md_twc", "md_rpn", "m_tw",
+ /* 160 */ "mi_dbcam", "mi_dbram0", "mi_dbram1", "md_dbcam", "md_dbram0",
+ /* 165 */ "md_dbram1"
+};
+
+/* Note that the 601 has different register numbers for reading and
+ writing RTCU and RTCL. However, how one reads and writes a
+ register is the stub's problem. */
+char *register_names_601[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mq", "rtcu",
+ /* 126 */ "rtcl"
+};
+
+char *register_names_602[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "hid0", "hid1", "iabr", "", "", "tcr", "ibr", "esassr", "sebr",
+ /* 128 */ "ser", "sp", "lt"
+};
+
+char *register_names_603[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "hid0", "hid1", "iabr", "", "", "dmiss", "dcmp", "hash1",
+ /* 127 */ "hash2", "imiss", "icmp", "rpa"
+};
+
+char *register_names_604[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mmcr0", "pmc1", "pmc2",
+ /* 127 */ "sia", "sda"
+};
+
+char *register_names_750[] =
+{
+ COMMON_UISA_REG_NAMES,
+ PPC_UISA_SPR_NAMES,
+ PPC_SEGMENT_REG_NAMES,
+ PPC_32_OEA_SPR_NAMES,
+ /* 119 */ "hid0", "hid1", "iabr", "dabr", "", "ummcr0", "upmc1", "upmc2",
+ /* 127 */ "usia", "ummcr1", "upmc3", "upmc4", "mmcr0", "pmc1", "pmc2",
+ /* 134 */ "sia", "mmcr1", "pmc3", "pmc4", "l2cr", "ictc", "thrm1", "thrm2",
+ /* 142 */ "thrm3"
+};
+
+
+/* Information about a particular processor variant. */
+struct variant
+{
+ /* Name of this variant. */
+ char *name;
+
+ /* English description of the variant. */
+ char *description;
+
+ /* Table of register names; registers[R] is the name of the register
+ number R. */
+ int num_registers;
+ char **registers;
+};
+
+#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
+
+
+/* Information in this table comes from the following web sites:
+ IBM: http://www.chips.ibm.com:80/products/embedded/
+ Motorola: http://www.mot.com/SPS/PowerPC/
+
+ I'm sure I've got some of the variant descriptions not quite right.
+ Please report any inaccuracies you find to GDB's maintainer.
+
+ If you add entries to this table, please be sure to allow the new
+ value as an argument to the --with-cpu flag, in configure.in. */
+
+static struct variant
+variants[] =
+{
+ { "ppc-uisa", "PowerPC UISA - a PPC processor as viewed by user-level code",
+ num_registers (register_names_uisa), register_names_uisa },
+ { "rs6000", "IBM RS6000 (\"POWER\") architecture, user-level view",
+ num_registers (register_names_rs6000), register_names_rs6000 },
+ { "403", "IBM PowerPC 403",
+ num_registers (register_names_403), register_names_403 },
+ { "403GC", "IBM PowerPC 403GC",
+ num_registers (register_names_403GC), register_names_403GC },
+ { "505", "Motorola PowerPC 505",
+ num_registers (register_names_505), register_names_505 },
+ { "860", "Motorola PowerPC 860 or 850",
+ num_registers (register_names_860), register_names_860 },
+ { "601", "Motorola PowerPC 601",
+ num_registers (register_names_601), register_names_601 },
+ { "602", "Motorola PowerPC 602",
+ num_registers (register_names_602), register_names_602 },
+ { "603", "Motorola/IBM PowerPC 603 or 603e",
+ num_registers (register_names_603), register_names_603 },
+ { "604", "Motorola PowerPC 604 or 604e",
+ num_registers (register_names_604), register_names_604 },
+ { "750", "Motorola/IBM PowerPC 750 or 750",
+ num_registers (register_names_750), register_names_750 },
+ { 0, 0, 0, 0 }
+};
+
+
+static struct variant *current_variant;
+
+char *
+rs6000_register_name (int i)
+{
+ if (i < 0 || i >= NUM_REGS)
+ error ("GDB bug: rs6000-tdep.c (rs6000_register_name): strange register number");
+
+ return ((i < current_variant->num_registers)
+ ? current_variant->registers[i]
+ : "");
+}
+
+
+static void
+install_variant (struct variant *v)
+{
+ current_variant = v;
+}
+
+
+/* Look up the variant named NAME in the `variants' table. Return a
+ pointer to the struct variant, or null if we couldn't find it. */
+static struct variant *
+find_variant_by_name (char *name)
+{
+ int i;
+
+ for (i = 0; variants[i].name; i++)
+ if (! strcmp (name, variants[i].name))
+ return &variants[i];
+
+ return 0;
+}
+
+
+/* Install the PPC/RS6000 variant named NAME in the `variants' table.
+ Return zero if we installed it successfully, or a non-zero value if
+ we couldn't do it.
+
+ This might be useful to code outside this file, which doesn't want
+ to depend on the exact indices of the entries in the `variants'
+ table. Just make it non-static if you want that. */
+static int
+install_variant_by_name (char *name)
+{
+ struct variant *v = find_variant_by_name (name);
+
+ if (v)
+ {
+ install_variant (v);
+ return 0;
+ }
+ else
+ return 1;
+}
+
+
+static void
+list_variants ()
+{
+ int i;
+
+ printf_filtered ("GDB knows about the following PowerPC and RS6000 variants:\n");
+
+ for (i = 0; variants[i].name; i++)
+ printf_filtered (" %-8s %s\n",
+ variants[i].name, variants[i].description);
+}
+
+
+static void
+show_current_variant ()
+{
+ printf_filtered ("PowerPC / RS6000 processor variant is set to `%s'.\n",
+ current_variant->name);
+}
+
+
+static void
+set_processor (char *arg, int from_tty)
+{
+ int i;
+
+ if (! arg || arg[0] == '\0')
+ {
+ list_variants ();
+ return;
+ }
+
+ if (install_variant_by_name (arg))
+ {
+ error_begin ();
+ fprintf_filtered (gdb_stderr,
+ "`%s' is not a recognized PowerPC / RS6000 variant name.\n\n", arg);
+ list_variants ();
+ return_to_top_level (RETURN_ERROR);
+ }
+
+ show_current_variant ();
+}
+
+static void
+show_processor (char *arg, int from_tty)
+{
+ show_current_variant ();
+}
+
+
+
+/* Initialization code. */
+
+void
+_initialize_rs6000_tdep ()
+{
+ /* FIXME, this should not be decided via ifdef. */
+#ifdef GDB_TARGET_POWERPC
+ tm_print_insn = gdb_print_insn_powerpc;
+#else
+ tm_print_insn = print_insn_rs6000;
+#endif
+
+ /* I don't think we should use the set/show command arrangement
+ here, because the way that's implemented makes it hard to do the
+ error checking we want in a reasonable way. So we just add them
+ as two separate commands. */
+ add_cmd ("processor", class_support, set_processor,
+ "`set processor NAME' sets the PowerPC/RS6000 variant to NAME.\n\
+If you set this, GDB will know about the special-purpose registers that are\n\
+available on the given variant.\n\
+Type `set processor' alone for a list of recognized variant names.",
+ &setlist);
+ add_cmd ("processor", class_support, show_processor,
+ "Show the variant of the PowerPC or RS6000 processor in use.\n\
+Use `set processor' to change this.",
+ &showlist);
+
+ /* Set the current PPC processor variant. */
+ {
+ int status = 1;
+
+#ifdef TARGET_CPU_DEFAULT
+ status = install_variant_by_name (TARGET_CPU_DEFAULT);
+#endif
+
+ if (status)
+ {
+#ifdef GDB_TARGET_POWERPC
+ install_variant_by_name ("ppc-uisa");
+#else
+ install_variant_by_name ("rs6000");
+#endif
+ }
+ }
+}