diff options
Diffstat (limited to 'gdb/rl78-tdep.c')
-rw-r--r-- | gdb/rl78-tdep.c | 1035 |
1 files changed, 1035 insertions, 0 deletions
diff --git a/gdb/rl78-tdep.c b/gdb/rl78-tdep.c new file mode 100644 index 0000000..6e4d784 --- /dev/null +++ b/gdb/rl78-tdep.c @@ -0,0 +1,1035 @@ +/* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger. + + Copyright (C) 2011-2012 Free Software Foundation, Inc. + + Contributed by Red Hat, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "defs.h" +#include "arch-utils.h" +#include "prologue-value.h" +#include "target.h" +#include "regcache.h" +#include "opcode/rl78.h" +#include "dis-asm.h" +#include "gdbtypes.h" +#include "frame.h" +#include "frame-unwind.h" +#include "frame-base.h" +#include "value.h" +#include "gdbcore.h" +#include "dwarf2-frame.h" + +#include "elf/rl78.h" +#include "elf-bfd.h" + +/* Register Banks. */ + +enum +{ + RL78_BANK0 = 0, + RL78_BANK1 = 1, + RL78_BANK2 = 2, + RL78_BANK3 = 3, + RL78_NUMBANKS = 4, + RL78_REGS_PER_BANK = 8 +}; + +/* Register Numbers. */ + +enum +{ + /* All general purpose registers are 8 bits wide. */ + RL78_BANK0_R0_REGNUM = 0, + RL78_BANK0_R1_REGNUM, + RL78_BANK0_R2_REGNUM, + RL78_BANK0_R3_REGNUM, + RL78_BANK0_R4_REGNUM, + RL78_BANK0_R5_REGNUM, + RL78_BANK0_R6_REGNUM, + RL78_BANK0_R7_REGNUM, + + RL78_BANK1_R0_REGNUM, + RL78_BANK1_R1_REGNUM, + RL78_BANK1_R2_REGNUM, + RL78_BANK1_R3_REGNUM, + RL78_BANK1_R4_REGNUM, + RL78_BANK1_R5_REGNUM, + RL78_BANK1_R6_REGNUM, + RL78_BANK1_R7_REGNUM, + + RL78_BANK2_R0_REGNUM, + RL78_BANK2_R1_REGNUM, + RL78_BANK2_R2_REGNUM, + RL78_BANK2_R3_REGNUM, + RL78_BANK2_R4_REGNUM, + RL78_BANK2_R5_REGNUM, + RL78_BANK2_R6_REGNUM, + RL78_BANK2_R7_REGNUM, + + RL78_BANK3_R0_REGNUM, + RL78_BANK3_R1_REGNUM, + RL78_BANK3_R2_REGNUM, + RL78_BANK3_R3_REGNUM, + RL78_BANK3_R4_REGNUM, + RL78_BANK3_R5_REGNUM, + RL78_BANK3_R6_REGNUM, + RL78_BANK3_R7_REGNUM, + + RL78_PSW_REGNUM, /* 8 bits */ + RL78_ES_REGNUM, /* 8 bits */ + RL78_CS_REGNUM, /* 8 bits */ + RL78_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */ + + /* Fixed address SFRs (some of those above are SFRs too.) */ + RL78_SPL_REGNUM, /* 8 bits; lower half of SP */ + RL78_SPH_REGNUM, /* 8 bits; upper half of SP */ + RL78_PMC_REGNUM, /* 8 bits */ + RL78_MEM_REGNUM, /* 8 bits ?? */ + + RL78_NUM_REGS, + + /* Pseudo registers. */ + RL78_BANK0_RP0_REGNUM = RL78_NUM_REGS, + RL78_BANK0_RP1_REGNUM, + RL78_BANK0_RP2_REGNUM, + RL78_BANK0_RP3_REGNUM, + + RL78_BANK1_RP0_REGNUM, + RL78_BANK1_RP1_REGNUM, + RL78_BANK1_RP2_REGNUM, + RL78_BANK1_RP3_REGNUM, + + RL78_BANK2_RP0_REGNUM, + RL78_BANK2_RP1_REGNUM, + RL78_BANK2_RP2_REGNUM, + RL78_BANK2_RP3_REGNUM, + + RL78_BANK3_RP0_REGNUM, + RL78_BANK3_RP1_REGNUM, + RL78_BANK3_RP2_REGNUM, + RL78_BANK3_RP3_REGNUM, + + RL78_SP_REGNUM, + + RL78_X_REGNUM, + RL78_A_REGNUM, + RL78_C_REGNUM, + RL78_B_REGNUM, + RL78_E_REGNUM, + RL78_D_REGNUM, + RL78_L_REGNUM, + RL78_H_REGNUM, + + RL78_AX_REGNUM, + RL78_BC_REGNUM, + RL78_DE_REGNUM, + RL78_HL_REGNUM, + RL78_NUM_TOTAL_REGS, + RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS +}; + +/* Architecture specific data. */ + +struct gdbarch_tdep +{ + /* The ELF header flags specify the multilib used. */ + int elf_flags; + + struct type *rl78_void, + *rl78_uint8, + *rl78_int8, + *rl78_uint16, + *rl78_int16, + *rl78_uint32, + *rl78_int32, + *rl78_data_pointer, + *rl78_code_pointer; +}; + +/* This structure holds the results of a prologue analysis. */ + +struct rl78_prologue +{ + /* The offset from the frame base to the stack pointer --- always + zero or negative. + + Calling this a "size" is a bit misleading, but given that the + stack grows downwards, using offsets for everything keeps one + from going completely sign-crazy: you never change anything's + sign for an ADD instruction; always change the second operand's + sign for a SUB instruction; and everything takes care of + itself. */ + int frame_size; + + /* Non-zero if this function has initialized the frame pointer from + the stack pointer, zero otherwise. */ + int has_frame_ptr; + + /* If has_frame_ptr is non-zero, this is the offset from the frame + base to where the frame pointer points. This is always zero or + negative. */ + int frame_ptr_offset; + + /* The address of the first instruction at which the frame has been + set up and the arguments are where the debug info says they are + --- as best as we can tell. */ + CORE_ADDR prologue_end; + + /* reg_offset[R] is the offset from the CFA at which register R is + saved, or 1 if register R has not been saved. (Real values are + always zero or negative.) */ + int reg_offset[RL78_NUM_TOTAL_REGS]; +}; + +/* Implement the "register_type" gdbarch method. */ + +static struct type * +rl78_register_type (struct gdbarch *gdbarch, int reg_nr) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (reg_nr == RL78_PC_REGNUM) + return tdep->rl78_code_pointer; + else if (reg_nr <= RL78_MEM_REGNUM + || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)) + return tdep->rl78_int8; + else + return tdep->rl78_data_pointer; +} + +/* Implement the "register_name" gdbarch method. */ + +static const char * +rl78_register_name (struct gdbarch *gdbarch, int regnr) +{ + static const char *const reg_names[] = + { + "bank0_r0", + "bank0_r1", + "bank0_r2", + "bank0_r3", + "bank0_r4", + "bank0_r5", + "bank0_r6", + "bank0_r7", + + "bank1_r0", + "bank1_r1", + "bank1_r2", + "bank1_r3", + "bank1_r4", + "bank1_r5", + "bank1_r6", + "bank1_r7", + + "bank2_r0", + "bank2_r1", + "bank2_r2", + "bank2_r3", + "bank2_r4", + "bank2_r5", + "bank2_r6", + "bank2_r7", + + "bank3_r0", + "bank3_r1", + "bank3_r2", + "bank3_r3", + "bank3_r4", + "bank3_r5", + "bank3_r6", + "bank3_r7", + + "psw", + "es", + "cs", + "pc", + + "spl", + "sph", + "pmc", + "mem", + + "bank0_rp0", + "bank0_rp1", + "bank0_rp2", + "bank0_rp3", + + "bank1_rp0", + "bank1_rp1", + "bank1_rp2", + "bank1_rp3", + + "bank2_rp0", + "bank2_rp1", + "bank2_rp2", + "bank2_rp3", + + "bank3_rp0", + "bank3_rp1", + "bank3_rp2", + "bank3_rp3", + + "sp", + + "x", + "a", + "c", + "b", + "e", + "d", + "l", + "h", + + "ax", + "bc", + "de", + "hl" + }; + + return reg_names[regnr]; +} + +/* Strip bits to form an instruction address. (When fetching a + 32-bit address from the stack, the high eight bits are garbage. + This function strips off those unused bits.) */ + +static CORE_ADDR +rl78_make_instruction_address (CORE_ADDR addr) +{ + return addr & 0xffffff; +} + +/* Set / clear bits necessary to make a data address. */ + +static CORE_ADDR +rl78_make_data_address (CORE_ADDR addr) +{ + return (addr & 0xffff) | 0xf0000; +} + +/* Implement the "pseudo_register_read" gdbarch method. */ + +static enum register_status +rl78_pseudo_register_read (struct gdbarch *gdbarch, + struct regcache *regcache, + int reg, gdb_byte *buffer) +{ + enum register_status status; + + if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) + { + int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) + + RL78_BANK0_R0_REGNUM; + + status = regcache_raw_read (regcache, raw_regnum, buffer); + if (status == REG_VALID) + status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1); + } + else if (reg == RL78_SP_REGNUM) + { + status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer); + if (status == REG_VALID) + status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1); + } + else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) + { + ULONGEST psw; + + status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); + if (status == REG_VALID) + { + /* RSB0 is at bit 3; RSBS1 is at bit 5. */ + int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); + int raw_regnum = RL78_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK + + (reg - RL78_X_REGNUM); + status = regcache_raw_read (regcache, raw_regnum, buffer); + } + } + else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) + { + ULONGEST psw; + + status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); + if (status == REG_VALID) + { + /* RSB0 is at bit 3; RSBS1 is at bit 5. */ + int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); + int raw_regnum = RL78_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK + + 2 * (reg - RL78_AX_REGNUM); + status = regcache_raw_read (regcache, raw_regnum, buffer); + if (status == REG_VALID) + status = regcache_raw_read (regcache, raw_regnum + 1, + buffer + 1); + } + } + else + gdb_assert_not_reached ("invalid pseudo register number"); + return status; +} + +/* Implement the "pseudo_register_write" gdbarch method. */ + +static void +rl78_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int reg, const gdb_byte *buffer) +{ + if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) + { + int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) + + RL78_BANK0_R0_REGNUM; + + regcache_raw_write (regcache, raw_regnum, buffer); + regcache_raw_write (regcache, raw_regnum + 1, buffer + 1); + } + else if (reg == RL78_SP_REGNUM) + { + regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer); + regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1); + } + else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) + { + ULONGEST psw; + int bank; + int raw_regnum; + + regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); + bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); + /* RSB0 is at bit 3; RSBS1 is at bit 5. */ + raw_regnum = RL78_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK + + (reg - RL78_X_REGNUM); + regcache_raw_write (regcache, raw_regnum, buffer); + } + else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) + { + ULONGEST psw; + int bank, raw_regnum; + + regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); + bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); + /* RSB0 is at bit 3; RSBS1 is at bit 5. */ + raw_regnum = RL78_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK + + 2 * (reg - RL78_AX_REGNUM); + regcache_raw_write (regcache, raw_regnum, buffer); + regcache_raw_write (regcache, raw_regnum + 1, buffer + 1); + } + else + gdb_assert_not_reached ("invalid pseudo register number"); +} + +/* Implement the "breakpoint_from_pc" gdbarch method. */ + +const gdb_byte * +rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, + int *lenptr) +{ + /* The documented BRK instruction is actually a two byte sequence, + {0x61, 0xcc}, but instructions may be as short as one byte. + Correspondence with Renesas revealed that the one byte sequence + 0xff is used when a one byte breakpoint instruction is required. */ + static gdb_byte breakpoint[] = { 0xff }; + + *lenptr = sizeof breakpoint; + return breakpoint; +} + +/* Define a "handle" struct for fetching the next opcode. */ + +struct rl78_get_opcode_byte_handle +{ + CORE_ADDR pc; +}; + +/* Fetch a byte on behalf of the opcode decoder. HANDLE contains + the memory address of the next byte to fetch. If successful, + the address in the handle is updated and the byte fetched is + returned as the value of the function. If not successful, -1 + is returned. */ + +static int +rl78_get_opcode_byte (void *handle) +{ + struct rl78_get_opcode_byte_handle *opcdata = handle; + int status; + gdb_byte byte; + + status = target_read_memory (opcdata->pc, &byte, 1); + if (status == 0) + { + opcdata->pc += 1; + return byte; + } + else + return -1; +} + +/* Function for finding saved registers in a 'struct pv_area'; this + function is passed to pv_area_scan. + + If VALUE is a saved register, ADDR says it was saved at a constant + offset from the frame base, and SIZE indicates that the whole + register was saved, record its offset. */ + +static void +check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, + pv_t value) +{ + struct rl78_prologue *result = (struct rl78_prologue *) result_untyped; + + if (value.kind == pvk_register + && value.k == 0 + && pv_is_register (addr, RL78_SP_REGNUM) + && size == register_size (target_gdbarch, value.reg)) + result->reg_offset[value.reg] = addr.k; +} + +/* Analyze a prologue starting at START_PC, going no further than + LIMIT_PC. Fill in RESULT as appropriate. */ + +static void +rl78_analyze_prologue (CORE_ADDR start_pc, + CORE_ADDR limit_pc, struct rl78_prologue *result) +{ + CORE_ADDR pc, next_pc; + int rn; + pv_t reg[RL78_NUM_TOTAL_REGS]; + struct pv_area *stack; + struct cleanup *back_to; + CORE_ADDR after_last_frame_setup_insn = start_pc; + int bank = 0; + + memset (result, 0, sizeof (*result)); + + for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++) + { + reg[rn] = pv_register (rn, 0); + result->reg_offset[rn] = 1; + } + + stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch)); + back_to = make_cleanup_free_pv_area (stack); + + /* The call instruction has saved the return address on the stack. */ + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4); + pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]); + + pc = start_pc; + while (pc < limit_pc) + { + int bytes_read; + struct rl78_get_opcode_byte_handle opcode_handle; + RL78_Opcode_Decoded opc; + + opcode_handle.pc = pc; + bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte, + &opcode_handle); + next_pc = pc + bytes_read; + + if (opc.id == RLO_sel) + { + bank = opc.op[1].addend; + } + else if (opc.id == RLO_mov + && opc.op[0].type == RL78_Operand_PreDec + && opc.op[0].reg == RL78_Reg_SP + && opc.op[1].type == RL78_Operand_Register) + { + int rsrc = (bank * RL78_REGS_PER_BANK) + + 2 * (opc.op[1].reg - RL78_Reg_AX); + + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); + pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]); + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); + pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]); + after_last_frame_setup_insn = next_pc; + } + else if (opc.id == RLO_sub + && opc.op[0].type == RL78_Operand_Register + && opc.op[0].reg == RL78_Reg_SP + && opc.op[1].type == RL78_Operand_Immediate) + { + int addend = opc.op[1].addend; + + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], + -addend); + after_last_frame_setup_insn = next_pc; + } + else + { + /* Terminate the prologue scan. */ + break; + } + + pc = next_pc; + } + + /* Is the frame size (offset, really) a known constant? */ + if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM)) + result->frame_size = reg[RL78_SP_REGNUM].k; + + /* Record where all the registers were saved. */ + pv_area_scan (stack, check_for_saved, (void *) result); + + result->prologue_end = after_last_frame_setup_insn; + + do_cleanups (back_to); +} + +/* Implement the "addr_bits_remove" gdbarch method. */ + +static CORE_ADDR +rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) +{ + return addr & 0xffffff; +} + +/* Implement the "address_to_pointer" gdbarch method. */ + +static void +rl78_address_to_pointer (struct gdbarch *gdbarch, + struct type *type, gdb_byte *buf, CORE_ADDR addr) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + + store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, + addr & 0xffffff); +} + +/* Implement the "pointer_to_address" gdbarch method. */ + +static CORE_ADDR +rl78_pointer_to_address (struct gdbarch *gdbarch, + struct type *type, const gdb_byte *buf) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR addr + = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); + + /* Is it a code address? */ + if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC + || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD + || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)) + || TYPE_LENGTH (type) == 4) + return rl78_make_instruction_address (addr); + else + return rl78_make_data_address (addr); +} + +/* Implement the "skip_prologue" gdbarch method. */ + +static CORE_ADDR +rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + char *name; + CORE_ADDR func_addr, func_end; + struct rl78_prologue p; + + /* Try to find the extent of the function that contains PC. */ + if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) + return pc; + + rl78_analyze_prologue (pc, func_end, &p); + return p.prologue_end; +} + +/* Implement the "unwind_pc" gdbarch method. */ + +static CORE_ADDR +rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame) +{ + return rl78_addr_bits_remove + (arch, frame_unwind_register_unsigned (next_frame, + RL78_PC_REGNUM)); +} + +/* Implement the "unwind_sp" gdbarch method. */ + +static CORE_ADDR +rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame) +{ + return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM); +} + +/* Given a frame described by THIS_FRAME, decode the prologue of its + associated function if there is not cache entry as specified by + THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and + return that struct as the value of this function. */ + +static struct rl78_prologue * +rl78_analyze_frame_prologue (struct frame_info *this_frame, + void **this_prologue_cache) +{ + if (!*this_prologue_cache) + { + CORE_ADDR func_start, stop_addr; + + *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue); + + func_start = get_frame_func (this_frame); + stop_addr = get_frame_pc (this_frame); + + /* If we couldn't find any function containing the PC, then + just initialize the prologue cache, but don't do anything. */ + if (!func_start) + stop_addr = func_start; + + rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache); + } + + return *this_prologue_cache; +} + +/* Given a frame and a prologue cache, return this frame's base. */ + +static CORE_ADDR +rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache) +{ + struct rl78_prologue *p + = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); + CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM); + + return rl78_make_data_address (sp - p->frame_size); +} + +/* Implement the "frame_this_id" method for unwinding frames. */ + +static void +rl78_this_id (struct frame_info *this_frame, + void **this_prologue_cache, struct frame_id *this_id) +{ + *this_id = frame_id_build (rl78_frame_base (this_frame, + this_prologue_cache), + get_frame_func (this_frame)); +} + +/* Implement the "frame_prev_register" method for unwinding frames. */ + +static struct value * +rl78_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, int regnum) +{ + struct rl78_prologue *p + = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); + CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache); + + if (regnum == RL78_SP_REGNUM) + return frame_unwind_got_constant (this_frame, regnum, frame_base); + + else if (regnum == RL78_SPL_REGNUM) + return frame_unwind_got_constant (this_frame, regnum, + (frame_base & 0xff)); + + else if (regnum == RL78_SPH_REGNUM) + return frame_unwind_got_constant (this_frame, regnum, + ((frame_base >> 8) & 0xff)); + + /* If prologue analysis says we saved this register somewhere, + return a description of the stack slot holding it. */ + else if (p->reg_offset[regnum] != 1) + { + struct value *rv = + frame_unwind_got_memory (this_frame, regnum, + frame_base + p->reg_offset[regnum]); + + if (regnum == RL78_PC_REGNUM) + { + ULONGEST pc = rl78_make_instruction_address (value_as_long (rv)); + + return frame_unwind_got_constant (this_frame, regnum, pc); + } + return rv; + } + + /* Otherwise, presume we haven't changed the value of this + register, and get it from the next frame. */ + else + return frame_unwind_got_register (this_frame, regnum, regnum); +} + +static const struct frame_unwind rl78_unwind = +{ + NORMAL_FRAME, + default_frame_unwind_stop_reason, + rl78_this_id, + rl78_prev_register, + NULL, + default_frame_sniffer +}; + +/* Implement the "dwarf_reg_to_regnum" gdbarch method. */ + +static int +rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) +{ + if (0 <= reg && reg <= 31) + { + if ((reg & 1) == 0) + /* Map even registers to their 16-bit counterparts. This + is usually what is required from the DWARF info. */ + return (reg >> 1) + RL78_BANK0_RP0_REGNUM; + else + return reg; + } + else if (reg == 32) + return RL78_SP_REGNUM; + else if (reg == 33) + return RL78_PC_REGNUM; + else + internal_error (__FILE__, __LINE__, + _("Undefined dwarf2 register mapping of reg %d"), + reg); +} + +/* Implement the "return_value" gdbarch method. */ + +static enum return_value_convention +rl78_return_value (struct gdbarch *gdbarch, + struct type *func_type, + struct type *valtype, + struct regcache *regcache, + gdb_byte *readbuf, const gdb_byte *writebuf) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + ULONGEST valtype_len = TYPE_LENGTH (valtype); + + if (valtype_len > 8) + return RETURN_VALUE_STRUCT_CONVENTION; + + if (readbuf) + { + ULONGEST u; + int argreg = RL78_BANK1_R0_REGNUM; + int offset = 0; + + while (valtype_len > 0) + { + regcache_cooked_read_unsigned (regcache, argreg, &u); + store_unsigned_integer (readbuf + offset, 1, byte_order, u); + valtype_len -= 1; + offset += 1; + argreg++; + } + } + + if (writebuf) + { + ULONGEST u; + int argreg = RL78_BANK1_R0_REGNUM; + int offset = 0; + + while (valtype_len > 0) + { + u = extract_unsigned_integer (writebuf + offset, 1, byte_order); + regcache_cooked_write_unsigned (regcache, argreg, u); + valtype_len -= 1; + offset += 1; + argreg++; + } + } + + return RETURN_VALUE_REGISTER_CONVENTION; +} + + +/* Implement the "frame_align" gdbarch method. */ + +static CORE_ADDR +rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) +{ + return rl78_make_data_address (align_down (sp, 2)); +} + + +/* Implement the "dummy_id" gdbarch method. */ + +static struct frame_id +rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + return + frame_id_build (rl78_make_data_address + (get_frame_register_unsigned + (this_frame, RL78_SP_REGNUM)), + get_frame_pc (this_frame)); +} + + +/* Implement the "push_dummy_call" gdbarch method. */ + +static CORE_ADDR +rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, + int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte buf[4]; + int i; + + /* Push arguments in reverse order. */ + for (i = nargs - 1; i >= 0; i--) + { + struct type *value_type = value_enclosing_type (args[i]); + int len = TYPE_LENGTH (value_type); + int container_len = (len + 1) & ~1; + int offset; + + sp -= container_len; + write_memory (rl78_make_data_address (sp), + value_contents_all (args[i]), len); + } + + /* Store struct value address. */ + if (struct_return) + { + store_unsigned_integer (buf, 2, byte_order, struct_addr); + sp -= 2; + write_memory (rl78_make_data_address (sp), buf, 2); + } + + /* Store return address. */ + sp -= 4; + store_unsigned_integer (buf, 4, byte_order, bp_addr); + write_memory (rl78_make_data_address (sp), buf, 4); + + /* Finally, update the stack pointer... */ + regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp); + + /* DWARF2/GCC uses the stack address *before* the function call as a + frame's CFA. */ + return rl78_make_data_address (sp + 4); +} + +/* Allocate and initialize a gdbarch object. */ + +static struct gdbarch * +rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + struct gdbarch_tdep *tdep; + int elf_flags; + + /* Extract the elf_flags if available. */ + if (info.abfd != NULL + && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) + elf_flags = elf_elfheader (info.abfd)->e_flags; + else + elf_flags = 0; + + + /* Try to find the architecture in the list of already defined + architectures. */ + for (arches = gdbarch_list_lookup_by_info (arches, &info); + arches != NULL; + arches = gdbarch_list_lookup_by_info (arches->next, &info)) + { + if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) + continue; + + return arches->gdbarch; + } + + /* None found, create a new architecture from the information + provided. */ + tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); + gdbarch = gdbarch_alloc (&info, tdep); + tdep->elf_flags = elf_flags; + + /* Initialize types. */ + tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); + tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t"); + tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t"); + tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t"); + tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t"); + tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t"); + tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t"); + + tdep->rl78_data_pointer + = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT, + xstrdup ("rl78_data_addr_t")); + TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void; + TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1; + + tdep->rl78_code_pointer + = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT, + xstrdup ("rl78_code_addr_t")); + TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void; + TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1; + + /* Registers. */ + set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS); + set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS); + set_gdbarch_register_name (gdbarch, rl78_register_name); + set_gdbarch_register_type (gdbarch, rl78_register_type); + set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM); + set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM); + set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write); + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum); + + /* Data types. */ + set_gdbarch_char_signed (gdbarch, 0); + set_gdbarch_short_bit (gdbarch, 16); + set_gdbarch_int_bit (gdbarch, 16); + set_gdbarch_long_bit (gdbarch, 32); + set_gdbarch_long_long_bit (gdbarch, 64); + set_gdbarch_ptr_bit (gdbarch, 16); + set_gdbarch_addr_bit (gdbarch, 32); + set_gdbarch_float_bit (gdbarch, 32); + set_gdbarch_float_format (gdbarch, floatformats_ieee_single); + set_gdbarch_double_bit (gdbarch, 32); + set_gdbarch_long_double_bit (gdbarch, 64); + set_gdbarch_double_format (gdbarch, floatformats_ieee_single); + set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); + set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address); + set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer); + set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove); + + /* Breakpoints. */ + set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc); + set_gdbarch_decr_pc_after_break (gdbarch, 1); + + /* Disassembly. */ + set_gdbarch_print_insn (gdbarch, print_insn_rl78); + + /* Frames, prologues, etc. */ + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue); + set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp); + set_gdbarch_frame_align (gdbarch, rl78_frame_align); + frame_unwind_append_unwinder (gdbarch, &rl78_unwind); + + /* Dummy frames, return values. */ + set_gdbarch_dummy_id (gdbarch, rl78_dummy_id); + set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call); + set_gdbarch_return_value (gdbarch, rl78_return_value); + + /* Virtual tables. */ + set_gdbarch_vbit_in_delta (gdbarch, 1); + + return gdbarch; +} + +/* Register the above initialization routine. */ + +void +_initialize_rl78_tdep (void) +{ + register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init); +} |