aboutsummaryrefslogtreecommitdiff
path: root/gdb/regex.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/regex.c')
-rw-r--r--gdb/regex.c1738
1 files changed, 1738 insertions, 0 deletions
diff --git a/gdb/regex.c b/gdb/regex.c
new file mode 100644
index 0000000..45c3478
--- /dev/null
+++ b/gdb/regex.c
@@ -0,0 +1,1738 @@
+/* Extended regular expression matching and search library.
+ Copyright (C) 1985, 1989 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 1, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+ In other words, you are welcome to use, share and improve this program.
+ You are forbidden to forbid anyone else to use, share and improve
+ what you give them. Help stamp out software-hoarding! */
+
+
+/* To test, compile with -Dtest.
+ This Dtestable feature turns this into a self-contained program
+ which reads a pattern, describes how it compiles,
+ then reads a string and searches for it. */
+
+#ifdef emacs
+
+/* The `emacs' switch turns on certain special matching commands
+ that make sense only in emacs. */
+
+#include "config.h"
+#include "lisp.h"
+#include "buffer.h"
+#include "syntax.h"
+
+#else /* not emacs */
+
+#ifdef USG
+#ifndef BSTRING
+#define bcopy(s,d,n) memcpy((d),(s),(n))
+#define bcmp(s1,s2,n) memcmp((s1),(s2),(n))
+#define bzero(s,n) memset((s),0,(n))
+#endif
+#endif
+
+/* Make alloca work the best possible way. */
+#ifdef __GNUC__
+#define alloca __builtin_alloca
+#else
+#ifdef sparc
+#include <alloca.h>
+#endif
+#endif
+
+/*
+ * Define the syntax stuff, so we can do the \<...\> things.
+ */
+
+#ifndef Sword /* must be non-zero in some of the tests below... */
+#define Sword 1
+#endif
+
+#define SYNTAX(c) re_syntax_table[c]
+
+#ifdef SYNTAX_TABLE
+
+char *re_syntax_table;
+
+#else
+
+static char re_syntax_table[256];
+
+static void
+init_syntax_once ()
+{
+ register int c;
+ static int done = 0;
+
+ if (done)
+ return;
+
+ bzero (re_syntax_table, sizeof re_syntax_table);
+
+ for (c = 'a'; c <= 'z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = 'A'; c <= 'Z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = '0'; c <= '9'; c++)
+ re_syntax_table[c] = Sword;
+
+ done = 1;
+}
+
+#endif /* SYNTAX_TABLE */
+#endif /* not emacs */
+
+#include "regex.h"
+
+/* Number of failure points to allocate space for initially,
+ when matching. If this number is exceeded, more space is allocated,
+ so it is not a hard limit. */
+
+#ifndef NFAILURES
+#define NFAILURES 80
+#endif /* NFAILURES */
+
+/* width of a byte in bits */
+
+#define BYTEWIDTH 8
+
+#ifndef SIGN_EXTEND_CHAR
+#define SIGN_EXTEND_CHAR(x) (x)
+#endif
+
+static int obscure_syntax = 0;
+
+/* Specify the precise syntax of regexp for compilation.
+ This provides for compatibility for various utilities
+ which historically have different, incompatible syntaxes.
+
+ The argument SYNTAX is a bit-mask containing the two bits
+ RE_NO_BK_PARENS and RE_NO_BK_VBAR. */
+
+int
+re_set_syntax (syntax)
+{
+ int ret;
+
+ ret = obscure_syntax;
+ obscure_syntax = syntax;
+ return ret;
+}
+
+/* re_compile_pattern takes a regular-expression string
+ and converts it into a buffer full of byte commands for matching.
+
+ PATTERN is the address of the pattern string
+ SIZE is the length of it.
+ BUFP is a struct re_pattern_buffer * which points to the info
+ on where to store the byte commands.
+ This structure contains a char * which points to the
+ actual space, which should have been obtained with malloc.
+ re_compile_pattern may use realloc to grow the buffer space.
+
+ The number of bytes of commands can be found out by looking in
+ the struct re_pattern_buffer that bufp pointed to,
+ after re_compile_pattern returns.
+*/
+
+#define PATPUSH(ch) (*b++ = (char) (ch))
+
+#define PATFETCH(c) \
+ {if (p == pend) goto end_of_pattern; \
+ c = * (unsigned char *) p++; \
+ if (translate) c = translate[c]; }
+
+#define PATFETCH_RAW(c) \
+ {if (p == pend) goto end_of_pattern; \
+ c = * (unsigned char *) p++; }
+
+#define PATUNFETCH p--
+
+#define EXTEND_BUFFER \
+ { char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == (1<<16)) goto too_big; \
+ bufp->allocated *= 2; \
+ if (bufp->allocated > (1<<16)) bufp->allocated = (1<<16); \
+ if (!(bufp->buffer = (char *) realloc (bufp->buffer, bufp->allocated))) \
+ goto memory_exhausted; \
+ c = bufp->buffer - old_buffer; \
+ b += c; \
+ if (fixup_jump) \
+ fixup_jump += c; \
+ if (laststart) \
+ laststart += c; \
+ begalt += c; \
+ if (pending_exact) \
+ pending_exact += c; \
+ }
+
+static int store_jump (), insert_jump ();
+
+char *
+re_compile_pattern (pattern, size, bufp)
+ char *pattern;
+ int size;
+ struct re_pattern_buffer *bufp;
+{
+ register char *b = bufp->buffer;
+ register char *p = pattern;
+ char *pend = pattern + size;
+ register unsigned c, c1;
+ char *p1;
+ unsigned char *translate = (unsigned char *) bufp->translate;
+
+ /* address of the count-byte of the most recently inserted "exactn" command.
+ This makes it possible to tell whether a new exact-match character
+ can be added to that command or requires a new "exactn" command. */
+
+ char *pending_exact = 0;
+
+ /* address of the place where a forward-jump should go
+ to the end of the containing expression.
+ Each alternative of an "or", except the last, ends with a forward-jump
+ of this sort. */
+
+ char *fixup_jump = 0;
+
+ /* address of start of the most recently finished expression.
+ This tells postfix * where to find the start of its operand. */
+
+ char *laststart = 0;
+
+ /* In processing a repeat, 1 means zero matches is allowed */
+
+ char zero_times_ok;
+
+ /* In processing a repeat, 1 means many matches is allowed */
+
+ char many_times_ok;
+
+ /* address of beginning of regexp, or inside of last \( */
+
+ char *begalt = b;
+
+ /* Stack of information saved by \( and restored by \).
+ Four stack elements are pushed by each \(:
+ First, the value of b.
+ Second, the value of fixup_jump.
+ Third, the value of regnum.
+ Fourth, the value of begalt. */
+
+ int stackb[40];
+ int *stackp = stackb;
+ int *stacke = stackb + 40;
+ int *stackt;
+
+ /* Counts \('s as they are encountered. Remembered for the matching \),
+ where it becomes the "register number" to put in the stop_memory command */
+
+ int regnum = 1;
+
+ bufp->fastmap_accurate = 0;
+
+#ifndef emacs
+#ifndef SYNTAX_TABLE
+ /*
+ * Initialize the syntax table.
+ */
+ init_syntax_once();
+#endif
+#endif
+
+ if (bufp->allocated == 0)
+ {
+ bufp->allocated = 28;
+ if (bufp->buffer)
+ /* EXTEND_BUFFER loses when bufp->allocated is 0 */
+ bufp->buffer = (char *) realloc (bufp->buffer, 28);
+ else
+ /* Caller did not allocate a buffer. Do it for him */
+ bufp->buffer = (char *) malloc (28);
+ if (!bufp->buffer) goto memory_exhausted;
+ begalt = b = bufp->buffer;
+ }
+
+ while (p != pend)
+ {
+ if (b - bufp->buffer > bufp->allocated - 10)
+ /* Note that EXTEND_BUFFER clobbers c */
+ EXTEND_BUFFER;
+
+ PATFETCH (c);
+
+ switch (c)
+ {
+ case '$':
+ if (obscure_syntax & RE_TIGHT_VBAR)
+ {
+ if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS) && p != pend)
+ goto normal_char;
+ /* Make operand of last vbar end before this `$'. */
+ if (fixup_jump)
+ store_jump (fixup_jump, jump, b);
+ fixup_jump = 0;
+ PATPUSH (endline);
+ break;
+ }
+
+ /* $ means succeed if at end of line, but only in special contexts.
+ If randomly in the middle of a pattern, it is a normal character. */
+ if (p == pend || *p == '\n'
+ || (obscure_syntax & RE_CONTEXT_INDEP_OPS)
+ || (obscure_syntax & RE_NO_BK_PARENS
+ ? *p == ')'
+ : *p == '\\' && p[1] == ')')
+ || (obscure_syntax & RE_NO_BK_VBAR
+ ? *p == '|'
+ : *p == '\\' && p[1] == '|'))
+ {
+ PATPUSH (endline);
+ break;
+ }
+ goto normal_char;
+
+ case '^':
+ /* ^ means succeed if at beg of line, but only if no preceding pattern. */
+
+ if (laststart && p[-2] != '\n'
+ && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ if (obscure_syntax & RE_TIGHT_VBAR)
+ {
+ if (p != pattern + 1
+ && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ PATPUSH (begline);
+ begalt = b;
+ }
+ else
+ PATPUSH (begline);
+ break;
+
+ case '+':
+ case '?':
+ if (obscure_syntax & RE_BK_PLUS_QM)
+ goto normal_char;
+ handle_plus:
+ case '*':
+ /* If there is no previous pattern, char not special. */
+ if (!laststart && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ /* If there is a sequence of repetition chars,
+ collapse it down to equivalent to just one. */
+ zero_times_ok = 0;
+ many_times_ok = 0;
+ while (1)
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+ if (p == pend)
+ break;
+ PATFETCH (c);
+ if (c == '*')
+ ;
+ else if (!(obscure_syntax & RE_BK_PLUS_QM)
+ && (c == '+' || c == '?'))
+ ;
+ else if ((obscure_syntax & RE_BK_PLUS_QM)
+ && c == '\\')
+ {
+ int c1;
+ PATFETCH (c1);
+ if (!(c1 == '+' || c1 == '?'))
+ {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+ c = c1;
+ }
+ else
+ {
+ PATUNFETCH;
+ break;
+ }
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether 0 matches is allowed,
+ and whether 2 or more matches is allowed. */
+ if (many_times_ok)
+ {
+ /* If more than one repetition is allowed,
+ put in a backward jump at the end. */
+ store_jump (b, maybe_finalize_jump, laststart - 3);
+ b += 3;
+ }
+ insert_jump (on_failure_jump, laststart, b + 3, b);
+ pending_exact = 0;
+ b += 3;
+ if (!zero_times_ok)
+ {
+ /* At least one repetition required: insert before the loop
+ a skip over the initial on-failure-jump instruction */
+ insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
+ b += 3;
+ }
+ break;
+
+ case '.':
+ laststart = b;
+ PATPUSH (anychar);
+ break;
+
+ case '[':
+ while (b - bufp->buffer
+ > bufp->allocated - 3 - (1 << BYTEWIDTH) / BYTEWIDTH)
+ /* Note that EXTEND_BUFFER clobbers c */
+ EXTEND_BUFFER;
+
+ laststart = b;
+ if (*p == '^')
+ PATPUSH (charset_not), p++;
+ else
+ PATPUSH (charset);
+ p1 = p;
+
+ PATPUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+ /* Clear the whole map */
+ bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+ /* Read in characters and ranges, setting map bits */
+ while (1)
+ {
+ PATFETCH (c);
+ if (c == ']' && p != p1 + 1) break;
+ if (*p == '-' && p[1] != ']')
+ {
+ PATFETCH (c1);
+ PATFETCH (c1);
+ while (c <= c1)
+ b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH), c++;
+ }
+ else
+ {
+ b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
+ }
+ }
+ /* Discard any bitmap bytes that are all 0 at the end of the map.
+ Decrement the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+ break;
+
+ case '(':
+ if (! (obscure_syntax & RE_NO_BK_PARENS))
+ goto normal_char;
+ else
+ goto handle_open;
+
+ case ')':
+ if (! (obscure_syntax & RE_NO_BK_PARENS))
+ goto normal_char;
+ else
+ goto handle_close;
+
+ case '\n':
+ if (! (obscure_syntax & RE_NEWLINE_OR))
+ goto normal_char;
+ else
+ goto handle_bar;
+
+ case '|':
+ if (! (obscure_syntax & RE_NO_BK_VBAR))
+ goto normal_char;
+ else
+ goto handle_bar;
+
+ case '\\':
+ if (p == pend) goto invalid_pattern;
+ PATFETCH_RAW (c);
+ switch (c)
+ {
+ case '(':
+ if (obscure_syntax & RE_NO_BK_PARENS)
+ goto normal_backsl;
+ handle_open:
+ if (stackp == stacke) goto nesting_too_deep;
+ if (regnum < RE_NREGS)
+ {
+ PATPUSH (start_memory);
+ PATPUSH (regnum);
+ }
+ *stackp++ = b - bufp->buffer;
+ *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
+ *stackp++ = regnum++;
+ *stackp++ = begalt - bufp->buffer;
+ fixup_jump = 0;
+ laststart = 0;
+ begalt = b;
+ break;
+
+ case ')':
+ if (obscure_syntax & RE_NO_BK_PARENS)
+ goto normal_backsl;
+ handle_close:
+ if (stackp == stackb) goto unmatched_close;
+ begalt = *--stackp + bufp->buffer;
+ if (fixup_jump)
+ store_jump (fixup_jump, jump, b);
+ if (stackp[-1] < RE_NREGS)
+ {
+ PATPUSH (stop_memory);
+ PATPUSH (stackp[-1]);
+ }
+ stackp -= 2;
+ fixup_jump = 0;
+ if (*stackp)
+ fixup_jump = *stackp + bufp->buffer - 1;
+ laststart = *--stackp + bufp->buffer;
+ break;
+
+ case '|':
+ if (obscure_syntax & RE_NO_BK_VBAR)
+ goto normal_backsl;
+ handle_bar:
+ insert_jump (on_failure_jump, begalt, b + 6, b);
+ pending_exact = 0;
+ b += 3;
+ if (fixup_jump)
+ store_jump (fixup_jump, jump, b);
+ fixup_jump = b;
+ b += 3;
+ laststart = 0;
+ begalt = b;
+ break;
+
+#ifdef emacs
+ case '=':
+ PATPUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATPUSH (syntaxspec);
+ PATFETCH (c);
+ PATPUSH (syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATPUSH (notsyntaxspec);
+ PATFETCH (c);
+ PATPUSH (syntax_spec_code[c]);
+ break;
+#endif /* emacs */
+
+ case 'w':
+ laststart = b;
+ PATPUSH (wordchar);
+ break;
+
+ case 'W':
+ laststart = b;
+ PATPUSH (notwordchar);
+ break;
+
+ case '<':
+ PATPUSH (wordbeg);
+ break;
+
+ case '>':
+ PATPUSH (wordend);
+ break;
+
+ case 'b':
+ PATPUSH (wordbound);
+ break;
+
+ case 'B':
+ PATPUSH (notwordbound);
+ break;
+
+ case '`':
+ PATPUSH (begbuf);
+ break;
+
+ case '\'':
+ PATPUSH (endbuf);
+ break;
+
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ c1 = c - '0';
+ if (c1 >= regnum)
+ goto normal_char;
+ for (stackt = stackp - 2; stackt > stackb; stackt -= 4)
+ if (*stackt == c1)
+ goto normal_char;
+ laststart = b;
+ PATPUSH (duplicate);
+ PATPUSH (c1);
+ break;
+
+ case '+':
+ case '?':
+ if (obscure_syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+
+ default:
+ normal_backsl:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ if (translate) c = translate[c];
+ goto normal_char;
+ }
+ break;
+
+ default:
+ normal_char:
+ if (!pending_exact || pending_exact + *pending_exact + 1 != b
+ || *pending_exact == 0177 || *p == '*' || *p == '^'
+ || ((obscure_syntax & RE_BK_PLUS_QM)
+ ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+ : (*p == '+' || *p == '?')))
+ {
+ laststart = b;
+ PATPUSH (exactn);
+ pending_exact = b;
+ PATPUSH (0);
+ }
+ PATPUSH (c);
+ (*pending_exact)++;
+ }
+ }
+
+ if (fixup_jump)
+ store_jump (fixup_jump, jump, b);
+
+ if (stackp != stackb) goto unmatched_open;
+
+ bufp->used = b - bufp->buffer;
+ return 0;
+
+ invalid_pattern:
+ return "Invalid regular expression";
+
+ unmatched_open:
+ return "Unmatched \\(";
+
+ unmatched_close:
+ return "Unmatched \\)";
+
+ end_of_pattern:
+ return "Premature end of regular expression";
+
+ nesting_too_deep:
+ return "Nesting too deep";
+
+ too_big:
+ return "Regular expression too big";
+
+ memory_exhausted:
+ return "Memory exhausted";
+}
+
+/* Store where `from' points a jump operation to jump to where `to' points.
+ `opcode' is the opcode to store. */
+
+static int
+store_jump (from, opcode, to)
+ char *from, *to;
+ char opcode;
+{
+ from[0] = opcode;
+ from[1] = (to - (from + 3)) & 0377;
+ from[2] = (to - (from + 3)) >> 8;
+}
+
+/* Open up space at char FROM, and insert there a jump to TO.
+ CURRENT_END gives te end of the storage no in use,
+ so we know how much data to copy up.
+ OP is the opcode of the jump to insert.
+
+ If you call this function, you must zero out pending_exact. */
+
+static int
+insert_jump (op, from, to, current_end)
+ char op;
+ char *from, *to, *current_end;
+{
+ register char *pto = current_end + 3;
+ register char *pfrom = current_end;
+ while (pfrom != from)
+ *--pto = *--pfrom;
+ store_jump (from, op, to);
+}
+
+/* Given a pattern, compute a fastmap from it.
+ The fastmap records which of the (1 << BYTEWIDTH) possible characters
+ can start a string that matches the pattern.
+ This fastmap is used by re_search to skip quickly over totally implausible text.
+
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data area
+ as bufp->fastmap.
+ The other components of bufp describe the pattern to be used. */
+
+void
+re_compile_fastmap (bufp)
+ struct re_pattern_buffer *bufp;
+{
+ unsigned char *pattern = (unsigned char *) bufp->buffer;
+ int size = bufp->used;
+ register char *fastmap = bufp->fastmap;
+ register unsigned char *p = pattern;
+ register unsigned char *pend = pattern + size;
+ register int j, k;
+ unsigned char *translate = (unsigned char *) bufp->translate;
+
+ unsigned char *stackb[NFAILURES];
+ unsigned char **stackp = stackb;
+
+ bzero (fastmap, (1 << BYTEWIDTH));
+ bufp->fastmap_accurate = 1;
+ bufp->can_be_null = 0;
+
+ while (p)
+ {
+ if (p == pend)
+ {
+ bufp->can_be_null = 1;
+ break;
+ }
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((enum regexpcode) *p++))
+#else
+ switch ((enum regexpcode) *p++)
+#endif
+ {
+ case exactn:
+ if (translate)
+ fastmap[translate[p[1]]] = 1;
+ else
+ fastmap[p[1]] = 1;
+ break;
+
+ case begline:
+ case before_dot:
+ case at_dot:
+ case after_dot:
+ case begbuf:
+ case endbuf:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ continue;
+
+ case endline:
+ if (translate)
+ fastmap[translate['\n']] = 1;
+ else
+ fastmap['\n'] = 1;
+ if (bufp->can_be_null != 1)
+ bufp->can_be_null = 2;
+ break;
+
+ case finalize_jump:
+ case maybe_finalize_jump:
+ case jump:
+ case dummy_failure_jump:
+ bufp->can_be_null = 1;
+ j = *p++ & 0377;
+ j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p += j + 1; /* The 1 compensates for missing ++ above */
+ if (j > 0)
+ continue;
+ /* Jump backward reached implies we just went through
+ the body of a loop and matched nothing.
+ Opcode jumped to should be an on_failure_jump.
+ Just treat it like an ordinary jump.
+ For a * loop, it has pushed its failure point already;
+ if so, discard that as redundant. */
+ if ((enum regexpcode) *p != on_failure_jump)
+ continue;
+ p++;
+ j = *p++ & 0377;
+ j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p += j + 1; /* The 1 compensates for missing ++ above */
+ if (stackp != stackb && *stackp == p)
+ stackp--;
+ continue;
+
+ case on_failure_jump:
+ j = *p++ & 0377;
+ j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p++;
+ *++stackp = p + j;
+ continue;
+
+ case start_memory:
+ case stop_memory:
+ p++;
+ continue;
+
+ case duplicate:
+ bufp->can_be_null = 1;
+ fastmap['\n'] = 1;
+ case anychar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (j != '\n')
+ fastmap[j] = 1;
+ if (bufp->can_be_null)
+ return;
+ /* Don't return; check the alternative paths
+ so we can set can_be_null if appropriate. */
+ break;
+
+ case wordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == Sword)
+ fastmap[j] = 1;
+ break;
+
+ case notwordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != Sword)
+ fastmap[j] = 1;
+ break;
+
+#ifdef emacs
+ case syntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+
+ case notsyntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+#endif /* emacs */
+
+ case charset:
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ {
+ if (translate)
+ fastmap[translate[j]] = 1;
+ else
+ fastmap[j] = 1;
+ }
+ break;
+
+ case charset_not:
+ /* Chars beyond end of map must be allowed */
+ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ if (translate)
+ fastmap[translate[j]] = 1;
+ else
+ fastmap[j] = 1;
+
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ {
+ if (translate)
+ fastmap[translate[j]] = 1;
+ else
+ fastmap[j] = 1;
+ }
+ break;
+ }
+
+ /* Get here means we have successfully found the possible starting characters
+ of one path of the pattern. We need not follow this path any farther.
+ Instead, look at the next alternative remembered in the stack. */
+ if (stackp != stackb)
+ p = *stackp--;
+ else
+ break;
+ }
+}
+
+/* Like re_search_2, below, but only one string is specified. */
+
+int
+re_search (pbufp, string, size, startpos, range, regs)
+ struct re_pattern_buffer *pbufp;
+ char *string;
+ int size, startpos, range;
+ struct re_registers *regs;
+{
+ return re_search_2 (pbufp, 0, 0, string, size, startpos, range, regs, size);
+}
+
+/* Like re_match_2 but tries first a match starting at index STARTPOS,
+ then at STARTPOS + 1, and so on.
+ RANGE is the number of places to try before giving up.
+ If RANGE is negative, the starting positions tried are
+ STARTPOS, STARTPOS - 1, etc.
+ It is up to the caller to make sure that range is not so large
+ as to take the starting position outside of the input strings.
+
+The value returned is the position at which the match was found,
+ or -1 if no match was found,
+ or -2 if error (such as failure stack overflow). */
+
+int
+re_search_2 (pbufp, string1, size1, string2, size2, startpos, range, regs, mstop)
+ struct re_pattern_buffer *pbufp;
+ char *string1, *string2;
+ int size1, size2;
+ int startpos;
+ register int range;
+ struct re_registers *regs;
+ int mstop;
+{
+ register char *fastmap = pbufp->fastmap;
+ register unsigned char *translate = (unsigned char *) pbufp->translate;
+ int total = size1 + size2;
+ int val;
+
+ /* Update the fastmap now if not correct already */
+ if (fastmap && !pbufp->fastmap_accurate)
+ re_compile_fastmap (pbufp);
+
+ /* Don't waste time in a long search for a pattern
+ that says it is anchored. */
+ if (pbufp->used > 0 && (enum regexpcode) pbufp->buffer[0] == begbuf
+ && range > 0)
+ {
+ if (startpos > 0)
+ return -1;
+ else
+ range = 1;
+ }
+
+ while (1)
+ {
+ /* If a fastmap is supplied, skip quickly over characters
+ that cannot possibly be the start of a match.
+ Note, however, that if the pattern can possibly match
+ the null string, we must test it at each starting point
+ so that we take the first null string we get. */
+
+ if (fastmap && startpos < total && pbufp->can_be_null != 1)
+ {
+ if (range > 0)
+ {
+ register int lim = 0;
+ register unsigned char *p;
+ int irange = range;
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ p = ((unsigned char *)
+ &(startpos >= size1 ? string2 - size1 : string1)[startpos]);
+
+ if (translate)
+ {
+ while (range > lim && !fastmap[translate[*p++]])
+ range--;
+ }
+ else
+ {
+ while (range > lim && !fastmap[*p++])
+ range--;
+ }
+ startpos += irange - range;
+ }
+ else
+ {
+ register unsigned char c;
+ if (startpos >= size1)
+ c = string2[startpos - size1];
+ else
+ c = string1[startpos];
+ c &= 0xff;
+ if (translate ? !fastmap[translate[c]] : !fastmap[c])
+ goto advance;
+ }
+ }
+
+ if (range >= 0 && startpos == total
+ && fastmap && pbufp->can_be_null == 0)
+ return -1;
+
+ val = re_match_2 (pbufp, string1, size1, string2, size2, startpos, regs, mstop);
+ if (0 <= val)
+ {
+ if (val == -2)
+ return -2;
+ return startpos;
+ }
+
+#ifdef C_ALLOCA
+ alloca (0);
+#endif /* C_ALLOCA */
+
+ advance:
+ if (!range) break;
+ if (range > 0) range--, startpos++; else range++, startpos--;
+ }
+ return -1;
+}
+
+#ifndef emacs /* emacs never uses this */
+int
+re_match (pbufp, string, size, pos, regs)
+ struct re_pattern_buffer *pbufp;
+ char *string;
+ int size, pos;
+ struct re_registers *regs;
+{
+ return re_match_2 (pbufp, 0, 0, string, size, pos, regs, size);
+}
+#endif /* emacs */
+
+/* Maximum size of failure stack. Beyond this, overflow is an error. */
+
+int re_max_failures = 2000;
+
+static int bcmp_translate();
+/* Match the pattern described by PBUFP
+ against data which is the virtual concatenation of STRING1 and STRING2.
+ SIZE1 and SIZE2 are the sizes of the two data strings.
+ Start the match at position POS.
+ Do not consider matching past the position MSTOP.
+
+ If pbufp->fastmap is nonzero, then it had better be up to date.
+
+ The reason that the data to match are specified as two components
+ which are to be regarded as concatenated
+ is so this function can be used directly on the contents of an Emacs buffer.
+
+ -1 is returned if there is no match. -2 is returned if there is
+ an error (such as match stack overflow). Otherwise the value is the length
+ of the substring which was matched. */
+
+int
+re_match_2 (pbufp, string1, size1, string2, size2, pos, regs, mstop)
+ struct re_pattern_buffer *pbufp;
+ unsigned char *string1, *string2;
+ int size1, size2;
+ int pos;
+ struct re_registers *regs;
+ int mstop;
+{
+ register unsigned char *p = (unsigned char *) pbufp->buffer;
+ register unsigned char *pend = p + pbufp->used;
+ /* End of first string */
+ unsigned char *end1;
+ /* End of second string */
+ unsigned char *end2;
+ /* Pointer just past last char to consider matching */
+ unsigned char *end_match_1, *end_match_2;
+ register unsigned char *d, *dend;
+ register int mcnt;
+ unsigned char *translate = (unsigned char *) pbufp->translate;
+
+ /* Failure point stack. Each place that can handle a failure further down the line
+ pushes a failure point on this stack. It consists of two char *'s.
+ The first one pushed is where to resume scanning the pattern;
+ the second pushed is where to resume scanning the strings.
+ If the latter is zero, the failure point is a "dummy".
+ If a failure happens and the innermost failure point is dormant,
+ it discards that failure point and tries the next one. */
+
+ unsigned char *initial_stack[2 * NFAILURES];
+ unsigned char **stackb = initial_stack;
+ unsigned char **stackp = stackb, **stacke = &stackb[2 * NFAILURES];
+
+ /* Information on the "contents" of registers.
+ These are pointers into the input strings; they record
+ just what was matched (on this attempt) by some part of the pattern.
+ The start_memory command stores the start of a register's contents
+ and the stop_memory command stores the end.
+
+ At that point, regstart[regnum] points to the first character in the register,
+ regend[regnum] points to the first character beyond the end of the register,
+ regstart_seg1[regnum] is true iff regstart[regnum] points into string1,
+ and regend_seg1[regnum] is true iff regend[regnum] points into string1. */
+
+ unsigned char *regstart[RE_NREGS];
+ unsigned char *regend[RE_NREGS];
+ unsigned char regstart_seg1[RE_NREGS], regend_seg1[RE_NREGS];
+
+ /* Set up pointers to ends of strings.
+ Don't allow the second string to be empty unless both are empty. */
+ if (!size2)
+ {
+ string2 = string1;
+ size2 = size1;
+ string1 = 0;
+ size1 = 0;
+ }
+ end1 = string1 + size1;
+ end2 = string2 + size2;
+
+ /* Compute where to stop matching, within the two strings */
+ if (mstop <= size1)
+ {
+ end_match_1 = string1 + mstop;
+ end_match_2 = string2;
+ }
+ else
+ {
+ end_match_1 = end1;
+ end_match_2 = string2 + mstop - size1;
+ }
+
+ /* Initialize \) text positions to -1
+ to mark ones that no \( or \) has been seen for. */
+
+ for (mcnt = 0; mcnt < sizeof (regend) / sizeof (*regend); mcnt++)
+ regend[mcnt] = (unsigned char *) -1;
+
+ /* `p' scans through the pattern as `d' scans through the data.
+ `dend' is the end of the input string that `d' points within.
+ `d' is advanced into the following input string whenever necessary,
+ but this happens before fetching;
+ therefore, at the beginning of the loop,
+ `d' can be pointing at the end of a string,
+ but it cannot equal string2. */
+
+ if (pos <= size1)
+ d = string1 + pos, dend = end_match_1;
+ else
+ d = string2 + pos - size1, dend = end_match_2;
+
+/* Write PREFETCH; just before fetching a character with *d. */
+#define PREFETCH \
+ while (d == dend) \
+ { if (dend == end_match_2) goto fail; /* end of string2 => failure */ \
+ d = string2; /* end of string1 => advance to string2. */ \
+ dend = end_match_2; }
+
+ /* This loop loops over pattern commands.
+ It exits by returning from the function if match is complete,
+ or it drops through if match fails at this starting point in the input data. */
+
+ while (1)
+ {
+ if (p == pend)
+ /* End of pattern means we have succeeded! */
+ {
+ /* If caller wants register contents data back, convert it to indices */
+ if (regs)
+ {
+ regs->start[0] = pos;
+ if (dend == end_match_1)
+ regs->end[0] = d - string1;
+ else
+ regs->end[0] = d - string2 + size1;
+ for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
+ {
+ if (regend[mcnt] == (unsigned char *) -1)
+ {
+ regs->start[mcnt] = -1;
+ regs->end[mcnt] = -1;
+ continue;
+ }
+ if (regstart_seg1[mcnt])
+ regs->start[mcnt] = regstart[mcnt] - string1;
+ else
+ regs->start[mcnt] = regstart[mcnt] - string2 + size1;
+ if (regend_seg1[mcnt])
+ regs->end[mcnt] = regend[mcnt] - string1;
+ else
+ regs->end[mcnt] = regend[mcnt] - string2 + size1;
+ }
+ }
+ if (dend == end_match_1)
+ return (d - string1 - pos);
+ else
+ return d - string2 + size1 - pos;
+ }
+
+ /* Otherwise match next pattern command */
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((enum regexpcode) *p++))
+#else
+ switch ((enum regexpcode) *p++)
+#endif
+ {
+
+ /* \( is represented by a start_memory, \) by a stop_memory.
+ Both of those commands contain a "register number" argument.
+ The text matched within the \( and \) is recorded under that number.
+ Then, \<digit> turns into a `duplicate' command which
+ is followed by the numeric value of <digit> as the register number. */
+
+ case start_memory:
+ regstart[*p] = d;
+ regstart_seg1[*p++] = (dend == end_match_1);
+ break;
+
+ case stop_memory:
+ regend[*p] = d;
+ regend_seg1[*p++] = (dend == end_match_1);
+ break;
+
+ case duplicate:
+ {
+ int regno = *p++; /* Get which register to match against */
+ register unsigned char *d2, *dend2;
+
+ d2 = regstart[regno];
+ dend2 = ((regstart_seg1[regno] == regend_seg1[regno])
+ ? regend[regno] : end_match_1);
+ while (1)
+ {
+ /* Advance to next segment in register contents, if necessary */
+ while (d2 == dend2)
+ {
+ if (dend2 == end_match_2) break;
+ if (dend2 == regend[regno]) break;
+ d2 = string2, dend2 = regend[regno]; /* end of string1 => advance to string2. */
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ /* Advance to next segment in data being matched, if necessary */
+ PREFETCH;
+
+ /* mcnt gets # consecutive chars to compare */
+ mcnt = dend - d;
+ if (mcnt > dend2 - d2)
+ mcnt = dend2 - d2;
+ /* Compare that many; failure if mismatch, else skip them. */
+ if (translate ? bcmp_translate (d, d2, mcnt, translate) : bcmp (d, d2, mcnt))
+ goto fail;
+ d += mcnt, d2 += mcnt;
+ }
+ }
+ break;
+
+ case anychar:
+ /* fetch a data character */
+ PREFETCH;
+ /* Match anything but a newline. */
+ if ((translate ? translate[*d++] : *d++) == '\n')
+ goto fail;
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ /* Nonzero for charset_not */
+ int not = 0;
+ register int c;
+ if (*(p - 1) == (unsigned char) charset_not)
+ not = 1;
+
+ /* fetch a data character */
+ PREFETCH;
+
+ if (translate)
+ c = translate [*d];
+ else
+ c = *d;
+
+ if (c < *p * BYTEWIDTH
+ && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ p += 1 + *p;
+
+ if (!not) goto fail;
+ d++;
+ break;
+ }
+
+ case begline:
+ if (d == string1 || d[-1] == '\n')
+ break;
+ goto fail;
+
+ case endline:
+ if (d == end2
+ || (d == end1 ? (size2 == 0 || *string2 == '\n') : *d == '\n'))
+ break;
+ goto fail;
+
+ /* "or" constructs ("|") are handled by starting each alternative
+ with an on_failure_jump that points to the start of the next alternative.
+ Each alternative except the last ends with a jump to the joining point.
+ (Actually, each jump except for the last one really jumps
+ to the following jump, because tensioning the jumps is a hassle.) */
+
+ /* The start of a stupid repeat has an on_failure_jump that points
+ past the end of the repeat text.
+ This makes a failure point so that, on failure to match a repetition,
+ matching restarts past as many repetitions have been found
+ with no way to fail and look for another one. */
+
+ /* A smart repeat is similar but loops back to the on_failure_jump
+ so that each repetition makes another failure point. */
+
+ case on_failure_jump:
+ if (stackp == stacke)
+ {
+ unsigned char **stackx;
+ if (stacke - stackb > re_max_failures * 2)
+ return -2;
+ stackx = (unsigned char **) alloca (2 * (stacke - stackb)
+ * sizeof (char *));
+ bcopy (stackb, stackx, (stacke - stackb) * sizeof (char *));
+ stackp = stackx + (stackp - stackb);
+ stacke = stackx + 2 * (stacke - stackb);
+ stackb = stackx;
+ }
+ mcnt = *p++ & 0377;
+ mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p++;
+ *stackp++ = mcnt + p;
+ *stackp++ = d;
+ break;
+
+ /* The end of a smart repeat has an maybe_finalize_jump back.
+ Change it either to a finalize_jump or an ordinary jump. */
+
+ case maybe_finalize_jump:
+ mcnt = *p++ & 0377;
+ mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p++;
+ {
+ register unsigned char *p2 = p;
+ /* Compare what follows with the begining of the repeat.
+ If we can establish that there is nothing that they would
+ both match, we can change to finalize_jump */
+ while (p2 != pend
+ && (*p2 == (unsigned char) stop_memory
+ || *p2 == (unsigned char) start_memory))
+ p2++;
+ if (p2 == pend)
+ p[-3] = (unsigned char) finalize_jump;
+ else if (*p2 == (unsigned char) exactn
+ || *p2 == (unsigned char) endline)
+ {
+ register int c = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ register unsigned char *p1 = p + mcnt;
+ /* p1[0] ... p1[2] are an on_failure_jump.
+ Examine what follows that */
+ if (p1[3] == (unsigned char) exactn && p1[5] != c)
+ p[-3] = (unsigned char) finalize_jump;
+ else if (p1[3] == (unsigned char) charset
+ || p1[3] == (unsigned char) charset_not)
+ {
+ int not = p1[3] == (unsigned char) charset_not;
+ if (c < p1[4] * BYTEWIDTH
+ && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+ /* not is 1 if c would match */
+ /* That means it is not safe to finalize */
+ if (!not)
+ p[-3] = (unsigned char) finalize_jump;
+ }
+ }
+ }
+ p -= 2;
+ if (p[-1] != (unsigned char) finalize_jump)
+ {
+ p[-1] = (unsigned char) jump;
+ goto nofinalize;
+ }
+
+ /* The end of a stupid repeat has a finalize-jump
+ back to the start, where another failure point will be made
+ which will point after all the repetitions found so far. */
+
+ case finalize_jump:
+ stackp -= 2;
+
+ case jump:
+ nofinalize:
+ mcnt = *p++ & 0377;
+ mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
+ p += mcnt + 1; /* The 1 compensates for missing ++ above */
+ break;
+
+ case dummy_failure_jump:
+ if (stackp == stacke)
+ {
+ unsigned char **stackx
+ = (unsigned char **) alloca (2 * (stacke - stackb)
+ * sizeof (char *));
+ bcopy (stackb, stackx, (stacke - stackb) * sizeof (char *));
+ stackp = stackx + (stackp - stackb);
+ stacke = stackx + 2 * (stacke - stackb);
+ stackb = stackx;
+ }
+ *stackp++ = 0;
+ *stackp++ = 0;
+ goto nofinalize;
+
+ case wordbound:
+ if (d == string1 /* Points to first char */
+ || d == end2 /* Points to end */
+ || (d == end1 && size2 == 0)) /* Points to end */
+ break;
+ if ((SYNTAX (d[-1]) == Sword)
+ != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
+ break;
+ goto fail;
+
+ case notwordbound:
+ if (d == string1 /* Points to first char */
+ || d == end2 /* Points to end */
+ || (d == end1 && size2 == 0)) /* Points to end */
+ goto fail;
+ if ((SYNTAX (d[-1]) == Sword)
+ != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
+ goto fail;
+ break;
+
+ case wordbeg:
+ if (d == end2 /* Points to end */
+ || (d == end1 && size2 == 0) /* Points to end */
+ || SYNTAX (* (d == end1 ? string2 : d)) != Sword) /* Next char not a letter */
+ goto fail;
+ if (d == string1 /* Points to first char */
+ || SYNTAX (d[-1]) != Sword) /* prev char not letter */
+ break;
+ goto fail;
+
+ case wordend:
+ if (d == string1 /* Points to first char */
+ || SYNTAX (d[-1]) != Sword) /* prev char not letter */
+ goto fail;
+ if (d == end2 /* Points to end */
+ || (d == end1 && size2 == 0) /* Points to end */
+ || SYNTAX (d == end1 ? *string2 : *d) != Sword) /* Next char not a letter */
+ break;
+ goto fail;
+
+#ifdef emacs
+ case before_dot:
+ if (((d - string2 <= (unsigned) size2)
+ ? d - bf_p2 : d - bf_p1)
+ <= point)
+ goto fail;
+ break;
+
+ case at_dot:
+ if (((d - string2 <= (unsigned) size2)
+ ? d - bf_p2 : d - bf_p1)
+ == point)
+ goto fail;
+ break;
+
+ case after_dot:
+ if (((d - string2 <= (unsigned) size2)
+ ? d - bf_p2 : d - bf_p1)
+ >= point)
+ goto fail;
+ break;
+
+ case wordchar:
+ mcnt = (int) Sword;
+ goto matchsyntax;
+
+ case syntaxspec:
+ mcnt = *p++;
+ matchsyntax:
+ PREFETCH;
+ if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
+ break;
+
+ case notwordchar:
+ mcnt = (int) Sword;
+ goto matchnotsyntax;
+
+ case notsyntaxspec:
+ mcnt = *p++;
+ matchnotsyntax:
+ PREFETCH;
+ if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
+ break;
+#else
+ case wordchar:
+ PREFETCH;
+ if (SYNTAX (*d++) == 0) goto fail;
+ break;
+
+ case notwordchar:
+ PREFETCH;
+ if (SYNTAX (*d++) != 0) goto fail;
+ break;
+#endif /* not emacs */
+
+ case begbuf:
+ if (d == string1) /* Note, d cannot equal string2 */
+ break; /* unless string1 == string2. */
+ goto fail;
+
+ case endbuf:
+ if (d == end2 || (d == end1 && size2 == 0))
+ break;
+ goto fail;
+
+ case exactn:
+ /* Match the next few pattern characters exactly.
+ mcnt is how many characters to match. */
+ mcnt = *p++;
+ if (translate)
+ {
+ do
+ {
+ PREFETCH;
+ if (translate[*d++] != *p++) goto fail;
+ }
+ while (--mcnt);
+ }
+ else
+ {
+ do
+ {
+ PREFETCH;
+ if (*d++ != *p++) goto fail;
+ }
+ while (--mcnt);
+ }
+ break;
+ }
+ continue; /* Successfully matched one pattern command; keep matching */
+
+ /* Jump here if any matching operation fails. */
+ fail:
+ if (stackp != stackb)
+ /* A restart point is known. Restart there and pop it. */
+ {
+ if (!stackp[-2])
+ { /* If innermost failure point is dormant, flush it and keep looking */
+ stackp -= 2;
+ goto fail;
+ }
+ d = *--stackp;
+ p = *--stackp;
+ if (d >= string1 && d <= end1)
+ dend = end_match_1;
+ }
+ else break; /* Matching at this starting point really fails! */
+ }
+ return -1; /* Failure to match */
+}
+
+static int
+bcmp_translate (s1, s2, len, translate)
+ unsigned char *s1, *s2;
+ register int len;
+ unsigned char *translate;
+{
+ register unsigned char *p1 = s1, *p2 = s2;
+ while (len)
+ {
+ if (translate [*p1++] != translate [*p2++]) return 1;
+ len--;
+ }
+ return 0;
+}
+
+/* Entry points compatible with bsd4.2 regex library */
+
+#ifndef emacs
+
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+re_comp (s)
+ char *s;
+{
+ if (!s)
+ {
+ if (!re_comp_buf.buffer)
+ return "No previous regular expression";
+ return 0;
+ }
+
+ if (!re_comp_buf.buffer)
+ {
+ if (!(re_comp_buf.buffer = (char *) malloc (200)))
+ return "Memory exhausted";
+ re_comp_buf.allocated = 200;
+ if (!(re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH)))
+ return "Memory exhausted";
+ }
+ return re_compile_pattern (s, strlen (s), &re_comp_buf);
+}
+
+int
+re_exec (s)
+ char *s;
+{
+ int len = strlen (s);
+ return 0 <= re_search (&re_comp_buf, s, len, 0, len, 0);
+}
+
+#endif /* emacs */
+
+#ifdef test
+
+#include <stdio.h>
+
+/* Indexed by a character, gives the upper case equivalent of the character */
+
+static char upcase[0400] =
+ { 000, 001, 002, 003, 004, 005, 006, 007,
+ 010, 011, 012, 013, 014, 015, 016, 017,
+ 020, 021, 022, 023, 024, 025, 026, 027,
+ 030, 031, 032, 033, 034, 035, 036, 037,
+ 040, 041, 042, 043, 044, 045, 046, 047,
+ 050, 051, 052, 053, 054, 055, 056, 057,
+ 060, 061, 062, 063, 064, 065, 066, 067,
+ 070, 071, 072, 073, 074, 075, 076, 077,
+ 0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
+ 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
+ 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
+ 0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
+ 0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
+ 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
+ 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
+ 0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
+ 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
+ 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
+ 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
+ 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
+ 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
+ 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
+ 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
+ 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
+ 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
+ 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
+ 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
+ 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
+ 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
+ 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
+ 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
+ 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
+ };
+
+main (argc, argv)
+ int argc;
+ char **argv;
+{
+ char pat[80];
+ struct re_pattern_buffer buf;
+ int i;
+ char c;
+ char fastmap[(1 << BYTEWIDTH)];
+
+ /* Allow a command argument to specify the style of syntax. */
+ if (argc > 1)
+ obscure_syntax = atoi (argv[1]);
+
+ buf.allocated = 40;
+ buf.buffer = (char *) malloc (buf.allocated);
+ buf.fastmap = fastmap;
+ buf.translate = upcase;
+
+ while (1)
+ {
+ gets (pat);
+
+ if (*pat)
+ {
+ re_compile_pattern (pat, strlen(pat), &buf);
+
+ for (i = 0; i < buf.used; i++)
+ printchar (buf.buffer[i]);
+
+ putchar ('\n');
+
+ printf ("%d allocated, %d used.\n", buf.allocated, buf.used);
+
+ re_compile_fastmap (&buf);
+ printf ("Allowed by fastmap: ");
+ for (i = 0; i < (1 << BYTEWIDTH); i++)
+ if (fastmap[i]) printchar (i);
+ putchar ('\n');
+ }
+
+ gets (pat); /* Now read the string to match against */
+
+ i = re_match (&buf, pat, strlen (pat), 0, 0);
+ printf ("Match value %d.\n", i);
+ }
+}
+
+#ifdef NOTDEF
+print_buf (bufp)
+ struct re_pattern_buffer *bufp;
+{
+ int i;
+
+ printf ("buf is :\n----------------\n");
+ for (i = 0; i < bufp->used; i++)
+ printchar (bufp->buffer[i]);
+
+ printf ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
+
+ printf ("Allowed by fastmap: ");
+ for (i = 0; i < (1 << BYTEWIDTH); i++)
+ if (bufp->fastmap[i])
+ printchar (i);
+ printf ("\nAllowed by translate: ");
+ if (bufp->translate)
+ for (i = 0; i < (1 << BYTEWIDTH); i++)
+ if (bufp->translate[i])
+ printchar (i);
+ printf ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
+ printf ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
+}
+#endif
+
+printchar (c)
+ char c;
+{
+ if (c < 041 || c >= 0177)
+ {
+ putchar ('\\');
+ putchar (((c >> 6) & 3) + '0');
+ putchar (((c >> 3) & 7) + '0');
+ putchar ((c & 7) + '0');
+ }
+ else
+ putchar (c);
+}
+
+error (string)
+ char *string;
+{
+ puts (string);
+ exit (1);
+}
+
+#endif /* test */