diff options
Diffstat (limited to 'gdb/obstack.c')
-rwxr-xr-x | gdb/obstack.c | 333 |
1 files changed, 0 insertions, 333 deletions
diff --git a/gdb/obstack.c b/gdb/obstack.c deleted file mode 100755 index 590fcaa..0000000 --- a/gdb/obstack.c +++ /dev/null @@ -1,333 +0,0 @@ -/* obstack.c - subroutines used implicitly by object stack macros - Copyright (C) 1988 Free Software Foundation, Inc. - -This program is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 1, or (at your option) any -later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -#include "obstack.h" - -#ifdef __STDC__ -#define POINTER void * -#else -#define POINTER char * -#endif - -/* Determine default alignment. */ -struct fooalign {char x; double d;}; -#define DEFAULT_ALIGNMENT ((char *)&((struct fooalign *) 0)->d - (char *)0) -/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT. - But in fact it might be less smart and round addresses to as much as - DEFAULT_ROUNDING. So we prepare for it to do that. */ -union fooround {long x; double d;}; -#define DEFAULT_ROUNDING (sizeof (union fooround)) - -/* When we copy a long block of data, this is the unit to do it with. - On some machines, copying successive ints does not work; - in such a case, redefine COPYING_UNIT to `long' (if that works) - or `char' as a last resort. */ -#ifndef COPYING_UNIT -#define COPYING_UNIT int -#endif - -/* The non-GNU-C macros copy the obstack into this global variable - to avoid multiple evaluation. */ - -struct obstack *_obstack; - -/* Initialize an obstack H for use. Specify chunk size SIZE (0 means default). - Objects start on multiples of ALIGNMENT (0 means use default). - CHUNKFUN is the function to use to allocate chunks, - and FREEFUN the function to free them. */ - -void -_obstack_begin (h, size, alignment, chunkfun, freefun) - struct obstack *h; - int size; - int alignment; - POINTER (*chunkfun) (); - void (*freefun) (); -{ - register struct _obstack_chunk* chunk; /* points to new chunk */ - - if (alignment == 0) - alignment = DEFAULT_ALIGNMENT; - if (size == 0) - /* Default size is what GNU malloc can fit in a 4096-byte block. */ - { - /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc. - Use the values for range checking, because if range checking is off, - the extra bytes won't be missed terribly, but if range checking is on - and we used a larger request, a whole extra 4096 bytes would be - allocated. - - These number are irrelevant to the new GNU malloc. I suspect it is - less sensitive to the size of the request. */ - int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1)) - + 4 + DEFAULT_ROUNDING - 1) - & ~(DEFAULT_ROUNDING - 1)); - size = 4096 - extra; - } - - h->chunkfun = chunkfun; - h->freefun = freefun; - h->chunk_size = size; - h->alignment_mask = alignment - 1; - - chunk = h->chunk = (struct _obstack_chunk *)(*h->chunkfun) (h->chunk_size); - h->next_free = h->object_base = chunk->contents; - h->chunk_limit = chunk->limit - = (char *) chunk + h->chunk_size; - chunk->prev = 0; -} - -/* Allocate a new current chunk for the obstack *H - on the assumption that LENGTH bytes need to be added - to the current object, or a new object of length LENGTH allocated. - Copies any partial object from the end of the old chunk - to the beginning of the new one. - - The function must be "int" so it can be used in non-ANSI C - compilers in a : expression. */ - -int -_obstack_newchunk (h, length) - struct obstack *h; - int length; -{ - register struct _obstack_chunk* old_chunk = h->chunk; - register struct _obstack_chunk* new_chunk; - register long new_size; - register int obj_size = h->next_free - h->object_base; - register int i; - int already; - - /* Compute size for new chunk. */ - new_size = (obj_size + length) + (obj_size >> 3) + 100; - if (new_size < h->chunk_size) - new_size = h->chunk_size; - - /* Allocate and initialize the new chunk. */ - new_chunk = h->chunk = (struct _obstack_chunk *)(*h->chunkfun) (new_size); - new_chunk->prev = old_chunk; - new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size; - - /* Move the existing object to the new chunk. - Word at a time is fast and is safe if the object - is sufficiently aligned. */ - if (h->alignment_mask + 1 >= DEFAULT_ALIGNMENT) - { - for (i = obj_size / sizeof (COPYING_UNIT) - 1; - i >= 0; i--) - ((COPYING_UNIT *)new_chunk->contents)[i] - = ((COPYING_UNIT *)h->object_base)[i]; - /* We used to copy the odd few remaining bytes as one extra COPYING_UNIT, - but that can cross a page boundary on a machine - which does not do strict alignment for COPYING_UNITS. */ - already = obj_size / sizeof (COPYING_UNIT) * sizeof (COPYING_UNIT); - } - else - already = 0; - /* Copy remaining bytes one by one. */ - for (i = already; i < obj_size; i++) - new_chunk->contents[i] = h->object_base[i]; - - h->object_base = new_chunk->contents; - h->next_free = h->object_base + obj_size; -} - -/* Return nonzero if object OBJ has been allocated from obstack H. - This is here for debugging. - If you use it in a program, you are probably losing. */ - -int -_obstack_allocated_p (h, obj) - struct obstack *h; - POINTER obj; -{ - register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */ - register struct _obstack_chunk* plp; /* point to previous chunk if any */ - - lp = (h)->chunk; - while (lp != 0 && ((POINTER)lp > obj || (POINTER)(lp)->limit < obj)) - { - plp = lp -> prev; - lp = plp; - } - return lp != 0; -} - -/* Free objects in obstack H, including OBJ and everything allocate - more recently than OBJ. If OBJ is zero, free everything in H. */ - -#ifdef __STDC__ -#undef obstack_free -void -obstack_free (struct obstack *h, POINTER obj) -#else -int -_obstack_free (h, obj) - struct obstack *h; - POINTER obj; -#endif -{ - register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */ - register struct _obstack_chunk* plp; /* point to previous chunk if any */ - - lp = (h)->chunk; - /* We use >= because there cannot be an object at the beginning of a chunk. - But there can be an empty object at that address - at the end of another chunk. */ - while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj)) - { - plp = lp -> prev; - (*h->freefun) ((POINTER) lp); - lp = plp; - } - if (lp) - { - (h)->object_base = (h)->next_free = (char *)(obj); - (h)->chunk_limit = lp->limit; - (h)->chunk = lp; - } - else if (obj != 0) - /* obj is not in any of the chunks! */ - abort (); -} - -/* Let same .o link with output of gcc and other compilers. */ - -#ifdef __STDC__ -int -_obstack_free (h, obj) - struct obstack *h; - POINTER obj; -{ - obstack_free (h, obj); -} -#endif - -/* #if 0 */ -/* These are now turned off because the applications do not use it - and it uses bcopy via obstack_grow, which causes trouble on sysV. */ - -/* Now define the functional versions of the obstack macros. - Define them to simply use the corresponding macros to do the job. */ - -#ifdef __STDC__ -/* These function definitions do not work with non-ANSI preprocessors; - they won't pass through the macro names in parentheses. */ - -/* The function names appear in parentheses in order to prevent - the macro-definitions of the names from being expanded there. */ - -POINTER (obstack_base) (obstack) - struct obstack *obstack; -{ - return obstack_base (obstack); -} - -POINTER (obstack_next_free) (obstack) - struct obstack *obstack; -{ - return obstack_next_free (obstack); -} - -int (obstack_object_size) (obstack) - struct obstack *obstack; -{ - return obstack_object_size (obstack); -} - -int (obstack_room) (obstack) - struct obstack *obstack; -{ - return obstack_room (obstack); -} - -void (obstack_grow) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - obstack_grow (obstack, pointer, length); -} - -void (obstack_grow0) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - obstack_grow0 (obstack, pointer, length); -} - -void (obstack_1grow) (obstack, character) - struct obstack *obstack; - int character; -{ - obstack_1grow (obstack, character); -} - -void (obstack_blank) (obstack, length) - struct obstack *obstack; - int length; -{ - obstack_blank (obstack, length); -} - -void (obstack_1grow_fast) (obstack, character) - struct obstack *obstack; - int character; -{ - obstack_1grow_fast (obstack, character); -} - -void (obstack_blank_fast) (obstack, length) - struct obstack *obstack; - int length; -{ - obstack_blank_fast (obstack, length); -} - -POINTER (obstack_finish) (obstack) - struct obstack *obstack; -{ - return obstack_finish (obstack); -} - -POINTER (obstack_alloc) (obstack, length) - struct obstack *obstack; - int length; -{ - return obstack_alloc (obstack, length); -} - -POINTER (obstack_copy) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - return obstack_copy (obstack, pointer, length); -} - -POINTER (obstack_copy0) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - return obstack_copy0 (obstack, pointer, length); -} - -#endif /* __STDC__ */ - -/* #endif 0 */ |