diff options
Diffstat (limited to 'gdb/mt-tdep.c')
-rw-r--r-- | gdb/mt-tdep.c | 1057 |
1 files changed, 1057 insertions, 0 deletions
diff --git a/gdb/mt-tdep.c b/gdb/mt-tdep.c new file mode 100644 index 0000000..f67af76 --- /dev/null +++ b/gdb/mt-tdep.c @@ -0,0 +1,1057 @@ +/* Target-dependent code for Morpho ms1 processor, for GDB. + + Copyright 2005 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* Contributed by Michael Snyder, msnyder@redhat.com. */ + +#include "defs.h" +#include "frame.h" +#include "frame-unwind.h" +#include "frame-base.h" +#include "symtab.h" +#include "dis-asm.h" +#include "arch-utils.h" +#include "gdbtypes.h" +#include "gdb_string.h" +#include "regcache.h" +#include "reggroups.h" +#include "gdbcore.h" +#include "trad-frame.h" +#include "inferior.h" +#include "dwarf2-frame.h" +#include "infcall.h" +#include "gdb_assert.h" + +enum ms1_arch_constants +{ + MS1_MAX_STRUCT_SIZE = 16 +}; + +enum ms1_gdb_regnums +{ + MS1_R0_REGNUM, /* 32 bit regs. */ + MS1_R1_REGNUM, + MS1_1ST_ARGREG = MS1_R1_REGNUM, + MS1_R2_REGNUM, + MS1_R3_REGNUM, + MS1_R4_REGNUM, + MS1_LAST_ARGREG = MS1_R4_REGNUM, + MS1_R5_REGNUM, + MS1_R6_REGNUM, + MS1_R7_REGNUM, + MS1_R8_REGNUM, + MS1_R9_REGNUM, + MS1_R10_REGNUM, + MS1_R11_REGNUM, + MS1_R12_REGNUM, + MS1_FP_REGNUM = MS1_R12_REGNUM, + MS1_R13_REGNUM, + MS1_SP_REGNUM = MS1_R13_REGNUM, + MS1_R14_REGNUM, + MS1_RA_REGNUM = MS1_R14_REGNUM, + MS1_R15_REGNUM, + MS1_IRA_REGNUM = MS1_R15_REGNUM, + MS1_PC_REGNUM, + + /* Interrupt Enable pseudo-register, exported by SID. */ + MS1_INT_ENABLE_REGNUM, + /* End of CPU regs. */ + + MS1_NUM_CPU_REGS, + + /* Co-processor registers. */ + MS1_COPRO_REGNUM = MS1_NUM_CPU_REGS, /* 16 bit regs. */ + MS1_CPR0_REGNUM, + MS1_CPR1_REGNUM, + MS1_CPR2_REGNUM, + MS1_CPR3_REGNUM, + MS1_CPR4_REGNUM, + MS1_CPR5_REGNUM, + MS1_CPR6_REGNUM, + MS1_CPR7_REGNUM, + MS1_CPR8_REGNUM, + MS1_CPR9_REGNUM, + MS1_CPR10_REGNUM, + MS1_CPR11_REGNUM, + MS1_CPR12_REGNUM, + MS1_CPR13_REGNUM, + MS1_CPR14_REGNUM, + MS1_CPR15_REGNUM, + MS1_BYPA_REGNUM, /* 32 bit regs. */ + MS1_BYPB_REGNUM, + MS1_BYPC_REGNUM, + MS1_FLAG_REGNUM, + MS1_CONTEXT_REGNUM, /* 38 bits (treat as array of + six bytes). */ + MS1_MAC_REGNUM, /* 32 bits. */ + MS1_Z1_REGNUM, /* 16 bits. */ + MS1_Z2_REGNUM, /* 16 bits. */ + MS1_ICHANNEL_REGNUM, /* 32 bits. */ + MS1_ISCRAMB_REGNUM, /* 32 bits. */ + MS1_QSCRAMB_REGNUM, /* 32 bits. */ + MS1_OUT_REGNUM, /* 16 bits. */ + MS1_EXMAC_REGNUM, /* 32 bits (8 used). */ + MS1_QCHANNEL_REGNUM, /* 32 bits. */ + + /* Number of real registers. */ + MS1_NUM_REGS, + + /* Pseudo-registers. */ + MS1_COPRO_PSEUDOREG_REGNUM = MS1_NUM_REGS, + MS1_MAC_PSEUDOREG_REGNUM, + + /* Two pseudo-regs ('coprocessor' and 'mac'). */ + MS1_NUM_PSEUDO_REGS = 2 +}; + +/* Return name of register number specified by REGNUM. */ + +static const char * +ms1_register_name (int regnum) +{ + static const char *const register_names[] = { + /* CPU regs. */ + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "pc", "IE", + /* Co-processor regs. */ + "", /* copro register. */ + "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", + "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", + "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2", + "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel", + /* Pseudo-registers. */ + "coprocessor", "MAC" + }; + + gdb_assert (regnum >= 0 && regnum < ARRAY_SIZE (register_names)); + return register_names[regnum]; +} + +/* Given ARCH and a register number specified by REGNUM, return the + type of that register. */ + +static struct type * +ms1_register_type (struct gdbarch *arch, int regnum) +{ + static struct type *void_func_ptr = NULL; + static struct type *void_ptr = NULL; + static struct type *copro_type; + + if (regnum >= 0 && regnum < MS1_NUM_REGS + MS1_NUM_PSEUDO_REGS) + { + if (void_func_ptr == NULL) + { + struct type *temp; + + void_ptr = lookup_pointer_type (builtin_type_void); + void_func_ptr = + lookup_pointer_type (lookup_function_type (builtin_type_void)); + temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1); + copro_type = create_array_type (NULL, builtin_type_int16, temp); + } + switch (regnum) + { + case MS1_PC_REGNUM: + case MS1_RA_REGNUM: + case MS1_IRA_REGNUM: + return void_func_ptr; + case MS1_SP_REGNUM: + case MS1_FP_REGNUM: + return void_ptr; + case MS1_INT_ENABLE_REGNUM: + case MS1_ICHANNEL_REGNUM: + case MS1_QCHANNEL_REGNUM: + case MS1_ISCRAMB_REGNUM: + case MS1_QSCRAMB_REGNUM: + return builtin_type_int32; + case MS1_EXMAC_REGNUM: + case MS1_MAC_REGNUM: + return builtin_type_uint32; + case MS1_BYPA_REGNUM: + case MS1_BYPB_REGNUM: + case MS1_BYPC_REGNUM: + case MS1_Z1_REGNUM: + case MS1_Z2_REGNUM: + case MS1_OUT_REGNUM: + return builtin_type_int16; + case MS1_CONTEXT_REGNUM: + return builtin_type_long_long; + case MS1_COPRO_REGNUM: + case MS1_COPRO_PSEUDOREG_REGNUM: + return copro_type; + case MS1_MAC_PSEUDOREG_REGNUM: + if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2 + || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2) + return builtin_type_uint64; + else + return builtin_type_uint32; + case MS1_FLAG_REGNUM: + return builtin_type_unsigned_char; + default: + if (regnum >= MS1_R0_REGNUM && regnum <= MS1_R15_REGNUM) + return builtin_type_int32; + else if (regnum >= MS1_CPR0_REGNUM && regnum <= MS1_CPR15_REGNUM) + return builtin_type_int16; + } + } + internal_error (__FILE__, __LINE__, + _("ms1_register_type: illegal register number %d"), regnum); +} + +/* Return true if register REGNUM is a member of the register group + specified by GROUP. */ + +static int +ms1_register_reggroup_p (struct gdbarch *gdbarch, int regnum, + struct reggroup *group) +{ + /* Groups of registers that can be displayed via "info reg". */ + if (group == all_reggroup) + return (regnum >= 0 + && regnum < MS1_NUM_REGS + MS1_NUM_PSEUDO_REGS + && ms1_register_name (regnum)[0] != '\0'); + + if (group == general_reggroup) + return (regnum >= MS1_R0_REGNUM && regnum <= MS1_R15_REGNUM); + + if (group == float_reggroup) + return 0; /* No float regs. */ + + if (group == vector_reggroup) + return 0; /* No vector regs. */ + + /* For any that are not handled above. */ + return default_register_reggroup_p (gdbarch, regnum, group); +} + +/* Return the return value convention used for a given type TYPE. + Optionally, fetch or set the return value via READBUF or + WRITEBUF respectively using REGCACHE for the register + values. */ + +static enum return_value_convention +ms1_return_value (struct gdbarch *gdbarch, struct type *type, + struct regcache *regcache, gdb_byte *readbuf, + const gdb_byte *writebuf) +{ + if (TYPE_LENGTH (type) > 4) + { + /* Return values > 4 bytes are returned in memory, + pointed to by R11. */ + if (readbuf) + { + ULONGEST addr; + + regcache_cooked_read_unsigned (regcache, MS1_R11_REGNUM, &addr); + read_memory (addr, readbuf, TYPE_LENGTH (type)); + } + + if (writebuf) + { + ULONGEST addr; + + regcache_cooked_read_unsigned (regcache, MS1_R11_REGNUM, &addr); + write_memory (addr, writebuf, TYPE_LENGTH (type)); + } + + return RETURN_VALUE_ABI_RETURNS_ADDRESS; + } + else + { + if (readbuf) + { + ULONGEST temp; + + /* Return values of <= 4 bytes are returned in R11. */ + regcache_cooked_read_unsigned (regcache, MS1_R11_REGNUM, &temp); + store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp); + } + + if (writebuf) + { + if (TYPE_LENGTH (type) < 4) + { + gdb_byte buf[4]; + /* Add leading zeros to the value. */ + memset (buf, 0, sizeof (buf)); + memcpy (buf + sizeof (buf) - TYPE_LENGTH (type), + writebuf, TYPE_LENGTH (type)); + regcache_cooked_write (regcache, MS1_R11_REGNUM, buf); + } + else /* (TYPE_LENGTH (type) == 4 */ + regcache_cooked_write (regcache, MS1_R11_REGNUM, writebuf); + } + + return RETURN_VALUE_REGISTER_CONVENTION; + } +} + +/* If the input address, PC, is in a function prologue, return the + address of the end of the prologue, otherwise return the input + address. + + Note: PC is likely to be the function start, since this function + is mainly used for advancing a breakpoint to the first line, or + stepping to the first line when we have stepped into a function + call. */ + +static CORE_ADDR +ms1_skip_prologue (CORE_ADDR pc) +{ + CORE_ADDR func_addr = 0, func_end = 0; + char *func_name; + unsigned long instr; + + if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) + { + struct symtab_and_line sal; + struct symbol *sym; + + /* Found a function. */ + sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL); + if (sym && SYMBOL_LANGUAGE (sym) != language_asm) + { + /* Don't use this trick for assembly source files. */ + sal = find_pc_line (func_addr, 0); + + if (sal.end && sal.end < func_end) + { + /* Found a line number, use it as end of prologue. */ + return sal.end; + } + } + } + + /* No function symbol, or no line symbol. Use prologue scanning method. */ + for (;; pc += 4) + { + instr = read_memory_unsigned_integer (pc, 4); + if (instr == 0x12000000) /* nop */ + continue; + if (instr == 0x12ddc000) /* copy sp into fp */ + continue; + instr >>= 16; + if (instr == 0x05dd) /* subi sp, sp, imm */ + continue; + if (instr >= 0x43c0 && instr <= 0x43df) /* push */ + continue; + /* Not an obvious prologue instruction. */ + break; + } + + return pc; +} + +/* The breakpoint instruction must be the same size as the smallest + instruction in the instruction set. + + The BP for ms1 is defined as 0x68000000 (BREAK). + The BP for ms2 is defined as 0x69000000 (illegal) */ + +static const gdb_byte * +ms1_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) +{ + static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 }; + static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 }; + + *bp_size = 4; + if (gdbarch_bfd_arch_info (current_gdbarch)->mach == bfd_mach_ms2) + return ms2_breakpoint; + + return ms1_breakpoint; +} + +/* Fetch the pseudo registers: + + There are two pseudo-registers: + 1) The 'coprocessor' pseudo-register (which mirrors the + "real" coprocessor register sent by the target), and + 2) The 'MAC' pseudo-register (which represents the union + of the original 32 bit target MAC register and the new + 8-bit extended-MAC register). */ + +static void +ms1_pseudo_register_read (struct gdbarch *gdbarch, + struct regcache *regcache, int regno, gdb_byte *buf) +{ + switch (regno) + { + case MS1_COPRO_REGNUM: + case MS1_COPRO_PSEUDOREG_REGNUM: + regcache_raw_read (regcache, MS1_COPRO_REGNUM, buf); + break; + case MS1_MAC_REGNUM: + case MS1_MAC_PSEUDOREG_REGNUM: + if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 + || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) + { + ULONGEST oldmac = 0, ext_mac = 0; + ULONGEST newmac; + + regcache_cooked_read_unsigned (regcache, MS1_MAC_REGNUM, &oldmac); + regcache_cooked_read_unsigned (regcache, MS1_EXMAC_REGNUM, &ext_mac); + newmac = + (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32); + store_signed_integer (buf, 8, newmac); + } + else + regcache_raw_read (regcache, MS1_MAC_REGNUM, buf); + break; + default: + internal_error (__FILE__, __LINE__, + _("ms1_pseudo_register_read: bad reg # (%d)"), regno); + break; + } +} + +/* Write the pseudo registers: + + Ms1 pseudo-registers are stored directly to the target. The + 'coprocessor' register is special, because when it is modified, all + the other coprocessor regs must be flushed from the reg cache. */ + +static void +ms1_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int regno, const gdb_byte *buf) +{ + int i; + + switch (regno) + { + case MS1_COPRO_REGNUM: + case MS1_COPRO_PSEUDOREG_REGNUM: + regcache_raw_write (regcache, MS1_COPRO_REGNUM, buf); + for (i = MS1_NUM_CPU_REGS; i < MS1_NUM_REGS; i++) + set_register_cached (i, 0); + break; + case MS1_MAC_REGNUM: + case MS1_MAC_PSEUDOREG_REGNUM: + if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 + || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) + { + /* The 8-byte MAC pseudo-register must be broken down into two + 32-byte registers. */ + unsigned int oldmac, ext_mac; + ULONGEST newmac; + + newmac = extract_unsigned_integer (buf, 8); + oldmac = newmac & 0xffffffff; + ext_mac = (newmac >> 32) & 0xff; + regcache_cooked_write_unsigned (regcache, MS1_MAC_REGNUM, oldmac); + regcache_cooked_write_unsigned (regcache, MS1_EXMAC_REGNUM, ext_mac); + } + else + regcache_raw_write (regcache, MS1_MAC_REGNUM, buf); + break; + default: + internal_error (__FILE__, __LINE__, + _("ms1_pseudo_register_write: bad reg # (%d)"), regno); + break; + } +} + +static CORE_ADDR +ms1_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) +{ + /* Register size is 4 bytes. */ + return align_down (sp, 4); +} + +/* Implements the "info registers" command. When ``all'' is non-zero, + the coprocessor registers will be printed in addition to the rest + of the registers. */ + +static void +ms1_registers_info (struct gdbarch *gdbarch, + struct ui_file *file, + struct frame_info *frame, int regnum, int all) +{ + if (regnum == -1) + { + int lim; + + lim = all ? MS1_NUM_REGS : MS1_NUM_CPU_REGS; + + for (regnum = 0; regnum < lim; regnum++) + { + /* Don't display the Qchannel register since it will be displayed + along with Ichannel. (See below.) */ + if (regnum == MS1_QCHANNEL_REGNUM) + continue; + + ms1_registers_info (gdbarch, file, frame, regnum, all); + + /* Display the Qchannel register immediately after Ichannel. */ + if (regnum == MS1_ICHANNEL_REGNUM) + ms1_registers_info (gdbarch, file, frame, MS1_QCHANNEL_REGNUM, all); + } + } + else + { + if (regnum == MS1_EXMAC_REGNUM) + return; + else if (regnum == MS1_CONTEXT_REGNUM) + { + /* Special output handling for 38-bit context register. */ + unsigned char *buff; + unsigned int *bytes, i, regsize; + + regsize = register_size (gdbarch, regnum); + + buff = alloca (regsize); + bytes = alloca (regsize * sizeof (*bytes)); + + frame_register_read (frame, regnum, buff); + + fputs_filtered (REGISTER_NAME (regnum), file); + print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file); + fputs_filtered ("0x", file); + + for (i = 0; i < regsize; i++) + fprintf_filtered (file, "%02x", (unsigned int) + extract_unsigned_integer (buff + i, 1)); + fputs_filtered ("\t", file); + print_longest (file, 'd', 0, + extract_unsigned_integer (buff, regsize)); + fputs_filtered ("\n", file); + } + else if (regnum == MS1_COPRO_REGNUM + || regnum == MS1_COPRO_PSEUDOREG_REGNUM) + { + /* Special output handling for the 'coprocessor' register. */ + gdb_byte *buf; + + buf = alloca (register_size (gdbarch, MS1_COPRO_REGNUM)); + frame_register_read (frame, MS1_COPRO_REGNUM, buf); + /* And print. */ + regnum = MS1_COPRO_PSEUDOREG_REGNUM; + fputs_filtered (REGISTER_NAME (regnum), file); + print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file); + val_print (register_type (gdbarch, regnum), buf, + 0, 0, file, 0, 1, 0, Val_no_prettyprint); + fputs_filtered ("\n", file); + } + else if (regnum == MS1_MAC_REGNUM || regnum == MS1_MAC_PSEUDOREG_REGNUM) + { + ULONGEST oldmac, ext_mac, newmac; + gdb_byte buf[3 * sizeof (LONGEST)]; + + /* Get the two "real" mac registers. */ + frame_register_read (frame, MS1_MAC_REGNUM, buf); + oldmac = extract_unsigned_integer + (buf, register_size (gdbarch, MS1_MAC_REGNUM)); + if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 + || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) + { + frame_register_read (frame, MS1_EXMAC_REGNUM, buf); + ext_mac = extract_unsigned_integer + (buf, register_size (gdbarch, MS1_EXMAC_REGNUM)); + } + else + ext_mac = 0; + + /* Add them together. */ + newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32); + + /* And print. */ + regnum = MS1_MAC_PSEUDOREG_REGNUM; + fputs_filtered (REGISTER_NAME (regnum), file); + print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file); + fputs_filtered ("0x", file); + print_longest (file, 'x', 0, newmac); + fputs_filtered ("\t", file); + print_longest (file, 'u', 0, newmac); + fputs_filtered ("\n", file); + } + else + default_print_registers_info (gdbarch, file, frame, regnum, all); + } +} + +/* Set up the callee's arguments for an inferior function call. The + arguments are pushed on the stack or are placed in registers as + appropriate. It also sets up the return address (which points to + the call dummy breakpoint). + + Returns the updated (and aligned) stack pointer. */ + +static CORE_ADDR +ms1_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, + int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ +#define wordsize 4 + gdb_byte buf[MS1_MAX_STRUCT_SIZE]; + int argreg = MS1_1ST_ARGREG; + int split_param_len = 0; + int stack_dest = sp; + int slacklen; + int typelen; + int i, j; + + /* First handle however many args we can fit into MS1_1ST_ARGREG thru + MS1_LAST_ARGREG. */ + for (i = 0; i < nargs && argreg <= MS1_LAST_ARGREG; i++) + { + const gdb_byte *val; + typelen = TYPE_LENGTH (value_type (args[i])); + switch (typelen) + { + case 1: + case 2: + case 3: + case 4: + regcache_cooked_write_unsigned (regcache, argreg++, + extract_unsigned_integer + (value_contents (args[i]), + wordsize)); + break; + case 8: + case 12: + case 16: + val = value_contents (args[i]); + while (typelen > 0) + { + if (argreg <= MS1_LAST_ARGREG) + { + /* This word of the argument is passed in a register. */ + regcache_cooked_write_unsigned (regcache, argreg++, + extract_unsigned_integer + (val, wordsize)); + typelen -= wordsize; + val += wordsize; + } + else + { + /* Remainder of this arg must be passed on the stack + (deferred to do later). */ + split_param_len = typelen; + memcpy (buf, val, typelen); + break; /* No more args can be handled in regs. */ + } + } + break; + default: + /* By reverse engineering of gcc output, args bigger than + 16 bytes go on the stack, and their address is passed + in the argreg. */ + stack_dest -= typelen; + write_memory (stack_dest, value_contents (args[i]), typelen); + regcache_cooked_write_unsigned (regcache, argreg++, stack_dest); + break; + } + } + + /* Next, the rest of the arguments go onto the stack, in reverse order. */ + for (j = nargs - 1; j >= i; j--) + { + gdb_byte *val; + + /* Right-justify the value in an aligned-length buffer. */ + typelen = TYPE_LENGTH (value_type (args[j])); + slacklen = (wordsize - (typelen % wordsize)) % wordsize; + val = alloca (typelen + slacklen); + memcpy (val, value_contents (args[j]), typelen); + memset (val + typelen, 0, slacklen); + /* Now write this data to the stack. */ + stack_dest -= typelen + slacklen; + write_memory (stack_dest, val, typelen + slacklen); + } + + /* Finally, if a param needs to be split between registers and stack, + write the second half to the stack now. */ + if (split_param_len != 0) + { + stack_dest -= split_param_len; + write_memory (stack_dest, buf, split_param_len); + } + + /* Set up return address (provided to us as bp_addr). */ + regcache_cooked_write_unsigned (regcache, MS1_RA_REGNUM, bp_addr); + + /* Store struct return address, if given. */ + if (struct_return && struct_addr != 0) + regcache_cooked_write_unsigned (regcache, MS1_R11_REGNUM, struct_addr); + + /* Set aside 16 bytes for the callee to save regs 1-4. */ + stack_dest -= 16; + + /* Update the stack pointer. */ + regcache_cooked_write_unsigned (regcache, MS1_SP_REGNUM, stack_dest); + + /* And that should do it. Return the new stack pointer. */ + return stack_dest; +} + + +/* The 'unwind_cache' data structure. */ + +struct ms1_unwind_cache +{ + /* The previous frame's inner most stack address. + Used as this frame ID's stack_addr. */ + CORE_ADDR prev_sp; + CORE_ADDR frame_base; + int framesize; + int frameless_p; + + /* Table indicating the location of each and every register. */ + struct trad_frame_saved_reg *saved_regs; +}; + +/* Initialize an unwind_cache. Build up the saved_regs table etc. for + the frame. */ + +static struct ms1_unwind_cache * +ms1_frame_unwind_cache (struct frame_info *next_frame, + void **this_prologue_cache) +{ + struct gdbarch *gdbarch; + struct ms1_unwind_cache *info; + CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr; + unsigned long instr, upper_half, delayed_store = 0; + int regnum, offset; + ULONGEST sp, fp; + + if ((*this_prologue_cache)) + return (*this_prologue_cache); + + gdbarch = get_frame_arch (next_frame); + info = FRAME_OBSTACK_ZALLOC (struct ms1_unwind_cache); + (*this_prologue_cache) = info; + + info->prev_sp = 0; + info->framesize = 0; + info->frame_base = 0; + info->frameless_p = 1; + info->saved_regs = trad_frame_alloc_saved_regs (next_frame); + + /* Grab the frame-relative values of SP and FP, needed below. + The frame_saved_register function will find them on the + stack or in the registers as appropriate. */ + frame_unwind_unsigned_register (next_frame, MS1_SP_REGNUM, &sp); + frame_unwind_unsigned_register (next_frame, MS1_FP_REGNUM, &fp); + + start_addr = frame_func_unwind (next_frame); + + /* Return early if GDB couldn't find the function. */ + if (start_addr == 0) + return info; + + end_addr = frame_pc_unwind (next_frame); + prologue_end_addr = skip_prologue_using_sal (start_addr); + if (end_addr == 0) + for (next_addr = start_addr; next_addr < end_addr; next_addr += 4) + { + instr = get_frame_memory_unsigned (next_frame, next_addr, 4); + if (delayed_store) /* previous instr was a push */ + { + upper_half = delayed_store >> 16; + regnum = upper_half & 0xf; + offset = delayed_store & 0xffff; + switch (upper_half & 0xfff0) + { + case 0x43c0: /* push using frame pointer */ + info->saved_regs[regnum].addr = offset; + break; + case 0x43d0: /* push using stack pointer */ + info->saved_regs[regnum].addr = offset; + break; + default: /* lint */ + break; + } + delayed_store = 0; + } + + switch (instr) + { + case 0x12000000: /* NO-OP */ + continue; + case 0x12ddc000: /* copy sp into fp */ + info->frameless_p = 0; /* Record that the frame pointer is in use. */ + continue; + default: + upper_half = instr >> 16; + if (upper_half == 0x05dd || /* subi sp, sp, imm */ + upper_half == 0x07dd) /* subui sp, sp, imm */ + { + /* Record the frame size. */ + info->framesize = instr & 0xffff; + continue; + } + if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */ + (upper_half & 0xfff0) == 0x43d0) /* stack push */ + { + /* Save this instruction, but don't record the + pushed register as 'saved' until we see the + next instruction. That's because of deferred stores + on this target -- GDB won't be able to read the register + from the stack until one instruction later. */ + delayed_store = instr; + continue; + } + /* Not a prologue instruction. Is this the end of the prologue? + This is the most difficult decision; when to stop scanning. + + If we have no line symbol, then the best thing we can do + is to stop scanning when we encounter an instruction that + is not likely to be a part of the prologue. + + But if we do have a line symbol, then we should + keep scanning until we reach it (or we reach end_addr). */ + + if (prologue_end_addr && (prologue_end_addr > (next_addr + 4))) + continue; /* Keep scanning, recording saved_regs etc. */ + else + break; /* Quit scanning: breakpoint can be set here. */ + } + } + + /* Special handling for the "saved" address of the SP: + The SP is of course never saved on the stack at all, so + by convention what we put here is simply the previous + _value_ of the SP (as opposed to an address where the + previous value would have been pushed). This will also + give us the frame base address. */ + + if (info->frameless_p) + { + info->frame_base = sp + info->framesize; + info->prev_sp = sp + info->framesize; + } + else + { + info->frame_base = fp + info->framesize; + info->prev_sp = fp + info->framesize; + } + /* Save prev_sp in saved_regs as a value, not as an address. */ + trad_frame_set_value (info->saved_regs, MS1_SP_REGNUM, info->prev_sp); + + /* Now convert frame offsets to actual addresses (not offsets). */ + for (regnum = 0; regnum < MS1_NUM_REGS; regnum++) + if (trad_frame_addr_p (info->saved_regs, regnum)) + info->saved_regs[regnum].addr += info->frame_base - info->framesize; + + /* The call instruction moves the caller's PC in the callee's RA reg. + Since this is an unwind, do the reverse. Copy the location of RA + into PC (the address / regnum) so that a request for PC will be + converted into a request for the RA. */ + info->saved_regs[MS1_PC_REGNUM] = info->saved_regs[MS1_RA_REGNUM]; + + return info; +} + +static CORE_ADDR +ms1_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST pc; + + frame_unwind_unsigned_register (next_frame, MS1_PC_REGNUM, &pc); + return pc; +} + +static CORE_ADDR +ms1_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST sp; + + frame_unwind_unsigned_register (next_frame, MS1_SP_REGNUM, &sp); + return sp; +} + +/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that + dummy frame. The frame ID's base needs to match the TOS value + saved by save_dummy_frame_tos(), and the PC match the dummy frame's + breakpoint. */ + +static struct frame_id +ms1_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_id_build (ms1_unwind_sp (gdbarch, next_frame), + frame_pc_unwind (next_frame)); +} + +/* Given a GDB frame, determine the address of the calling function's + frame. This will be used to create a new GDB frame struct. */ + +static void +ms1_frame_this_id (struct frame_info *next_frame, + void **this_prologue_cache, struct frame_id *this_id) +{ + struct ms1_unwind_cache *info = + ms1_frame_unwind_cache (next_frame, this_prologue_cache); + + if (!(info == NULL || info->prev_sp == 0)) + { + (*this_id) = frame_id_build (info->prev_sp, + frame_func_unwind (next_frame)); + } + return; +} + +static void +ms1_frame_prev_register (struct frame_info *next_frame, + void **this_prologue_cache, + int regnum, int *optimizedp, + enum lval_type *lvalp, CORE_ADDR *addrp, + int *realnump, gdb_byte *bufferp) +{ + struct ms1_unwind_cache *info = + ms1_frame_unwind_cache (next_frame, this_prologue_cache); + + trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, + optimizedp, lvalp, addrp, realnump, bufferp); +} + +static CORE_ADDR +ms1_frame_base_address (struct frame_info *next_frame, + void **this_prologue_cache) +{ + struct ms1_unwind_cache *info = + ms1_frame_unwind_cache (next_frame, this_prologue_cache); + + return info->frame_base; +} + +/* This is a shared interface: the 'frame_unwind' object is what's + returned by the 'sniffer' function, and in turn specifies how to + get a frame's ID and prev_regs. + + This exports the 'prev_register' and 'this_id' methods. */ + +static const struct frame_unwind ms1_frame_unwind = { + NORMAL_FRAME, + ms1_frame_this_id, + ms1_frame_prev_register +}; + +/* The sniffer is a registered function that identifies our family of + frame unwind functions (this_id and prev_register). */ + +static const struct frame_unwind * +ms1_frame_sniffer (struct frame_info *next_frame) +{ + return &ms1_frame_unwind; +} + +/* Another shared interface: the 'frame_base' object specifies how to + unwind a frame and secure the base addresses for frame objects + (locals, args). */ + +static struct frame_base ms1_frame_base = { + &ms1_frame_unwind, + ms1_frame_base_address, + ms1_frame_base_address, + ms1_frame_base_address +}; + +static struct gdbarch * +ms1_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + + /* Find a candidate among the list of pre-declared architectures. */ + arches = gdbarch_list_lookup_by_info (arches, &info); + if (arches != NULL) + return arches->gdbarch; + + /* None found, create a new architecture from the information + provided. */ + gdbarch = gdbarch_alloc (&info, NULL); + + switch (info.byte_order) + { + case BFD_ENDIAN_BIG: + set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); + set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big); + set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); + break; + case BFD_ENDIAN_LITTLE: + set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); + set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little); + set_gdbarch_long_double_format (gdbarch, + &floatformat_ieee_double_little); + break; + default: + internal_error (__FILE__, __LINE__, + _("ms1_gdbarch_init: bad byte order for float format")); + } + + set_gdbarch_register_name (gdbarch, ms1_register_name); + set_gdbarch_num_regs (gdbarch, MS1_NUM_REGS); + set_gdbarch_num_pseudo_regs (gdbarch, MS1_NUM_PSEUDO_REGS); + set_gdbarch_pc_regnum (gdbarch, MS1_PC_REGNUM); + set_gdbarch_sp_regnum (gdbarch, MS1_SP_REGNUM); + set_gdbarch_pseudo_register_read (gdbarch, ms1_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, ms1_pseudo_register_write); + set_gdbarch_skip_prologue (gdbarch, ms1_skip_prologue); + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_breakpoint_from_pc (gdbarch, ms1_breakpoint_from_pc); + set_gdbarch_decr_pc_after_break (gdbarch, 0); + set_gdbarch_frame_args_skip (gdbarch, 0); + set_gdbarch_print_insn (gdbarch, print_insn_ms1); + set_gdbarch_register_type (gdbarch, ms1_register_type); + set_gdbarch_register_reggroup_p (gdbarch, ms1_register_reggroup_p); + + set_gdbarch_return_value (gdbarch, ms1_return_value); + set_gdbarch_sp_regnum (gdbarch, MS1_SP_REGNUM); + + set_gdbarch_frame_align (gdbarch, ms1_frame_align); + + set_gdbarch_print_registers_info (gdbarch, ms1_registers_info); + + set_gdbarch_push_dummy_call (gdbarch, ms1_push_dummy_call); + + /* Target builtin data types. */ + set_gdbarch_short_bit (gdbarch, 16); + set_gdbarch_int_bit (gdbarch, 32); + set_gdbarch_long_bit (gdbarch, 32); + set_gdbarch_long_long_bit (gdbarch, 64); + set_gdbarch_float_bit (gdbarch, 32); + set_gdbarch_double_bit (gdbarch, 64); + set_gdbarch_long_double_bit (gdbarch, 64); + set_gdbarch_ptr_bit (gdbarch, 32); + + /* Register the DWARF 2 sniffer first, and then the traditional prologue + based sniffer. */ + frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); + frame_unwind_append_sniffer (gdbarch, ms1_frame_sniffer); + frame_base_set_default (gdbarch, &ms1_frame_base); + + /* Register the 'unwind_pc' method. */ + set_gdbarch_unwind_pc (gdbarch, ms1_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, ms1_unwind_sp); + + /* Methods for saving / extracting a dummy frame's ID. + The ID's stack address must match the SP value returned by + PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ + set_gdbarch_unwind_dummy_id (gdbarch, ms1_unwind_dummy_id); + + return gdbarch; +} + +void +_initialize_ms1_tdep (void) +{ + register_gdbarch_init (bfd_arch_ms1, ms1_gdbarch_init); +} |