aboutsummaryrefslogtreecommitdiff
path: root/gdb/mips-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/mips-tdep.c')
-rw-r--r--gdb/mips-tdep.c3496
1 files changed, 0 insertions, 3496 deletions
diff --git a/gdb/mips-tdep.c b/gdb/mips-tdep.c
deleted file mode 100644
index 0cd0063..0000000
--- a/gdb/mips-tdep.c
+++ /dev/null
@@ -1,3496 +0,0 @@
-/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
- Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
- Free Software Foundation, Inc.
- Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
- and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "gdb_string.h"
-#include "frame.h"
-#include "inferior.h"
-#include "symtab.h"
-#include "value.h"
-#include "gdbcmd.h"
-#include "language.h"
-#include "gdbcore.h"
-#include "symfile.h"
-#include "objfiles.h"
-#include "gdbtypes.h"
-#include "target.h"
-
-#include "opcode/mips.h"
-/* start-sanitize-carp start-sanitize-vr4xxx */
-#include "elf/mips.h"
-#include "elf-bfd.h"
-
-/* end-sanitize-carp end-sanitize-vr4xxx */
-
-/* Some MIPS boards don't support floating point, so we permit the
- user to turn it off. */
-
-enum mips_fpu_type
-{
- MIPS_FPU_DOUBLE, /* Full double precision floating point. */
- MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
- MIPS_FPU_NONE /* No floating point. */
-};
-
-#ifndef MIPS_DEFAULT_FPU_TYPE
-#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
-#endif
-static int mips_fpu_type_auto = 1;
-static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
-#define MIPS_FPU_TYPE mips_fpu_type
-
-/* start-sanitize-carp start-sanitize-vr4xxx */
-
-/* MIPS specific per-architecture information */
-struct gdbarch_tdep
-{
- int elf_abi;
- /* mips options */
- int mips_eabi;
- enum mips_fpu_type mips_fpu_type;
- int mips_last_arg_regnum;
- int mips_last_fp_arg_regnum;
-};
-
-#if GDB_MULTI_ARCH
-#undef MIPS_EABI
-#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_eabi)
-#endif
-
-#if GDB_MULTI_ARCH
-#undef MIPS_LAST_FP_ARG_REGNUM
-#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
-#endif
-
-#if GDB_MULTI_ARCH
-#undef MIPS_LAST_ARG_REGNUM
-#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
-#endif
-
-#if GDB_MULTI_ARCH
-#undef MIPS_FPU_TYPE
-#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
-#endif
-
-/* end-sanitize-carp end-sanitize-vr4xxx */
-
-#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
-
-/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
-#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
-
-#if 0
-static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
-#endif
-
-int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
-
-static void mips_print_register PARAMS ((int, int));
-
-static mips_extra_func_info_t
-heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
-
-static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
-
-static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
-
-void mips_set_processor_type_command PARAMS ((char *, int));
-
-int mips_set_processor_type PARAMS ((char *));
-
-static void mips_show_processor_type_command PARAMS ((char *, int));
-
-static void reinit_frame_cache_sfunc PARAMS ((char *, int,
- struct cmd_list_element *));
-
-static mips_extra_func_info_t
- find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
-
-static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
- mips_extra_func_info_t proc_desc));
-
-/* This value is the model of MIPS in use. It is derived from the value
- of the PrID register. */
-
-char *mips_processor_type;
-
-char *tmp_mips_processor_type;
-
-/* A set of original names, to be used when restoring back to generic
- registers from a specific set. */
-
-char *mips_generic_reg_names[] = REGISTER_NAMES;
-
-/* Names of IDT R3041 registers. */
-
-char *mips_r3041_reg_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
- "sr", "lo", "hi", "bad", "cause","pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir", "fp", "",
- "", "", "bus", "ccfg", "", "", "", "",
- "", "", "port", "cmp", "", "", "epc", "prid",
-};
-
-/* Names of IDT R3051 registers. */
-
-char *mips_r3051_reg_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
- "sr", "lo", "hi", "bad", "cause","pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir", "fp", "",
- "inx", "rand", "elo", "", "ctxt", "", "", "",
- "", "", "ehi", "", "", "", "epc", "prid",
-};
-
-/* Names of IDT R3081 registers. */
-
-char *mips_r3081_reg_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
- "sr", "lo", "hi", "bad", "cause","pc",
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
- "fsr", "fir", "fp", "",
- "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
- "", "", "ehi", "", "", "", "epc", "prid",
-};
-
-/* Names of LSI 33k registers. */
-
-char *mips_lsi33k_reg_names[] = {
- "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
- "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
- "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
- "epc", "hi", "lo", "sr", "cause","badvaddr",
- "dcic", "bpc", "bda", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "",
- "", "", "", "", "", "", "", "",
- "", "", "", "", "", "", "", "",
-};
-
-struct {
- char *name;
- char **regnames;
-} mips_processor_type_table[] = {
- { "generic", mips_generic_reg_names },
- { "r3041", mips_r3041_reg_names },
- { "r3051", mips_r3051_reg_names },
- { "r3071", mips_r3081_reg_names },
- { "r3081", mips_r3081_reg_names },
- { "lsi33k", mips_lsi33k_reg_names },
- { NULL, NULL }
-};
-
-/* Table to translate MIPS16 register field to actual register number. */
-static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
-
-/* Heuristic_proc_start may hunt through the text section for a long
- time across a 2400 baud serial line. Allows the user to limit this
- search. */
-
-static unsigned int heuristic_fence_post = 0;
-
-#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
-#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
-#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
-#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
-#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
-#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
-#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
-#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
-#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
-#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
-#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
-#define _PROC_MAGIC_ 0x0F0F0F0F
-#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
-#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
-
-struct linked_proc_info
-{
- struct mips_extra_func_info info;
- struct linked_proc_info *next;
-} *linked_proc_desc_table = NULL;
-
-
-/* Should the upper word of 64-bit addresses be zeroed? */
-static int mask_address_p = 1;
-
-/* Should call_function allocate stack space for a struct return? */
-int
-mips_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
-{
- if (MIPS_EABI)
- return (TYPE_LENGTH (type) > 2 * MIPS_REGSIZE);
- else
- return 1; /* Structures are returned by ref in extra arg0 */
-}
-
-/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
-
-static int
-pc_is_mips16 (bfd_vma memaddr)
-{
- struct minimal_symbol *sym;
-
- /* If bit 0 of the address is set, assume this is a MIPS16 address. */
- if (IS_MIPS16_ADDR (memaddr))
- return 1;
-
- /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
- the high bit of the info field. Use this to decide if the function is
- MIPS16 or normal MIPS. */
- sym = lookup_minimal_symbol_by_pc (memaddr);
- if (sym)
- return MSYMBOL_IS_SPECIAL (sym);
- else
- return 0;
-}
-
-
-/* This returns the PC of the first inst after the prologue. If we can't
- find the prologue, then return 0. */
-
-static CORE_ADDR
-after_prologue (pc, proc_desc)
- CORE_ADDR pc;
- mips_extra_func_info_t proc_desc;
-{
- struct symtab_and_line sal;
- CORE_ADDR func_addr, func_end;
-
- if (!proc_desc)
- proc_desc = find_proc_desc (pc, NULL);
-
- if (proc_desc)
- {
- /* If function is frameless, then we need to do it the hard way. I
- strongly suspect that frameless always means prologueless... */
- if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
- && PROC_FRAME_OFFSET (proc_desc) == 0)
- return 0;
- }
-
- if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- return 0; /* Unknown */
-
- sal = find_pc_line (func_addr, 0);
-
- if (sal.end < func_end)
- return sal.end;
-
- /* The line after the prologue is after the end of the function. In this
- case, tell the caller to find the prologue the hard way. */
-
- return 0;
-}
-
-/* Decode a MIPS32 instruction that saves a register in the stack, and
- set the appropriate bit in the general register mask or float register mask
- to indicate which register is saved. This is a helper function
- for mips_find_saved_regs. */
-
-static void
-mips32_decode_reg_save (inst, gen_mask, float_mask)
- t_inst inst;
- unsigned long *gen_mask;
- unsigned long *float_mask;
-{
- int reg;
-
- if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
- || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
- /* start-sanitize-r5900 */
- || (inst & 0xffe00000) == 0x7fa00000 /* sq reg,n($sp) */
- /* end-sanitize-r5900 */
- || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
- {
- /* It might be possible to use the instruction to
- find the offset, rather than the code below which
- is based on things being in a certain order in the
- frame, but figuring out what the instruction's offset
- is relative to might be a little tricky. */
- reg = (inst & 0x001f0000) >> 16;
- *gen_mask |= (1 << reg);
- }
- else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
- || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
- || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
-
- {
- reg = ((inst & 0x001f0000) >> 16);
- *float_mask |= (1 << reg);
- }
-}
-
-/* Decode a MIPS16 instruction that saves a register in the stack, and
- set the appropriate bit in the general register or float register mask
- to indicate which register is saved. This is a helper function
- for mips_find_saved_regs. */
-
-static void
-mips16_decode_reg_save (inst, gen_mask)
- t_inst inst;
- unsigned long *gen_mask;
-{
- if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
- {
- int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
- *gen_mask |= (1 << reg);
- }
- else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
- {
- int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
- *gen_mask |= (1 << reg);
- }
- else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
- || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
- *gen_mask |= (1 << RA_REGNUM);
-}
-
-
-/* Fetch and return instruction from the specified location. If the PC
- is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
-
-static t_inst
-mips_fetch_instruction (addr)
- CORE_ADDR addr;
-{
- char buf[MIPS_INSTLEN];
- int instlen;
- int status;
-
- if (pc_is_mips16 (addr))
- {
- instlen = MIPS16_INSTLEN;
- addr = UNMAKE_MIPS16_ADDR (addr);
- }
- else
- instlen = MIPS_INSTLEN;
- status = read_memory_nobpt (addr, buf, instlen);
- if (status)
- memory_error (status, addr);
- return extract_unsigned_integer (buf, instlen);
-}
-
-
-/* These the fields of 32 bit mips instructions */
-#define mips32_op(x) (x >> 25)
-#define itype_op(x) (x >> 25)
-#define itype_rs(x) ((x >> 21)& 0x1f)
-#define itype_rt(x) ((x >> 16) & 0x1f)
-#define itype_immediate(x) ( x & 0xffff)
-
-#define jtype_op(x) (x >> 25)
-#define jtype_target(x) ( x & 0x03fffff)
-
-#define rtype_op(x) (x >>25)
-#define rtype_rs(x) ((x>>21) & 0x1f)
-#define rtype_rt(x) ((x>>16) & 0x1f)
-#define rtype_rd(x) ((x>>11) & 0x1f)
-#define rtype_shamt(x) ((x>>6) & 0x1f)
-#define rtype_funct(x) (x & 0x3f )
-
-static CORE_ADDR
-mips32_relative_offset(unsigned long inst)
-{ long x ;
- x = itype_immediate(inst) ;
- if (x & 0x8000) /* sign bit set */
- {
- x |= 0xffff0000 ; /* sign extension */
- }
- x = x << 2 ;
- return x ;
-}
-
-/* Determine whate to set a single step breakpoint while considering
- branch prediction */
-CORE_ADDR
-mips32_next_pc(CORE_ADDR pc)
-{
- unsigned long inst ;
- int op ;
- inst = mips_fetch_instruction(pc) ;
- if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
- { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
- { op = ((inst >> 25) & 0x03) ;
- switch (op)
- {
- case 0 : goto equal_branch ; /* BEQL */
- case 1 : goto neq_branch ; /* BNEZ */
- case 2 : goto less_branch ; /* BLEZ */
- case 3 : goto greater_branch ; /* BGTZ */
- default : pc += 4 ;
- }
- }
- else pc += 4 ; /* Not a branch, next instruction is easy */
- }
- else
- { /* This gets way messy */
-
- /* Further subdivide into SPECIAL, REGIMM and other */
- switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
- {
- case 0 : /* SPECIAL */
- op = rtype_funct(inst) ;
- switch (op)
- {
- case 8 : /* JR */
- case 9 : /* JALR */
- pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */
- break ;
- default: pc += 4 ;
- }
-
- break ; /* end special */
- case 1 : /* REGIMM */
- {
- op = jtype_op(inst) ; /* branch condition */
- switch (jtype_op(inst))
- {
- case 0 : /* BLTZ */
- case 2 : /* BLTXL */
- case 16 : /* BLTZALL */
- case 18 : /* BLTZALL */
- less_branch:
- if (read_register(itype_rs(inst)) < 0)
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ; /* after the delay slot */
- break ;
- case 1 : /* GEZ */
- case 3 : /* BGEZL */
- case 17 : /* BGEZAL */
- case 19 : /* BGEZALL */
- greater_equal_branch:
- if (read_register(itype_rs(inst)) >= 0)
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ; /* after the delay slot */
- break ;
- /* All of the other intructions in the REGIMM catagory */
- default: pc += 4 ;
- }
- }
- break ; /* end REGIMM */
- case 2 : /* J */
- case 3 : /* JAL */
- { unsigned long reg ;
- reg = jtype_target(inst) << 2 ;
- pc = reg + ((pc+4) & 0xf0000000) ;
- /* Whats this mysterious 0xf000000 adjustment ??? */
- }
- break ;
- /* FIXME case JALX :*/
- { unsigned long reg ;
- reg = jtype_target(inst) << 2 ;
- pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */
- /* Add 1 to indicate 16 bit mode - Invert ISA mode */
- }
- break ; /* The new PC will be alternate mode */
- case 4 : /* BEQ , BEQL */
- equal_branch :
- if (read_register(itype_rs(inst)) ==
- read_register(itype_rt(inst)))
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ;
- break ;
- case 5 : /* BNE , BNEL */
- neq_branch :
- if (read_register(itype_rs(inst)) !=
- read_register(itype_rs(inst)))
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ;
- break ;
- case 6 : /* BLEZ , BLEZL */
- less_zero_branch:
- if (read_register(itype_rs(inst) <= 0))
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ;
- break ;
- case 7 :
- greater_branch : /* BGTZ BGTZL */
- if (read_register(itype_rs(inst) > 0))
- pc += mips32_relative_offset(inst) + 4 ;
- else pc += 8 ;
- break ;
- default : pc += 8 ;
- } /* switch */
- } /* else */
- return pc ;
-} /* mips32_next_pc */
-
-/* Decoding the next place to set a breakpoint is irregular for the
- mips 16 variant, but fortunatly, there fewer instructions. We have to cope
- ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
- We dont want to set a single step instruction on the extend instruction
- either.
- */
-
-/* Lots of mips16 instruction formats */
-/* Predicting jumps requires itype,ritype,i8type
- and their extensions extItype,extritype,extI8type
- */
-enum mips16_inst_fmts
-{
- itype, /* 0 immediate 5,10 */
- ritype, /* 1 5,3,8 */
- rrtype, /* 2 5,3,3,5 */
- rritype, /* 3 5,3,3,5 */
- rrrtype, /* 4 5,3,3,3,2 */
- rriatype, /* 5 5,3,3,1,4 */
- shifttype, /* 6 5,3,3,3,2 */
- i8type, /* 7 5,3,8 */
- i8movtype, /* 8 5,3,3,5 */
- i8mov32rtype, /* 9 5,3,5,3 */
- i64type, /* 10 5,3,8 */
- ri64type, /* 11 5,3,3,5 */
- jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
- exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
- extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
- extRRItype, /* 15 5,5,5,5,3,3,5 */
- extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
- EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
- extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
- extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
- extRi64type, /* 20 5,6,5,5,3,3,5 */
- extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
-} ;
-/* I am heaping all the fields of the formats into one structure and then,
- only the fields which are involved in instruction extension */
-struct upk_mips16
-{
- unsigned short inst ;
- enum mips16_inst_fmts fmt ;
- unsigned long offset ;
- unsigned int regx ; /* Function in i8 type */
- unsigned int regy ;
-} ;
-
-
-
-static void print_unpack(char * comment,
- struct upk_mips16 * u)
-{
- printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n",
- comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ;
-}
-
-/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
- format for the bits which make up the immediatate extension.
- */
-static unsigned long
-extended_offset(unsigned long extension)
-{
- unsigned long value ;
- value = (extension >> 21) & 0x3f ; /* * extract 15:11 */
- value = value << 6 ;
- value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */
- value = value << 5 ;
- value |= extension & 0x01f ; /* extract 4:0 */
- return value ;
-}
-
-/* Only call this function if you know that this is an extendable
- instruction, It wont malfunction, but why make excess remote memory references?
- If the immediate operands get sign extended or somthing, do it after
- the extension is performed.
- */
-/* FIXME: Every one of these cases needs to worry about sign extension
- when the offset is to be used in relative addressing */
-
-
-static unsigned short fetch_mips_16(CORE_ADDR pc)
-{
- char buf[8] ;
- pc &= 0xfffffffe ; /* clear the low order bit */
- target_read_memory(pc,buf,2) ;
- return extract_unsigned_integer(buf,2) ;
-}
-
-static void
-unpack_mips16(CORE_ADDR pc,
- struct upk_mips16 * upk)
-{
- CORE_ADDR extpc ;
- unsigned long extension ;
- int extended ;
- extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */
- /* Decrement to previous address and loose the 16bit mode flag */
- /* return if the instruction was extendable, but not actually extended */
- extended = ((mips32_op(extension) == 30) ? 1 : 0) ;
- if (extended) { extension = mips_fetch_instruction(extpc) ;}
- switch (upk->fmt)
- {
- case itype :
- {
- unsigned long value ;
- if (extended)
- { value = extended_offset(extension) ;
- value = value << 11 ; /* rom for the original value */
- value |= upk->inst & 0x7ff ; /* eleven bits from instruction */
- }
- else
- { value = upk->inst & 0x7ff ;
- /* FIXME : Consider sign extension */
- }
- upk->offset = value ;
- }
- break ;
- case ritype :
- case i8type :
- { /* A register identifier and an offset */
- /* Most of the fields are the same as I type but the
- immediate value is of a different length */
- unsigned long value ;
- if (extended)
- {
- value = extended_offset(extension) ;
- value = value << 8 ; /* from the original instruction */
- value |= upk->inst & 0xff ; /* eleven bits from instruction */
- upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */
- if (value & 0x4000) /* test the sign bit , bit 26 */
- { value &= ~ 0x3fff ; /* remove the sign bit */
- value = -value ;
- }
- }
- else {
- value = upk->inst & 0xff ; /* 8 bits */
- upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */
- /* FIXME: Do sign extension , this format needs it */
- if (value & 0x80) /* THIS CONFUSES ME */
- { value &= 0xef ; /* remove the sign bit */
- value = -value ;
- }
-
- }
- upk->offset = value ;
- break ;
- }
- case jalxtype :
- {
- unsigned long value ;
- unsigned short nexthalf ;
- value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ;
- value = value << 16 ;
- nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */
- value |= nexthalf ;
- upk->offset = value ;
- break ;
- }
- default:
- printf_filtered("Decoding unimplemented instruction format type\n") ;
- break ;
- }
- /* print_unpack("UPK",upk) ; */
-}
-
-
-#define mips16_op(x) (x >> 11)
-
-/* This is a map of the opcodes which ae known to perform branches */
-static unsigned char map16[32] =
-{ 0,0,1,1,1,1,0,0,
- 0,0,0,0,1,0,0,0,
- 0,0,0,0,0,0,0,0,
- 0,0,0,0,0,1,1,0
-} ;
-
-static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset)
-{
- return ((offset << 2) | ((pc + 2) & (0xf0000000))) ;
-
-}
-
-
-
-static struct upk_mips16 upk ;
-
-CORE_ADDR mips16_next_pc(CORE_ADDR pc)
-{
- int op ;
- t_inst inst ;
- /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
- inst = fetch_mips_16(pc) ;
- upk.inst = inst ;
- op = mips16_op(upk.inst) ;
- if (map16[op])
- {
- int reg ;
- switch (op)
- {
- case 2 : /* Branch */
- upk.fmt = itype ;
- unpack_mips16(pc,&upk) ;
- { long offset ;
- offset = upk.offset ;
- if (offset & 0x800)
- { offset &= 0xeff ;
- offset = - offset ;
- }
- pc += (offset << 1) + 2 ;
- }
- break ;
- case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/
- upk.fmt = jalxtype ;
- unpack_mips16(pc,&upk) ;
- pc = add_offset_16(pc,upk.offset) ;
- if ((upk.inst >> 10) & 0x01) /* Exchange mode */
- pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */
- else pc |= 0x01 ;
- break ;
- case 4 : /* beqz */
- upk.fmt = ritype ;
- unpack_mips16(pc,&upk) ;
- reg = read_register(upk.regx) ;
- if (reg == 0)
- pc += (upk.offset << 1) + 2 ;
- else pc += 2 ;
- break ;
- case 5 : /* bnez */
- upk.fmt = ritype ;
- unpack_mips16(pc,&upk) ;
- reg = read_register(upk.regx) ;
- if (reg != 0)
- pc += (upk.offset << 1) + 2 ;
- else pc += 2 ;
- break ;
- case 12 : /* I8 Formats btez btnez */
- upk.fmt = i8type ;
- unpack_mips16(pc,&upk) ;
- /* upk.regx contains the opcode */
- reg = read_register(24) ; /* Test register is 24 */
- if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
- || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */
- /* pc = add_offset_16(pc,upk.offset) ; */
- pc += (upk.offset << 1) + 2 ;
- else pc += 2 ;
- break ;
- case 29 : /* RR Formats JR, JALR, JALR-RA */
- upk.fmt = rrtype ;
- op = upk.inst & 0x1f ;
- if (op == 0)
- {
- upk.regx = (upk.inst >> 8) & 0x07 ;
- upk.regy = (upk.inst >> 5) & 0x07 ;
- switch (upk.regy)
- {
- case 0 : reg = upk.regx ; break ;
- case 1 : reg = 31 ; break ; /* Function return instruction*/
- case 2 : reg = upk.regx ; break ;
- default: reg = 31 ; break ; /* BOGUS Guess */
- }
- pc = read_register(reg) ;
- }
- else pc += 2 ;
- break ;
- case 30 : /* This is an extend instruction */
- pc += 4 ; /* Dont be setting breakpints on the second half */
- break ;
- default :
- printf("Filtered - next PC probably incorrrect due to jump inst\n");
- pc += 2 ;
- break ;
- }
- }
- else pc+= 2 ; /* just a good old instruction */
- /* See if we CAN actually break on the next instruction */
- /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
- return pc ;
-} /* mips16_next_pc */
-
-/* The mips_next_pc function supports single_tep when the remote target monitor or
- stub is not developed enough to so a single_step.
- It works by decoding the current instruction and predicting where a branch
- will go. This isnt hard because all the data is available.
- The MIPS32 and MIPS16 variants are quite different
- */
-CORE_ADDR mips_next_pc(CORE_ADDR pc)
-{
- t_inst inst ;
- /* inst = mips_fetch_instruction(pc) ; */
- /* if (pc_is_mips16) <----- This is failing */
- if (pc & 0x01)
- return mips16_next_pc(pc) ;
- else return mips32_next_pc(pc) ;
-} /* mips_next_pc */
-
-/* Guaranteed to set fci->saved_regs to some values (it never leaves it
- NULL). */
-
-void
-mips_find_saved_regs (fci)
- struct frame_info *fci;
-{
- int ireg;
- CORE_ADDR reg_position;
- /* r0 bit means kernel trap */
- int kernel_trap;
- /* What registers have been saved? Bitmasks. */
- unsigned long gen_mask, float_mask;
- mips_extra_func_info_t proc_desc;
- t_inst inst;
-
- frame_saved_regs_zalloc (fci);
-
- /* If it is the frame for sigtramp, the saved registers are located
- in a sigcontext structure somewhere on the stack.
- If the stack layout for sigtramp changes we might have to change these
- constants and the companion fixup_sigtramp in mdebugread.c */
-#ifndef SIGFRAME_BASE
-/* To satisfy alignment restrictions, sigcontext is located 4 bytes
- above the sigtramp frame. */
-#define SIGFRAME_BASE MIPS_REGSIZE
-/* FIXME! Are these correct?? */
-#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
-#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
-#define SIGFRAME_FPREGSAVE_OFF \
- (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
-#endif
-#ifndef SIGFRAME_REG_SIZE
-/* FIXME! Is this correct?? */
-#define SIGFRAME_REG_SIZE MIPS_REGSIZE
-#endif
- if (fci->signal_handler_caller)
- {
- for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
- {
- reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
- + ireg * SIGFRAME_REG_SIZE;
- fci->saved_regs[ireg] = reg_position;
- }
- for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
- {
- reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
- + ireg * SIGFRAME_REG_SIZE;
- fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
- }
- fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
- return;
- }
-
- proc_desc = fci->proc_desc;
- if (proc_desc == NULL)
- /* I'm not sure how/whether this can happen. Normally when we can't
- find a proc_desc, we "synthesize" one using heuristic_proc_desc
- and set the saved_regs right away. */
- return;
-
- kernel_trap = PROC_REG_MASK(proc_desc) & 1;
- gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
- float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
-
- if (/* In any frame other than the innermost or a frame interrupted by
- a signal, we assume that all registers have been saved.
- This assumes that all register saves in a function happen before
- the first function call. */
- (fci->next == NULL || fci->next->signal_handler_caller)
-
- /* In a dummy frame we know exactly where things are saved. */
- && !PROC_DESC_IS_DUMMY (proc_desc)
-
- /* Don't bother unless we are inside a function prologue. Outside the
- prologue, we know where everything is. */
-
- && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
-
- /* Not sure exactly what kernel_trap means, but if it means
- the kernel saves the registers without a prologue doing it,
- we better not examine the prologue to see whether registers
- have been saved yet. */
- && !kernel_trap)
- {
- /* We need to figure out whether the registers that the proc_desc
- claims are saved have been saved yet. */
-
- CORE_ADDR addr;
-
- /* Bitmasks; set if we have found a save for the register. */
- unsigned long gen_save_found = 0;
- unsigned long float_save_found = 0;
- int instlen;
-
- /* If the address is odd, assume this is MIPS16 code. */
- addr = PROC_LOW_ADDR (proc_desc);
- instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
-
- /* Scan through this function's instructions preceding the current
- PC, and look for those that save registers. */
- while (addr < fci->pc)
- {
- inst = mips_fetch_instruction (addr);
- if (pc_is_mips16 (addr))
- mips16_decode_reg_save (inst, &gen_save_found);
- else
- mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
- addr += instlen;
- }
- gen_mask = gen_save_found;
- float_mask = float_save_found;
- }
-
- /* Fill in the offsets for the registers which gen_mask says
- were saved. */
- reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
- for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
- if (gen_mask & 0x80000000)
- {
- fci->saved_regs[ireg] = reg_position;
- reg_position -= MIPS_REGSIZE;
- /* start-sanitize-r5900 */
-#ifdef R5900_128BIT_GPR_HACK
- /* Gross. The r5900 has 128bit wide registers, but MIPS_REGSIZE is
- still 64bits. See the comments in tm.h for a discussion of the
- various problems this causes. */
- if (ireg <= RA_REGNUM)
- reg_position -= MIPS_REGSIZE;
-#endif
- /* end-sanitize-r5900 */
- }
-
- /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
- of that normally used by gcc. Therefore, we have to fetch the first
- instruction of the function, and if it's an entry instruction that
- saves $s0 or $s1, correct their saved addresses. */
- if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
- {
- inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
- if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
- {
- int reg;
- int sreg_count = (inst >> 6) & 3;
-
- /* Check if the ra register was pushed on the stack. */
- reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
- if (inst & 0x20)
- reg_position -= MIPS_REGSIZE;
-
- /* Check if the s0 and s1 registers were pushed on the stack. */
- for (reg = 16; reg < sreg_count+16; reg++)
- {
- fci->saved_regs[reg] = reg_position;
- reg_position -= MIPS_REGSIZE;
- }
- }
- }
-
- /* Fill in the offsets for the registers which float_mask says
- were saved. */
- reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
-
- /* The freg_offset points to where the first *double* register
- is saved. So skip to the high-order word. */
- if (! GDB_TARGET_IS_MIPS64)
- reg_position += MIPS_REGSIZE;
-
- /* Fill in the offsets for the float registers which float_mask says
- were saved. */
- for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
- if (float_mask & 0x80000000)
- {
- fci->saved_regs[FP0_REGNUM+ireg] = reg_position;
- reg_position -= MIPS_REGSIZE;
- }
-
- fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
-}
-
-static CORE_ADDR
-read_next_frame_reg(fi, regno)
- struct frame_info *fi;
- int regno;
-{
- for (; fi; fi = fi->next)
- {
- /* We have to get the saved sp from the sigcontext
- if it is a signal handler frame. */
- if (regno == SP_REGNUM && !fi->signal_handler_caller)
- return fi->frame;
- else
- {
- if (fi->saved_regs == NULL)
- mips_find_saved_regs (fi);
- if (fi->saved_regs[regno])
- return read_memory_integer(fi->saved_regs[regno], MIPS_REGSIZE);
- }
- }
- return read_register (regno);
-}
-
-/* mips_addr_bits_remove - remove useless address bits */
-
-CORE_ADDR
-mips_addr_bits_remove (addr)
- CORE_ADDR addr;
-{
-#if GDB_TARGET_IS_MIPS64
- if (mask_address_p && (addr >> 32 == (CORE_ADDR)0xffffffff))
- {
- /* This hack is a work-around for existing boards using PMON,
- the simulator, and any other 64-bit targets that doesn't have
- true 64-bit addressing. On these targets, the upper 32 bits
- of addresses are ignored by the hardware. Thus, the PC or SP
- are likely to have been sign extended to all 1s by instruction
- sequences that load 32-bit addresses. For example, a typical
- piece of code that loads an address is this:
- lui $r2, <upper 16 bits>
- ori $r2, <lower 16 bits>
- But the lui sign-extends the value such that the upper 32 bits
- may be all 1s. The workaround is simply to mask off these bits.
- In the future, gcc may be changed to support true 64-bit
- addressing, and this masking will have to be disabled. */
- addr &= (CORE_ADDR)0xffffffff;
- }
-#else
- /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
- BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
- So we still have to mask off useless bits from addresses. */
- addr &= (CORE_ADDR)0xffffffff;
-#endif
-
- return addr;
-}
-
-void
-mips_init_frame_pc_first (fromleaf, prev)
- int fromleaf;
- struct frame_info *prev;
-{
- CORE_ADDR pc, tmp;
-
- pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
- prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
- tmp = mips_skip_stub (pc);
- prev->pc = tmp ? tmp : pc;
-}
-
-
-CORE_ADDR
-mips_frame_saved_pc(frame)
- struct frame_info *frame;
-{
- CORE_ADDR saved_pc;
- mips_extra_func_info_t proc_desc = frame->proc_desc;
- /* We have to get the saved pc from the sigcontext
- if it is a signal handler frame. */
- int pcreg = frame->signal_handler_caller ? PC_REGNUM
- : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
-
- if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
- saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
- else
- saved_pc = read_next_frame_reg(frame, pcreg);
-
- return ADDR_BITS_REMOVE (saved_pc);
-}
-
-static struct mips_extra_func_info temp_proc_desc;
-static struct frame_saved_regs temp_saved_regs;
-
-/* Set a register's saved stack address in temp_saved_regs. If an address
- has already been set for this register, do nothing; this way we will
- only recognize the first save of a given register in a function prologue.
- This is a helper function for mips{16,32}_heuristic_proc_desc. */
-
-static void
-set_reg_offset (regno, offset)
- int regno;
- CORE_ADDR offset;
-{
- if (temp_saved_regs.regs[regno] == 0)
- temp_saved_regs.regs[regno] = offset;
-}
-
-
-/* Test whether the PC points to the return instruction at the
- end of a function. */
-
-static int
-mips_about_to_return (pc)
- CORE_ADDR pc;
-{
- if (pc_is_mips16 (pc))
- /* This mips16 case isn't necessarily reliable. Sometimes the compiler
- generates a "jr $ra"; other times it generates code to load
- the return address from the stack to an accessible register (such
- as $a3), then a "jr" using that register. This second case
- is almost impossible to distinguish from an indirect jump
- used for switch statements, so we don't even try. */
- return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
- else
- return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
-}
-
-
-/* This fencepost looks highly suspicious to me. Removing it also
- seems suspicious as it could affect remote debugging across serial
- lines. */
-
-static CORE_ADDR
-heuristic_proc_start (pc)
- CORE_ADDR pc;
-{
- CORE_ADDR start_pc;
- CORE_ADDR fence;
- int instlen;
- int seen_adjsp = 0;
-
- pc = ADDR_BITS_REMOVE (pc);
- start_pc = pc;
- fence = start_pc - heuristic_fence_post;
- if (start_pc == 0) return 0;
-
- if (heuristic_fence_post == UINT_MAX
- || fence < VM_MIN_ADDRESS)
- fence = VM_MIN_ADDRESS;
-
- instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
-
- /* search back for previous return */
- for (start_pc -= instlen; ; start_pc -= instlen)
- if (start_pc < fence)
- {
- /* It's not clear to me why we reach this point when
- stop_soon_quietly, but with this test, at least we
- don't print out warnings for every child forked (eg, on
- decstation). 22apr93 rich@cygnus.com. */
- if (!stop_soon_quietly)
- {
- static int blurb_printed = 0;
-
- if (fence == VM_MIN_ADDRESS)
- warning("Hit beginning of text section without finding");
- else
- warning("Hit heuristic-fence-post without finding");
-
- warning("enclosing function for address 0x%s", paddr_nz (pc));
- if (!blurb_printed)
- {
- printf_filtered ("\
-This warning occurs if you are debugging a function without any symbols\n\
-(for example, in a stripped executable). In that case, you may wish to\n\
-increase the size of the search with the `set heuristic-fence-post' command.\n\
-\n\
-Otherwise, you told GDB there was a function where there isn't one, or\n\
-(more likely) you have encountered a bug in GDB.\n");
- blurb_printed = 1;
- }
- }
-
- return 0;
- }
- else if (pc_is_mips16 (start_pc))
- {
- unsigned short inst;
-
- /* On MIPS16, any one of the following is likely to be the
- start of a function:
- entry
- addiu sp,-n
- daddiu sp,-n
- extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
- inst = mips_fetch_instruction (start_pc);
- if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
- || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
- || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
- || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
- break;
- else if ((inst & 0xff00) == 0x6300 /* addiu sp */
- || (inst & 0xff00) == 0xfb00) /* daddiu sp */
- seen_adjsp = 1;
- else
- seen_adjsp = 0;
- }
- else if (mips_about_to_return (start_pc))
- {
- start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
- break;
- }
-
-#if 0
- /* skip nops (usually 1) 0 - is this */
- while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
- start_pc += MIPS_INSTLEN;
-#endif
- return start_pc;
-}
-
-/* Fetch the immediate value from a MIPS16 instruction.
- If the previous instruction was an EXTEND, use it to extend
- the upper bits of the immediate value. This is a helper function
- for mips16_heuristic_proc_desc. */
-
-static int
-mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
- unsigned short prev_inst; /* previous instruction */
- unsigned short inst; /* current instruction */
- int nbits; /* number of bits in imm field */
- int scale; /* scale factor to be applied to imm */
- int is_signed; /* is the imm field signed? */
-{
- int offset;
-
- if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
- {
- offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
- if (offset & 0x8000) /* check for negative extend */
- offset = 0 - (0x10000 - (offset & 0xffff));
- return offset | (inst & 0x1f);
- }
- else
- {
- int max_imm = 1 << nbits;
- int mask = max_imm - 1;
- int sign_bit = max_imm >> 1;
-
- offset = inst & mask;
- if (is_signed && (offset & sign_bit))
- offset = 0 - (max_imm - offset);
- return offset * scale;
- }
-}
-
-
-/* Fill in values in temp_proc_desc based on the MIPS16 instruction
- stream from start_pc to limit_pc. */
-
-static void
-mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
- CORE_ADDR start_pc, limit_pc;
- struct frame_info *next_frame;
- CORE_ADDR sp;
-{
- CORE_ADDR cur_pc;
- CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
- unsigned short prev_inst = 0; /* saved copy of previous instruction */
- unsigned inst = 0; /* current instruction */
- unsigned entry_inst = 0; /* the entry instruction */
- int reg, offset;
-
- PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */
- PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */
-
- for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
- {
- /* Save the previous instruction. If it's an EXTEND, we'll extract
- the immediate offset extension from it in mips16_get_imm. */
- prev_inst = inst;
-
- /* Fetch and decode the instruction. */
- inst = (unsigned short) mips_fetch_instruction (cur_pc);
- if ((inst & 0xff00) == 0x6300 /* addiu sp */
- || (inst & 0xff00) == 0xfb00) /* daddiu sp */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
- if (offset < 0) /* negative stack adjustment? */
- PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
- else
- /* Exit loop if a positive stack adjustment is found, which
- usually means that the stack cleanup code in the function
- epilogue is reached. */
- break;
- }
- else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- reg = mips16_to_32_reg[(inst & 0x700) >> 8];
- PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
- set_reg_offset (reg, sp + offset);
- }
- else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
- PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
- set_reg_offset (reg, sp + offset);
- }
- else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
- set_reg_offset (RA_REGNUM, sp + offset);
- }
- else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
- PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
- set_reg_offset (RA_REGNUM, sp + offset);
- }
- else if (inst == 0x673d) /* move $s1, $sp */
- {
- frame_addr = sp;
- PROC_FRAME_REG (&temp_proc_desc) = 17;
- }
- else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
- {
- offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
- frame_addr = sp + offset;
- PROC_FRAME_REG (&temp_proc_desc) = 17;
- PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
- }
- else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, frame_addr + offset);
- }
- else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
- {
- offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
- reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, frame_addr + offset);
- }
- else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
- entry_inst = inst; /* save for later processing */
- else if ((inst & 0xf800) == 0x1800) /* jal(x) */
- cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
- }
-
- /* The entry instruction is typically the first instruction in a function,
- and it stores registers at offsets relative to the value of the old SP
- (before the prologue). But the value of the sp parameter to this
- function is the new SP (after the prologue has been executed). So we
- can't calculate those offsets until we've seen the entire prologue,
- and can calculate what the old SP must have been. */
- if (entry_inst != 0)
- {
- int areg_count = (entry_inst >> 8) & 7;
- int sreg_count = (entry_inst >> 6) & 3;
-
- /* The entry instruction always subtracts 32 from the SP. */
- PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
-
- /* Now we can calculate what the SP must have been at the
- start of the function prologue. */
- sp += PROC_FRAME_OFFSET(&temp_proc_desc);
-
- /* Check if a0-a3 were saved in the caller's argument save area. */
- for (reg = 4, offset = 0; reg < areg_count+4; reg++)
- {
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, sp + offset);
- offset += MIPS_REGSIZE;
- }
-
- /* Check if the ra register was pushed on the stack. */
- offset = -4;
- if (entry_inst & 0x20)
- {
- PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM;
- set_reg_offset (RA_REGNUM, sp + offset);
- offset -= MIPS_REGSIZE;
- }
-
- /* Check if the s0 and s1 registers were pushed on the stack. */
- for (reg = 16; reg < sreg_count+16; reg++)
- {
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, sp + offset);
- offset -= MIPS_REGSIZE;
- }
- }
-}
-
-static void
-mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
- CORE_ADDR start_pc, limit_pc;
- struct frame_info *next_frame;
- CORE_ADDR sp;
-{
- CORE_ADDR cur_pc;
- CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
-restart:
- memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
- PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
- PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
- for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
- {
- unsigned long inst, high_word, low_word;
- int reg;
-
- /* Fetch the instruction. */
- inst = (unsigned long) mips_fetch_instruction (cur_pc);
-
- /* Save some code by pre-extracting some useful fields. */
- high_word = (inst >> 16) & 0xffff;
- low_word = inst & 0xffff;
- reg = high_word & 0x1f;
-
- if (high_word == 0x27bd /* addiu $sp,$sp,-i */
- || high_word == 0x23bd /* addi $sp,$sp,-i */
- || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
- {
- if (low_word & 0x8000) /* negative stack adjustment? */
- PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
- else
- /* Exit loop if a positive stack adjustment is found, which
- usually means that the stack cleanup code in the function
- epilogue is reached. */
- break;
- }
- else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
- {
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, sp + low_word);
- }
- else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
- {
- /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
- but the register size used is only 32 bits. Make the address
- for the saved register point to the lower 32 bits. */
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
- }
- /* start-sanitize-r5900 */
- else if ((high_word & 0xFFE0) == 0x7fa0) /* sq reg,offset($sp) */
- {
- /* I don't think we have to worry about the Irix 6.2 N32 ABI
- issue noted int he sd reg, offset($sp) case above. */
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, sp + low_word);
- }
- /* end-sanitize-r5900 */
- else if (high_word == 0x27be) /* addiu $30,$sp,size */
- {
- /* Old gcc frame, r30 is virtual frame pointer. */
- if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
- frame_addr = sp + low_word;
- else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
- {
- unsigned alloca_adjust;
- PROC_FRAME_REG (&temp_proc_desc) = 30;
- frame_addr = read_next_frame_reg(next_frame, 30);
- alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
- if (alloca_adjust > 0)
- {
- /* FP > SP + frame_size. This may be because
- * of an alloca or somethings similar.
- * Fix sp to "pre-alloca" value, and try again.
- */
- sp += alloca_adjust;
- goto restart;
- }
- }
- }
- /* move $30,$sp. With different versions of gas this will be either
- `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
- Accept any one of these. */
- else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
- {
- /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
- if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
- {
- unsigned alloca_adjust;
- PROC_FRAME_REG (&temp_proc_desc) = 30;
- frame_addr = read_next_frame_reg(next_frame, 30);
- alloca_adjust = (unsigned)(frame_addr - sp);
- if (alloca_adjust > 0)
- {
- /* FP > SP + frame_size. This may be because
- * of an alloca or somethings similar.
- * Fix sp to "pre-alloca" value, and try again.
- */
- sp += alloca_adjust;
- goto restart;
- }
- }
- }
- else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
- {
- PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
- set_reg_offset (reg, frame_addr + low_word);
- }
- }
-}
-
-static mips_extra_func_info_t
-heuristic_proc_desc(start_pc, limit_pc, next_frame)
- CORE_ADDR start_pc, limit_pc;
- struct frame_info *next_frame;
-{
- CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
-
- if (start_pc == 0) return NULL;
- memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
- memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
- PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
- PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
- PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
-
- if (start_pc + 200 < limit_pc)
- limit_pc = start_pc + 200;
- if (pc_is_mips16 (start_pc))
- mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
- else
- mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
- return &temp_proc_desc;
-}
-
-static mips_extra_func_info_t
-non_heuristic_proc_desc (pc, addrptr)
- CORE_ADDR pc;
- CORE_ADDR *addrptr;
-{
- CORE_ADDR startaddr;
- mips_extra_func_info_t proc_desc;
- struct block *b = block_for_pc(pc);
- struct symbol *sym;
-
- find_pc_partial_function (pc, NULL, &startaddr, NULL);
- if (addrptr)
- *addrptr = startaddr;
- if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
- sym = NULL;
- else
- {
- if (startaddr > BLOCK_START (b))
- /* This is the "pathological" case referred to in a comment in
- print_frame_info. It might be better to move this check into
- symbol reading. */
- sym = NULL;
- else
- sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
- }
-
- /* If we never found a PDR for this function in symbol reading, then
- examine prologues to find the information. */
- if (sym)
- {
- proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
- if (PROC_FRAME_REG (proc_desc) == -1)
- return NULL;
- else
- return proc_desc;
- }
- else
- return NULL;
-}
-
-
-static mips_extra_func_info_t
-find_proc_desc (pc, next_frame)
- CORE_ADDR pc;
- struct frame_info *next_frame;
-{
- mips_extra_func_info_t proc_desc;
- CORE_ADDR startaddr;
-
- proc_desc = non_heuristic_proc_desc (pc, &startaddr);
-
- if (proc_desc)
- {
- /* IF this is the topmost frame AND
- * (this proc does not have debugging information OR
- * the PC is in the procedure prologue)
- * THEN create a "heuristic" proc_desc (by analyzing
- * the actual code) to replace the "official" proc_desc.
- */
- if (next_frame == NULL)
- {
- struct symtab_and_line val;
- struct symbol *proc_symbol =
- PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
-
- if (proc_symbol)
- {
- val = find_pc_line (BLOCK_START
- (SYMBOL_BLOCK_VALUE(proc_symbol)),
- 0);
- val.pc = val.end ? val.end : pc;
- }
- if (!proc_symbol || pc < val.pc)
- {
- mips_extra_func_info_t found_heuristic =
- heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
- pc, next_frame);
- if (found_heuristic)
- proc_desc = found_heuristic;
- }
- }
- }
- else
- {
- /* Is linked_proc_desc_table really necessary? It only seems to be used
- by procedure call dummys. However, the procedures being called ought
- to have their own proc_descs, and even if they don't,
- heuristic_proc_desc knows how to create them! */
-
- register struct linked_proc_info *link;
-
- for (link = linked_proc_desc_table; link; link = link->next)
- if (PROC_LOW_ADDR(&link->info) <= pc
- && PROC_HIGH_ADDR(&link->info) > pc)
- return &link->info;
-
- if (startaddr == 0)
- startaddr = heuristic_proc_start (pc);
-
- proc_desc =
- heuristic_proc_desc (startaddr, pc, next_frame);
- }
- return proc_desc;
-}
-
-static CORE_ADDR
-get_frame_pointer(frame, proc_desc)
- struct frame_info *frame;
- mips_extra_func_info_t proc_desc;
-{
- return ADDR_BITS_REMOVE (
- read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
- PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
-}
-
-mips_extra_func_info_t cached_proc_desc;
-
-CORE_ADDR
-mips_frame_chain(frame)
- struct frame_info *frame;
-{
- mips_extra_func_info_t proc_desc;
- CORE_ADDR tmp;
- CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
-
- if (saved_pc == 0 || inside_entry_file (saved_pc))
- return 0;
-
- /* Check if the PC is inside a call stub. If it is, fetch the
- PC of the caller of that stub. */
- if ((tmp = mips_skip_stub (saved_pc)) != 0)
- saved_pc = tmp;
-
- /* Look up the procedure descriptor for this PC. */
- proc_desc = find_proc_desc(saved_pc, frame);
- if (!proc_desc)
- return 0;
-
- cached_proc_desc = proc_desc;
-
- /* If no frame pointer and frame size is zero, we must be at end
- of stack (or otherwise hosed). If we don't check frame size,
- we loop forever if we see a zero size frame. */
- if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
- && PROC_FRAME_OFFSET (proc_desc) == 0
- /* The previous frame from a sigtramp frame might be frameless
- and have frame size zero. */
- && !frame->signal_handler_caller)
- return 0;
- else
- return get_frame_pointer (frame, proc_desc);
-}
-
-void
-init_extra_frame_info(fci)
- struct frame_info *fci;
-{
- int regnum;
-
- /* Use proc_desc calculated in frame_chain */
- mips_extra_func_info_t proc_desc =
- fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
-
- fci->saved_regs = NULL;
- fci->proc_desc =
- proc_desc == &temp_proc_desc ? 0 : proc_desc;
- if (proc_desc)
- {
- /* Fixup frame-pointer - only needed for top frame */
- /* This may not be quite right, if proc has a real frame register.
- Get the value of the frame relative sp, procedure might have been
- interrupted by a signal at it's very start. */
- if (fci->pc == PROC_LOW_ADDR (proc_desc)
- && !PROC_DESC_IS_DUMMY (proc_desc))
- fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
- else
- fci->frame = get_frame_pointer (fci->next, proc_desc);
-
- if (proc_desc == &temp_proc_desc)
- {
- char *name;
-
- /* Do not set the saved registers for a sigtramp frame,
- mips_find_saved_registers will do that for us.
- We can't use fci->signal_handler_caller, it is not yet set. */
- find_pc_partial_function (fci->pc, &name,
- (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
- if (!IN_SIGTRAMP (fci->pc, name))
- {
- fci->saved_regs = (CORE_ADDR*)
- frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
- memcpy (fci->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS);
- fci->saved_regs[PC_REGNUM]
- = fci->saved_regs[RA_REGNUM];
- }
- }
-
- /* hack: if argument regs are saved, guess these contain args */
- fci->num_args = -1; /* assume we can't tell how many args for now */
- for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
- {
- if (PROC_REG_MASK(proc_desc) & (1 << regnum))
- {
- fci->num_args = regnum - A0_REGNUM + 1;
- break;
- }
- }
- }
-}
-
-/* MIPS stack frames are almost impenetrable. When execution stops,
- we basically have to look at symbol information for the function
- that we stopped in, which tells us *which* register (if any) is
- the base of the frame pointer, and what offset from that register
- the frame itself is at.
-
- This presents a problem when trying to examine a stack in memory
- (that isn't executing at the moment), using the "frame" command. We
- don't have a PC, nor do we have any registers except SP.
-
- This routine takes two arguments, SP and PC, and tries to make the
- cached frames look as if these two arguments defined a frame on the
- cache. This allows the rest of info frame to extract the important
- arguments without difficulty. */
-
-struct frame_info *
-setup_arbitrary_frame (argc, argv)
- int argc;
- CORE_ADDR *argv;
-{
- if (argc != 2)
- error ("MIPS frame specifications require two arguments: sp and pc");
-
- return create_new_frame (argv[0], argv[1]);
-}
-
-/*
- * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack?
- *
- * For n32 ABI, eight.
- * For all others, he same as the size of a general register.
- */
-#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
-#define MIPS_NABI32 1
-#define STACK_ARGSIZE 8
-#else
-#define MIPS_NABI32 0
-#define STACK_ARGSIZE MIPS_REGSIZE
-#endif
-
-CORE_ADDR
-mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
-{
- int argreg;
- int float_argreg;
- int argnum;
- int len = 0;
- int stack_offset = 0;
-
- /* Macros to round N up or down to the next A boundary; A must be
- a power of two. */
-#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
-#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
-
- /* First ensure that the stack and structure return address (if any)
- are properly aligned. The stack has to be at least 64-bit aligned
- even on 32-bit machines, because doubles must be 64-bit aligned.
- On at least one MIPS variant, stack frames need to be 128-bit
- aligned, so we round to this widest known alignment. */
- sp = ROUND_DOWN (sp, 16);
- struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
-
- /* Now make space on the stack for the args. We allocate more
- than necessary for EABI, because the first few arguments are
- passed in registers, but that's OK. */
- for (argnum = 0; argnum < nargs; argnum++)
- len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
- sp -= ROUND_UP (len, 16);
-
- /* Initialize the integer and float register pointers. */
- argreg = A0_REGNUM;
- float_argreg = FPA0_REGNUM;
-
- /* the struct_return pointer occupies the first parameter-passing reg */
- if (struct_return)
- write_register (argreg++, struct_addr);
-
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. Loop thru args
- from first to last. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- char *val;
- char valbuf[MAX_REGISTER_RAW_SIZE];
- value_ptr arg = args[argnum];
- struct type *arg_type = check_typedef (VALUE_TYPE (arg));
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
-
- /* The EABI passes structures that do not fit in a register by
- reference. In all other cases, pass the structure by value. */
- if (MIPS_EABI && len > MIPS_REGSIZE &&
- (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
- {
- store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
- typecode = TYPE_CODE_PTR;
- len = MIPS_REGSIZE;
- val = valbuf;
- }
- else
- val = (char *)VALUE_CONTENTS (arg);
-
- /* 32-bit ABIs always start floating point arguments in an
- even-numbered floating point register. */
- if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
- && (float_argreg & 1))
- float_argreg++;
-
- /* Floating point arguments passed in registers have to be
- treated specially. On 32-bit architectures, doubles
- are passed in register pairs; the even register gets
- the low word, and the odd register gets the high word.
- On non-EABI processors, the first two floating point arguments are
- also copied to general registers, because MIPS16 functions
- don't use float registers for arguments. This duplication of
- arguments in general registers can't hurt non-MIPS16 functions
- because those registers are normally skipped. */
- if (typecode == TYPE_CODE_FLT
- && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
- && MIPS_FPU_TYPE != MIPS_FPU_NONE)
- {
- if (!FP_REGISTER_DOUBLE && len == 8)
- {
- int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
- unsigned long regval;
-
- /* Write the low word of the double to the even register(s). */
- regval = extract_unsigned_integer (val+low_offset, 4);
- write_register (float_argreg++, regval);
- if (!MIPS_EABI)
- write_register (argreg+1, regval);
-
- /* Write the high word of the double to the odd register(s). */
- regval = extract_unsigned_integer (val+4-low_offset, 4);
- write_register (float_argreg++, regval);
- if (!MIPS_EABI)
- {
- write_register (argreg, regval);
- argreg += 2;
- }
-
- }
- else
- {
- /* This is a floating point value that fits entirely
- in a single register. */
- CORE_ADDR regval = extract_address (val, len);
- write_register (float_argreg++, regval);
- if (!MIPS_EABI)
- {
- write_register (argreg, regval);
- argreg += FP_REGISTER_DOUBLE ? 1 : 2;
- }
- }
- }
- else
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- /* Note: structs whose size is not a multiple of MIPS_REGSIZE
- are treated specially: Irix cc passes them in registers
- where gcc sometimes puts them on the stack. For maximum
- compatibility, we will put them in both places. */
-
- int odd_sized_struct = ((len > MIPS_REGSIZE) &&
- (len % MIPS_REGSIZE != 0));
- while (len > 0)
- {
- int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
-
- if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
- {
- /* Write this portion of the argument to the stack. */
- /* Should shorter than int integer values be
- promoted to int before being stored? */
-
- int longword_offset = 0;
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- if (STACK_ARGSIZE == 8 &&
- (typecode == TYPE_CODE_INT ||
- typecode == TYPE_CODE_PTR ||
- typecode == TYPE_CODE_FLT) && len <= 4)
- longword_offset = STACK_ARGSIZE - len;
- else if ((typecode == TYPE_CODE_STRUCT ||
- typecode == TYPE_CODE_UNION) &&
- TYPE_LENGTH (arg_type) < STACK_ARGSIZE)
- longword_offset = STACK_ARGSIZE - len;
-
- write_memory (sp + stack_offset + longword_offset,
- val, partial_len);
- }
-
- /* Note!!! This is NOT an else clause.
- Odd sized structs may go thru BOTH paths. */
- if (argreg <= MIPS_LAST_ARG_REGNUM)
- {
- CORE_ADDR regval = extract_address (val, partial_len);
-
- /* A non-floating-point argument being passed in a
- general register. If a struct or union, and if
- the remaining length is smaller than the register
- size, we have to adjust the register value on
- big endian targets.
-
- It does not seem to be necessary to do the
- same for integral types.
-
- Also don't do this adjustment on EABI and O64
- binaries. */
-
- if (!MIPS_EABI
- && (MIPS_REGSIZE < 8)
- && TARGET_BYTE_ORDER == BIG_ENDIAN
- && (partial_len < MIPS_REGSIZE)
- && (typecode == TYPE_CODE_STRUCT ||
- typecode == TYPE_CODE_UNION))
- regval <<= ((MIPS_REGSIZE - partial_len) *
- TARGET_CHAR_BIT);
-
- write_register (argreg, regval);
- argreg++;
-
- /* If this is the old ABI, prevent subsequent floating
- point arguments from being passed in floating point
- registers. */
- if (!MIPS_EABI)
- float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
- }
-
- len -= partial_len;
- val += partial_len;
-
- /* The offset onto the stack at which we will start
- copying parameters (after the registers are used up)
- begins at (4 * MIPS_REGSIZE) in the old ABI. This
- leaves room for the "home" area for register parameters.
-
- In the new EABI (and the NABI32), the 8 register parameters
- do not have "home" stack space reserved for them, so the
- stack offset does not get incremented until after
- we have used up the 8 parameter registers. */
-
- if (!(MIPS_EABI || MIPS_NABI32) ||
- argnum >= 8)
- stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE);
- }
- }
- }
-
- /* Set the return address register to point to the entry
- point of the program, where a breakpoint lies in wait. */
- write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
-
- /* Return adjusted stack pointer. */
- return sp;
-}
-
-static void
-mips_push_register(CORE_ADDR *sp, int regno)
-{
- char buffer[MAX_REGISTER_RAW_SIZE];
- int regsize = REGISTER_RAW_SIZE (regno);
-
- *sp -= regsize;
- read_register_gen (regno, buffer);
- write_memory (*sp, buffer, regsize);
-}
-
-/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
-#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
-
-void
-mips_push_dummy_frame()
-{
- int ireg;
- struct linked_proc_info *link = (struct linked_proc_info*)
- xmalloc(sizeof(struct linked_proc_info));
- mips_extra_func_info_t proc_desc = &link->info;
- CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
- CORE_ADDR old_sp = sp;
- link->next = linked_proc_desc_table;
- linked_proc_desc_table = link;
-
-/* FIXME! are these correct ? */
-#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
-#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
-#define FLOAT_REG_SAVE_MASK MASK(0,19)
-#define FLOAT_SINGLE_REG_SAVE_MASK \
- ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
- /*
- * The registers we must save are all those not preserved across
- * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
- * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
- * and FP Control/Status registers.
- *
- *
- * Dummy frame layout:
- * (high memory)
- * Saved PC
- * Saved MMHI, MMLO, FPC_CSR
- * Saved R31
- * Saved R28
- * ...
- * Saved R1
- * Saved D18 (i.e. F19, F18)
- * ...
- * Saved D0 (i.e. F1, F0)
- * Argument build area and stack arguments written via mips_push_arguments
- * (low memory)
- */
-
- /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
- PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
- PROC_FRAME_OFFSET(proc_desc) = 0;
- PROC_FRAME_ADJUST(proc_desc) = 0;
- mips_push_register (&sp, PC_REGNUM);
- mips_push_register (&sp, HI_REGNUM);
- mips_push_register (&sp, LO_REGNUM);
- mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
-
- /* Save general CPU registers */
- PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
- /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
- PROC_REG_OFFSET(proc_desc) = sp - old_sp - MIPS_REGSIZE;
- for (ireg = 32; --ireg >= 0; )
- if (PROC_REG_MASK(proc_desc) & (1 << ireg))
- mips_push_register (&sp, ireg);
-
- /* Save floating point registers starting with high order word */
- PROC_FREG_MASK(proc_desc) =
- MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
- : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
- /* PROC_FREG_OFFSET is the offset of the first saved *double* register
- from FP. */
- PROC_FREG_OFFSET(proc_desc) = sp - old_sp - 8;
- for (ireg = 32; --ireg >= 0; )
- if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
- mips_push_register (&sp, ireg + FP0_REGNUM);
-
- /* Update the frame pointer for the call dummy and the stack pointer.
- Set the procedure's starting and ending addresses to point to the
- call dummy address at the entry point. */
- write_register (PUSH_FP_REGNUM, old_sp);
- write_register (SP_REGNUM, sp);
- PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
- PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
- SET_PROC_DESC_IS_DUMMY(proc_desc);
- PROC_PC_REG(proc_desc) = RA_REGNUM;
-}
-
-void
-mips_pop_frame()
-{
- register int regnum;
- struct frame_info *frame = get_current_frame ();
- CORE_ADDR new_sp = FRAME_FP (frame);
-
- mips_extra_func_info_t proc_desc = frame->proc_desc;
-
- write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
- if (frame->saved_regs == NULL)
- mips_find_saved_regs (frame);
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- {
- if (regnum != SP_REGNUM && regnum != PC_REGNUM
- && frame->saved_regs[regnum])
- write_register (regnum,
- read_memory_integer (frame->saved_regs[regnum],
- MIPS_REGSIZE));
- }
- write_register (SP_REGNUM, new_sp);
- flush_cached_frames ();
-
- if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
- {
- struct linked_proc_info *pi_ptr, *prev_ptr;
-
- for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
- pi_ptr != NULL;
- prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
- {
- if (&pi_ptr->info == proc_desc)
- break;
- }
-
- if (pi_ptr == NULL)
- error ("Can't locate dummy extra frame info\n");
-
- if (prev_ptr != NULL)
- prev_ptr->next = pi_ptr->next;
- else
- linked_proc_desc_table = pi_ptr->next;
-
- free (pi_ptr);
-
- write_register (HI_REGNUM,
- read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
- write_register (LO_REGNUM,
- read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
- if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
- write_register (FCRCS_REGNUM,
- read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
- }
-}
-
-static void
-mips_print_register (regnum, all)
- int regnum, all;
-{
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
-
- /* Get the data in raw format. */
- if (read_relative_register_raw_bytes (regnum, raw_buffer))
- {
- printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
- return;
- }
-
- /* If an even floating point register, also print as double. */
- if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
- && !((regnum-FP0_REGNUM) & 1))
- if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
- {
- char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
-
- read_relative_register_raw_bytes (regnum, dbuffer);
- read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
- REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
-
- printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
- val_print (builtin_type_double, dbuffer, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- printf_filtered ("); ");
- }
- fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
-
- /* The problem with printing numeric register names (r26, etc.) is that
- the user can't use them on input. Probably the best solution is to
- fix it so that either the numeric or the funky (a2, etc.) names
- are accepted on input. */
- if (regnum < MIPS_NUMREGS)
- printf_filtered ("(r%d): ", regnum);
- else
- printf_filtered (": ");
-
- /* If virtual format is floating, print it that way. */
- if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
- if (FP_REGISTER_DOUBLE)
- { /* show 8-byte floats as float AND double: */
- int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
-
- printf_filtered (" (float) ");
- val_print (builtin_type_float, raw_buffer + offset, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- printf_filtered (", (double) ");
- val_print (builtin_type_double, raw_buffer, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- }
- else
- val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- /* Else print as integer in hex. */
- else
- print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
- 'x', 0, gdb_stdout);
-}
-
-/* Replacement for generic do_registers_info.
- Print regs in pretty columns. */
-
-static int
-do_fp_register_row (regnum)
- int regnum;
-{ /* do values for FP (float) regs */
- char *raw_buffer[2];
- char *dbl_buffer;
- /* use HI and LO to control the order of combining two flt regs */
- int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
- int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
- double doub, flt1, flt2; /* doubles extracted from raw hex data */
- int inv1, inv2, inv3;
-
- raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
- raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
- dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
-
- /* Get the data in raw format. */
- if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
- error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
- if (REGISTER_RAW_SIZE(regnum) == 4)
- {
- /* 4-byte registers: we can fit two registers per row. */
- /* Also print every pair of 4-byte regs as an 8-byte double. */
- if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
- error ("can't read register %d (%s)",
- regnum + 1, REGISTER_NAME (regnum + 1));
-
- /* copy the two floats into one double, and unpack both */
- memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer));
- flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
- flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
- doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
-
- printf_filtered (inv1 ? " %-5s: <invalid float>" :
- " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
- printf_filtered (inv2 ? " %-5s: <invalid float>" :
- " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
- printf_filtered (inv3 ? " dbl: <invalid double>\n" :
- " dbl: %-24.17g\n", doub);
- /* may want to do hex display here (future enhancement) */
- regnum +=2;
- }
- else
- { /* eight byte registers: print each one as float AND as double. */
- int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
-
- memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer));
- flt1 = unpack_double (builtin_type_float,
- &raw_buffer[HI][offset], &inv1);
- doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
-
- printf_filtered (inv1 ? " %-5s: <invalid float>" :
- " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
- printf_filtered (inv3 ? " dbl: <invalid double>\n" :
- " dbl: %-24.17g\n", doub);
- /* may want to do hex display here (future enhancement) */
- regnum++;
- }
- return regnum;
-}
-
-/* Print a row's worth of GP (int) registers, with name labels above */
-
-static int
-do_gp_register_row (regnum)
- int regnum;
-{
- /* do values for GP (int) regs */
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
- int col, byte;
- int start_regnum = regnum;
- int numregs = NUM_REGS;
-
-/* start-sanitize-sky */
-#ifdef NUM_CORE_REGS
- numregs = NUM_CORE_REGS;
-#endif
-/* end-sanitize-sky */
-
- /* For GP registers, we print a separate row of names above the vals */
- printf_filtered (" ");
- for (col = 0; col < ncols && regnum < numregs; regnum++)
- {
- if (*REGISTER_NAME (regnum) == '\0')
- continue; /* unused register */
- if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
- break; /* end the row: reached FP register */
- printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
- REGISTER_NAME (regnum));
- col++;
- }
- printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
- start_regnum); /* print the R0 to R31 names */
-
- regnum = start_regnum; /* go back to start of row */
- /* now print the values in hex, 4 or 8 to the row */
- for (col = 0; col < ncols && regnum < numregs; regnum++)
- {
- if (*REGISTER_NAME (regnum) == '\0')
- continue; /* unused register */
- if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
- break; /* end row: reached FP register */
- /* OK: get the data in raw format. */
- if (read_relative_register_raw_bytes (regnum, raw_buffer))
- error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
- /* pad small registers */
- for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++)
- printf_filtered (" ");
- /* Now print the register value in hex, endian order. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++)
- printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
- else
- for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--)
- printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
- printf_filtered (" ");
- col++;
- }
- if (col > 0) /* ie. if we actually printed anything... */
- printf_filtered ("\n");
-
- return regnum;
-}
-
-/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
-
-void
-mips_do_registers_info (regnum, fpregs)
- int regnum;
- int fpregs;
-{
- if (regnum != -1) /* do one specified register */
- {
- if (*(REGISTER_NAME (regnum)) == '\0')
- error ("Not a valid register for the current processor type");
-
- mips_print_register (regnum, 0);
- printf_filtered ("\n");
- }
- else /* do all (or most) registers */
- {
- regnum = 0;
- while (regnum < NUM_REGS)
- {
- if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
- if (fpregs) /* true for "INFO ALL-REGISTERS" command */
- regnum = do_fp_register_row (regnum); /* FP regs */
- else
- regnum += MIPS_NUMREGS; /* skip floating point regs */
- else
- regnum = do_gp_register_row (regnum); /* GP (int) regs */
-/* start-sanitize-sky */
-#ifdef NUM_CORE_REGS
- /* For the sky project, NUM_REGS includes the vector slaves,
- which are handled elsewhere */
- if (regnum >= NUM_CORE_REGS)
- break;
-#endif
-/* end-sanitize-sky */
- }
- }
-}
-
-/* Return number of args passed to a frame. described by FIP.
- Can return -1, meaning no way to tell. */
-
-int
-mips_frame_num_args (frame)
- struct frame_info *frame;
-{
-#if 0 /* FIXME Use or lose this! */
- struct chain_info_t *p;
-
- p = mips_find_cached_frame (FRAME_FP (frame));
- if (p->valid)
- return p->the_info.numargs;
-#endif
- return -1;
-}
-
-/* Is this a branch with a delay slot? */
-
-static int is_delayed PARAMS ((unsigned long));
-
-static int
-is_delayed (insn)
- unsigned long insn;
-{
- int i;
- for (i = 0; i < NUMOPCODES; ++i)
- if (mips_opcodes[i].pinfo != INSN_MACRO
- && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
- break;
- return (i < NUMOPCODES
- && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
- | INSN_COND_BRANCH_DELAY
- | INSN_COND_BRANCH_LIKELY)));
-}
-
-int
-mips_step_skips_delay (pc)
- CORE_ADDR pc;
-{
- char buf[MIPS_INSTLEN];
-
- /* There is no branch delay slot on MIPS16. */
- if (pc_is_mips16 (pc))
- return 0;
-
- if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
- /* If error reading memory, guess that it is not a delayed branch. */
- return 0;
- return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
-}
-
-
-/* Skip the PC past function prologue instructions (32-bit version).
- This is a helper function for mips_skip_prologue. */
-
-static CORE_ADDR
-mips32_skip_prologue (pc, lenient)
- CORE_ADDR pc; /* starting PC to search from */
- int lenient;
-{
- t_inst inst;
- CORE_ADDR end_pc;
- int seen_sp_adjust = 0;
- int load_immediate_bytes = 0;
-
- /* Skip the typical prologue instructions. These are the stack adjustment
- instruction and the instructions that save registers on the stack
- or in the gcc frame. */
- for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
- {
- unsigned long high_word;
-
- inst = mips_fetch_instruction (pc);
- high_word = (inst >> 16) & 0xffff;
-
-#if 0
- if (lenient && is_delayed (inst))
- continue;
-#endif
-
- if (high_word == 0x27bd /* addiu $sp,$sp,offset */
- || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
- seen_sp_adjust = 1;
- else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
- inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
- seen_sp_adjust = 1;
- else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
- /* start-sanitize-r5900 */
- || (inst & 0xFFE00000) == 0x7FA00000 /* sq reg,n($sp) */
- /* end-sanitize-r5900 */
- || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
- && (inst & 0x001F0000)) /* reg != $zero */
- continue;
-
- else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
- continue;
- else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
- /* sx reg,n($s8) */
- continue; /* reg != $zero */
-
- /* move $s8,$sp. With different versions of gas this will be either
- `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
- Accept any one of these. */
- else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
- continue;
-
- else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
- continue;
- else if (high_word == 0x3c1c) /* lui $gp,n */
- continue;
- else if (high_word == 0x279c) /* addiu $gp,$gp,n */
- continue;
- else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
- || inst == 0x033ce021) /* addu $gp,$t9,$gp */
- continue;
- /* The following instructions load $at or $t0 with an immediate
- value in preparation for a stack adjustment via
- subu $sp,$sp,[$at,$t0]. These instructions could also initialize
- a local variable, so we accept them only before a stack adjustment
- instruction was seen. */
- else if (!seen_sp_adjust)
- {
- if (high_word == 0x3c01 || /* lui $at,n */
- high_word == 0x3c08) /* lui $t0,n */
- {
- load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
- continue;
- }
- else if (high_word == 0x3421 || /* ori $at,$at,n */
- high_word == 0x3508 || /* ori $t0,$t0,n */
- high_word == 0x3401 || /* ori $at,$zero,n */
- high_word == 0x3408) /* ori $t0,$zero,n */
- {
- load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
- continue;
- }
- else
- break;
- }
- else
- break;
- }
-
- /* In a frameless function, we might have incorrectly
- skipped some load immediate instructions. Undo the skipping
- if the load immediate was not followed by a stack adjustment. */
- if (load_immediate_bytes && !seen_sp_adjust)
- pc -= load_immediate_bytes;
- return pc;
-}
-
-/* Skip the PC past function prologue instructions (16-bit version).
- This is a helper function for mips_skip_prologue. */
-
-static CORE_ADDR
-mips16_skip_prologue (pc, lenient)
- CORE_ADDR pc; /* starting PC to search from */
- int lenient;
-{
- CORE_ADDR end_pc;
- int extend_bytes = 0;
- int prev_extend_bytes;
-
- /* Table of instructions likely to be found in a function prologue. */
- static struct
- {
- unsigned short inst;
- unsigned short mask;
- } table[] =
- {
- { 0x6300, 0xff00 }, /* addiu $sp,offset */
- { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
- { 0xd000, 0xf800 }, /* sw reg,n($sp) */
- { 0xf900, 0xff00 }, /* sd reg,n($sp) */
- { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
- { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
- { 0x673d, 0xffff }, /* move $s1,sp */
- { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
- { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
- { 0xe809, 0xf81f }, /* entry pseudo-op */
- { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
- { 0, 0 } /* end of table marker */
- };
-
- /* Skip the typical prologue instructions. These are the stack adjustment
- instruction and the instructions that save registers on the stack
- or in the gcc frame. */
- for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
- {
- unsigned short inst;
- int i;
-
- inst = mips_fetch_instruction (pc);
-
- /* Normally we ignore an extend instruction. However, if it is
- not followed by a valid prologue instruction, we must adjust
- the pc back over the extend so that it won't be considered
- part of the prologue. */
- if ((inst & 0xf800) == 0xf000) /* extend */
- {
- extend_bytes = MIPS16_INSTLEN;
- continue;
- }
- prev_extend_bytes = extend_bytes;
- extend_bytes = 0;
-
- /* Check for other valid prologue instructions besides extend. */
- for (i = 0; table[i].mask != 0; i++)
- if ((inst & table[i].mask) == table[i].inst) /* found, get out */
- break;
- if (table[i].mask != 0) /* it was in table? */
- continue; /* ignore it */
- else /* non-prologue */
- {
- /* Return the current pc, adjusted backwards by 2 if
- the previous instruction was an extend. */
- return pc - prev_extend_bytes;
- }
- }
- return pc;
-}
-
-/* To skip prologues, I use this predicate. Returns either PC itself
- if the code at PC does not look like a function prologue; otherwise
- returns an address that (if we're lucky) follows the prologue. If
- LENIENT, then we must skip everything which is involved in setting
- up the frame (it's OK to skip more, just so long as we don't skip
- anything which might clobber the registers which are being saved.
- We must skip more in the case where part of the prologue is in the
- delay slot of a non-prologue instruction). */
-
-CORE_ADDR
-mips_skip_prologue (pc, lenient)
- CORE_ADDR pc;
- int lenient;
-{
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
-
- CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
-
- if (post_prologue_pc != 0)
- return max (pc, post_prologue_pc);
-
- /* Can't determine prologue from the symbol table, need to examine
- instructions. */
-
- if (pc_is_mips16 (pc))
- return mips16_skip_prologue (pc, lenient);
- else
- return mips32_skip_prologue (pc, lenient);
-}
-
-#if 0
-/* The lenient prologue stuff should be superseded by the code in
- init_extra_frame_info which looks to see whether the stores mentioned
- in the proc_desc have actually taken place. */
-
-/* Is address PC in the prologue (loosely defined) for function at
- STARTADDR? */
-
-static int
-mips_in_lenient_prologue (startaddr, pc)
- CORE_ADDR startaddr;
- CORE_ADDR pc;
-{
- CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
- return pc >= startaddr && pc < end_prologue;
-}
-#endif
-
-/* Given a return value in `regbuf' with a type `valtype',
- extract and copy its value into `valbuf'. */
-void
-mips_extract_return_value (valtype, regbuf, valbuf)
- struct type *valtype;
- char regbuf[REGISTER_BYTES];
- char *valbuf;
-{
- int regnum;
- int offset = 0;
- int len = TYPE_LENGTH (valtype);
-
- regnum = 2;
- if (TYPE_CODE (valtype) == TYPE_CODE_FLT
- && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
- || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
- && len <= MIPS_FPU_SINGLE_REGSIZE)))
- regnum = FP0_REGNUM;
-
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- { /* "un-left-justify" the value from the register */
- if (len < REGISTER_RAW_SIZE (regnum))
- offset = REGISTER_RAW_SIZE (regnum) - len;
- if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
- len < REGISTER_RAW_SIZE (regnum) * 2 &&
- (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
- TYPE_CODE (valtype) == TYPE_CODE_UNION))
- offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
- }
- memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
- REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
-}
-
-/* Given a return value in `regbuf' with a type `valtype',
- write it's value into the appropriate register. */
-void
-mips_store_return_value (valtype, valbuf)
- struct type *valtype;
- char *valbuf;
-{
- int regnum;
- int offset = 0;
- int len = TYPE_LENGTH (valtype);
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
-
- regnum = 2;
- if (TYPE_CODE (valtype) == TYPE_CODE_FLT
- && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
- || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
- && len <= MIPS_REGSIZE)))
- regnum = FP0_REGNUM;
-
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- { /* "left-justify" the value in the register */
- if (len < REGISTER_RAW_SIZE (regnum))
- offset = REGISTER_RAW_SIZE (regnum) - len;
- if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
- len < REGISTER_RAW_SIZE (regnum) * 2 &&
- (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
- TYPE_CODE (valtype) == TYPE_CODE_UNION))
- offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
- }
- memcpy(raw_buffer + offset, valbuf, len);
- REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
- write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
- len > REGISTER_RAW_SIZE (regnum) ?
- len : REGISTER_RAW_SIZE (regnum));
-}
-
-/* Exported procedure: Is PC in the signal trampoline code */
-
-int
-in_sigtramp (pc, ignore)
- CORE_ADDR pc;
- char *ignore; /* function name */
-{
- if (sigtramp_address == 0)
- fixup_sigtramp ();
- return (pc >= sigtramp_address && pc < sigtramp_end);
-}
-
-/* Commands to show/set the MIPS FPU type. */
-
-static void show_mipsfpu_command PARAMS ((char *, int));
-static void
-show_mipsfpu_command (args, from_tty)
- char *args;
- int from_tty;
-{
- char *msg;
- char *fpu;
- switch (MIPS_FPU_TYPE)
- {
- case MIPS_FPU_SINGLE:
- fpu = "single-precision";
- break;
- case MIPS_FPU_DOUBLE:
- fpu = "double-precision";
- break;
- case MIPS_FPU_NONE:
- fpu = "absent (none)";
- break;
- }
- if (mips_fpu_type_auto)
- printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
- fpu);
- else
- printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
- fpu);
-}
-
-
-static void set_mipsfpu_command PARAMS ((char *, int));
-static void
-set_mipsfpu_command (args, from_tty)
- char *args;
- int from_tty;
-{
- printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
- show_mipsfpu_command (args, from_tty);
-}
-
-static void set_mipsfpu_single_command PARAMS ((char *, int));
-static void
-set_mipsfpu_single_command (args, from_tty)
- char *args;
- int from_tty;
-{
- mips_fpu_type = MIPS_FPU_SINGLE;
- mips_fpu_type_auto = 0;
- /* start-sanitize-carp start-sanitize-vr4xxx */
- if (GDB_MULTI_ARCH)
- {
- gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
- }
- /* end-sanitize-carp end-sanitize-vr4xxx */
-}
-
-static void set_mipsfpu_double_command PARAMS ((char *, int));
-static void
-set_mipsfpu_double_command (args, from_tty)
- char *args;
- int from_tty;
-{
- mips_fpu_type = MIPS_FPU_DOUBLE;
- mips_fpu_type_auto = 0;
- /* start-sanitize-carp start-sanitize-vr4xxx */
- if (GDB_MULTI_ARCH)
- {
- gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
- }
- /* end-sanitize-carp end-sanitize-vr4xxx */
-}
-
-static void set_mipsfpu_none_command PARAMS ((char *, int));
-static void
-set_mipsfpu_none_command (args, from_tty)
- char *args;
- int from_tty;
-{
- mips_fpu_type = MIPS_FPU_NONE;
- mips_fpu_type_auto = 0;
- /* start-sanitize-carp start-sanitize-vr4xxx */
- if (GDB_MULTI_ARCH)
- {
- gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
- }
- /* end-sanitize-carp end-sanitize-vr4xxx */
-}
-
-static void set_mipsfpu_auto_command PARAMS ((char *, int));
-static void
-set_mipsfpu_auto_command (args, from_tty)
- char *args;
- int from_tty;
-{
- mips_fpu_type_auto = 1;
-}
-
-/* Command to set the processor type. */
-
-void
-mips_set_processor_type_command (args, from_tty)
- char *args;
- int from_tty;
-{
- int i;
-
- if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
- {
- printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
- for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
- printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
-
- /* Restore the value. */
- tmp_mips_processor_type = strsave (mips_processor_type);
-
- return;
- }
-
- if (!mips_set_processor_type (tmp_mips_processor_type))
- {
- error ("Unknown processor type `%s'.", tmp_mips_processor_type);
- /* Restore its value. */
- tmp_mips_processor_type = strsave (mips_processor_type);
- }
-}
-
-static void
-mips_show_processor_type_command (args, from_tty)
- char *args;
- int from_tty;
-{
-}
-
-/* Modify the actual processor type. */
-
-int
-mips_set_processor_type (str)
- char *str;
-{
- int i, j;
-
- if (str == NULL)
- return 0;
-
- for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
- {
- if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
- {
- mips_processor_type = str;
-
- for (j = 0; j < NUM_REGS; ++j)
- /* FIXME - MIPS should be defining REGISTER_NAME() instead */
- gdb_register_names[j] = mips_processor_type_table[i].regnames[j];
-
- return 1;
-
- /* FIXME tweak fpu flag too */
- }
- }
-
- return 0;
-}
-
-/* Attempt to identify the particular processor model by reading the
- processor id. */
-
-char *
-mips_read_processor_type ()
-{
- CORE_ADDR prid;
-
- prid = read_register (PRID_REGNUM);
-
- if ((prid & ~0xf) == 0x700)
- return savestring ("r3041", strlen("r3041"));
-
- return NULL;
-}
-
-/* Just like reinit_frame_cache, but with the right arguments to be
- callable as an sfunc. */
-
-static void
-reinit_frame_cache_sfunc (args, from_tty, c)
- char *args;
- int from_tty;
- struct cmd_list_element *c;
-{
- reinit_frame_cache ();
-}
-
-int
-gdb_print_insn_mips (memaddr, info)
- bfd_vma memaddr;
- disassemble_info *info;
-{
- mips_extra_func_info_t proc_desc;
-
- /* Search for the function containing this address. Set the low bit
- of the address when searching, in case we were given an even address
- that is the start of a 16-bit function. If we didn't do this,
- the search would fail because the symbol table says the function
- starts at an odd address, i.e. 1 byte past the given address. */
- memaddr = ADDR_BITS_REMOVE (memaddr);
- proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
-
- /* Make an attempt to determine if this is a 16-bit function. If
- the procedure descriptor exists and the address therein is odd,
- it's definitely a 16-bit function. Otherwise, we have to just
- guess that if the address passed in is odd, it's 16-bits. */
- if (proc_desc)
- info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
- else
- info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
-
- /* Round down the instruction address to the appropriate boundary. */
- memaddr &= (info->mach == 16 ? ~1 : ~3);
-
- /* Call the appropriate disassembler based on the target endian-ness. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- return print_insn_big_mips (memaddr, info);
- else
- return print_insn_little_mips (memaddr, info);
-}
-
-/* Old-style breakpoint macros.
- The IDT board uses an unusual breakpoint value, and sometimes gets
- confused when it sees the usual MIPS breakpoint instruction. */
-
-#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
-#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
-#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
-#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
-#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
-#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
-#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
-#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
-
-/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
- counter value to determine whether a 16- or 32-bit breakpoint should be
- used. It returns a pointer to a string of bytes that encode a breakpoint
- instruction, stores the length of the string to *lenptr, and adjusts pc
- (if necessary) to point to the actual memory location where the
- breakpoint should be inserted. */
-
-unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
- CORE_ADDR *pcptr;
- int *lenptr;
-{
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- if (pc_is_mips16 (*pcptr))
- {
- static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
- *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
- *lenptr = sizeof(mips16_big_breakpoint);
- return mips16_big_breakpoint;
- }
- else
- {
- static char big_breakpoint[] = BIG_BREAKPOINT;
- static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
- static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
-
- *lenptr = sizeof(big_breakpoint);
-
- if (strcmp (target_shortname, "mips") == 0)
- return idt_big_breakpoint;
- else if (strcmp (target_shortname, "ddb") == 0
- || strcmp (target_shortname, "pmon") == 0
- || strcmp (target_shortname, "lsi") == 0)
- return pmon_big_breakpoint;
- else
- return big_breakpoint;
- }
- }
- else
- {
- if (pc_is_mips16 (*pcptr))
- {
- static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
- *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
- *lenptr = sizeof(mips16_little_breakpoint);
- return mips16_little_breakpoint;
- }
- else
- {
- static char little_breakpoint[] = LITTLE_BREAKPOINT;
- static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
- static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
-
- *lenptr = sizeof(little_breakpoint);
-
- if (strcmp (target_shortname, "mips") == 0)
- return idt_little_breakpoint;
- else if (strcmp (target_shortname, "ddb") == 0
- || strcmp (target_shortname, "pmon") == 0
- || strcmp (target_shortname, "lsi") == 0)
- return pmon_little_breakpoint;
- else
- return little_breakpoint;
- }
- }
-}
-
-/* If PC is in a mips16 call or return stub, return the address of the target
- PC, which is either the callee or the caller. There are several
- cases which must be handled:
-
- * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
- target PC is in $31 ($ra).
- * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
- and the target PC is in $2.
- * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
- before the jal instruction, this is effectively a call stub
- and the the target PC is in $2. Otherwise this is effectively
- a return stub and the target PC is in $18.
-
- See the source code for the stubs in gcc/config/mips/mips16.S for
- gory details.
-
- This function implements the SKIP_TRAMPOLINE_CODE macro.
-*/
-
-CORE_ADDR
-mips_skip_stub (pc)
- CORE_ADDR pc;
-{
- char *name;
- CORE_ADDR start_addr;
-
- /* Find the starting address and name of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
- return 0;
-
- /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
- target PC is in $31 ($ra). */
- if (strcmp (name, "__mips16_ret_sf") == 0
- || strcmp (name, "__mips16_ret_df") == 0)
- return read_register (RA_REGNUM);
-
- if (strncmp (name, "__mips16_call_stub_", 19) == 0)
- {
- /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
- and the target PC is in $2. */
- if (name[19] >= '0' && name[19] <= '9')
- return read_register (2);
-
- /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
- before the jal instruction, this is effectively a call stub
- and the the target PC is in $2. Otherwise this is effectively
- a return stub and the target PC is in $18. */
- else if (name[19] == 's' || name[19] == 'd')
- {
- if (pc == start_addr)
- {
- /* Check if the target of the stub is a compiler-generated
- stub. Such a stub for a function bar might have a name
- like __fn_stub_bar, and might look like this:
- mfc1 $4,$f13
- mfc1 $5,$f12
- mfc1 $6,$f15
- mfc1 $7,$f14
- la $1,bar (becomes a lui/addiu pair)
- jr $1
- So scan down to the lui/addi and extract the target
- address from those two instructions. */
-
- CORE_ADDR target_pc = read_register (2);
- t_inst inst;
- int i;
-
- /* See if the name of the target function is __fn_stub_*. */
- if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
- return target_pc;
- if (strncmp (name, "__fn_stub_", 10) != 0
- && strcmp (name, "etext") != 0
- && strcmp (name, "_etext") != 0)
- return target_pc;
-
- /* Scan through this _fn_stub_ code for the lui/addiu pair.
- The limit on the search is arbitrarily set to 20
- instructions. FIXME. */
- for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
- {
- inst = mips_fetch_instruction (target_pc);
- if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
- pc = (inst << 16) & 0xffff0000; /* high word */
- else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
- return pc | (inst & 0xffff); /* low word */
- }
-
- /* Couldn't find the lui/addui pair, so return stub address. */
- return target_pc;
- }
- else
- /* This is the 'return' part of a call stub. The return
- address is in $r18. */
- return read_register (18);
- }
- }
- return 0; /* not a stub */
-}
-
-
-/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
- This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
-
-int
-mips_in_call_stub (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- CORE_ADDR start_addr;
-
- /* Find the starting address of the function containing the PC. If the
- caller didn't give us a name, look it up at the same time. */
- if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
- return 0;
-
- if (strncmp (name, "__mips16_call_stub_", 19) == 0)
- {
- /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
- if (name[19] >= '0' && name[19] <= '9')
- return 1;
- /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
- before the jal instruction, this is effectively a call stub. */
- else if (name[19] == 's' || name[19] == 'd')
- return pc == start_addr;
- }
-
- return 0; /* not a stub */
-}
-
-
-/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
- This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
-
-int
-mips_in_return_stub (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- CORE_ADDR start_addr;
-
- /* Find the starting address of the function containing the PC. */
- if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
- return 0;
-
- /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
- if (strcmp (name, "__mips16_ret_sf") == 0
- || strcmp (name, "__mips16_ret_df") == 0)
- return 1;
-
- /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
- i.e. after the jal instruction, this is effectively a return stub. */
- if (strncmp (name, "__mips16_call_stub_", 19) == 0
- && (name[19] == 's' || name[19] == 'd')
- && pc != start_addr)
- return 1;
-
- return 0; /* not a stub */
-}
-
-
-/* Return non-zero if the PC is in a library helper function that should
- be ignored. This implements the IGNORE_HELPER_CALL macro. */
-
-int
-mips_ignore_helper (pc)
- CORE_ADDR pc;
-{
- char *name;
-
- /* Find the starting address and name of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
- return 0;
-
- /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
- that we want to ignore. */
- return (strcmp (name, "__mips16_ret_sf") == 0
- || strcmp (name, "__mips16_ret_df") == 0);
-}
-
-
-/* Return a location where we can set a breakpoint that will be hit
- when an inferior function call returns. This is normally the
- program's entry point. Executables that don't have an entry
- point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
- whose address is the location where the breakpoint should be placed. */
-
-CORE_ADDR
-mips_call_dummy_address ()
-{
- struct minimal_symbol *sym;
-
- sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
- if (sym)
- return SYMBOL_VALUE_ADDRESS (sym);
- else
- return entry_point_address ();
-}
-
-/* start-sanitize-carp start-sanitize-vr4xxx */
-
-static gdbarch_init_ftype mips_gdbarch_init;
-static struct gdbarch *
-mips_gdbarch_init (info, arches)
- struct gdbarch_info info;
- struct gdbarch_list *arches;
-{
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
- int elf_abi;
- char *abi_name;
-
- /* find a default for ELF_ABI */
- if (info.abfd != NULL)
- elf_abi = elf_elfheader (info.abfd)->e_flags & EF_MIPS_ABI;
- else if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_mips)
- elf_abi = gdbarch_tdep (current_gdbarch)->elf_abi;
- else
- elf_abi = 0;
-
- /* try to find a pre-existing architecture */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- {
- /* MIPS needs to be pedantic about which ABI the object is
- using. */
- if (gdbarch_tdep (current_gdbarch)->elf_abi != elf_abi)
- continue;
- return arches->gdbarch;
- }
-
- /* Need a new architecture. Fill in a target specific vector. */
- tdep = (struct gdbarch_tdep*) xmalloc (sizeof (struct gdbarch_tdep));
- gdbarch = gdbarch_alloc (&info, tdep);
- tdep->elf_abi = elf_abi;
- switch (elf_abi)
- {
- case E_MIPS_ABI_O32:
- abi_name = "o32";
- tdep->mips_eabi = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- break;
- case E_MIPS_ABI_O64:
- abi_name = "o64";
- tdep->mips_eabi = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- break;
- case E_MIPS_ABI_EABI32:
- abi_name = "eabi32";
- tdep->mips_eabi = 1;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- break;
- case E_MIPS_ABI_EABI64:
- abi_name = "eabi64";
- tdep->mips_eabi = 1;
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
- break;
- default:
- abi_name = "default";
- tdep->mips_eabi = 0;
- set_gdbarch_long_bit (gdbarch, 32);
- set_gdbarch_ptr_bit (gdbarch, 32);
- break;
- }
- if (tdep->mips_eabi)
- {
- /* EABI uses R4 through R11 for args */
- tdep->mips_last_arg_regnum = 11;
- /* EABI uses F12 through F19 for args */
- tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
- }
- else
- {
- /* old ABI uses R4 through R7 for args */
- tdep->mips_last_arg_regnum = 7;
- /* old ABI uses F12 through F15 for args */
- tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
- }
- set_gdbarch_long_long_bit (gdbarch, 64);
-
- /* enable/disable the MIPS FPU */
- if (!mips_fpu_type_auto)
- tdep->mips_fpu_type = mips_fpu_type;
- else if (info.bfd_arch_info != NULL
- && info.bfd_arch_info->arch == bfd_arch_mips)
- switch (info.bfd_arch_info->mach)
- {
- case bfd_mach_mips4100:
- case bfd_mach_mips4111:
- case bfd_mach_mips4121:
- tdep->mips_fpu_type = MIPS_FPU_NONE;
- break;
- default:
- tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
- break;
- }
- else
- tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
-
- if (gdbarch_debug)
- {
- fprintf_unfiltered (stderr,
- "mips_gdbarch_init: (info)elf_abi 0x%x (%s)\n",
- elf_abi, abi_name);
- fprintf_unfiltered (stderr,
- "mips_gdbarch_init: MIPS_EABI = %d\n",
- tdep->mips_eabi);
- fprintf_unfiltered (stderr,
- "mips_gdbarch_init: MIPS_LAST_ARG_REGNUM = %d\n",
- tdep->mips_last_arg_regnum);
- fprintf_unfiltered (stderr,
- "mips_gdbarch_init: MIPS_LAST_FP_ARG_REGNUM = %d (%d)\n",
- tdep->mips_last_fp_arg_regnum,
- tdep->mips_last_fp_arg_regnum - FP0_REGNUM);
- fprintf_unfiltered (stderr,
- "mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n",
- tdep->mips_fpu_type,
- (tdep->mips_fpu_type == MIPS_FPU_NONE ? "none"
- : tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single"
- : tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double"
- : "???"));
- }
-
- return gdbarch;
-}
-
-/* end-sanitize-carp end-sanitize-vr4xxx */
-
-void
-_initialize_mips_tdep ()
-{
- static struct cmd_list_element *mipsfpulist = NULL;
- struct cmd_list_element *c;
-
- /* start-sanitize-carp start-sanitize-vr4xxx */
- if (GDB_MULTI_ARCH)
- register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init);
- /* end-sanitize-carp end-sanitize-vr4xxx */
- if (!tm_print_insn) /* Someone may have already set it */
- tm_print_insn = gdb_print_insn_mips;
-
- /* Let the user turn off floating point and set the fence post for
- heuristic_proc_start. */
-
- add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
- "Set use of MIPS floating-point coprocessor.",
- &mipsfpulist, "set mipsfpu ", 0, &setlist);
- add_cmd ("single", class_support, set_mipsfpu_single_command,
- "Select single-precision MIPS floating-point coprocessor.",
- &mipsfpulist);
- add_cmd ("double", class_support, set_mipsfpu_double_command,
- "Select double-precision MIPS floating-point coprocessor .",
- &mipsfpulist);
- add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
- add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
- add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
- add_cmd ("none", class_support, set_mipsfpu_none_command,
- "Select no MIPS floating-point coprocessor.",
- &mipsfpulist);
- add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
- add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
- add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
- add_cmd ("auto", class_support, set_mipsfpu_auto_command,
- "Select MIPS floating-point coprocessor automatically.",
- &mipsfpulist);
- add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
- "Show current use of MIPS floating-point coprocessor target.",
- &showlist);
-
- /* start-sanitize-carp start-sanitize-vr4xxx */
-#if !GDB_MULTI_ARCH
- /* end-sanitize-carp end-sanitize-vr4xxx */
- c = add_set_cmd ("processor", class_support, var_string_noescape,
- (char *) &tmp_mips_processor_type,
- "Set the type of MIPS processor in use.\n\
-Set this to be able to access processor-type-specific registers.\n\
-",
- &setlist);
- c->function.cfunc = mips_set_processor_type_command;
- c = add_show_from_set (c, &showlist);
- c->function.cfunc = mips_show_processor_type_command;
-
- tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
- mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
- /* start-sanitize-carp start-sanitize-vr4xxx */
-#endif
- /* end-sanitize-carp end-sanitize-vr4xxx */
-
- /* We really would like to have both "0" and "unlimited" work, but
- command.c doesn't deal with that. So make it a var_zinteger
- because the user can always use "999999" or some such for unlimited. */
- c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
- (char *) &heuristic_fence_post,
- "\
-Set the distance searched for the start of a function.\n\
-If you are debugging a stripped executable, GDB needs to search through the\n\
-program for the start of a function. This command sets the distance of the\n\
-search. The only need to set it is when debugging a stripped executable.",
- &setlist);
- /* We need to throw away the frame cache when we set this, since it
- might change our ability to get backtraces. */
- c->function.sfunc = reinit_frame_cache_sfunc;
- add_show_from_set (c, &showlist);
-
- /* Allow the user to control whether the upper bits of 64-bit
- addresses should be zeroed. */
- add_show_from_set
- (add_set_cmd ("mask-address", no_class, var_boolean, (char *)&mask_address_p,
- "Set zeroing of upper 32 bits of 64-bit addresses.\n\
-Use \"on\" to enable the masking, and \"off\" to disable it.\n\
-Without an argument, zeroing of upper address bits is enabled.", &setlist),
- &showlist);
-}