diff options
Diffstat (limited to 'gdb/mips-tdep.c')
-rw-r--r-- | gdb/mips-tdep.c | 3496 |
1 files changed, 0 insertions, 3496 deletions
diff --git a/gdb/mips-tdep.c b/gdb/mips-tdep.c deleted file mode 100644 index 0cd0063..0000000 --- a/gdb/mips-tdep.c +++ /dev/null @@ -1,3496 +0,0 @@ -/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. - Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 - Free Software Foundation, Inc. - Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU - and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. - -This file is part of GDB. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -#include "defs.h" -#include "gdb_string.h" -#include "frame.h" -#include "inferior.h" -#include "symtab.h" -#include "value.h" -#include "gdbcmd.h" -#include "language.h" -#include "gdbcore.h" -#include "symfile.h" -#include "objfiles.h" -#include "gdbtypes.h" -#include "target.h" - -#include "opcode/mips.h" -/* start-sanitize-carp start-sanitize-vr4xxx */ -#include "elf/mips.h" -#include "elf-bfd.h" - -/* end-sanitize-carp end-sanitize-vr4xxx */ - -/* Some MIPS boards don't support floating point, so we permit the - user to turn it off. */ - -enum mips_fpu_type -{ - MIPS_FPU_DOUBLE, /* Full double precision floating point. */ - MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ - MIPS_FPU_NONE /* No floating point. */ -}; - -#ifndef MIPS_DEFAULT_FPU_TYPE -#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE -#endif -static int mips_fpu_type_auto = 1; -static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; -#define MIPS_FPU_TYPE mips_fpu_type - -/* start-sanitize-carp start-sanitize-vr4xxx */ - -/* MIPS specific per-architecture information */ -struct gdbarch_tdep -{ - int elf_abi; - /* mips options */ - int mips_eabi; - enum mips_fpu_type mips_fpu_type; - int mips_last_arg_regnum; - int mips_last_fp_arg_regnum; -}; - -#if GDB_MULTI_ARCH -#undef MIPS_EABI -#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_eabi) -#endif - -#if GDB_MULTI_ARCH -#undef MIPS_LAST_FP_ARG_REGNUM -#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum) -#endif - -#if GDB_MULTI_ARCH -#undef MIPS_LAST_ARG_REGNUM -#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum) -#endif - -#if GDB_MULTI_ARCH -#undef MIPS_FPU_TYPE -#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type) -#endif - -/* end-sanitize-carp end-sanitize-vr4xxx */ - -#define VM_MIN_ADDRESS (CORE_ADDR)0x400000 - -/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */ -#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8) - -#if 0 -static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); -#endif - -int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); - -static void mips_print_register PARAMS ((int, int)); - -static mips_extra_func_info_t -heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); - -static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); - -static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); - -void mips_set_processor_type_command PARAMS ((char *, int)); - -int mips_set_processor_type PARAMS ((char *)); - -static void mips_show_processor_type_command PARAMS ((char *, int)); - -static void reinit_frame_cache_sfunc PARAMS ((char *, int, - struct cmd_list_element *)); - -static mips_extra_func_info_t - find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); - -static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, - mips_extra_func_info_t proc_desc)); - -/* This value is the model of MIPS in use. It is derived from the value - of the PrID register. */ - -char *mips_processor_type; - -char *tmp_mips_processor_type; - -/* A set of original names, to be used when restoring back to generic - registers from a specific set. */ - -char *mips_generic_reg_names[] = REGISTER_NAMES; - -/* Names of IDT R3041 registers. */ - -char *mips_r3041_reg_names[] = { - "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", - "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", - "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", - "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", - "sr", "lo", "hi", "bad", "cause","pc", - "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", - "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", - "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", - "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", - "fsr", "fir", "fp", "", - "", "", "bus", "ccfg", "", "", "", "", - "", "", "port", "cmp", "", "", "epc", "prid", -}; - -/* Names of IDT R3051 registers. */ - -char *mips_r3051_reg_names[] = { - "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", - "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", - "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", - "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", - "sr", "lo", "hi", "bad", "cause","pc", - "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", - "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", - "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", - "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", - "fsr", "fir", "fp", "", - "inx", "rand", "elo", "", "ctxt", "", "", "", - "", "", "ehi", "", "", "", "epc", "prid", -}; - -/* Names of IDT R3081 registers. */ - -char *mips_r3081_reg_names[] = { - "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", - "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", - "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", - "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", - "sr", "lo", "hi", "bad", "cause","pc", - "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", - "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", - "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", - "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", - "fsr", "fir", "fp", "", - "inx", "rand", "elo", "cfg", "ctxt", "", "", "", - "", "", "ehi", "", "", "", "epc", "prid", -}; - -/* Names of LSI 33k registers. */ - -char *mips_lsi33k_reg_names[] = { - "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", - "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", - "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", - "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", - "epc", "hi", "lo", "sr", "cause","badvaddr", - "dcic", "bpc", "bda", "", "", "", "", "", - "", "", "", "", "", "", "", "", - "", "", "", "", "", "", "", "", - "", "", "", "", "", "", "", "", - "", "", "", "", - "", "", "", "", "", "", "", "", - "", "", "", "", "", "", "", "", -}; - -struct { - char *name; - char **regnames; -} mips_processor_type_table[] = { - { "generic", mips_generic_reg_names }, - { "r3041", mips_r3041_reg_names }, - { "r3051", mips_r3051_reg_names }, - { "r3071", mips_r3081_reg_names }, - { "r3081", mips_r3081_reg_names }, - { "lsi33k", mips_lsi33k_reg_names }, - { NULL, NULL } -}; - -/* Table to translate MIPS16 register field to actual register number. */ -static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; - -/* Heuristic_proc_start may hunt through the text section for a long - time across a 2400 baud serial line. Allows the user to limit this - search. */ - -static unsigned int heuristic_fence_post = 0; - -#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ -#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ -#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) -#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) -#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) -#define PROC_REG_MASK(proc) ((proc)->pdr.regmask) -#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) -#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) -#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) -#define PROC_PC_REG(proc) ((proc)->pdr.pcreg) -#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) -#define _PROC_MAGIC_ 0x0F0F0F0F -#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) -#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) - -struct linked_proc_info -{ - struct mips_extra_func_info info; - struct linked_proc_info *next; -} *linked_proc_desc_table = NULL; - - -/* Should the upper word of 64-bit addresses be zeroed? */ -static int mask_address_p = 1; - -/* Should call_function allocate stack space for a struct return? */ -int -mips_use_struct_convention (gcc_p, type) - int gcc_p; - struct type *type; -{ - if (MIPS_EABI) - return (TYPE_LENGTH (type) > 2 * MIPS_REGSIZE); - else - return 1; /* Structures are returned by ref in extra arg0 */ -} - -/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ - -static int -pc_is_mips16 (bfd_vma memaddr) -{ - struct minimal_symbol *sym; - - /* If bit 0 of the address is set, assume this is a MIPS16 address. */ - if (IS_MIPS16_ADDR (memaddr)) - return 1; - - /* A flag indicating that this is a MIPS16 function is stored by elfread.c in - the high bit of the info field. Use this to decide if the function is - MIPS16 or normal MIPS. */ - sym = lookup_minimal_symbol_by_pc (memaddr); - if (sym) - return MSYMBOL_IS_SPECIAL (sym); - else - return 0; -} - - -/* This returns the PC of the first inst after the prologue. If we can't - find the prologue, then return 0. */ - -static CORE_ADDR -after_prologue (pc, proc_desc) - CORE_ADDR pc; - mips_extra_func_info_t proc_desc; -{ - struct symtab_and_line sal; - CORE_ADDR func_addr, func_end; - - if (!proc_desc) - proc_desc = find_proc_desc (pc, NULL); - - if (proc_desc) - { - /* If function is frameless, then we need to do it the hard way. I - strongly suspect that frameless always means prologueless... */ - if (PROC_FRAME_REG (proc_desc) == SP_REGNUM - && PROC_FRAME_OFFSET (proc_desc) == 0) - return 0; - } - - if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) - return 0; /* Unknown */ - - sal = find_pc_line (func_addr, 0); - - if (sal.end < func_end) - return sal.end; - - /* The line after the prologue is after the end of the function. In this - case, tell the caller to find the prologue the hard way. */ - - return 0; -} - -/* Decode a MIPS32 instruction that saves a register in the stack, and - set the appropriate bit in the general register mask or float register mask - to indicate which register is saved. This is a helper function - for mips_find_saved_regs. */ - -static void -mips32_decode_reg_save (inst, gen_mask, float_mask) - t_inst inst; - unsigned long *gen_mask; - unsigned long *float_mask; -{ - int reg; - - if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ - || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ - /* start-sanitize-r5900 */ - || (inst & 0xffe00000) == 0x7fa00000 /* sq reg,n($sp) */ - /* end-sanitize-r5900 */ - || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ - { - /* It might be possible to use the instruction to - find the offset, rather than the code below which - is based on things being in a certain order in the - frame, but figuring out what the instruction's offset - is relative to might be a little tricky. */ - reg = (inst & 0x001f0000) >> 16; - *gen_mask |= (1 << reg); - } - else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ - || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ - || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */ - - { - reg = ((inst & 0x001f0000) >> 16); - *float_mask |= (1 << reg); - } -} - -/* Decode a MIPS16 instruction that saves a register in the stack, and - set the appropriate bit in the general register or float register mask - to indicate which register is saved. This is a helper function - for mips_find_saved_regs. */ - -static void -mips16_decode_reg_save (inst, gen_mask) - t_inst inst; - unsigned long *gen_mask; -{ - if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ - { - int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; - *gen_mask |= (1 << reg); - } - else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ - { - int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; - *gen_mask |= (1 << reg); - } - else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ - || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ - *gen_mask |= (1 << RA_REGNUM); -} - - -/* Fetch and return instruction from the specified location. If the PC - is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ - -static t_inst -mips_fetch_instruction (addr) - CORE_ADDR addr; -{ - char buf[MIPS_INSTLEN]; - int instlen; - int status; - - if (pc_is_mips16 (addr)) - { - instlen = MIPS16_INSTLEN; - addr = UNMAKE_MIPS16_ADDR (addr); - } - else - instlen = MIPS_INSTLEN; - status = read_memory_nobpt (addr, buf, instlen); - if (status) - memory_error (status, addr); - return extract_unsigned_integer (buf, instlen); -} - - -/* These the fields of 32 bit mips instructions */ -#define mips32_op(x) (x >> 25) -#define itype_op(x) (x >> 25) -#define itype_rs(x) ((x >> 21)& 0x1f) -#define itype_rt(x) ((x >> 16) & 0x1f) -#define itype_immediate(x) ( x & 0xffff) - -#define jtype_op(x) (x >> 25) -#define jtype_target(x) ( x & 0x03fffff) - -#define rtype_op(x) (x >>25) -#define rtype_rs(x) ((x>>21) & 0x1f) -#define rtype_rt(x) ((x>>16) & 0x1f) -#define rtype_rd(x) ((x>>11) & 0x1f) -#define rtype_shamt(x) ((x>>6) & 0x1f) -#define rtype_funct(x) (x & 0x3f ) - -static CORE_ADDR -mips32_relative_offset(unsigned long inst) -{ long x ; - x = itype_immediate(inst) ; - if (x & 0x8000) /* sign bit set */ - { - x |= 0xffff0000 ; /* sign extension */ - } - x = x << 2 ; - return x ; -} - -/* Determine whate to set a single step breakpoint while considering - branch prediction */ -CORE_ADDR -mips32_next_pc(CORE_ADDR pc) -{ - unsigned long inst ; - int op ; - inst = mips_fetch_instruction(pc) ; - if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ - { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ - { op = ((inst >> 25) & 0x03) ; - switch (op) - { - case 0 : goto equal_branch ; /* BEQL */ - case 1 : goto neq_branch ; /* BNEZ */ - case 2 : goto less_branch ; /* BLEZ */ - case 3 : goto greater_branch ; /* BGTZ */ - default : pc += 4 ; - } - } - else pc += 4 ; /* Not a branch, next instruction is easy */ - } - else - { /* This gets way messy */ - - /* Further subdivide into SPECIAL, REGIMM and other */ - switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ - { - case 0 : /* SPECIAL */ - op = rtype_funct(inst) ; - switch (op) - { - case 8 : /* JR */ - case 9 : /* JALR */ - pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */ - break ; - default: pc += 4 ; - } - - break ; /* end special */ - case 1 : /* REGIMM */ - { - op = jtype_op(inst) ; /* branch condition */ - switch (jtype_op(inst)) - { - case 0 : /* BLTZ */ - case 2 : /* BLTXL */ - case 16 : /* BLTZALL */ - case 18 : /* BLTZALL */ - less_branch: - if (read_register(itype_rs(inst)) < 0) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; /* after the delay slot */ - break ; - case 1 : /* GEZ */ - case 3 : /* BGEZL */ - case 17 : /* BGEZAL */ - case 19 : /* BGEZALL */ - greater_equal_branch: - if (read_register(itype_rs(inst)) >= 0) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; /* after the delay slot */ - break ; - /* All of the other intructions in the REGIMM catagory */ - default: pc += 4 ; - } - } - break ; /* end REGIMM */ - case 2 : /* J */ - case 3 : /* JAL */ - { unsigned long reg ; - reg = jtype_target(inst) << 2 ; - pc = reg + ((pc+4) & 0xf0000000) ; - /* Whats this mysterious 0xf000000 adjustment ??? */ - } - break ; - /* FIXME case JALX :*/ - { unsigned long reg ; - reg = jtype_target(inst) << 2 ; - pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */ - /* Add 1 to indicate 16 bit mode - Invert ISA mode */ - } - break ; /* The new PC will be alternate mode */ - case 4 : /* BEQ , BEQL */ - equal_branch : - if (read_register(itype_rs(inst)) == - read_register(itype_rt(inst))) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; - break ; - case 5 : /* BNE , BNEL */ - neq_branch : - if (read_register(itype_rs(inst)) != - read_register(itype_rs(inst))) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; - break ; - case 6 : /* BLEZ , BLEZL */ - less_zero_branch: - if (read_register(itype_rs(inst) <= 0)) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; - break ; - case 7 : - greater_branch : /* BGTZ BGTZL */ - if (read_register(itype_rs(inst) > 0)) - pc += mips32_relative_offset(inst) + 4 ; - else pc += 8 ; - break ; - default : pc += 8 ; - } /* switch */ - } /* else */ - return pc ; -} /* mips32_next_pc */ - -/* Decoding the next place to set a breakpoint is irregular for the - mips 16 variant, but fortunatly, there fewer instructions. We have to cope - ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. - We dont want to set a single step instruction on the extend instruction - either. - */ - -/* Lots of mips16 instruction formats */ -/* Predicting jumps requires itype,ritype,i8type - and their extensions extItype,extritype,extI8type - */ -enum mips16_inst_fmts -{ - itype, /* 0 immediate 5,10 */ - ritype, /* 1 5,3,8 */ - rrtype, /* 2 5,3,3,5 */ - rritype, /* 3 5,3,3,5 */ - rrrtype, /* 4 5,3,3,3,2 */ - rriatype, /* 5 5,3,3,1,4 */ - shifttype, /* 6 5,3,3,3,2 */ - i8type, /* 7 5,3,8 */ - i8movtype, /* 8 5,3,3,5 */ - i8mov32rtype, /* 9 5,3,5,3 */ - i64type, /* 10 5,3,8 */ - ri64type, /* 11 5,3,3,5 */ - jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ - exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ - extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ - extRRItype, /* 15 5,5,5,5,3,3,5 */ - extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ - EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ - extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ - extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ - extRi64type, /* 20 5,6,5,5,3,3,5 */ - extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ -} ; -/* I am heaping all the fields of the formats into one structure and then, - only the fields which are involved in instruction extension */ -struct upk_mips16 -{ - unsigned short inst ; - enum mips16_inst_fmts fmt ; - unsigned long offset ; - unsigned int regx ; /* Function in i8 type */ - unsigned int regy ; -} ; - - - -static void print_unpack(char * comment, - struct upk_mips16 * u) -{ - printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", - comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ; -} - -/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same - format for the bits which make up the immediatate extension. - */ -static unsigned long -extended_offset(unsigned long extension) -{ - unsigned long value ; - value = (extension >> 21) & 0x3f ; /* * extract 15:11 */ - value = value << 6 ; - value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */ - value = value << 5 ; - value |= extension & 0x01f ; /* extract 4:0 */ - return value ; -} - -/* Only call this function if you know that this is an extendable - instruction, It wont malfunction, but why make excess remote memory references? - If the immediate operands get sign extended or somthing, do it after - the extension is performed. - */ -/* FIXME: Every one of these cases needs to worry about sign extension - when the offset is to be used in relative addressing */ - - -static unsigned short fetch_mips_16(CORE_ADDR pc) -{ - char buf[8] ; - pc &= 0xfffffffe ; /* clear the low order bit */ - target_read_memory(pc,buf,2) ; - return extract_unsigned_integer(buf,2) ; -} - -static void -unpack_mips16(CORE_ADDR pc, - struct upk_mips16 * upk) -{ - CORE_ADDR extpc ; - unsigned long extension ; - int extended ; - extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */ - /* Decrement to previous address and loose the 16bit mode flag */ - /* return if the instruction was extendable, but not actually extended */ - extended = ((mips32_op(extension) == 30) ? 1 : 0) ; - if (extended) { extension = mips_fetch_instruction(extpc) ;} - switch (upk->fmt) - { - case itype : - { - unsigned long value ; - if (extended) - { value = extended_offset(extension) ; - value = value << 11 ; /* rom for the original value */ - value |= upk->inst & 0x7ff ; /* eleven bits from instruction */ - } - else - { value = upk->inst & 0x7ff ; - /* FIXME : Consider sign extension */ - } - upk->offset = value ; - } - break ; - case ritype : - case i8type : - { /* A register identifier and an offset */ - /* Most of the fields are the same as I type but the - immediate value is of a different length */ - unsigned long value ; - if (extended) - { - value = extended_offset(extension) ; - value = value << 8 ; /* from the original instruction */ - value |= upk->inst & 0xff ; /* eleven bits from instruction */ - upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */ - if (value & 0x4000) /* test the sign bit , bit 26 */ - { value &= ~ 0x3fff ; /* remove the sign bit */ - value = -value ; - } - } - else { - value = upk->inst & 0xff ; /* 8 bits */ - upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */ - /* FIXME: Do sign extension , this format needs it */ - if (value & 0x80) /* THIS CONFUSES ME */ - { value &= 0xef ; /* remove the sign bit */ - value = -value ; - } - - } - upk->offset = value ; - break ; - } - case jalxtype : - { - unsigned long value ; - unsigned short nexthalf ; - value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ; - value = value << 16 ; - nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */ - value |= nexthalf ; - upk->offset = value ; - break ; - } - default: - printf_filtered("Decoding unimplemented instruction format type\n") ; - break ; - } - /* print_unpack("UPK",upk) ; */ -} - - -#define mips16_op(x) (x >> 11) - -/* This is a map of the opcodes which ae known to perform branches */ -static unsigned char map16[32] = -{ 0,0,1,1,1,1,0,0, - 0,0,0,0,1,0,0,0, - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,1,1,0 -} ; - -static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset) -{ - return ((offset << 2) | ((pc + 2) & (0xf0000000))) ; - -} - - - -static struct upk_mips16 upk ; - -CORE_ADDR mips16_next_pc(CORE_ADDR pc) -{ - int op ; - t_inst inst ; - /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ - inst = fetch_mips_16(pc) ; - upk.inst = inst ; - op = mips16_op(upk.inst) ; - if (map16[op]) - { - int reg ; - switch (op) - { - case 2 : /* Branch */ - upk.fmt = itype ; - unpack_mips16(pc,&upk) ; - { long offset ; - offset = upk.offset ; - if (offset & 0x800) - { offset &= 0xeff ; - offset = - offset ; - } - pc += (offset << 1) + 2 ; - } - break ; - case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/ - upk.fmt = jalxtype ; - unpack_mips16(pc,&upk) ; - pc = add_offset_16(pc,upk.offset) ; - if ((upk.inst >> 10) & 0x01) /* Exchange mode */ - pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */ - else pc |= 0x01 ; - break ; - case 4 : /* beqz */ - upk.fmt = ritype ; - unpack_mips16(pc,&upk) ; - reg = read_register(upk.regx) ; - if (reg == 0) - pc += (upk.offset << 1) + 2 ; - else pc += 2 ; - break ; - case 5 : /* bnez */ - upk.fmt = ritype ; - unpack_mips16(pc,&upk) ; - reg = read_register(upk.regx) ; - if (reg != 0) - pc += (upk.offset << 1) + 2 ; - else pc += 2 ; - break ; - case 12 : /* I8 Formats btez btnez */ - upk.fmt = i8type ; - unpack_mips16(pc,&upk) ; - /* upk.regx contains the opcode */ - reg = read_register(24) ; /* Test register is 24 */ - if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ - || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */ - /* pc = add_offset_16(pc,upk.offset) ; */ - pc += (upk.offset << 1) + 2 ; - else pc += 2 ; - break ; - case 29 : /* RR Formats JR, JALR, JALR-RA */ - upk.fmt = rrtype ; - op = upk.inst & 0x1f ; - if (op == 0) - { - upk.regx = (upk.inst >> 8) & 0x07 ; - upk.regy = (upk.inst >> 5) & 0x07 ; - switch (upk.regy) - { - case 0 : reg = upk.regx ; break ; - case 1 : reg = 31 ; break ; /* Function return instruction*/ - case 2 : reg = upk.regx ; break ; - default: reg = 31 ; break ; /* BOGUS Guess */ - } - pc = read_register(reg) ; - } - else pc += 2 ; - break ; - case 30 : /* This is an extend instruction */ - pc += 4 ; /* Dont be setting breakpints on the second half */ - break ; - default : - printf("Filtered - next PC probably incorrrect due to jump inst\n"); - pc += 2 ; - break ; - } - } - else pc+= 2 ; /* just a good old instruction */ - /* See if we CAN actually break on the next instruction */ - /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ - return pc ; -} /* mips16_next_pc */ - -/* The mips_next_pc function supports single_tep when the remote target monitor or - stub is not developed enough to so a single_step. - It works by decoding the current instruction and predicting where a branch - will go. This isnt hard because all the data is available. - The MIPS32 and MIPS16 variants are quite different - */ -CORE_ADDR mips_next_pc(CORE_ADDR pc) -{ - t_inst inst ; - /* inst = mips_fetch_instruction(pc) ; */ - /* if (pc_is_mips16) <----- This is failing */ - if (pc & 0x01) - return mips16_next_pc(pc) ; - else return mips32_next_pc(pc) ; -} /* mips_next_pc */ - -/* Guaranteed to set fci->saved_regs to some values (it never leaves it - NULL). */ - -void -mips_find_saved_regs (fci) - struct frame_info *fci; -{ - int ireg; - CORE_ADDR reg_position; - /* r0 bit means kernel trap */ - int kernel_trap; - /* What registers have been saved? Bitmasks. */ - unsigned long gen_mask, float_mask; - mips_extra_func_info_t proc_desc; - t_inst inst; - - frame_saved_regs_zalloc (fci); - - /* If it is the frame for sigtramp, the saved registers are located - in a sigcontext structure somewhere on the stack. - If the stack layout for sigtramp changes we might have to change these - constants and the companion fixup_sigtramp in mdebugread.c */ -#ifndef SIGFRAME_BASE -/* To satisfy alignment restrictions, sigcontext is located 4 bytes - above the sigtramp frame. */ -#define SIGFRAME_BASE MIPS_REGSIZE -/* FIXME! Are these correct?? */ -#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) -#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) -#define SIGFRAME_FPREGSAVE_OFF \ - (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) -#endif -#ifndef SIGFRAME_REG_SIZE -/* FIXME! Is this correct?? */ -#define SIGFRAME_REG_SIZE MIPS_REGSIZE -#endif - if (fci->signal_handler_caller) - { - for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) - { - reg_position = fci->frame + SIGFRAME_REGSAVE_OFF - + ireg * SIGFRAME_REG_SIZE; - fci->saved_regs[ireg] = reg_position; - } - for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) - { - reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF - + ireg * SIGFRAME_REG_SIZE; - fci->saved_regs[FP0_REGNUM + ireg] = reg_position; - } - fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; - return; - } - - proc_desc = fci->proc_desc; - if (proc_desc == NULL) - /* I'm not sure how/whether this can happen. Normally when we can't - find a proc_desc, we "synthesize" one using heuristic_proc_desc - and set the saved_regs right away. */ - return; - - kernel_trap = PROC_REG_MASK(proc_desc) & 1; - gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); - float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); - - if (/* In any frame other than the innermost or a frame interrupted by - a signal, we assume that all registers have been saved. - This assumes that all register saves in a function happen before - the first function call. */ - (fci->next == NULL || fci->next->signal_handler_caller) - - /* In a dummy frame we know exactly where things are saved. */ - && !PROC_DESC_IS_DUMMY (proc_desc) - - /* Don't bother unless we are inside a function prologue. Outside the - prologue, we know where everything is. */ - - && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) - - /* Not sure exactly what kernel_trap means, but if it means - the kernel saves the registers without a prologue doing it, - we better not examine the prologue to see whether registers - have been saved yet. */ - && !kernel_trap) - { - /* We need to figure out whether the registers that the proc_desc - claims are saved have been saved yet. */ - - CORE_ADDR addr; - - /* Bitmasks; set if we have found a save for the register. */ - unsigned long gen_save_found = 0; - unsigned long float_save_found = 0; - int instlen; - - /* If the address is odd, assume this is MIPS16 code. */ - addr = PROC_LOW_ADDR (proc_desc); - instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; - - /* Scan through this function's instructions preceding the current - PC, and look for those that save registers. */ - while (addr < fci->pc) - { - inst = mips_fetch_instruction (addr); - if (pc_is_mips16 (addr)) - mips16_decode_reg_save (inst, &gen_save_found); - else - mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); - addr += instlen; - } - gen_mask = gen_save_found; - float_mask = float_save_found; - } - - /* Fill in the offsets for the registers which gen_mask says - were saved. */ - reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); - for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) - if (gen_mask & 0x80000000) - { - fci->saved_regs[ireg] = reg_position; - reg_position -= MIPS_REGSIZE; - /* start-sanitize-r5900 */ -#ifdef R5900_128BIT_GPR_HACK - /* Gross. The r5900 has 128bit wide registers, but MIPS_REGSIZE is - still 64bits. See the comments in tm.h for a discussion of the - various problems this causes. */ - if (ireg <= RA_REGNUM) - reg_position -= MIPS_REGSIZE; -#endif - /* end-sanitize-r5900 */ - } - - /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order - of that normally used by gcc. Therefore, we have to fetch the first - instruction of the function, and if it's an entry instruction that - saves $s0 or $s1, correct their saved addresses. */ - if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) - { - inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); - if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ - { - int reg; - int sreg_count = (inst >> 6) & 3; - - /* Check if the ra register was pushed on the stack. */ - reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); - if (inst & 0x20) - reg_position -= MIPS_REGSIZE; - - /* Check if the s0 and s1 registers were pushed on the stack. */ - for (reg = 16; reg < sreg_count+16; reg++) - { - fci->saved_regs[reg] = reg_position; - reg_position -= MIPS_REGSIZE; - } - } - } - - /* Fill in the offsets for the registers which float_mask says - were saved. */ - reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); - - /* The freg_offset points to where the first *double* register - is saved. So skip to the high-order word. */ - if (! GDB_TARGET_IS_MIPS64) - reg_position += MIPS_REGSIZE; - - /* Fill in the offsets for the float registers which float_mask says - were saved. */ - for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) - if (float_mask & 0x80000000) - { - fci->saved_regs[FP0_REGNUM+ireg] = reg_position; - reg_position -= MIPS_REGSIZE; - } - - fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM]; -} - -static CORE_ADDR -read_next_frame_reg(fi, regno) - struct frame_info *fi; - int regno; -{ - for (; fi; fi = fi->next) - { - /* We have to get the saved sp from the sigcontext - if it is a signal handler frame. */ - if (regno == SP_REGNUM && !fi->signal_handler_caller) - return fi->frame; - else - { - if (fi->saved_regs == NULL) - mips_find_saved_regs (fi); - if (fi->saved_regs[regno]) - return read_memory_integer(fi->saved_regs[regno], MIPS_REGSIZE); - } - } - return read_register (regno); -} - -/* mips_addr_bits_remove - remove useless address bits */ - -CORE_ADDR -mips_addr_bits_remove (addr) - CORE_ADDR addr; -{ -#if GDB_TARGET_IS_MIPS64 - if (mask_address_p && (addr >> 32 == (CORE_ADDR)0xffffffff)) - { - /* This hack is a work-around for existing boards using PMON, - the simulator, and any other 64-bit targets that doesn't have - true 64-bit addressing. On these targets, the upper 32 bits - of addresses are ignored by the hardware. Thus, the PC or SP - are likely to have been sign extended to all 1s by instruction - sequences that load 32-bit addresses. For example, a typical - piece of code that loads an address is this: - lui $r2, <upper 16 bits> - ori $r2, <lower 16 bits> - But the lui sign-extends the value such that the upper 32 bits - may be all 1s. The workaround is simply to mask off these bits. - In the future, gcc may be changed to support true 64-bit - addressing, and this masking will have to be disabled. */ - addr &= (CORE_ADDR)0xffffffff; - } -#else - /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), - BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. - So we still have to mask off useless bits from addresses. */ - addr &= (CORE_ADDR)0xffffffff; -#endif - - return addr; -} - -void -mips_init_frame_pc_first (fromleaf, prev) - int fromleaf; - struct frame_info *prev; -{ - CORE_ADDR pc, tmp; - - pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : - prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); - tmp = mips_skip_stub (pc); - prev->pc = tmp ? tmp : pc; -} - - -CORE_ADDR -mips_frame_saved_pc(frame) - struct frame_info *frame; -{ - CORE_ADDR saved_pc; - mips_extra_func_info_t proc_desc = frame->proc_desc; - /* We have to get the saved pc from the sigcontext - if it is a signal handler frame. */ - int pcreg = frame->signal_handler_caller ? PC_REGNUM - : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); - - if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) - saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); - else - saved_pc = read_next_frame_reg(frame, pcreg); - - return ADDR_BITS_REMOVE (saved_pc); -} - -static struct mips_extra_func_info temp_proc_desc; -static struct frame_saved_regs temp_saved_regs; - -/* Set a register's saved stack address in temp_saved_regs. If an address - has already been set for this register, do nothing; this way we will - only recognize the first save of a given register in a function prologue. - This is a helper function for mips{16,32}_heuristic_proc_desc. */ - -static void -set_reg_offset (regno, offset) - int regno; - CORE_ADDR offset; -{ - if (temp_saved_regs.regs[regno] == 0) - temp_saved_regs.regs[regno] = offset; -} - - -/* Test whether the PC points to the return instruction at the - end of a function. */ - -static int -mips_about_to_return (pc) - CORE_ADDR pc; -{ - if (pc_is_mips16 (pc)) - /* This mips16 case isn't necessarily reliable. Sometimes the compiler - generates a "jr $ra"; other times it generates code to load - the return address from the stack to an accessible register (such - as $a3), then a "jr" using that register. This second case - is almost impossible to distinguish from an indirect jump - used for switch statements, so we don't even try. */ - return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ - else - return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ -} - - -/* This fencepost looks highly suspicious to me. Removing it also - seems suspicious as it could affect remote debugging across serial - lines. */ - -static CORE_ADDR -heuristic_proc_start (pc) - CORE_ADDR pc; -{ - CORE_ADDR start_pc; - CORE_ADDR fence; - int instlen; - int seen_adjsp = 0; - - pc = ADDR_BITS_REMOVE (pc); - start_pc = pc; - fence = start_pc - heuristic_fence_post; - if (start_pc == 0) return 0; - - if (heuristic_fence_post == UINT_MAX - || fence < VM_MIN_ADDRESS) - fence = VM_MIN_ADDRESS; - - instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; - - /* search back for previous return */ - for (start_pc -= instlen; ; start_pc -= instlen) - if (start_pc < fence) - { - /* It's not clear to me why we reach this point when - stop_soon_quietly, but with this test, at least we - don't print out warnings for every child forked (eg, on - decstation). 22apr93 rich@cygnus.com. */ - if (!stop_soon_quietly) - { - static int blurb_printed = 0; - - if (fence == VM_MIN_ADDRESS) - warning("Hit beginning of text section without finding"); - else - warning("Hit heuristic-fence-post without finding"); - - warning("enclosing function for address 0x%s", paddr_nz (pc)); - if (!blurb_printed) - { - printf_filtered ("\ -This warning occurs if you are debugging a function without any symbols\n\ -(for example, in a stripped executable). In that case, you may wish to\n\ -increase the size of the search with the `set heuristic-fence-post' command.\n\ -\n\ -Otherwise, you told GDB there was a function where there isn't one, or\n\ -(more likely) you have encountered a bug in GDB.\n"); - blurb_printed = 1; - } - } - - return 0; - } - else if (pc_is_mips16 (start_pc)) - { - unsigned short inst; - - /* On MIPS16, any one of the following is likely to be the - start of a function: - entry - addiu sp,-n - daddiu sp,-n - extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ - inst = mips_fetch_instruction (start_pc); - if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ - || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ - || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ - || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ - break; - else if ((inst & 0xff00) == 0x6300 /* addiu sp */ - || (inst & 0xff00) == 0xfb00) /* daddiu sp */ - seen_adjsp = 1; - else - seen_adjsp = 0; - } - else if (mips_about_to_return (start_pc)) - { - start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ - break; - } - -#if 0 - /* skip nops (usually 1) 0 - is this */ - while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) - start_pc += MIPS_INSTLEN; -#endif - return start_pc; -} - -/* Fetch the immediate value from a MIPS16 instruction. - If the previous instruction was an EXTEND, use it to extend - the upper bits of the immediate value. This is a helper function - for mips16_heuristic_proc_desc. */ - -static int -mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) - unsigned short prev_inst; /* previous instruction */ - unsigned short inst; /* current instruction */ - int nbits; /* number of bits in imm field */ - int scale; /* scale factor to be applied to imm */ - int is_signed; /* is the imm field signed? */ -{ - int offset; - - if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ - { - offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); - if (offset & 0x8000) /* check for negative extend */ - offset = 0 - (0x10000 - (offset & 0xffff)); - return offset | (inst & 0x1f); - } - else - { - int max_imm = 1 << nbits; - int mask = max_imm - 1; - int sign_bit = max_imm >> 1; - - offset = inst & mask; - if (is_signed && (offset & sign_bit)) - offset = 0 - (max_imm - offset); - return offset * scale; - } -} - - -/* Fill in values in temp_proc_desc based on the MIPS16 instruction - stream from start_pc to limit_pc. */ - -static void -mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) - CORE_ADDR start_pc, limit_pc; - struct frame_info *next_frame; - CORE_ADDR sp; -{ - CORE_ADDR cur_pc; - CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ - unsigned short prev_inst = 0; /* saved copy of previous instruction */ - unsigned inst = 0; /* current instruction */ - unsigned entry_inst = 0; /* the entry instruction */ - int reg, offset; - - PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */ - PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */ - - for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) - { - /* Save the previous instruction. If it's an EXTEND, we'll extract - the immediate offset extension from it in mips16_get_imm. */ - prev_inst = inst; - - /* Fetch and decode the instruction. */ - inst = (unsigned short) mips_fetch_instruction (cur_pc); - if ((inst & 0xff00) == 0x6300 /* addiu sp */ - || (inst & 0xff00) == 0xfb00) /* daddiu sp */ - { - offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); - if (offset < 0) /* negative stack adjustment? */ - PROC_FRAME_OFFSET(&temp_proc_desc) -= offset; - else - /* Exit loop if a positive stack adjustment is found, which - usually means that the stack cleanup code in the function - epilogue is reached. */ - break; - } - else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ - { - offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); - reg = mips16_to_32_reg[(inst & 0x700) >> 8]; - PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); - set_reg_offset (reg, sp + offset); - } - else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ - { - offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); - reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; - PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); - set_reg_offset (reg, sp + offset); - } - else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ - { - offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); - PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); - set_reg_offset (RA_REGNUM, sp + offset); - } - else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ - { - offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); - PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); - set_reg_offset (RA_REGNUM, sp + offset); - } - else if (inst == 0x673d) /* move $s1, $sp */ - { - frame_addr = sp; - PROC_FRAME_REG (&temp_proc_desc) = 17; - } - else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ - { - offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); - frame_addr = sp + offset; - PROC_FRAME_REG (&temp_proc_desc) = 17; - PROC_FRAME_ADJUST (&temp_proc_desc) = offset; - } - else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ - { - offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); - reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, frame_addr + offset); - } - else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ - { - offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); - reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, frame_addr + offset); - } - else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ - entry_inst = inst; /* save for later processing */ - else if ((inst & 0xf800) == 0x1800) /* jal(x) */ - cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ - } - - /* The entry instruction is typically the first instruction in a function, - and it stores registers at offsets relative to the value of the old SP - (before the prologue). But the value of the sp parameter to this - function is the new SP (after the prologue has been executed). So we - can't calculate those offsets until we've seen the entire prologue, - and can calculate what the old SP must have been. */ - if (entry_inst != 0) - { - int areg_count = (entry_inst >> 8) & 7; - int sreg_count = (entry_inst >> 6) & 3; - - /* The entry instruction always subtracts 32 from the SP. */ - PROC_FRAME_OFFSET(&temp_proc_desc) += 32; - - /* Now we can calculate what the SP must have been at the - start of the function prologue. */ - sp += PROC_FRAME_OFFSET(&temp_proc_desc); - - /* Check if a0-a3 were saved in the caller's argument save area. */ - for (reg = 4, offset = 0; reg < areg_count+4; reg++) - { - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, sp + offset); - offset += MIPS_REGSIZE; - } - - /* Check if the ra register was pushed on the stack. */ - offset = -4; - if (entry_inst & 0x20) - { - PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM; - set_reg_offset (RA_REGNUM, sp + offset); - offset -= MIPS_REGSIZE; - } - - /* Check if the s0 and s1 registers were pushed on the stack. */ - for (reg = 16; reg < sreg_count+16; reg++) - { - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, sp + offset); - offset -= MIPS_REGSIZE; - } - } -} - -static void -mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) - CORE_ADDR start_pc, limit_pc; - struct frame_info *next_frame; - CORE_ADDR sp; -{ - CORE_ADDR cur_pc; - CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ -restart: - memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); - PROC_FRAME_OFFSET(&temp_proc_desc) = 0; - PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ - for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) - { - unsigned long inst, high_word, low_word; - int reg; - - /* Fetch the instruction. */ - inst = (unsigned long) mips_fetch_instruction (cur_pc); - - /* Save some code by pre-extracting some useful fields. */ - high_word = (inst >> 16) & 0xffff; - low_word = inst & 0xffff; - reg = high_word & 0x1f; - - if (high_word == 0x27bd /* addiu $sp,$sp,-i */ - || high_word == 0x23bd /* addi $sp,$sp,-i */ - || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ - { - if (low_word & 0x8000) /* negative stack adjustment? */ - PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word; - else - /* Exit loop if a positive stack adjustment is found, which - usually means that the stack cleanup code in the function - epilogue is reached. */ - break; - } - else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ - { - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, sp + low_word); - } - else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ - { - /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, - but the register size used is only 32 bits. Make the address - for the saved register point to the lower 32 bits. */ - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); - } - /* start-sanitize-r5900 */ - else if ((high_word & 0xFFE0) == 0x7fa0) /* sq reg,offset($sp) */ - { - /* I don't think we have to worry about the Irix 6.2 N32 ABI - issue noted int he sd reg, offset($sp) case above. */ - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, sp + low_word); - } - /* end-sanitize-r5900 */ - else if (high_word == 0x27be) /* addiu $30,$sp,size */ - { - /* Old gcc frame, r30 is virtual frame pointer. */ - if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc)) - frame_addr = sp + low_word; - else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) - { - unsigned alloca_adjust; - PROC_FRAME_REG (&temp_proc_desc) = 30; - frame_addr = read_next_frame_reg(next_frame, 30); - alloca_adjust = (unsigned)(frame_addr - (sp + low_word)); - if (alloca_adjust > 0) - { - /* FP > SP + frame_size. This may be because - * of an alloca or somethings similar. - * Fix sp to "pre-alloca" value, and try again. - */ - sp += alloca_adjust; - goto restart; - } - } - } - /* move $30,$sp. With different versions of gas this will be either - `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. - Accept any one of these. */ - else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) - { - /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ - if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) - { - unsigned alloca_adjust; - PROC_FRAME_REG (&temp_proc_desc) = 30; - frame_addr = read_next_frame_reg(next_frame, 30); - alloca_adjust = (unsigned)(frame_addr - sp); - if (alloca_adjust > 0) - { - /* FP > SP + frame_size. This may be because - * of an alloca or somethings similar. - * Fix sp to "pre-alloca" value, and try again. - */ - sp += alloca_adjust; - goto restart; - } - } - } - else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ - { - PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; - set_reg_offset (reg, frame_addr + low_word); - } - } -} - -static mips_extra_func_info_t -heuristic_proc_desc(start_pc, limit_pc, next_frame) - CORE_ADDR start_pc, limit_pc; - struct frame_info *next_frame; -{ - CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); - - if (start_pc == 0) return NULL; - memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); - memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); - PROC_LOW_ADDR (&temp_proc_desc) = start_pc; - PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; - PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; - - if (start_pc + 200 < limit_pc) - limit_pc = start_pc + 200; - if (pc_is_mips16 (start_pc)) - mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); - else - mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); - return &temp_proc_desc; -} - -static mips_extra_func_info_t -non_heuristic_proc_desc (pc, addrptr) - CORE_ADDR pc; - CORE_ADDR *addrptr; -{ - CORE_ADDR startaddr; - mips_extra_func_info_t proc_desc; - struct block *b = block_for_pc(pc); - struct symbol *sym; - - find_pc_partial_function (pc, NULL, &startaddr, NULL); - if (addrptr) - *addrptr = startaddr; - if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) - sym = NULL; - else - { - if (startaddr > BLOCK_START (b)) - /* This is the "pathological" case referred to in a comment in - print_frame_info. It might be better to move this check into - symbol reading. */ - sym = NULL; - else - sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); - } - - /* If we never found a PDR for this function in symbol reading, then - examine prologues to find the information. */ - if (sym) - { - proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); - if (PROC_FRAME_REG (proc_desc) == -1) - return NULL; - else - return proc_desc; - } - else - return NULL; -} - - -static mips_extra_func_info_t -find_proc_desc (pc, next_frame) - CORE_ADDR pc; - struct frame_info *next_frame; -{ - mips_extra_func_info_t proc_desc; - CORE_ADDR startaddr; - - proc_desc = non_heuristic_proc_desc (pc, &startaddr); - - if (proc_desc) - { - /* IF this is the topmost frame AND - * (this proc does not have debugging information OR - * the PC is in the procedure prologue) - * THEN create a "heuristic" proc_desc (by analyzing - * the actual code) to replace the "official" proc_desc. - */ - if (next_frame == NULL) - { - struct symtab_and_line val; - struct symbol *proc_symbol = - PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); - - if (proc_symbol) - { - val = find_pc_line (BLOCK_START - (SYMBOL_BLOCK_VALUE(proc_symbol)), - 0); - val.pc = val.end ? val.end : pc; - } - if (!proc_symbol || pc < val.pc) - { - mips_extra_func_info_t found_heuristic = - heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), - pc, next_frame); - if (found_heuristic) - proc_desc = found_heuristic; - } - } - } - else - { - /* Is linked_proc_desc_table really necessary? It only seems to be used - by procedure call dummys. However, the procedures being called ought - to have their own proc_descs, and even if they don't, - heuristic_proc_desc knows how to create them! */ - - register struct linked_proc_info *link; - - for (link = linked_proc_desc_table; link; link = link->next) - if (PROC_LOW_ADDR(&link->info) <= pc - && PROC_HIGH_ADDR(&link->info) > pc) - return &link->info; - - if (startaddr == 0) - startaddr = heuristic_proc_start (pc); - - proc_desc = - heuristic_proc_desc (startaddr, pc, next_frame); - } - return proc_desc; -} - -static CORE_ADDR -get_frame_pointer(frame, proc_desc) - struct frame_info *frame; - mips_extra_func_info_t proc_desc; -{ - return ADDR_BITS_REMOVE ( - read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + - PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); -} - -mips_extra_func_info_t cached_proc_desc; - -CORE_ADDR -mips_frame_chain(frame) - struct frame_info *frame; -{ - mips_extra_func_info_t proc_desc; - CORE_ADDR tmp; - CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); - - if (saved_pc == 0 || inside_entry_file (saved_pc)) - return 0; - - /* Check if the PC is inside a call stub. If it is, fetch the - PC of the caller of that stub. */ - if ((tmp = mips_skip_stub (saved_pc)) != 0) - saved_pc = tmp; - - /* Look up the procedure descriptor for this PC. */ - proc_desc = find_proc_desc(saved_pc, frame); - if (!proc_desc) - return 0; - - cached_proc_desc = proc_desc; - - /* If no frame pointer and frame size is zero, we must be at end - of stack (or otherwise hosed). If we don't check frame size, - we loop forever if we see a zero size frame. */ - if (PROC_FRAME_REG (proc_desc) == SP_REGNUM - && PROC_FRAME_OFFSET (proc_desc) == 0 - /* The previous frame from a sigtramp frame might be frameless - and have frame size zero. */ - && !frame->signal_handler_caller) - return 0; - else - return get_frame_pointer (frame, proc_desc); -} - -void -init_extra_frame_info(fci) - struct frame_info *fci; -{ - int regnum; - - /* Use proc_desc calculated in frame_chain */ - mips_extra_func_info_t proc_desc = - fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); - - fci->saved_regs = NULL; - fci->proc_desc = - proc_desc == &temp_proc_desc ? 0 : proc_desc; - if (proc_desc) - { - /* Fixup frame-pointer - only needed for top frame */ - /* This may not be quite right, if proc has a real frame register. - Get the value of the frame relative sp, procedure might have been - interrupted by a signal at it's very start. */ - if (fci->pc == PROC_LOW_ADDR (proc_desc) - && !PROC_DESC_IS_DUMMY (proc_desc)) - fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); - else - fci->frame = get_frame_pointer (fci->next, proc_desc); - - if (proc_desc == &temp_proc_desc) - { - char *name; - - /* Do not set the saved registers for a sigtramp frame, - mips_find_saved_registers will do that for us. - We can't use fci->signal_handler_caller, it is not yet set. */ - find_pc_partial_function (fci->pc, &name, - (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); - if (!IN_SIGTRAMP (fci->pc, name)) - { - fci->saved_regs = (CORE_ADDR*) - frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); - memcpy (fci->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS); - fci->saved_regs[PC_REGNUM] - = fci->saved_regs[RA_REGNUM]; - } - } - - /* hack: if argument regs are saved, guess these contain args */ - fci->num_args = -1; /* assume we can't tell how many args for now */ - for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) - { - if (PROC_REG_MASK(proc_desc) & (1 << regnum)) - { - fci->num_args = regnum - A0_REGNUM + 1; - break; - } - } - } -} - -/* MIPS stack frames are almost impenetrable. When execution stops, - we basically have to look at symbol information for the function - that we stopped in, which tells us *which* register (if any) is - the base of the frame pointer, and what offset from that register - the frame itself is at. - - This presents a problem when trying to examine a stack in memory - (that isn't executing at the moment), using the "frame" command. We - don't have a PC, nor do we have any registers except SP. - - This routine takes two arguments, SP and PC, and tries to make the - cached frames look as if these two arguments defined a frame on the - cache. This allows the rest of info frame to extract the important - arguments without difficulty. */ - -struct frame_info * -setup_arbitrary_frame (argc, argv) - int argc; - CORE_ADDR *argv; -{ - if (argc != 2) - error ("MIPS frame specifications require two arguments: sp and pc"); - - return create_new_frame (argv[0], argv[1]); -} - -/* - * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack? - * - * For n32 ABI, eight. - * For all others, he same as the size of a general register. - */ -#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32 -#define MIPS_NABI32 1 -#define STACK_ARGSIZE 8 -#else -#define MIPS_NABI32 0 -#define STACK_ARGSIZE MIPS_REGSIZE -#endif - -CORE_ADDR -mips_push_arguments(nargs, args, sp, struct_return, struct_addr) - int nargs; - value_ptr *args; - CORE_ADDR sp; - int struct_return; - CORE_ADDR struct_addr; -{ - int argreg; - int float_argreg; - int argnum; - int len = 0; - int stack_offset = 0; - - /* Macros to round N up or down to the next A boundary; A must be - a power of two. */ -#define ROUND_DOWN(n,a) ((n) & ~((a)-1)) -#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) - - /* First ensure that the stack and structure return address (if any) - are properly aligned. The stack has to be at least 64-bit aligned - even on 32-bit machines, because doubles must be 64-bit aligned. - On at least one MIPS variant, stack frames need to be 128-bit - aligned, so we round to this widest known alignment. */ - sp = ROUND_DOWN (sp, 16); - struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE); - - /* Now make space on the stack for the args. We allocate more - than necessary for EABI, because the first few arguments are - passed in registers, but that's OK. */ - for (argnum = 0; argnum < nargs; argnum++) - len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE); - sp -= ROUND_UP (len, 16); - - /* Initialize the integer and float register pointers. */ - argreg = A0_REGNUM; - float_argreg = FPA0_REGNUM; - - /* the struct_return pointer occupies the first parameter-passing reg */ - if (struct_return) - write_register (argreg++, struct_addr); - - /* Now load as many as possible of the first arguments into - registers, and push the rest onto the stack. Loop thru args - from first to last. */ - for (argnum = 0; argnum < nargs; argnum++) - { - char *val; - char valbuf[MAX_REGISTER_RAW_SIZE]; - value_ptr arg = args[argnum]; - struct type *arg_type = check_typedef (VALUE_TYPE (arg)); - int len = TYPE_LENGTH (arg_type); - enum type_code typecode = TYPE_CODE (arg_type); - - /* The EABI passes structures that do not fit in a register by - reference. In all other cases, pass the structure by value. */ - if (MIPS_EABI && len > MIPS_REGSIZE && - (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) - { - store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg)); - typecode = TYPE_CODE_PTR; - len = MIPS_REGSIZE; - val = valbuf; - } - else - val = (char *)VALUE_CONTENTS (arg); - - /* 32-bit ABIs always start floating point arguments in an - even-numbered floating point register. */ - if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT - && (float_argreg & 1)) - float_argreg++; - - /* Floating point arguments passed in registers have to be - treated specially. On 32-bit architectures, doubles - are passed in register pairs; the even register gets - the low word, and the odd register gets the high word. - On non-EABI processors, the first two floating point arguments are - also copied to general registers, because MIPS16 functions - don't use float registers for arguments. This duplication of - arguments in general registers can't hurt non-MIPS16 functions - because those registers are normally skipped. */ - if (typecode == TYPE_CODE_FLT - && float_argreg <= MIPS_LAST_FP_ARG_REGNUM - && MIPS_FPU_TYPE != MIPS_FPU_NONE) - { - if (!FP_REGISTER_DOUBLE && len == 8) - { - int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; - unsigned long regval; - - /* Write the low word of the double to the even register(s). */ - regval = extract_unsigned_integer (val+low_offset, 4); - write_register (float_argreg++, regval); - if (!MIPS_EABI) - write_register (argreg+1, regval); - - /* Write the high word of the double to the odd register(s). */ - regval = extract_unsigned_integer (val+4-low_offset, 4); - write_register (float_argreg++, regval); - if (!MIPS_EABI) - { - write_register (argreg, regval); - argreg += 2; - } - - } - else - { - /* This is a floating point value that fits entirely - in a single register. */ - CORE_ADDR regval = extract_address (val, len); - write_register (float_argreg++, regval); - if (!MIPS_EABI) - { - write_register (argreg, regval); - argreg += FP_REGISTER_DOUBLE ? 1 : 2; - } - } - } - else - { - /* Copy the argument to general registers or the stack in - register-sized pieces. Large arguments are split between - registers and stack. */ - /* Note: structs whose size is not a multiple of MIPS_REGSIZE - are treated specially: Irix cc passes them in registers - where gcc sometimes puts them on the stack. For maximum - compatibility, we will put them in both places. */ - - int odd_sized_struct = ((len > MIPS_REGSIZE) && - (len % MIPS_REGSIZE != 0)); - while (len > 0) - { - int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE; - - if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) - { - /* Write this portion of the argument to the stack. */ - /* Should shorter than int integer values be - promoted to int before being stored? */ - - int longword_offset = 0; - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - if (STACK_ARGSIZE == 8 && - (typecode == TYPE_CODE_INT || - typecode == TYPE_CODE_PTR || - typecode == TYPE_CODE_FLT) && len <= 4) - longword_offset = STACK_ARGSIZE - len; - else if ((typecode == TYPE_CODE_STRUCT || - typecode == TYPE_CODE_UNION) && - TYPE_LENGTH (arg_type) < STACK_ARGSIZE) - longword_offset = STACK_ARGSIZE - len; - - write_memory (sp + stack_offset + longword_offset, - val, partial_len); - } - - /* Note!!! This is NOT an else clause. - Odd sized structs may go thru BOTH paths. */ - if (argreg <= MIPS_LAST_ARG_REGNUM) - { - CORE_ADDR regval = extract_address (val, partial_len); - - /* A non-floating-point argument being passed in a - general register. If a struct or union, and if - the remaining length is smaller than the register - size, we have to adjust the register value on - big endian targets. - - It does not seem to be necessary to do the - same for integral types. - - Also don't do this adjustment on EABI and O64 - binaries. */ - - if (!MIPS_EABI - && (MIPS_REGSIZE < 8) - && TARGET_BYTE_ORDER == BIG_ENDIAN - && (partial_len < MIPS_REGSIZE) - && (typecode == TYPE_CODE_STRUCT || - typecode == TYPE_CODE_UNION)) - regval <<= ((MIPS_REGSIZE - partial_len) * - TARGET_CHAR_BIT); - - write_register (argreg, regval); - argreg++; - - /* If this is the old ABI, prevent subsequent floating - point arguments from being passed in floating point - registers. */ - if (!MIPS_EABI) - float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; - } - - len -= partial_len; - val += partial_len; - - /* The offset onto the stack at which we will start - copying parameters (after the registers are used up) - begins at (4 * MIPS_REGSIZE) in the old ABI. This - leaves room for the "home" area for register parameters. - - In the new EABI (and the NABI32), the 8 register parameters - do not have "home" stack space reserved for them, so the - stack offset does not get incremented until after - we have used up the 8 parameter registers. */ - - if (!(MIPS_EABI || MIPS_NABI32) || - argnum >= 8) - stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE); - } - } - } - - /* Set the return address register to point to the entry - point of the program, where a breakpoint lies in wait. */ - write_register (RA_REGNUM, CALL_DUMMY_ADDRESS()); - - /* Return adjusted stack pointer. */ - return sp; -} - -static void -mips_push_register(CORE_ADDR *sp, int regno) -{ - char buffer[MAX_REGISTER_RAW_SIZE]; - int regsize = REGISTER_RAW_SIZE (regno); - - *sp -= regsize; - read_register_gen (regno, buffer); - write_memory (*sp, buffer, regsize); -} - -/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ -#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) - -void -mips_push_dummy_frame() -{ - int ireg; - struct linked_proc_info *link = (struct linked_proc_info*) - xmalloc(sizeof(struct linked_proc_info)); - mips_extra_func_info_t proc_desc = &link->info; - CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); - CORE_ADDR old_sp = sp; - link->next = linked_proc_desc_table; - linked_proc_desc_table = link; - -/* FIXME! are these correct ? */ -#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ -#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) -#define FLOAT_REG_SAVE_MASK MASK(0,19) -#define FLOAT_SINGLE_REG_SAVE_MASK \ - ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) - /* - * The registers we must save are all those not preserved across - * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. - * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI - * and FP Control/Status registers. - * - * - * Dummy frame layout: - * (high memory) - * Saved PC - * Saved MMHI, MMLO, FPC_CSR - * Saved R31 - * Saved R28 - * ... - * Saved R1 - * Saved D18 (i.e. F19, F18) - * ... - * Saved D0 (i.e. F1, F0) - * Argument build area and stack arguments written via mips_push_arguments - * (low memory) - */ - - /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ - PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; - PROC_FRAME_OFFSET(proc_desc) = 0; - PROC_FRAME_ADJUST(proc_desc) = 0; - mips_push_register (&sp, PC_REGNUM); - mips_push_register (&sp, HI_REGNUM); - mips_push_register (&sp, LO_REGNUM); - mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); - - /* Save general CPU registers */ - PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; - /* PROC_REG_OFFSET is the offset of the first saved register from FP. */ - PROC_REG_OFFSET(proc_desc) = sp - old_sp - MIPS_REGSIZE; - for (ireg = 32; --ireg >= 0; ) - if (PROC_REG_MASK(proc_desc) & (1 << ireg)) - mips_push_register (&sp, ireg); - - /* Save floating point registers starting with high order word */ - PROC_FREG_MASK(proc_desc) = - MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK - : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; - /* PROC_FREG_OFFSET is the offset of the first saved *double* register - from FP. */ - PROC_FREG_OFFSET(proc_desc) = sp - old_sp - 8; - for (ireg = 32; --ireg >= 0; ) - if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) - mips_push_register (&sp, ireg + FP0_REGNUM); - - /* Update the frame pointer for the call dummy and the stack pointer. - Set the procedure's starting and ending addresses to point to the - call dummy address at the entry point. */ - write_register (PUSH_FP_REGNUM, old_sp); - write_register (SP_REGNUM, sp); - PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS(); - PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4; - SET_PROC_DESC_IS_DUMMY(proc_desc); - PROC_PC_REG(proc_desc) = RA_REGNUM; -} - -void -mips_pop_frame() -{ - register int regnum; - struct frame_info *frame = get_current_frame (); - CORE_ADDR new_sp = FRAME_FP (frame); - - mips_extra_func_info_t proc_desc = frame->proc_desc; - - write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); - if (frame->saved_regs == NULL) - mips_find_saved_regs (frame); - for (regnum = 0; regnum < NUM_REGS; regnum++) - { - if (regnum != SP_REGNUM && regnum != PC_REGNUM - && frame->saved_regs[regnum]) - write_register (regnum, - read_memory_integer (frame->saved_regs[regnum], - MIPS_REGSIZE)); - } - write_register (SP_REGNUM, new_sp); - flush_cached_frames (); - - if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) - { - struct linked_proc_info *pi_ptr, *prev_ptr; - - for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; - pi_ptr != NULL; - prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) - { - if (&pi_ptr->info == proc_desc) - break; - } - - if (pi_ptr == NULL) - error ("Can't locate dummy extra frame info\n"); - - if (prev_ptr != NULL) - prev_ptr->next = pi_ptr->next; - else - linked_proc_desc_table = pi_ptr->next; - - free (pi_ptr); - - write_register (HI_REGNUM, - read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); - write_register (LO_REGNUM, - read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); - if (MIPS_FPU_TYPE != MIPS_FPU_NONE) - write_register (FCRCS_REGNUM, - read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); - } -} - -static void -mips_print_register (regnum, all) - int regnum, all; -{ - char raw_buffer[MAX_REGISTER_RAW_SIZE]; - - /* Get the data in raw format. */ - if (read_relative_register_raw_bytes (regnum, raw_buffer)) - { - printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum)); - return; - } - - /* If an even floating point register, also print as double. */ - if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT - && !((regnum-FP0_REGNUM) & 1)) - if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */ - { - char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; - - read_relative_register_raw_bytes (regnum, dbuffer); - read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE); - REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); - - printf_filtered ("(d%d: ", regnum-FP0_REGNUM); - val_print (builtin_type_double, dbuffer, 0, 0, - gdb_stdout, 0, 1, 0, Val_pretty_default); - printf_filtered ("); "); - } - fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); - - /* The problem with printing numeric register names (r26, etc.) is that - the user can't use them on input. Probably the best solution is to - fix it so that either the numeric or the funky (a2, etc.) names - are accepted on input. */ - if (regnum < MIPS_NUMREGS) - printf_filtered ("(r%d): ", regnum); - else - printf_filtered (": "); - - /* If virtual format is floating, print it that way. */ - if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) - if (FP_REGISTER_DOUBLE) - { /* show 8-byte floats as float AND double: */ - int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); - - printf_filtered (" (float) "); - val_print (builtin_type_float, raw_buffer + offset, 0, 0, - gdb_stdout, 0, 1, 0, Val_pretty_default); - printf_filtered (", (double) "); - val_print (builtin_type_double, raw_buffer, 0, 0, - gdb_stdout, 0, 1, 0, Val_pretty_default); - } - else - val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, - gdb_stdout, 0, 1, 0, Val_pretty_default); - /* Else print as integer in hex. */ - else - print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), - 'x', 0, gdb_stdout); -} - -/* Replacement for generic do_registers_info. - Print regs in pretty columns. */ - -static int -do_fp_register_row (regnum) - int regnum; -{ /* do values for FP (float) regs */ - char *raw_buffer[2]; - char *dbl_buffer; - /* use HI and LO to control the order of combining two flt regs */ - int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); - int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); - double doub, flt1, flt2; /* doubles extracted from raw hex data */ - int inv1, inv2, inv3; - - raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); - raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); - dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); - - /* Get the data in raw format. */ - if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) - error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); - if (REGISTER_RAW_SIZE(regnum) == 4) - { - /* 4-byte registers: we can fit two registers per row. */ - /* Also print every pair of 4-byte regs as an 8-byte double. */ - if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) - error ("can't read register %d (%s)", - regnum + 1, REGISTER_NAME (regnum + 1)); - - /* copy the two floats into one double, and unpack both */ - memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer)); - flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); - flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); - doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); - - printf_filtered (inv1 ? " %-5s: <invalid float>" : - " %-5s%-17.9g", REGISTER_NAME (regnum), flt1); - printf_filtered (inv2 ? " %-5s: <invalid float>" : - " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2); - printf_filtered (inv3 ? " dbl: <invalid double>\n" : - " dbl: %-24.17g\n", doub); - /* may want to do hex display here (future enhancement) */ - regnum +=2; - } - else - { /* eight byte registers: print each one as float AND as double. */ - int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); - - memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer)); - flt1 = unpack_double (builtin_type_float, - &raw_buffer[HI][offset], &inv1); - doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); - - printf_filtered (inv1 ? " %-5s: <invalid float>" : - " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1); - printf_filtered (inv3 ? " dbl: <invalid double>\n" : - " dbl: %-24.17g\n", doub); - /* may want to do hex display here (future enhancement) */ - regnum++; - } - return regnum; -} - -/* Print a row's worth of GP (int) registers, with name labels above */ - -static int -do_gp_register_row (regnum) - int regnum; -{ - /* do values for GP (int) regs */ - char raw_buffer[MAX_REGISTER_RAW_SIZE]; - int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ - int col, byte; - int start_regnum = regnum; - int numregs = NUM_REGS; - -/* start-sanitize-sky */ -#ifdef NUM_CORE_REGS - numregs = NUM_CORE_REGS; -#endif -/* end-sanitize-sky */ - - /* For GP registers, we print a separate row of names above the vals */ - printf_filtered (" "); - for (col = 0; col < ncols && regnum < numregs; regnum++) - { - if (*REGISTER_NAME (regnum) == '\0') - continue; /* unused register */ - if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) - break; /* end the row: reached FP register */ - printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", - REGISTER_NAME (regnum)); - col++; - } - printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", - start_regnum); /* print the R0 to R31 names */ - - regnum = start_regnum; /* go back to start of row */ - /* now print the values in hex, 4 or 8 to the row */ - for (col = 0; col < ncols && regnum < numregs; regnum++) - { - if (*REGISTER_NAME (regnum) == '\0') - continue; /* unused register */ - if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) - break; /* end row: reached FP register */ - /* OK: get the data in raw format. */ - if (read_relative_register_raw_bytes (regnum, raw_buffer)) - error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); - /* pad small registers */ - for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++) - printf_filtered (" "); - /* Now print the register value in hex, endian order. */ - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++) - printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); - else - for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--) - printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); - printf_filtered (" "); - col++; - } - if (col > 0) /* ie. if we actually printed anything... */ - printf_filtered ("\n"); - - return regnum; -} - -/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ - -void -mips_do_registers_info (regnum, fpregs) - int regnum; - int fpregs; -{ - if (regnum != -1) /* do one specified register */ - { - if (*(REGISTER_NAME (regnum)) == '\0') - error ("Not a valid register for the current processor type"); - - mips_print_register (regnum, 0); - printf_filtered ("\n"); - } - else /* do all (or most) registers */ - { - regnum = 0; - while (regnum < NUM_REGS) - { - if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) - if (fpregs) /* true for "INFO ALL-REGISTERS" command */ - regnum = do_fp_register_row (regnum); /* FP regs */ - else - regnum += MIPS_NUMREGS; /* skip floating point regs */ - else - regnum = do_gp_register_row (regnum); /* GP (int) regs */ -/* start-sanitize-sky */ -#ifdef NUM_CORE_REGS - /* For the sky project, NUM_REGS includes the vector slaves, - which are handled elsewhere */ - if (regnum >= NUM_CORE_REGS) - break; -#endif -/* end-sanitize-sky */ - } - } -} - -/* Return number of args passed to a frame. described by FIP. - Can return -1, meaning no way to tell. */ - -int -mips_frame_num_args (frame) - struct frame_info *frame; -{ -#if 0 /* FIXME Use or lose this! */ - struct chain_info_t *p; - - p = mips_find_cached_frame (FRAME_FP (frame)); - if (p->valid) - return p->the_info.numargs; -#endif - return -1; -} - -/* Is this a branch with a delay slot? */ - -static int is_delayed PARAMS ((unsigned long)); - -static int -is_delayed (insn) - unsigned long insn; -{ - int i; - for (i = 0; i < NUMOPCODES; ++i) - if (mips_opcodes[i].pinfo != INSN_MACRO - && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) - break; - return (i < NUMOPCODES - && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY - | INSN_COND_BRANCH_DELAY - | INSN_COND_BRANCH_LIKELY))); -} - -int -mips_step_skips_delay (pc) - CORE_ADDR pc; -{ - char buf[MIPS_INSTLEN]; - - /* There is no branch delay slot on MIPS16. */ - if (pc_is_mips16 (pc)) - return 0; - - if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) - /* If error reading memory, guess that it is not a delayed branch. */ - return 0; - return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); -} - - -/* Skip the PC past function prologue instructions (32-bit version). - This is a helper function for mips_skip_prologue. */ - -static CORE_ADDR -mips32_skip_prologue (pc, lenient) - CORE_ADDR pc; /* starting PC to search from */ - int lenient; -{ - t_inst inst; - CORE_ADDR end_pc; - int seen_sp_adjust = 0; - int load_immediate_bytes = 0; - - /* Skip the typical prologue instructions. These are the stack adjustment - instruction and the instructions that save registers on the stack - or in the gcc frame. */ - for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) - { - unsigned long high_word; - - inst = mips_fetch_instruction (pc); - high_word = (inst >> 16) & 0xffff; - -#if 0 - if (lenient && is_delayed (inst)) - continue; -#endif - - if (high_word == 0x27bd /* addiu $sp,$sp,offset */ - || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ - seen_sp_adjust = 1; - else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ - inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ - seen_sp_adjust = 1; - else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ - /* start-sanitize-r5900 */ - || (inst & 0xFFE00000) == 0x7FA00000 /* sq reg,n($sp) */ - /* end-sanitize-r5900 */ - || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ - && (inst & 0x001F0000)) /* reg != $zero */ - continue; - - else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ - continue; - else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) - /* sx reg,n($s8) */ - continue; /* reg != $zero */ - - /* move $s8,$sp. With different versions of gas this will be either - `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. - Accept any one of these. */ - else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) - continue; - - else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ - continue; - else if (high_word == 0x3c1c) /* lui $gp,n */ - continue; - else if (high_word == 0x279c) /* addiu $gp,$gp,n */ - continue; - else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ - || inst == 0x033ce021) /* addu $gp,$t9,$gp */ - continue; - /* The following instructions load $at or $t0 with an immediate - value in preparation for a stack adjustment via - subu $sp,$sp,[$at,$t0]. These instructions could also initialize - a local variable, so we accept them only before a stack adjustment - instruction was seen. */ - else if (!seen_sp_adjust) - { - if (high_word == 0x3c01 || /* lui $at,n */ - high_word == 0x3c08) /* lui $t0,n */ - { - load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ - continue; - } - else if (high_word == 0x3421 || /* ori $at,$at,n */ - high_word == 0x3508 || /* ori $t0,$t0,n */ - high_word == 0x3401 || /* ori $at,$zero,n */ - high_word == 0x3408) /* ori $t0,$zero,n */ - { - load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ - continue; - } - else - break; - } - else - break; - } - - /* In a frameless function, we might have incorrectly - skipped some load immediate instructions. Undo the skipping - if the load immediate was not followed by a stack adjustment. */ - if (load_immediate_bytes && !seen_sp_adjust) - pc -= load_immediate_bytes; - return pc; -} - -/* Skip the PC past function prologue instructions (16-bit version). - This is a helper function for mips_skip_prologue. */ - -static CORE_ADDR -mips16_skip_prologue (pc, lenient) - CORE_ADDR pc; /* starting PC to search from */ - int lenient; -{ - CORE_ADDR end_pc; - int extend_bytes = 0; - int prev_extend_bytes; - - /* Table of instructions likely to be found in a function prologue. */ - static struct - { - unsigned short inst; - unsigned short mask; - } table[] = - { - { 0x6300, 0xff00 }, /* addiu $sp,offset */ - { 0xfb00, 0xff00 }, /* daddiu $sp,offset */ - { 0xd000, 0xf800 }, /* sw reg,n($sp) */ - { 0xf900, 0xff00 }, /* sd reg,n($sp) */ - { 0x6200, 0xff00 }, /* sw $ra,n($sp) */ - { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */ - { 0x673d, 0xffff }, /* move $s1,sp */ - { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */ - { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */ - { 0xe809, 0xf81f }, /* entry pseudo-op */ - { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */ - { 0, 0 } /* end of table marker */ - }; - - /* Skip the typical prologue instructions. These are the stack adjustment - instruction and the instructions that save registers on the stack - or in the gcc frame. */ - for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) - { - unsigned short inst; - int i; - - inst = mips_fetch_instruction (pc); - - /* Normally we ignore an extend instruction. However, if it is - not followed by a valid prologue instruction, we must adjust - the pc back over the extend so that it won't be considered - part of the prologue. */ - if ((inst & 0xf800) == 0xf000) /* extend */ - { - extend_bytes = MIPS16_INSTLEN; - continue; - } - prev_extend_bytes = extend_bytes; - extend_bytes = 0; - - /* Check for other valid prologue instructions besides extend. */ - for (i = 0; table[i].mask != 0; i++) - if ((inst & table[i].mask) == table[i].inst) /* found, get out */ - break; - if (table[i].mask != 0) /* it was in table? */ - continue; /* ignore it */ - else /* non-prologue */ - { - /* Return the current pc, adjusted backwards by 2 if - the previous instruction was an extend. */ - return pc - prev_extend_bytes; - } - } - return pc; -} - -/* To skip prologues, I use this predicate. Returns either PC itself - if the code at PC does not look like a function prologue; otherwise - returns an address that (if we're lucky) follows the prologue. If - LENIENT, then we must skip everything which is involved in setting - up the frame (it's OK to skip more, just so long as we don't skip - anything which might clobber the registers which are being saved. - We must skip more in the case where part of the prologue is in the - delay slot of a non-prologue instruction). */ - -CORE_ADDR -mips_skip_prologue (pc, lenient) - CORE_ADDR pc; - int lenient; -{ - /* See if we can determine the end of the prologue via the symbol table. - If so, then return either PC, or the PC after the prologue, whichever - is greater. */ - - CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); - - if (post_prologue_pc != 0) - return max (pc, post_prologue_pc); - - /* Can't determine prologue from the symbol table, need to examine - instructions. */ - - if (pc_is_mips16 (pc)) - return mips16_skip_prologue (pc, lenient); - else - return mips32_skip_prologue (pc, lenient); -} - -#if 0 -/* The lenient prologue stuff should be superseded by the code in - init_extra_frame_info which looks to see whether the stores mentioned - in the proc_desc have actually taken place. */ - -/* Is address PC in the prologue (loosely defined) for function at - STARTADDR? */ - -static int -mips_in_lenient_prologue (startaddr, pc) - CORE_ADDR startaddr; - CORE_ADDR pc; -{ - CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); - return pc >= startaddr && pc < end_prologue; -} -#endif - -/* Given a return value in `regbuf' with a type `valtype', - extract and copy its value into `valbuf'. */ -void -mips_extract_return_value (valtype, regbuf, valbuf) - struct type *valtype; - char regbuf[REGISTER_BYTES]; - char *valbuf; -{ - int regnum; - int offset = 0; - int len = TYPE_LENGTH (valtype); - - regnum = 2; - if (TYPE_CODE (valtype) == TYPE_CODE_FLT - && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE - || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE - && len <= MIPS_FPU_SINGLE_REGSIZE))) - regnum = FP0_REGNUM; - - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - { /* "un-left-justify" the value from the register */ - if (len < REGISTER_RAW_SIZE (regnum)) - offset = REGISTER_RAW_SIZE (regnum) - len; - if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ - len < REGISTER_RAW_SIZE (regnum) * 2 && - (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || - TYPE_CODE (valtype) == TYPE_CODE_UNION)) - offset = 2 * REGISTER_RAW_SIZE (regnum) - len; - } - memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); - REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); -} - -/* Given a return value in `regbuf' with a type `valtype', - write it's value into the appropriate register. */ -void -mips_store_return_value (valtype, valbuf) - struct type *valtype; - char *valbuf; -{ - int regnum; - int offset = 0; - int len = TYPE_LENGTH (valtype); - char raw_buffer[MAX_REGISTER_RAW_SIZE]; - - regnum = 2; - if (TYPE_CODE (valtype) == TYPE_CODE_FLT - && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE - || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE - && len <= MIPS_REGSIZE))) - regnum = FP0_REGNUM; - - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - { /* "left-justify" the value in the register */ - if (len < REGISTER_RAW_SIZE (regnum)) - offset = REGISTER_RAW_SIZE (regnum) - len; - if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ - len < REGISTER_RAW_SIZE (regnum) * 2 && - (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || - TYPE_CODE (valtype) == TYPE_CODE_UNION)) - offset = 2 * REGISTER_RAW_SIZE (regnum) - len; - } - memcpy(raw_buffer + offset, valbuf, len); - REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); - write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, - len > REGISTER_RAW_SIZE (regnum) ? - len : REGISTER_RAW_SIZE (regnum)); -} - -/* Exported procedure: Is PC in the signal trampoline code */ - -int -in_sigtramp (pc, ignore) - CORE_ADDR pc; - char *ignore; /* function name */ -{ - if (sigtramp_address == 0) - fixup_sigtramp (); - return (pc >= sigtramp_address && pc < sigtramp_end); -} - -/* Commands to show/set the MIPS FPU type. */ - -static void show_mipsfpu_command PARAMS ((char *, int)); -static void -show_mipsfpu_command (args, from_tty) - char *args; - int from_tty; -{ - char *msg; - char *fpu; - switch (MIPS_FPU_TYPE) - { - case MIPS_FPU_SINGLE: - fpu = "single-precision"; - break; - case MIPS_FPU_DOUBLE: - fpu = "double-precision"; - break; - case MIPS_FPU_NONE: - fpu = "absent (none)"; - break; - } - if (mips_fpu_type_auto) - printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", - fpu); - else - printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", - fpu); -} - - -static void set_mipsfpu_command PARAMS ((char *, int)); -static void -set_mipsfpu_command (args, from_tty) - char *args; - int from_tty; -{ - printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); - show_mipsfpu_command (args, from_tty); -} - -static void set_mipsfpu_single_command PARAMS ((char *, int)); -static void -set_mipsfpu_single_command (args, from_tty) - char *args; - int from_tty; -{ - mips_fpu_type = MIPS_FPU_SINGLE; - mips_fpu_type_auto = 0; - /* start-sanitize-carp start-sanitize-vr4xxx */ - if (GDB_MULTI_ARCH) - { - gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE; - } - /* end-sanitize-carp end-sanitize-vr4xxx */ -} - -static void set_mipsfpu_double_command PARAMS ((char *, int)); -static void -set_mipsfpu_double_command (args, from_tty) - char *args; - int from_tty; -{ - mips_fpu_type = MIPS_FPU_DOUBLE; - mips_fpu_type_auto = 0; - /* start-sanitize-carp start-sanitize-vr4xxx */ - if (GDB_MULTI_ARCH) - { - gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE; - } - /* end-sanitize-carp end-sanitize-vr4xxx */ -} - -static void set_mipsfpu_none_command PARAMS ((char *, int)); -static void -set_mipsfpu_none_command (args, from_tty) - char *args; - int from_tty; -{ - mips_fpu_type = MIPS_FPU_NONE; - mips_fpu_type_auto = 0; - /* start-sanitize-carp start-sanitize-vr4xxx */ - if (GDB_MULTI_ARCH) - { - gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE; - } - /* end-sanitize-carp end-sanitize-vr4xxx */ -} - -static void set_mipsfpu_auto_command PARAMS ((char *, int)); -static void -set_mipsfpu_auto_command (args, from_tty) - char *args; - int from_tty; -{ - mips_fpu_type_auto = 1; -} - -/* Command to set the processor type. */ - -void -mips_set_processor_type_command (args, from_tty) - char *args; - int from_tty; -{ - int i; - - if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') - { - printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); - for (i = 0; mips_processor_type_table[i].name != NULL; ++i) - printf_unfiltered ("%s\n", mips_processor_type_table[i].name); - - /* Restore the value. */ - tmp_mips_processor_type = strsave (mips_processor_type); - - return; - } - - if (!mips_set_processor_type (tmp_mips_processor_type)) - { - error ("Unknown processor type `%s'.", tmp_mips_processor_type); - /* Restore its value. */ - tmp_mips_processor_type = strsave (mips_processor_type); - } -} - -static void -mips_show_processor_type_command (args, from_tty) - char *args; - int from_tty; -{ -} - -/* Modify the actual processor type. */ - -int -mips_set_processor_type (str) - char *str; -{ - int i, j; - - if (str == NULL) - return 0; - - for (i = 0; mips_processor_type_table[i].name != NULL; ++i) - { - if (strcasecmp (str, mips_processor_type_table[i].name) == 0) - { - mips_processor_type = str; - - for (j = 0; j < NUM_REGS; ++j) - /* FIXME - MIPS should be defining REGISTER_NAME() instead */ - gdb_register_names[j] = mips_processor_type_table[i].regnames[j]; - - return 1; - - /* FIXME tweak fpu flag too */ - } - } - - return 0; -} - -/* Attempt to identify the particular processor model by reading the - processor id. */ - -char * -mips_read_processor_type () -{ - CORE_ADDR prid; - - prid = read_register (PRID_REGNUM); - - if ((prid & ~0xf) == 0x700) - return savestring ("r3041", strlen("r3041")); - - return NULL; -} - -/* Just like reinit_frame_cache, but with the right arguments to be - callable as an sfunc. */ - -static void -reinit_frame_cache_sfunc (args, from_tty, c) - char *args; - int from_tty; - struct cmd_list_element *c; -{ - reinit_frame_cache (); -} - -int -gdb_print_insn_mips (memaddr, info) - bfd_vma memaddr; - disassemble_info *info; -{ - mips_extra_func_info_t proc_desc; - - /* Search for the function containing this address. Set the low bit - of the address when searching, in case we were given an even address - that is the start of a 16-bit function. If we didn't do this, - the search would fail because the symbol table says the function - starts at an odd address, i.e. 1 byte past the given address. */ - memaddr = ADDR_BITS_REMOVE (memaddr); - proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); - - /* Make an attempt to determine if this is a 16-bit function. If - the procedure descriptor exists and the address therein is odd, - it's definitely a 16-bit function. Otherwise, we have to just - guess that if the address passed in is odd, it's 16-bits. */ - if (proc_desc) - info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; - else - info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; - - /* Round down the instruction address to the appropriate boundary. */ - memaddr &= (info->mach == 16 ? ~1 : ~3); - - /* Call the appropriate disassembler based on the target endian-ness. */ - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - return print_insn_big_mips (memaddr, info); - else - return print_insn_little_mips (memaddr, info); -} - -/* Old-style breakpoint macros. - The IDT board uses an unusual breakpoint value, and sometimes gets - confused when it sees the usual MIPS breakpoint instruction. */ - -#define BIG_BREAKPOINT {0, 0x5, 0, 0xd} -#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0} -#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd} -#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0} -#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd} -#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0} -#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5} -#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8} - -/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program - counter value to determine whether a 16- or 32-bit breakpoint should be - used. It returns a pointer to a string of bytes that encode a breakpoint - instruction, stores the length of the string to *lenptr, and adjusts pc - (if necessary) to point to the actual memory location where the - breakpoint should be inserted. */ - -unsigned char *mips_breakpoint_from_pc (pcptr, lenptr) - CORE_ADDR *pcptr; - int *lenptr; -{ - if (TARGET_BYTE_ORDER == BIG_ENDIAN) - { - if (pc_is_mips16 (*pcptr)) - { - static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; - *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); - *lenptr = sizeof(mips16_big_breakpoint); - return mips16_big_breakpoint; - } - else - { - static char big_breakpoint[] = BIG_BREAKPOINT; - static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; - static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; - - *lenptr = sizeof(big_breakpoint); - - if (strcmp (target_shortname, "mips") == 0) - return idt_big_breakpoint; - else if (strcmp (target_shortname, "ddb") == 0 - || strcmp (target_shortname, "pmon") == 0 - || strcmp (target_shortname, "lsi") == 0) - return pmon_big_breakpoint; - else - return big_breakpoint; - } - } - else - { - if (pc_is_mips16 (*pcptr)) - { - static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; - *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); - *lenptr = sizeof(mips16_little_breakpoint); - return mips16_little_breakpoint; - } - else - { - static char little_breakpoint[] = LITTLE_BREAKPOINT; - static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; - static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; - - *lenptr = sizeof(little_breakpoint); - - if (strcmp (target_shortname, "mips") == 0) - return idt_little_breakpoint; - else if (strcmp (target_shortname, "ddb") == 0 - || strcmp (target_shortname, "pmon") == 0 - || strcmp (target_shortname, "lsi") == 0) - return pmon_little_breakpoint; - else - return little_breakpoint; - } - } -} - -/* If PC is in a mips16 call or return stub, return the address of the target - PC, which is either the callee or the caller. There are several - cases which must be handled: - - * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the - target PC is in $31 ($ra). - * If the PC is in __mips16_call_stub_{1..10}, this is a call stub - and the target PC is in $2. - * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. - before the jal instruction, this is effectively a call stub - and the the target PC is in $2. Otherwise this is effectively - a return stub and the target PC is in $18. - - See the source code for the stubs in gcc/config/mips/mips16.S for - gory details. - - This function implements the SKIP_TRAMPOLINE_CODE macro. -*/ - -CORE_ADDR -mips_skip_stub (pc) - CORE_ADDR pc; -{ - char *name; - CORE_ADDR start_addr; - - /* Find the starting address and name of the function containing the PC. */ - if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) - return 0; - - /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the - target PC is in $31 ($ra). */ - if (strcmp (name, "__mips16_ret_sf") == 0 - || strcmp (name, "__mips16_ret_df") == 0) - return read_register (RA_REGNUM); - - if (strncmp (name, "__mips16_call_stub_", 19) == 0) - { - /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub - and the target PC is in $2. */ - if (name[19] >= '0' && name[19] <= '9') - return read_register (2); - - /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. - before the jal instruction, this is effectively a call stub - and the the target PC is in $2. Otherwise this is effectively - a return stub and the target PC is in $18. */ - else if (name[19] == 's' || name[19] == 'd') - { - if (pc == start_addr) - { - /* Check if the target of the stub is a compiler-generated - stub. Such a stub for a function bar might have a name - like __fn_stub_bar, and might look like this: - mfc1 $4,$f13 - mfc1 $5,$f12 - mfc1 $6,$f15 - mfc1 $7,$f14 - la $1,bar (becomes a lui/addiu pair) - jr $1 - So scan down to the lui/addi and extract the target - address from those two instructions. */ - - CORE_ADDR target_pc = read_register (2); - t_inst inst; - int i; - - /* See if the name of the target function is __fn_stub_*. */ - if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) - return target_pc; - if (strncmp (name, "__fn_stub_", 10) != 0 - && strcmp (name, "etext") != 0 - && strcmp (name, "_etext") != 0) - return target_pc; - - /* Scan through this _fn_stub_ code for the lui/addiu pair. - The limit on the search is arbitrarily set to 20 - instructions. FIXME. */ - for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) - { - inst = mips_fetch_instruction (target_pc); - if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ - pc = (inst << 16) & 0xffff0000; /* high word */ - else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ - return pc | (inst & 0xffff); /* low word */ - } - - /* Couldn't find the lui/addui pair, so return stub address. */ - return target_pc; - } - else - /* This is the 'return' part of a call stub. The return - address is in $r18. */ - return read_register (18); - } - } - return 0; /* not a stub */ -} - - -/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). - This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ - -int -mips_in_call_stub (pc, name) - CORE_ADDR pc; - char *name; -{ - CORE_ADDR start_addr; - - /* Find the starting address of the function containing the PC. If the - caller didn't give us a name, look it up at the same time. */ - if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) - return 0; - - if (strncmp (name, "__mips16_call_stub_", 19) == 0) - { - /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ - if (name[19] >= '0' && name[19] <= '9') - return 1; - /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. - before the jal instruction, this is effectively a call stub. */ - else if (name[19] == 's' || name[19] == 'd') - return pc == start_addr; - } - - return 0; /* not a stub */ -} - - -/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). - This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ - -int -mips_in_return_stub (pc, name) - CORE_ADDR pc; - char *name; -{ - CORE_ADDR start_addr; - - /* Find the starting address of the function containing the PC. */ - if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) - return 0; - - /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ - if (strcmp (name, "__mips16_ret_sf") == 0 - || strcmp (name, "__mips16_ret_df") == 0) - return 1; - - /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, - i.e. after the jal instruction, this is effectively a return stub. */ - if (strncmp (name, "__mips16_call_stub_", 19) == 0 - && (name[19] == 's' || name[19] == 'd') - && pc != start_addr) - return 1; - - return 0; /* not a stub */ -} - - -/* Return non-zero if the PC is in a library helper function that should - be ignored. This implements the IGNORE_HELPER_CALL macro. */ - -int -mips_ignore_helper (pc) - CORE_ADDR pc; -{ - char *name; - - /* Find the starting address and name of the function containing the PC. */ - if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) - return 0; - - /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function - that we want to ignore. */ - return (strcmp (name, "__mips16_ret_sf") == 0 - || strcmp (name, "__mips16_ret_df") == 0); -} - - -/* Return a location where we can set a breakpoint that will be hit - when an inferior function call returns. This is normally the - program's entry point. Executables that don't have an entry - point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS - whose address is the location where the breakpoint should be placed. */ - -CORE_ADDR -mips_call_dummy_address () -{ - struct minimal_symbol *sym; - - sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL); - if (sym) - return SYMBOL_VALUE_ADDRESS (sym); - else - return entry_point_address (); -} - -/* start-sanitize-carp start-sanitize-vr4xxx */ - -static gdbarch_init_ftype mips_gdbarch_init; -static struct gdbarch * -mips_gdbarch_init (info, arches) - struct gdbarch_info info; - struct gdbarch_list *arches; -{ - struct gdbarch *gdbarch; - struct gdbarch_tdep *tdep; - int elf_abi; - char *abi_name; - - /* find a default for ELF_ABI */ - if (info.abfd != NULL) - elf_abi = elf_elfheader (info.abfd)->e_flags & EF_MIPS_ABI; - else if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_mips) - elf_abi = gdbarch_tdep (current_gdbarch)->elf_abi; - else - elf_abi = 0; - - /* try to find a pre-existing architecture */ - for (arches = gdbarch_list_lookup_by_info (arches, &info); - arches != NULL; - arches = gdbarch_list_lookup_by_info (arches->next, &info)) - { - /* MIPS needs to be pedantic about which ABI the object is - using. */ - if (gdbarch_tdep (current_gdbarch)->elf_abi != elf_abi) - continue; - return arches->gdbarch; - } - - /* Need a new architecture. Fill in a target specific vector. */ - tdep = (struct gdbarch_tdep*) xmalloc (sizeof (struct gdbarch_tdep)); - gdbarch = gdbarch_alloc (&info, tdep); - tdep->elf_abi = elf_abi; - switch (elf_abi) - { - case E_MIPS_ABI_O32: - abi_name = "o32"; - tdep->mips_eabi = 0; - set_gdbarch_long_bit (gdbarch, 32); - set_gdbarch_ptr_bit (gdbarch, 32); - break; - case E_MIPS_ABI_O64: - abi_name = "o64"; - tdep->mips_eabi = 0; - set_gdbarch_long_bit (gdbarch, 32); - set_gdbarch_ptr_bit (gdbarch, 32); - break; - case E_MIPS_ABI_EABI32: - abi_name = "eabi32"; - tdep->mips_eabi = 1; - set_gdbarch_long_bit (gdbarch, 32); - set_gdbarch_ptr_bit (gdbarch, 32); - break; - case E_MIPS_ABI_EABI64: - abi_name = "eabi64"; - tdep->mips_eabi = 1; - set_gdbarch_long_bit (gdbarch, 64); - set_gdbarch_ptr_bit (gdbarch, 64); - break; - default: - abi_name = "default"; - tdep->mips_eabi = 0; - set_gdbarch_long_bit (gdbarch, 32); - set_gdbarch_ptr_bit (gdbarch, 32); - break; - } - if (tdep->mips_eabi) - { - /* EABI uses R4 through R11 for args */ - tdep->mips_last_arg_regnum = 11; - /* EABI uses F12 through F19 for args */ - tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19; - } - else - { - /* old ABI uses R4 through R7 for args */ - tdep->mips_last_arg_regnum = 7; - /* old ABI uses F12 through F15 for args */ - tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15; - } - set_gdbarch_long_long_bit (gdbarch, 64); - - /* enable/disable the MIPS FPU */ - if (!mips_fpu_type_auto) - tdep->mips_fpu_type = mips_fpu_type; - else if (info.bfd_arch_info != NULL - && info.bfd_arch_info->arch == bfd_arch_mips) - switch (info.bfd_arch_info->mach) - { - case bfd_mach_mips4100: - case bfd_mach_mips4111: - case bfd_mach_mips4121: - tdep->mips_fpu_type = MIPS_FPU_NONE; - break; - default: - tdep->mips_fpu_type = MIPS_FPU_DOUBLE; - break; - } - else - tdep->mips_fpu_type = MIPS_FPU_DOUBLE; - - if (gdbarch_debug) - { - fprintf_unfiltered (stderr, - "mips_gdbarch_init: (info)elf_abi 0x%x (%s)\n", - elf_abi, abi_name); - fprintf_unfiltered (stderr, - "mips_gdbarch_init: MIPS_EABI = %d\n", - tdep->mips_eabi); - fprintf_unfiltered (stderr, - "mips_gdbarch_init: MIPS_LAST_ARG_REGNUM = %d\n", - tdep->mips_last_arg_regnum); - fprintf_unfiltered (stderr, - "mips_gdbarch_init: MIPS_LAST_FP_ARG_REGNUM = %d (%d)\n", - tdep->mips_last_fp_arg_regnum, - tdep->mips_last_fp_arg_regnum - FP0_REGNUM); - fprintf_unfiltered (stderr, - "mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n", - tdep->mips_fpu_type, - (tdep->mips_fpu_type == MIPS_FPU_NONE ? "none" - : tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single" - : tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double" - : "???")); - } - - return gdbarch; -} - -/* end-sanitize-carp end-sanitize-vr4xxx */ - -void -_initialize_mips_tdep () -{ - static struct cmd_list_element *mipsfpulist = NULL; - struct cmd_list_element *c; - - /* start-sanitize-carp start-sanitize-vr4xxx */ - if (GDB_MULTI_ARCH) - register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init); - /* end-sanitize-carp end-sanitize-vr4xxx */ - if (!tm_print_insn) /* Someone may have already set it */ - tm_print_insn = gdb_print_insn_mips; - - /* Let the user turn off floating point and set the fence post for - heuristic_proc_start. */ - - add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, - "Set use of MIPS floating-point coprocessor.", - &mipsfpulist, "set mipsfpu ", 0, &setlist); - add_cmd ("single", class_support, set_mipsfpu_single_command, - "Select single-precision MIPS floating-point coprocessor.", - &mipsfpulist); - add_cmd ("double", class_support, set_mipsfpu_double_command, - "Select double-precision MIPS floating-point coprocessor .", - &mipsfpulist); - add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); - add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); - add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); - add_cmd ("none", class_support, set_mipsfpu_none_command, - "Select no MIPS floating-point coprocessor.", - &mipsfpulist); - add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); - add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); - add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); - add_cmd ("auto", class_support, set_mipsfpu_auto_command, - "Select MIPS floating-point coprocessor automatically.", - &mipsfpulist); - add_cmd ("mipsfpu", class_support, show_mipsfpu_command, - "Show current use of MIPS floating-point coprocessor target.", - &showlist); - - /* start-sanitize-carp start-sanitize-vr4xxx */ -#if !GDB_MULTI_ARCH - /* end-sanitize-carp end-sanitize-vr4xxx */ - c = add_set_cmd ("processor", class_support, var_string_noescape, - (char *) &tmp_mips_processor_type, - "Set the type of MIPS processor in use.\n\ -Set this to be able to access processor-type-specific registers.\n\ -", - &setlist); - c->function.cfunc = mips_set_processor_type_command; - c = add_show_from_set (c, &showlist); - c->function.cfunc = mips_show_processor_type_command; - - tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); - mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); - /* start-sanitize-carp start-sanitize-vr4xxx */ -#endif - /* end-sanitize-carp end-sanitize-vr4xxx */ - - /* We really would like to have both "0" and "unlimited" work, but - command.c doesn't deal with that. So make it a var_zinteger - because the user can always use "999999" or some such for unlimited. */ - c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, - (char *) &heuristic_fence_post, - "\ -Set the distance searched for the start of a function.\n\ -If you are debugging a stripped executable, GDB needs to search through the\n\ -program for the start of a function. This command sets the distance of the\n\ -search. The only need to set it is when debugging a stripped executable.", - &setlist); - /* We need to throw away the frame cache when we set this, since it - might change our ability to get backtraces. */ - c->function.sfunc = reinit_frame_cache_sfunc; - add_show_from_set (c, &showlist); - - /* Allow the user to control whether the upper bits of 64-bit - addresses should be zeroed. */ - add_show_from_set - (add_set_cmd ("mask-address", no_class, var_boolean, (char *)&mask_address_p, - "Set zeroing of upper 32 bits of 64-bit addresses.\n\ -Use \"on\" to enable the masking, and \"off\" to disable it.\n\ -Without an argument, zeroing of upper address bits is enabled.", &setlist), - &showlist); -} |