aboutsummaryrefslogtreecommitdiff
path: root/gdb/m-vax.h
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/m-vax.h')
-rw-r--r--gdb/m-vax.h375
1 files changed, 375 insertions, 0 deletions
diff --git a/gdb/m-vax.h b/gdb/m-vax.h
new file mode 100644
index 0000000..578af44
--- /dev/null
+++ b/gdb/m-vax.h
@@ -0,0 +1,375 @@
+/* Definitions to make GDB run on a vax under 4.2bsd.
+ Copyright (C) 1986, 1987 Free Software Foundation, Inc.
+
+GDB is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY. No author or distributor accepts responsibility to anyone
+for the consequences of using it or for whether it serves any
+particular purpose or works at all, unless he says so in writing.
+Refer to the GDB General Public License for full details.
+
+Everyone is granted permission to copy, modify and redistribute GDB,
+but only under the conditions described in the GDB General Public
+License. A copy of this license is supposed to have been given to you
+along with GDB so you can know your rights and responsibilities. It
+should be in a file named COPYING. Among other things, the copyright
+notice and this notice must be preserved on all copies.
+
+In other words, go ahead and share GDB, but don't try to stop
+anyone else from sharing it farther. Help stamp out software hoarding!
+*/
+
+#ifndef vax
+#define vax
+#endif
+
+/* Get rid of any system-imposed stack limit if possible. */
+
+#define SET_STACK_LIMIT_HUGE
+
+/* Define this if the C compiler puts an underscore at the front
+ of external names before giving them to the linker. */
+
+#define NAMES_HAVE_UNDERSCORE
+
+/* Debugger information will be in DBX format. */
+
+#define READ_DBX_FORMAT
+
+/* Offset from address of function to start of its code.
+ Zero on most machines. */
+
+#define FUNCTION_START_OFFSET 2
+
+/* Advance PC across any function entry prologue instructions
+ to reach some "real" code. */
+
+#define SKIP_PROLOGUE(pc) \
+{ register int op = read_memory_integer (pc, 1); \
+ if (op == 0x11) pc += 2; /* skip brb */ \
+ if (op == 0x31) pc += 3; /* skip brw */ \
+}
+
+/* Immediately after a function call, return the saved pc.
+ Can't always go through the frames for this because on some machines
+ the new frame is not set up until the new function executes
+ some instructions. */
+
+#define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame)
+
+/* This is the amount to subtract from u.u_ar0
+ to get the offset in the core file of the register values. */
+
+#define KERNEL_U_ADDR (0x80000000 - (UPAGES * NBPG))
+
+/* Address of end of stack space. */
+
+#define STACK_END_ADDR (0x80000000 - (UPAGES * NBPG))
+
+/* Stack grows downward. */
+
+#define INNER_THAN <
+
+/* Sequence of bytes for breakpoint instruction. */
+
+#define BREAKPOINT {3}
+
+/* Amount PC must be decremented by after a breakpoint.
+ This is often the number of bytes in BREAKPOINT
+ but not always. */
+
+#define DECR_PC_AFTER_BREAK 0
+
+/* Nonzero if instruction at PC is a return instruction. */
+
+#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 04)
+
+/* Return 1 if P points to an invalid floating point value.
+ LEN is the length in bytes -- not relevant on the Vax. */
+
+#define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000)
+
+/* Say how long (ordinary) registers are. */
+
+#define REGISTER_TYPE long
+
+/* Number of machine registers */
+
+#define NUM_REGS 17
+
+/* Initializer for an array of names of registers.
+ There should be NUM_REGS strings in this initializer. */
+
+#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc", "ps"}
+
+/* Register numbers of various important registers.
+ Note that some of these values are "real" register numbers,
+ and correspond to the general registers of the machine,
+ and some are "phony" register numbers which are too large
+ to be actual register numbers as far as the user is concerned
+ but do serve to get the desired values when passed to read_register. */
+
+#define AP_REGNUM 12
+#define FP_REGNUM 13 /* Contains address of executing stack frame */
+#define SP_REGNUM 14 /* Contains address of top of stack */
+#define PC_REGNUM 15 /* Contains program counter */
+#define PS_REGNUM 16 /* Contains processor status */
+
+#define REGISTER_U_ADDR(addr, blockend, regno) \
+{ addr = blockend - 0110 + regno * 4; \
+ if (regno == PC_REGNUM) addr = blockend - 8; \
+ if (regno == PS_REGNUM) addr = blockend - 4; \
+ if (regno == FP_REGNUM) addr = blockend - 0120; \
+ if (regno == AP_REGNUM) addr = blockend - 0124; \
+ if (regno == SP_REGNUM) addr = blockend - 20; }
+
+/* Total amount of space needed to store our copies of the machine's
+ register state, the array `registers'. */
+#define REGISTER_BYTES (17*4)
+
+/* Index within `registers' of the first byte of the space for
+ register N. */
+
+#define REGISTER_BYTE(N) ((N) * 4)
+
+/* Number of bytes of storage in the actual machine representation
+ for register N. On the vax, all regs are 4 bytes. */
+
+#define REGISTER_RAW_SIZE(N) 4
+
+/* Number of bytes of storage in the program's representation
+ for register N. On the vax, all regs are 4 bytes. */
+
+#define REGISTER_VIRTUAL_SIZE(N) 4
+
+/* Largest value REGISTER_RAW_SIZE can have. */
+
+#define MAX_REGISTER_RAW_SIZE 4
+
+/* Largest value REGISTER_VIRTUAL_SIZE can have. */
+
+#define MAX_REGISTER_VIRTUAL_SIZE 4
+
+/* Nonzero if register N requires conversion
+ from raw format to virtual format. */
+
+#define REGISTER_CONVERTIBLE(N) 0
+
+/* Convert data from raw format for register REGNUM
+ to virtual format for register REGNUM. */
+
+#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
+ bcopy ((FROM), (TO), 4);
+
+/* Convert data from virtual format for register REGNUM
+ to raw format for register REGNUM. */
+
+#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
+ bcopy ((FROM), (TO), 4);
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
+
+/* Extract from an array REGBUF containing the (raw) register state
+ a function return value of type TYPE, and copy that, in virtual format,
+ into VALBUF. */
+
+#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
+ bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format. */
+
+#define STORE_RETURN_VALUE(TYPE,VALBUF) \
+ write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
+
+/* Describe the pointer in each stack frame to the previous stack frame
+ (its caller). */
+
+/* FRAME_CHAIN takes a frame's nominal address
+ and produces the frame's chain-pointer.
+
+ FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
+ and produces the nominal address of the caller frame.
+
+ However, if FRAME_CHAIN_VALID returns zero,
+ it means the given frame is the outermost one and has no caller.
+ In that case, FRAME_CHAIN_COMBINE is not used. */
+
+/* In the case of the Vax, the frame's nominal address is the FP value,
+ and 12 bytes later comes the saved previous FP value as a 4-byte word. */
+
+#define FRAME_CHAIN(thisframe) (read_memory_integer (thisframe + 12, 4))
+
+#define FRAME_CHAIN_VALID(chain, thisframe) \
+ (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
+
+#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
+
+/* Define other aspects of the stack frame. */
+
+#define FRAME_SAVED_PC(frame) (read_memory_integer (frame + 16, 4))
+
+/* Cannot find the AP register value directly from the FP value.
+ Must find it saved in the frame called by this one, or in the AP register
+ for the innermost frame. */
+#define FRAME_ARGS_ADDRESS(fi) \
+ (((fi).next_frame \
+ ? read_memory_integer ((fi).next_frame + 8, 4) \
+ : read_register (AP_REGNUM)))
+
+#define FRAME_LOCALS_ADDRESS(fi) (fi).frame
+
+/* Return number of args passed to a frame.
+ Can return -1, meaning no way to tell. */
+
+#define FRAME_NUM_ARGS(numargs, fi) \
+{ numargs = (0xff & read_memory_integer (FRAME_ARGS_ADDRESS (fi), 1)); }
+
+/* Return number of bytes at start of arglist that are not really args. */
+
+#define FRAME_ARGS_SKIP 4
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame. */
+
+#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
+{ register int regnum; \
+ register int regmask = read_memory_integer ((frame_info).frame+4, 4) >> 16; \
+ register CORE_ADDR next_addr; \
+ bzero (&frame_saved_regs, sizeof frame_saved_regs); \
+ next_addr = (frame_info).frame + 16; \
+ /* Regmask's low bit is for register 0, \
+ which is the first one that would be pushed. */ \
+ for (regnum = 0; regnum < 12; regnum++, regmask >>= 1) \
+ (frame_saved_regs).regs[regnum] = (regmask & 1) ? (next_addr += 4) : 0; \
+ (frame_saved_regs).regs[SP_REGNUM] = next_addr + 4; \
+ if (read_memory_integer ((frame_info).frame + 4, 4) & 0x20000000) \
+ (frame_saved_regs).regs[SP_REGNUM] += 4 + 4 * read_memory_integer (next_addr + 4, 4); \
+ (frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 16; \
+ (frame_saved_regs).regs[FP_REGNUM] = (frame_info).frame + 12; \
+ (frame_saved_regs).regs[AP_REGNUM] = (frame_info).frame + 8; \
+ (frame_saved_regs).regs[PS_REGNUM] = (frame_info).frame + 4; \
+}
+
+/* Things needed for making the inferior call functions. */
+
+/* Push an empty stack frame, to record the current PC, etc. */
+
+#define PUSH_DUMMY_FRAME \
+{ register CORE_ADDR sp = read_register (SP_REGNUM);\
+ register int regnum; \
+ sp = push_word (sp, 0); /* arglist */ \
+ for (regnum = 11; regnum >= 0; regnum--) \
+ sp = push_word (sp, read_register (regnum)); \
+ sp = push_word (sp, read_register (PC_REGNUM)); \
+ sp = push_word (sp, read_register (FP_REGNUM)); \
+ sp = push_word (sp, read_register (AP_REGNUM)); \
+ sp = push_word (sp, (read_register (PS_REGNUM) & 0xffef) \
+ + 0x2fff0000); \
+ sp = push_word (sp, 0); \
+ write_register (SP_REGNUM, sp); \
+ write_register (FP_REGNUM, sp); \
+ write_register (AP_REGNUM, sp + 17 * sizeof (int)); }
+
+/* Discard from the stack the innermost frame, restoring all registers. */
+
+#define POP_FRAME \
+{ register CORE_ADDR fp = read_register (FP_REGNUM); \
+ register int regnum; \
+ register int regmask = read_memory_integer (fp + 4, 4); \
+ write_register (PS_REGNUM, \
+ (regmask & 0xffff) \
+ | (read_register (PS_REGNUM) & 0xffff0000)); \
+ write_register (PC_REGNUM, read_memory_integer (fp + 16, 4)); \
+ write_register (FP_REGNUM, read_memory_integer (fp + 12, 4)); \
+ write_register (AP_REGNUM, read_memory_integer (fp + 8, 4)); \
+ fp += 16; \
+ for (regnum = 0; regnum < 12; regnum++) \
+ if (regmask & (0x10000 << regnum)) \
+ write_register (regnum, read_memory_integer (fp += 4, 4)); \
+ fp = fp + 4 + ((regmask >> 30) & 3); \
+ if (regmask & 0x20000000) \
+ { regnum = read_memory_integer (fp, 4); \
+ fp += (regnum + 1) * 4; } \
+ write_register (SP_REGNUM, fp); \
+ set_current_frame (read_register (FP_REGNUM)); }
+
+/* This sequence of words is the instructions
+ calls #69, @#32323232
+ bpt
+ Note this is 8 bytes. */
+
+#define CALL_DUMMY {0x329f69fb, 0x03323232}
+
+#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
+
+/* Insert the specified number of args and function address
+ into a call sequence of the above form stored at DUMMYNAME. */
+
+#define FIX_CALL_DUMMY(dummyname, fun, nargs) \
+{ *((char *) dummyname + 1) = nargs; \
+ *(int *)((char *) dummyname + 3) = fun; }
+
+/* Interface definitions for kernel debugger KDB. */
+
+/* Map machine fault codes into signal numbers.
+ First subtract 0, divide by 4, then index in a table.
+ Faults for which the entry in this table is 0
+ are not handled by KDB; the program's own trap handler
+ gets to handle then. */
+
+#define FAULT_CODE_ORIGIN 0
+#define FAULT_CODE_UNITS 4
+#define FAULT_TABLE \
+{ 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \
+ 0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0}
+
+/* Start running with a stack stretching from BEG to END.
+ BEG and END should be symbols meaningful to the assembler.
+ This is used only for kdb. */
+
+#define INIT_STACK(beg, end) \
+{ asm (".globl end"); \
+ asm ("movl $ end, sp"); \
+ asm ("clrl fp"); }
+
+/* Push the frame pointer register on the stack. */
+#define PUSH_FRAME_PTR \
+ asm ("pushl fp");
+
+/* Copy the top-of-stack to the frame pointer register. */
+#define POP_FRAME_PTR \
+ asm ("movl (sp), fp");
+
+/* After KDB is entered by a fault, push all registers
+ that GDB thinks about (all NUM_REGS of them),
+ so that they appear in order of ascending GDB register number.
+ The fault code will be on the stack beyond the last register. */
+
+#define PUSH_REGISTERS \
+{ asm ("pushl 8(sp)"); \
+ asm ("pushl 8(sp)"); \
+ asm ("pushal 0x14(sp)"); \
+ asm ("pushr $037777"); }
+
+/* Assuming the registers (including processor status) have been
+ pushed on the stack in order of ascending GDB register number,
+ restore them and return to the address in the saved PC register. */
+
+#define POP_REGISTERS \
+{ asm ("popr $037777"); \
+ asm ("subl2 $8,(sp)"); \
+ asm ("movl (sp),sp"); \
+ asm ("rei"); }