aboutsummaryrefslogtreecommitdiff
path: root/gdb/m-sparc.h
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/m-sparc.h')
-rw-r--r--gdb/m-sparc.h725
1 files changed, 0 insertions, 725 deletions
diff --git a/gdb/m-sparc.h b/gdb/m-sparc.h
deleted file mode 100644
index f166f3f..0000000
--- a/gdb/m-sparc.h
+++ /dev/null
@@ -1,725 +0,0 @@
-/* Parameters for execution on a Sun 4, for GDB, the GNU debugger.
- Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@mcc.com)
-This file is part of GDB.
-
-GDB is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 1, or (at your option)
-any later version.
-
-GDB is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GDB; see the file COPYING. If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-#ifndef sun4
-#define sun4
-#endif
-
-/* Define the bit, byte, and word ordering of the machine. */
-#define BITS_BIG_ENDIAN
-#define BYTES_BIG_ENDIAN
-#define WORDS_BIG_ENDIAN
-
-/* Floating point is IEEE compatible. */
-#define IEEE_FLOAT
-
-/* Get rid of any system-imposed stack limit if possible. */
-
-#define SET_STACK_LIMIT_HUGE
-
-/* Define this if the C compiler puts an underscore at the front
- of external names before giving them to the linker. */
-
-#define NAMES_HAVE_UNDERSCORE
-
-/* Debugger information will be in DBX format. */
-
-#define READ_DBX_FORMAT
-
-/* When passing a structure to a function, Sun cc passes the address
- in a register, not the structure itself. It (under SunOS4) creates
- two symbols, so we get a LOC_ARG saying the address is on the stack
- (a lie, and a serious one since we don't know which register to
- use), and a LOC_REGISTER saying that the struct is in a register
- (sort of a lie, but fixable with REG_STRUCT_HAS_ADDR).
-
- This still doesn't work if the argument is not one passed in a
- register (i.e. it's the 7th or later argument). */
-#define REG_STRUCT_HAS_ADDR(gcc_p) (!gcc_p)
-#define STRUCT_ARG_SYM_GARBAGE(gcc_p) (!gcc_p)
-
-/* If Pcc says that a parameter is a short, it's a short. This is
- because the parameter does get passed in in a register as an int,
- but pcc puts it onto the stack frame as a short (not nailing
- whatever else might be there. I'm not sure that I consider this
- swift. Sigh.)
-
- No, don't do this. The problem here is that pcc says that the
- argument is in the upper half of the word reserved on the stack,
- but puts it in the lower half. */
-/* #define BELIEVE_PCC_PROMOTION 1 */
-/* OK, I've added code to dbxread.c to deal with this case. */
-#define BELIEVE_PCC_PROMOTION_TYPE
-
-/* Offset from address of function to start of its code.
- Zero on most machines. */
-
-#define FUNCTION_START_OFFSET 0
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code. */
-
-#define SKIP_PROLOGUE(pc) \
- { pc = skip_prologue (pc); }
-
-/* Immediately after a function call, return the saved pc.
- Can't go through the frames for this because on some machines
- the new frame is not set up until the new function executes
- some instructions. */
-
-/* On the Sun 4 under SunOS, the compile will leave a fake insn which
- encodes the structure size being returned. If we detect such
- a fake insn, step past it. */
-
-#define PC_ADJUST(pc) ((read_memory_integer (pc + 8, 4) & 0xfffffe00) == 0 ? \
- pc+12 : pc+8)
-
-#define SAVED_PC_AFTER_CALL(frame) PC_ADJUST (read_register (RP_REGNUM))
-
-/* Address of end of stack space. */
-#include <sys/types.h>
-#include <machine/vmparam.h>
-#define STACK_END_ADDR USRSTACK
-
-#define INNER_THAN <
-
-/* Stack has strict alignment. */
-
-#define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
-
-/* Sequence of bytes for breakpoint instruction. */
-
-#define BREAKPOINT {0x91, 0xd0, 0x20, 0x01}
-
-/* Amount PC must be decremented by after a breakpoint.
- This is often the number of bytes in BREAKPOINT
- but not always. */
-
-#define DECR_PC_AFTER_BREAK 0
-
-/* Nonzero if instruction at PC is a return instruction. */
-/* For SPARC, this is either a "jmpl %o7+8,%g0" or "jmpl %i7+8,%g0".
-
- Note: this does not work for functions returning structures under SunOS. */
-#define ABOUT_TO_RETURN(pc) \
- ((read_memory_integer (pc, 4)|0x00040000) == 0x81c7e008)
-
-/* Return 1 if P points to an invalid floating point value. */
-
-#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
-
-/* Largest integer type */
-#define LONGEST long
-
-/* Name of the builtin type for the LONGEST type above. */
-#define BUILTIN_TYPE_LONGEST builtin_type_long
-
-/* Say how long (ordinary) registers are. */
-
-#define REGISTER_TYPE long
-
-/* Number of machine registers */
-
-#define NUM_REGS 72
-
-/* Initializer for an array of names of registers.
- There should be NUM_REGS strings in this initializer. */
-
-#define REGISTER_NAMES \
-{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
- "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
- "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
- "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
- \
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
- "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
- "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
- \
- "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" };
-
-/* Register numbers of various important registers.
- Note that some of these values are "real" register numbers,
- and correspond to the general registers of the machine,
- and some are "phony" register numbers which are too large
- to be actual register numbers as far as the user is concerned
- but do serve to get the desired values when passed to read_register. */
-
-#define FP_REGNUM 30 /* Contains address of executing stack frame */
-#define RP_REGNUM 15 /* Contains return address value, *before* \
- any windows get switched. */
-#define SP_REGNUM 14 /* Contains address of top of stack, \
- which is also the bottom of the frame. */
-#define Y_REGNUM 64 /* Temp register for multiplication, etc. */
-#define PS_REGNUM 65 /* Contains processor status */
-#define PC_REGNUM 68 /* Contains program counter */
-#define NPC_REGNUM 69 /* Contains next PC */
-#define FP0_REGNUM 32 /* Floating point register 0 */
-#define FPS_REGNUM 70 /* Floating point status register */
-#define CPS_REGNUM 71 /* Coprocessor status register */
-
-/* Total amount of space needed to store our copies of the machine's
- register state, the array `registers'. */
-#define REGISTER_BYTES (32*4+32*4+8*4)
-
-/* Index within `registers' of the first byte of the space for
- register N. */
-/* ?? */
-#define REGISTER_BYTE(N) ((N)*4)
-
-/* The SPARC processor has register windows. */
-
-#define HAVE_REGISTER_WINDOWS
-
-/* Is this register part of the register window system? A yes answer
- implies that 1) The name of this register will not be the same in
- other frames, and 2) This register is automatically "saved" (out
- registers shifting into ins counts) upon subroutine calls and thus
- there is no need to search more than one stack frame for it. */
-
-#define REGISTER_IN_WINDOW_P(regnum) \
- ((regnum) >= 8 && (regnum) < 32)
-
-/* Number of bytes of storage in the actual machine representation
- for register N. */
-
-/* On the SPARC, all regs are 4 bytes. */
-
-#define REGISTER_RAW_SIZE(N) (4)
-
-/* Number of bytes of storage in the program's representation
- for register N. */
-
-/* On the SPARC, all regs are 4 bytes. */
-
-#define REGISTER_VIRTUAL_SIZE(N) (4)
-
-/* Largest value REGISTER_RAW_SIZE can have. */
-
-#define MAX_REGISTER_RAW_SIZE 8
-
-/* Largest value REGISTER_VIRTUAL_SIZE can have. */
-
-#define MAX_REGISTER_VIRTUAL_SIZE 8
-
-/* Nonzero if register N requires conversion
- from raw format to virtual format. */
-
-#define REGISTER_CONVERTIBLE(N) (0)
-
-/* Convert data from raw format for register REGNUM
- to virtual format for register REGNUM. */
-
-#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
-{ bcopy ((FROM), (TO), 4); }
-
-/* Convert data from virtual format for register REGNUM
- to raw format for register REGNUM. */
-
-#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
-{ bcopy ((FROM), (TO), 4); }
-
-/* Return the GDB type object for the "standard" data type
- of data in register N. */
-
-#define REGISTER_VIRTUAL_TYPE(N) \
- ((N) < 32 ? builtin_type_int : (N) < 64 ? builtin_type_float : \
- builtin_type_int)
-
-/* Store the address of the place in which to copy the structure the
- subroutine will return. This is called from call_function. */
-
-#define STORE_STRUCT_RETURN(ADDR, SP) \
- { write_memory ((SP)+(16*4), &(ADDR), 4); }
-
-/* Extract from an array REGBUF containing the (raw) register state
- a function return value of type TYPE, and copy that, in virtual format,
- into VALBUF. */
-
-#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
- { \
- if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
- { \
- bcopy (((int *)(REGBUF))+FP0_REGNUM, \
- (VALBUF), TYPE_LENGTH(TYPE)); \
- } \
- else \
- bcopy (((int *)(REGBUF))+8, (VALBUF), TYPE_LENGTH (TYPE)); \
- }
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format. */
-/* On sparc, values are returned in register %o0. */
-#define STORE_RETURN_VALUE(TYPE,VALBUF) \
- { \
- if (TYPE_CODE (TYPE) = TYPE_CODE_FLT) \
- /* Floating-point values are returned in the register pair */ \
- /* formed by %f0 and %f1 (doubles are, anyway). */ \
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM), (VALBUF), \
- TYPE_LENGTH (TYPE)); \
- else \
- /* Other values are returned in register %o0. */ \
- write_register_bytes (REGISTER_BYTE (8), VALBUF, TYPE_LENGTH (TYPE)); \
- }
-
-/* Extract from an array REGBUF containing the (raw) register state
- the address in which a function should return its structure value,
- as a CORE_ADDR (or an expression that can be used as one). */
-
-#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
- (read_memory_integer (((int *)(REGBUF))[SP_REGNUM]+(16*4), 4))
-
-/* Enable use of alternate code to read and write registers. */
-
-#define NEW_SUN_PTRACE
-
-/* Enable use of alternate code for Sun's format of core dump file. */
-
-#define NEW_SUN_CORE
-
-/* Do implement the attach and detach commands. */
-
-#define ATTACH_DETACH
-
-
-/* Describe the pointer in each stack frame to the previous stack frame
- (its caller). */
-#include <machine/reg.h>
-
-#define GET_RWINDOW_REG(FRAME, REG) \
- (read_memory_integer (&((struct rwindow *)FRAME)->REG, 4))
-
-/* FRAME_CHAIN takes a frame's nominal address
- and produces the frame's chain-pointer.
-
- FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
- and produces the nominal address of the caller frame.
-
- However, if FRAME_CHAIN_VALID returns zero,
- it means the given frame is the outermost one and has no caller.
- In that case, FRAME_CHAIN_COMBINE is not used. */
-
-/* In the case of the Sun 4, the frame-chain's nominal address
- is held in the frame pointer register.
-
- On the Sun4, the frame (in %fp) is %sp for the previous frame.
- From the previous frame's %sp, we can find the previous frame's
- %fp: it is in the save area just above the previous frame's %sp.
-
- If we are setting up an arbitrary frame, we'll need to know where
- it ends. Hence the following. This part of the frame cache
- structure should be checked before it is assumed that this frame's
- bottom is in the stack pointer.
-
- If there isn't a frame below this one, the bottom of this frame is
- in the stack pointer.
-
- If there is a frame below this one, and the frame pointers are
- identical, it's a leaf frame and the bottoms are the same also.
-
- Otherwise the bottom of this frame is the top of the next frame. */
-
-#define EXTRA_FRAME_INFO FRAME_ADDR bottom;
-#define INIT_EXTRA_FRAME_INFO(fci) \
- (fci)->bottom = \
- ((fci)->next ? \
- ((fci)->frame == (fci)->next_frame ? \
- (fci)->next->bottom : (fci)->next->frame) : \
- read_register (SP_REGNUM));
-
-#define FRAME_CHAIN(thisframe) \
- GET_RWINDOW_REG ((thisframe)->frame, rw_in[6])
-
-#define FRAME_CHAIN_VALID(chain, thisframe) \
- (chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
-
-#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
-
-/* Define other aspects of the stack frame. */
-
-/* A macro that tells us whether the function invocation represented
- by FI does not have a frame on the stack associated with it. If it
- does not, FRAMELESS is set to 1, else 0. */
-#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
- FRAMELESS_LOOK_FOR_PROLOGUE(FI, FRAMELESS)
-
-/* Where is the PC for a specific frame */
-
-#define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
-
-/* If the argument is on the stack, it will be here. */
-#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
-
-#define FRAME_STRUCT_ARGS_ADDRESS(fi) ((fi)->frame)
-
-#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
-
-/* Set VAL to the number of args passed to frame described by FI.
- Can set VAL to -1, meaning no way to tell. */
-
-/* We can't tell how many args there are
- now that the C compiler delays popping them. */
-#define FRAME_NUM_ARGS(val,fi) (val = -1)
-
-/* Return number of bytes at start of arglist that are not really args. */
-
-#define FRAME_ARGS_SKIP 68
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- Note that on register window machines, we are currently making the
- assumption that window registers are being saved somewhere in the
- frame in which they are being used. If they are stored in an
- inferior frame, find_saved_register will break.
-
- On the Sun 4, the only time all registers are saved is when
- a dummy frame is involved. Otherwise, the only saved registers
- are the LOCAL and IN registers which are saved as a result
- of the "save/restore" opcodes. This condition is determined
- by address rather than by value. */
-
-#define FRAME_FIND_SAVED_REGS(fi, frame_saved_regs) \
-{ register int regnum; \
- register CORE_ADDR pc; \
- FRAME_ADDR frame = read_register (FP_REGNUM); \
- FRAME fid = FRAME_INFO_ID (fi); \
- if (!fid) fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); \
- bzero (&(frame_saved_regs), sizeof (frame_saved_regs)); \
- /* Old test. \
- if ((fi)->pc >= frame - CALL_DUMMY_LENGTH - 0x140 \
- && (fi)->pc <= frame) */ \
- if ((fi)->pc >= ((fi)->bottom ? (fi)->bottom : \
- read_register (SP_REGNUM)) \
- && (fi)->pc <= FRAME_FP(fi)) \
- { \
- for (regnum = 1; regnum < 8; regnum++) \
- (frame_saved_regs).regs[regnum] = \
- frame + regnum * 4 - 0xa0; \
- for (regnum = 24; regnum < 32; regnum++) \
- (frame_saved_regs).regs[regnum] = \
- frame + (regnum - 24) * 4 - 0xc0; \
- for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) \
- (frame_saved_regs).regs[regnum] = \
- frame + (regnum - FP0_REGNUM) * 4 - 0x80; \
- for (regnum = 64; regnum < NUM_REGS; regnum++) \
- (frame_saved_regs).regs[regnum] = \
- frame + (regnum - 64) * 4 - 0xe0; \
- frame = (fi)->bottom ? \
- (fi)->bottom : read_register (SP_REGNUM); \
- } \
- else \
- { \
- frame = (fi)->bottom ? \
- (fi)->bottom : read_register (SP_REGNUM); \
- for (regnum = 16; regnum < 32; regnum++) \
- (frame_saved_regs).regs[regnum] = frame + (regnum-16) * 4; \
- } \
- if ((fi)->next) \
- { \
- /* Pull off either the next frame pointer or \
- the stack pointer */ \
- FRAME_ADDR next_next_frame = \
- ((fi)->next->bottom ? \
- (fi)->next->bottom : \
- read_register (SP_REGNUM)); \
- for (regnum = 8; regnum < 16; regnum++) \
- (frame_saved_regs).regs[regnum] = next_next_frame + regnum * 4; \
- } \
- /* Otherwise, whatever we would get from ptrace(GETREGS) */ \
- /* is accurate */ \
- for (regnum = 30; regnum < 32; regnum++) \
- (frame_saved_regs).regs[regnum] = frame + (regnum-16) * 4; \
- (frame_saved_regs).regs[SP_REGNUM] = FRAME_FP (fi); \
- (frame_saved_regs).regs[PC_REGNUM] = frame + 15*4; \
-}
-
-/* Things needed for making the inferior call functions. */
-/*
- * First of all, let me give my opinion of what the DUMMY_FRAME
- * actually looks like.
- *
- * | |
- * | |
- * + - - - - - - - - - - - - - - - - +<-- fp (level 0)
- * | |
- * | |
- * | |
- * | |
- * | Frame of innermost program |
- * | function |
- * | |
- * | |
- * | |
- * | |
- * | |
- * |---------------------------------|<-- sp (level 0), fp (c)
- * | |
- * DUMMY | fp0-31 |
- * | |
- * | ------ |<-- fp - 0x80
- * FRAME | g0-7 |<-- fp - 0xa0
- * | i0-7 |<-- fp - 0xc0
- * | other |<-- fp - 0xe0
- * | ? |
- * | ? |
- * |---------------------------------|<-- sp' = fp - 0x140
- * | |
- * xcution start | |
- * sp' + 0x94 -->| CALL_DUMMY (x code) |
- * | |
- * | |
- * |---------------------------------|<-- sp'' = fp - 0x200
- * | align sp to 8 byte boundary |
- * | ==> args to fn <== |
- * Room for | |
- * i & l's + agg | CALL_DUMMY_STACK_ADJUST = 0x0x44|
- * |---------------------------------|<-- final sp (variable)
- * | |
- * | Where function called will |
- * | build frame. |
- * | |
- * | |
- *
- * I understand everything in this picture except what the space
- * between fp - 0xe0 and fp - 0x140 is used for. Oh, and I don't
- * understand why there's a large chunk of CALL_DUMMY that never gets
- * executed (its function is superceeded by PUSH_DUMMY_FRAME; they
- * are designed to do the same thing).
- *
- * PUSH_DUMMY_FRAME saves the registers above sp' and pushes the
- * register file stack down one.
- *
- * call_function then writes CALL_DUMMY, pushes the args onto the
- * stack, and adjusts the stack pointer.
- *
- * run_stack_dummy then starts execution (in the middle of
- * CALL_DUMMY, as directed by call_function).
- */
-
-/* Push an empty stack frame, to record the current PC, etc. */
-
-/* Note: to be perfectly correct, we have to restore the
- IN registers (which were the OUT registers of the calling frame). */
-/* Note that the write's are of registers in the context of the newly
- pushed frame. Thus the the fp*'s, the g*'s, the i*'s, and
- the others, of the new frame, are being saved.
- The locals are new; they don't need to be saved. The i's and l's of
- the last frame were saved by the do_save_insn in the register
- file (ie. on the stack, since a context switch happended imm after) */
-/* We note that the return pointer register does not *need* to have
- the pc saved into it (return from this frame will be accomplished
- by a POP_FRAME), however, just in case it might be needed, we will
- leave it. However, we will write the original value of RP into the
- location on the stack for saving i7 (what rp turns into upon call);
- this way we don't loose the value with our function call. */
-/* Note that the pc saved must be 8 less than the actual pc, since
- both POP_FRAME and the normal return sequence on the sparc return
- to 8 more than the value of RP_REGNUM */
-
-#define PUSH_DUMMY_FRAME \
-{ extern char registers[]; \
- register int regnum; \
- CORE_ADDR fp = read_register (FP_REGNUM); \
- CORE_ADDR pc = read_register (PC_REGNUM) - 8; \
- CORE_ADDR rp = read_register (RP_REGNUM); \
- void do_save_insn (); \
- supply_register (RP_REGNUM, &pc); \
- do_save_insn (0x140); \
- fp = read_register (FP_REGNUM); \
- write_memory (fp - 0x80, &registers[REGISTER_BYTE (FP0_REGNUM)], 32 * 4);\
- write_memory (fp - 0xa0, &registers[REGISTER_BYTE (0)], 8 * 4); \
- write_memory (fp - 0xc0, &registers[REGISTER_BYTE (24)], 7 * 4); \
- write_memory (fp - 0xa4, &rp, 4); \
- write_memory (fp - 0xe0, &registers[REGISTER_BYTE (64)], 8 * 4); \
-}
-
-/* Discard from the stack the innermost frame,
- restoring all saved registers.
- Note that the values stored in fsr by get_frame_saved_regs are *in
- the context of the inferior frame*. What this means is that the i
- regs of fsr must be restored into the o regs of the frame popped
- into. We don't care about the output regs of the inferior frame.
-
- This is true for dummy frames. Is it true for normal frames? It
- really does appear so. */
-
-#define POP_FRAME \
-{ register FRAME frame = get_current_frame (); \
- register CORE_ADDR fp; \
- register CORE_ADDR pc; \
- register int regnum; \
- struct frame_saved_regs fsr; \
- struct frame_info *fi; \
- char raw_buffer[REGISTER_BYTES]; \
- void do_restore_insn (); \
- fi = get_frame_info (frame); \
- fp = fi->frame; \
- get_frame_saved_regs (fi, &fsr); \
- pc = read_memory_integer (fsr.regs[PC_REGNUM], 4); \
- do_restore_insn (PC_ADJUST (pc)); \
- if (fsr.regs[FP0_REGNUM]) \
- { \
- read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4); \
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4); \
- } \
- if (fsr.regs[1]) \
- { \
- read_memory (fsr.regs[1], raw_buffer, 7 * 4); \
- write_register_bytes (REGISTER_BYTE (1), raw_buffer, 7 * 4); \
- } \
- if (fsr.regs[24]) \
- { \
- read_memory (fsr.regs[24], raw_buffer, 8 * 4); \
- write_register_bytes (REGISTER_BYTE (8), raw_buffer, 8 * 4); \
- } \
- if (fsr.regs[PS_REGNUM]) \
- write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
- if (fsr.regs[Y_REGNUM]) \
- write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4)); \
- if (fsr.regs[NPC_REGNUM]) \
- write_register (NPC_REGNUM, read_memory_integer (fsr.regs[NPC_REGNUM], 4)); \
- flush_cached_frames (); \
- set_current_frame ( create_new_frame (read_register (FP_REGNUM), \
- read_pc ())); }
-
-/* This sequence of words is the instructions
-
- save %sp,-0x140,%sp
- std %f30,[%fp-0x08]
- std %f28,[%fp-0x10]
- std %f26,[%fp-0x18]
- std %f24,[%fp-0x20]
- std %f22,[%fp-0x28]
- std %f20,[%fp-0x30]
- std %f18,[%fp-0x38]
- std %f16,[%fp-0x40]
- std %f14,[%fp-0x48]
- std %f12,[%fp-0x50]
- std %f10,[%fp-0x58]
- std %f8,[%fp-0x60]
- std %f6,[%fp-0x68]
- std %f4,[%fp-0x70]
- std %f2,[%fp-0x78]
- std %f0,[%fp-0x80]
- std %g6,[%fp-0x88]
- std %g4,[%fp-0x90]
- std %g2,[%fp-0x98]
- std %g0,[%fp-0xa0]
- std %i6,[%fp-0xa8]
- std %i4,[%fp-0xb0]
- std %i2,[%fp-0xb8]
- std %i0,[%fp-0xc0]
- nop ! stcsr [%fp-0xc4]
- nop ! stfsr [%fp-0xc8]
- nop ! wr %npc,[%fp-0xcc]
- nop ! wr %pc,[%fp-0xd0]
- rd %tbr,%o0
- st %o0,[%fp-0xd4]
- rd %wim,%o1
- st %o0,[%fp-0xd8]
- rd %psr,%o0
- st %o0,[%fp-0xdc]
- rd %y,%o0
- st %o0,[%fp-0xe0]
-
- /..* The arguments are pushed at this point by GDB;
- no code is needed in the dummy for this.
- The CALL_DUMMY_START_OFFSET gives the position of
- the following ld instruction. *../
-
- ld [%sp+0x58],%o5
- ld [%sp+0x54],%o4
- ld [%sp+0x50],%o3
- ld [%sp+0x4c],%o2
- ld [%sp+0x48],%o1
- call 0x00000000
- ld [%sp+0x44],%o0
- nop
- ta 1
- nop
-
- note that this is 192 bytes, which is a multiple of 8 (not only 4) bytes.
- note that the `call' insn is a relative, not an absolute call.
- note that the `nop' at the end is needed to keep the trap from
- clobbering things (if NPC pointed to garbage instead).
-
-We actually start executing at the `sethi', since the pushing of the
-registers (as arguments) is done by PUSH_DUMMY_FRAME. If this were
-real code, the arguments for the function called by the CALL would be
-pushed between the list of ST insns and the CALL, and we could allow
-it to execute through. But the arguments have to be pushed by GDB
-after the PUSH_DUMMY_FRAME is done, and we cannot allow these ST
-insns to be performed again, lest the registers saved be taken for
-arguments. */
-
-#define CALL_DUMMY { 0x9de3bee0, 0xfd3fbff8, 0xf93fbff0, 0xf53fbfe8, \
- 0xf13fbfe0, 0xed3fbfd8, 0xe93fbfd0, 0xe53fbfc8, \
- 0xe13fbfc0, 0xdd3fbfb8, 0xd93fbfb0, 0xd53fbfa8, \
- 0xd13fbfa0, 0xcd3fbf98, 0xc93fbf90, 0xc53fbf88, \
- 0xc13fbf80, 0xcc3fbf78, 0xc83fbf70, 0xc43fbf68, \
- 0xc03fbf60, 0xfc3fbf58, 0xf83fbf50, 0xf43fbf48, \
- 0xf03fbf40, 0x01000000, 0x01000000, 0x01000000, \
- 0x01000000, 0x91580000, 0xd027bf50, 0x93500000, \
- 0xd027bf4c, 0x91480000, 0xd027bf48, 0x91400000, \
- 0xd027bf44, 0xda03a058, 0xd803a054, 0xd603a050, \
- 0xd403a04c, 0xd203a048, 0x40000000, 0xd003a044, \
- 0x01000000, 0x91d02001, 0x01000000, 0x01000000}
-
-#define CALL_DUMMY_LENGTH 192
-
-#define CALL_DUMMY_START_OFFSET 148
-
-#define CALL_DUMMY_STACK_ADJUST 68
-
-/* Insert the specified number of args and function address
- into a call sequence of the above form stored at DUMMYNAME. */
-
-#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
-{ \
- *(int *)((char *) dummyname+168) = (0x40000000|((fun-(pc+168))>>2)); \
- if (TYPE_CODE (type) == TYPE_CODE_STRUCT \
- || TYPE_CODE (type) == TYPE_CODE_UNION) \
- *(int *)((char *) dummyname+176) = (TYPE_LENGTH (type) & 0x1fff); \
-}
-
-
-/* Sparc has no reliable single step ptrace call */
-
-#define NO_SINGLE_STEP 1
-
-/* It does have a wait structure, and it might help things out . . . */
-
-#define HAVE_WAIT_STRUCT
-
-/* Handle a feature in the sun4 compiler ("call .stret4" at the end of
- functions returning structures). */
-
-#define SUN4_COMPILER_FEATURE
-
-/* We need two arguments (in general) to the "info frame" command.
- Note that the definition of this macro implies that there exists a
- function "setup_arbitrary_frame" in mach-dep.c */
-
-#define FRAME_SPECIFICATION_DYADIC
-
-/* KDB stuff flushed for now. */