aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/hppa-tdep.c')
-rw-r--r--gdb/hppa-tdep.c4437
1 files changed, 0 insertions, 4437 deletions
diff --git a/gdb/hppa-tdep.c b/gdb/hppa-tdep.c
deleted file mode 100644
index f784c21..0000000
--- a/gdb/hppa-tdep.c
+++ /dev/null
@@ -1,4437 +0,0 @@
-/* Target-dependent code for the HP PA architecture, for GDB.
- Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
- Free Software Foundation, Inc.
-
- Contributed by the Center for Software Science at the
- University of Utah (pa-gdb-bugs@cs.utah.edu).
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "bfd.h"
-#include "inferior.h"
-#include "value.h"
-
-/* For argument passing to the inferior */
-#include "symtab.h"
-
-#ifdef USG
-#include <sys/types.h>
-#endif
-
-#include <dl.h>
-#include <sys/param.h>
-#include <signal.h>
-
-#include <sys/ptrace.h>
-#include <machine/save_state.h>
-
-#ifdef COFF_ENCAPSULATE
-#include "a.out.encap.h"
-#else
-#endif
-
-/*#include <sys/user.h> After a.out.h */
-#include <sys/file.h>
-#include "gdb_stat.h"
-#include "wait.h"
-
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "target.h"
-#include "symfile.h"
-#include "objfiles.h"
-
-/* To support asking "What CPU is this?" */
-#include <unistd.h>
-
-/* To support detection of the pseudo-initial frame
- that threads have. */
-#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
-#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
-
-static int extract_5_load PARAMS ((unsigned int));
-
-static unsigned extract_5R_store PARAMS ((unsigned int));
-
-static unsigned extract_5r_store PARAMS ((unsigned int));
-
-static void find_dummy_frame_regs PARAMS ((struct frame_info *,
- struct frame_saved_regs *));
-
-static int find_proc_framesize PARAMS ((CORE_ADDR));
-
-static int find_return_regnum PARAMS ((CORE_ADDR));
-
-struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
-
-static int extract_17 PARAMS ((unsigned int));
-
-static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
-
-static int extract_21 PARAMS ((unsigned));
-
-static unsigned deposit_14 PARAMS ((int, unsigned int));
-
-static int extract_14 PARAMS ((unsigned));
-
-static void unwind_command PARAMS ((char *, int));
-
-static int low_sign_extend PARAMS ((unsigned int, unsigned int));
-
-static int sign_extend PARAMS ((unsigned int, unsigned int));
-
-static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
-
-static int hppa_alignof PARAMS ((struct type *));
-
-/* To support multi-threading and stepping. */
-int hppa_prepare_to_proceed PARAMS (());
-
-static int prologue_inst_adjust_sp PARAMS ((unsigned long));
-
-static int is_branch PARAMS ((unsigned long));
-
-static int inst_saves_gr PARAMS ((unsigned long));
-
-static int inst_saves_fr PARAMS ((unsigned long));
-
-static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
-
-static int pc_in_linker_stub PARAMS ((CORE_ADDR));
-
-static int compare_unwind_entries PARAMS ((const void *, const void *));
-
-static void read_unwind_info PARAMS ((struct objfile *));
-
-static void internalize_unwinds PARAMS ((struct objfile *,
- struct unwind_table_entry *,
- asection *, unsigned int,
- unsigned int, CORE_ADDR));
-static void pa_print_registers PARAMS ((char *, int, int));
-static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
-static void pa_register_look_aside PARAMS ((char *, int, long *));
-static void pa_print_fp_reg PARAMS ((int));
-static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
-
-typedef struct {
- struct minimal_symbol * msym;
- CORE_ADDR solib_handle;
-} args_for_find_stub;
-
-static CORE_ADDR cover_find_stub_with_shl_get PARAMS ((args_for_find_stub *));
-
-static int is_pa_2 = 0; /* False */
-
-/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
-extern int hp_som_som_object_present;
-
-/* In breakpoint.c */
-extern int exception_catchpoints_are_fragile;
-
-/* This is defined in valops.c. */
-extern value_ptr
-find_function_in_inferior PARAMS((char *));
-
-/* Should call_function allocate stack space for a struct return? */
-int
-hppa_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
-{
- return (TYPE_LENGTH (type) > 8);
-}
-
-
-/* Routines to extract various sized constants out of hppa
- instructions. */
-
-/* This assumes that no garbage lies outside of the lower bits of
- value. */
-
-static int
-sign_extend (val, bits)
- unsigned val, bits;
-{
- return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
-}
-
-/* For many immediate values the sign bit is the low bit! */
-
-static int
-low_sign_extend (val, bits)
- unsigned val, bits;
-{
- return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
-}
-
-/* extract the immediate field from a ld{bhw}s instruction */
-
-#if 0
-
-unsigned
-get_field (val, from, to)
- unsigned val, from, to;
-{
- val = val >> 31 - to;
- return val & ((1 << 32 - from) - 1);
-}
-
-unsigned
-set_field (val, from, to, new_val)
- unsigned *val, from, to;
-{
- unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
- return *val = *val & mask | (new_val << (31 - from));
-}
-
-/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
-
-int
-extract_3 (word)
- unsigned word;
-{
- return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
-}
-
-#endif
-
-static int
-extract_5_load (word)
- unsigned word;
-{
- return low_sign_extend (word >> 16 & MASK_5, 5);
-}
-
-#if 0
-
-/* extract the immediate field from a st{bhw}s instruction */
-
-int
-extract_5_store (word)
- unsigned word;
-{
- return low_sign_extend (word & MASK_5, 5);
-}
-
-#endif /* 0 */
-
-/* extract the immediate field from a break instruction */
-
-static unsigned
-extract_5r_store (word)
- unsigned word;
-{
- return (word & MASK_5);
-}
-
-/* extract the immediate field from a {sr}sm instruction */
-
-static unsigned
-extract_5R_store (word)
- unsigned word;
-{
- return (word >> 16 & MASK_5);
-}
-
-/* extract an 11 bit immediate field */
-
-#if 0
-
-int
-extract_11 (word)
- unsigned word;
-{
- return low_sign_extend (word & MASK_11, 11);
-}
-
-#endif
-
-/* extract a 14 bit immediate field */
-
-static int
-extract_14 (word)
- unsigned word;
-{
- return low_sign_extend (word & MASK_14, 14);
-}
-
-/* deposit a 14 bit constant in a word */
-
-static unsigned
-deposit_14 (opnd, word)
- int opnd;
- unsigned word;
-{
- unsigned sign = (opnd < 0 ? 1 : 0);
-
- return word | ((unsigned)opnd << 1 & MASK_14) | sign;
-}
-
-/* extract a 21 bit constant */
-
-static int
-extract_21 (word)
- unsigned word;
-{
- int val;
-
- word &= MASK_21;
- word <<= 11;
- val = GET_FIELD (word, 20, 20);
- val <<= 11;
- val |= GET_FIELD (word, 9, 19);
- val <<= 2;
- val |= GET_FIELD (word, 5, 6);
- val <<= 5;
- val |= GET_FIELD (word, 0, 4);
- val <<= 2;
- val |= GET_FIELD (word, 7, 8);
- return sign_extend (val, 21) << 11;
-}
-
-/* deposit a 21 bit constant in a word. Although 21 bit constants are
- usually the top 21 bits of a 32 bit constant, we assume that only
- the low 21 bits of opnd are relevant */
-
-static unsigned
-deposit_21 (opnd, word)
- unsigned opnd, word;
-{
- unsigned val = 0;
-
- val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
- val <<= 11;
- val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
- val <<= 1;
- val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
- return word | val;
-}
-
-/* extract a 12 bit constant from branch instructions */
-
-#if 0
-
-int
-extract_12 (word)
- unsigned word;
-{
- return sign_extend (GET_FIELD (word, 19, 28) |
- GET_FIELD (word, 29, 29) << 10 |
- (word & 0x1) << 11, 12) << 2;
-}
-
-/* Deposit a 17 bit constant in an instruction (like bl). */
-
-unsigned int
-deposit_17 (opnd, word)
- unsigned opnd, word;
-{
- word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
- word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
- word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
- word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
-
- return word;
-}
-
-#endif
-
-/* extract a 17 bit constant from branch instructions, returning the
- 19 bit signed value. */
-
-static int
-extract_17 (word)
- unsigned word;
-{
- return sign_extend (GET_FIELD (word, 19, 28) |
- GET_FIELD (word, 29, 29) << 10 |
- GET_FIELD (word, 11, 15) << 11 |
- (word & 0x1) << 16, 17) << 2;
-}
-
-
-/* Compare the start address for two unwind entries returning 1 if
- the first address is larger than the second, -1 if the second is
- larger than the first, and zero if they are equal. */
-
-static int
-compare_unwind_entries (arg1, arg2)
- const void *arg1;
- const void *arg2;
-{
- const struct unwind_table_entry *a = arg1;
- const struct unwind_table_entry *b = arg2;
-
- if (a->region_start > b->region_start)
- return 1;
- else if (a->region_start < b->region_start)
- return -1;
- else
- return 0;
-}
-
-static void
-internalize_unwinds (objfile, table, section, entries, size, text_offset)
- struct objfile *objfile;
- struct unwind_table_entry *table;
- asection *section;
- unsigned int entries, size;
- CORE_ADDR text_offset;
-{
- /* We will read the unwind entries into temporary memory, then
- fill in the actual unwind table. */
- if (size > 0)
- {
- unsigned long tmp;
- unsigned i;
- char *buf = alloca (size);
-
- bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
-
- /* Now internalize the information being careful to handle host/target
- endian issues. */
- for (i = 0; i < entries; i++)
- {
- table[i].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *)buf);
- table[i].region_start += text_offset;
- buf += 4;
- table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- table[i].region_end += text_offset;
- buf += 4;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- buf += 4;
- table[i].Cannot_unwind = (tmp >> 31) & 0x1;
- table[i].Millicode = (tmp >> 30) & 0x1;
- table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
- table[i].Region_description = (tmp >> 27) & 0x3;
- table[i].reserved1 = (tmp >> 26) & 0x1;
- table[i].Entry_SR = (tmp >> 25) & 0x1;
- table[i].Entry_FR = (tmp >> 21) & 0xf;
- table[i].Entry_GR = (tmp >> 16) & 0x1f;
- table[i].Args_stored = (tmp >> 15) & 0x1;
- table[i].Variable_Frame = (tmp >> 14) & 0x1;
- table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
- table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
- table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
- table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
- table[i].Ada_Region = (tmp >> 9) & 0x1;
- table[i].cxx_info = (tmp >> 8) & 0x1;
- table[i].cxx_try_catch = (tmp >> 7) & 0x1;
- table[i].sched_entry_seq = (tmp >> 6) & 0x1;
- table[i].reserved2 = (tmp >> 5) & 0x1;
- table[i].Save_SP = (tmp >> 4) & 0x1;
- table[i].Save_RP = (tmp >> 3) & 0x1;
- table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
- table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
- table[i].Cleanup_defined = tmp & 0x1;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- buf += 4;
- table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
- table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
- table[i].Large_frame = (tmp >> 29) & 0x1;
- table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
- table[i].reserved4 = (tmp >> 27) & 0x1;
- table[i].Total_frame_size = tmp & 0x7ffffff;
-
- /* Stub unwinds are handled elsewhere. */
- table[i].stub_unwind.stub_type = 0;
- table[i].stub_unwind.padding = 0;
- }
- }
-}
-
-/* Read in the backtrace information stored in the `$UNWIND_START$' section of
- the object file. This info is used mainly by find_unwind_entry() to find
- out the stack frame size and frame pointer used by procedures. We put
- everything on the psymbol obstack in the objfile so that it automatically
- gets freed when the objfile is destroyed. */
-
-static void
-read_unwind_info (objfile)
- struct objfile *objfile;
-{
- asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
- unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
- unsigned index, unwind_entries, elf_unwind_entries;
- unsigned stub_entries, total_entries;
- CORE_ADDR text_offset;
- struct obj_unwind_info *ui;
- obj_private_data_t *obj_private;
-
- text_offset = ANOFFSET (objfile->section_offsets, 0);
- ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
- sizeof (struct obj_unwind_info));
-
- ui->table = NULL;
- ui->cache = NULL;
- ui->last = -1;
-
- /* Get hooks to all unwind sections. Note there is no linker-stub unwind
- section in ELF at the moment. */
- unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
- elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
- stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
-
- /* Get sizes and unwind counts for all sections. */
- if (unwind_sec)
- {
- unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
- unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
- }
- else
- {
- unwind_size = 0;
- unwind_entries = 0;
- }
-
- if (elf_unwind_sec)
- {
- elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */
- elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */
- }
- else
- {
- elf_unwind_size = 0;
- elf_unwind_entries = 0;
- }
-
- if (stub_unwind_sec)
- {
- stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
- stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
- }
- else
- {
- stub_unwind_size = 0;
- stub_entries = 0;
- }
-
- /* Compute total number of unwind entries and their total size. */
- total_entries = unwind_entries + elf_unwind_entries + stub_entries;
- total_size = total_entries * sizeof (struct unwind_table_entry);
-
- /* Allocate memory for the unwind table. */
- ui->table = (struct unwind_table_entry *)
- obstack_alloc (&objfile->psymbol_obstack, total_size);
- ui->last = total_entries - 1;
-
- /* Internalize the standard unwind entries. */
- index = 0;
- internalize_unwinds (objfile, &ui->table[index], unwind_sec,
- unwind_entries, unwind_size, text_offset);
- index += unwind_entries;
- internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
- elf_unwind_entries, elf_unwind_size, text_offset);
- index += elf_unwind_entries;
-
- /* Now internalize the stub unwind entries. */
- if (stub_unwind_size > 0)
- {
- unsigned int i;
- char *buf = alloca (stub_unwind_size);
-
- /* Read in the stub unwind entries. */
- bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
- 0, stub_unwind_size);
-
- /* Now convert them into regular unwind entries. */
- for (i = 0; i < stub_entries; i++, index++)
- {
- /* Clear out the next unwind entry. */
- memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
-
- /* Convert offset & size into region_start and region_end.
- Stuff away the stub type into "reserved" fields. */
- ui->table[index].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *) buf);
- ui->table[index].region_start += text_offset;
- buf += 4;
- ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
- (bfd_byte *) buf);
- buf += 2;
- ui->table[index].region_end
- = ui->table[index].region_start + 4 *
- (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
- buf += 2;
- }
-
- }
-
- /* Unwind table needs to be kept sorted. */
- qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
- compare_unwind_entries);
-
- /* Keep a pointer to the unwind information. */
- if(objfile->obj_private == NULL)
- {
- obj_private = (obj_private_data_t *)
- obstack_alloc(&objfile->psymbol_obstack,
- sizeof(obj_private_data_t));
- obj_private->unwind_info = NULL;
- obj_private->so_info = NULL;
-
- objfile->obj_private = (PTR) obj_private;
- }
- obj_private = (obj_private_data_t *)objfile->obj_private;
- obj_private->unwind_info = ui;
-}
-
-/* Lookup the unwind (stack backtrace) info for the given PC. We search all
- of the objfiles seeking the unwind table entry for this PC. Each objfile
- contains a sorted list of struct unwind_table_entry. Since we do a binary
- search of the unwind tables, we depend upon them to be sorted. */
-
-struct unwind_table_entry *
-find_unwind_entry(pc)
- CORE_ADDR pc;
-{
- int first, middle, last;
- struct objfile *objfile;
-
- /* A function at address 0? Not in HP-UX! */
- if (pc == (CORE_ADDR) 0)
- return NULL;
-
- ALL_OBJFILES (objfile)
- {
- struct obj_unwind_info *ui;
- ui = NULL;
- if (objfile->obj_private)
- ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info;
-
- if (!ui)
- {
- read_unwind_info (objfile);
- if (objfile->obj_private == NULL)
- error ("Internal error reading unwind information."); /* purecov: deadcode */
- ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info;
- }
-
- /* First, check the cache */
-
- if (ui->cache
- && pc >= ui->cache->region_start
- && pc <= ui->cache->region_end)
- return ui->cache;
-
- /* Not in the cache, do a binary search */
-
- first = 0;
- last = ui->last;
-
- while (first <= last)
- {
- middle = (first + last) / 2;
- if (pc >= ui->table[middle].region_start
- && pc <= ui->table[middle].region_end)
- {
- ui->cache = &ui->table[middle];
- return &ui->table[middle];
- }
-
- if (pc < ui->table[middle].region_start)
- last = middle - 1;
- else
- first = middle + 1;
- }
- } /* ALL_OBJFILES() */
- return NULL;
-}
-
-/* Return the adjustment necessary to make for addresses on the stack
- as presented by hpread.c.
-
- This is necessary because of the stack direction on the PA and the
- bizarre way in which someone (?) decided they wanted to handle
- frame pointerless code in GDB. */
-int
-hpread_adjust_stack_address (func_addr)
- CORE_ADDR func_addr;
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (func_addr);
- if (!u)
- return 0;
- else
- return u->Total_frame_size << 3;
-}
-
-/* Called to determine if PC is in an interrupt handler of some
- kind. */
-
-static int
-pc_in_interrupt_handler (pc)
- CORE_ADDR pc;
-{
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
- its frame isn't a pure interrupt frame. Deal with this. */
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
-}
-
-/* Called when no unwind descriptor was found for PC. Returns 1 if it
- appears that PC is in a linker stub. */
-
-static int
-pc_in_linker_stub (pc)
- CORE_ADDR pc;
-{
- int found_magic_instruction = 0;
- int i;
- char buf[4];
-
- /* If unable to read memory, assume pc is not in a linker stub. */
- if (target_read_memory (pc, buf, 4) != 0)
- return 0;
-
- /* We are looking for something like
-
- ; $$dyncall jams RP into this special spot in the frame (RP')
- ; before calling the "call stub"
- ldw -18(sp),rp
-
- ldsid (rp),r1 ; Get space associated with RP into r1
- mtsp r1,sp ; Move it into space register 0
- be,n 0(sr0),rp) ; back to your regularly scheduled program */
-
- /* Maximum known linker stub size is 4 instructions. Search forward
- from the given PC, then backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc + i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
-
- if (found_magic_instruction != 0)
- return 1;
-
- /* Now look backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc - i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
- return found_magic_instruction;
-}
-
-static int
-find_return_regnum(pc)
- CORE_ADDR pc;
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- return RP_REGNUM;
-
- if (u->Millicode)
- return 31;
-
- return RP_REGNUM;
-}
-
-/* Return size of frame, or -1 if we should use a frame pointer. */
-static int
-find_proc_framesize (pc)
- CORE_ADDR pc;
-{
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- /* This may indicate a bug in our callers... */
- if (pc == (CORE_ADDR)0)
- return -1;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* Linker stubs have a zero size frame. */
- return 0;
- else
- return -1;
- }
-
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- /* If Save_SP is set, and we're not in an interrupt or signal caller,
- then we have a frame pointer. Use it. */
- if (u->Save_SP && !pc_in_interrupt_handler (pc)
- && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
- return -1;
-
- return u->Total_frame_size << 3;
-}
-
-/* Return offset from sp at which rp is saved, or 0 if not saved. */
-static int rp_saved PARAMS ((CORE_ADDR));
-
-static int
-rp_saved (pc)
- CORE_ADDR pc;
-{
- struct unwind_table_entry *u;
-
- /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
- if (pc == (CORE_ADDR) 0)
- return 0;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* This is the so-called RP'. */
- return -24;
- else
- return 0;
- }
-
- if (u->Save_RP)
- return -20;
- else if (u->stub_unwind.stub_type != 0)
- {
- switch (u->stub_unwind.stub_type)
- {
- case EXPORT:
- case IMPORT:
- return -24;
- case PARAMETER_RELOCATION:
- return -8;
- default:
- return 0;
- }
- }
- else
- return 0;
-}
-
-int
-frameless_function_invocation (frame)
- struct frame_info *frame;
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (frame->pc);
-
- if (u == 0)
- return 0;
-
- return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
-}
-
-CORE_ADDR
-saved_pc_after_call (frame)
- struct frame_info *frame;
-{
- int ret_regnum;
- CORE_ADDR pc;
- struct unwind_table_entry *u;
-
- ret_regnum = find_return_regnum (get_frame_pc (frame));
- pc = read_register (ret_regnum) & ~0x3;
-
- /* If PC is in a linker stub, then we need to dig the address
- the stub will return to out of the stack. */
- u = find_unwind_entry (pc);
- if (u && u->stub_unwind.stub_type != 0)
- return FRAME_SAVED_PC (frame);
- else
- return pc;
-}
-
-CORE_ADDR
-hppa_frame_saved_pc (frame)
- struct frame_info *frame;
-{
- CORE_ADDR pc = get_frame_pc (frame);
- struct unwind_table_entry *u;
- CORE_ADDR old_pc;
- int spun_around_loop = 0;
- int rp_offset = 0;
-
- /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
- at the base of the frame in an interrupt handler. Registers within
- are saved in the exact same order as GDB numbers registers. How
- convienent. */
- if (pc_in_interrupt_handler (pc))
- return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
-
-#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
- /* Deal with signal handler caller frames too. */
- if (frame->signal_handler_caller)
- {
- CORE_ADDR rp;
- FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
- return rp & ~0x3;
- }
-#endif
-
- if (frameless_function_invocation (frame))
- {
- int ret_regnum;
-
- ret_regnum = find_return_regnum (pc);
-
- /* If the next frame is an interrupt frame or a signal
- handler caller, then we need to look in the saved
- register area to get the return pointer (the values
- in the registers may not correspond to anything useful). */
- if (frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_register (ret_regnum) & ~0x3;
- }
- else
- {
- spun_around_loop = 0;
- old_pc = pc;
-
-restart:
- rp_offset = rp_saved (pc);
-
- /* Similar to code in frameless function case. If the next
- frame is a signal or interrupt handler, then dig the right
- information out of the saved register info. */
- if (rp_offset == 0
- && frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else if (rp_offset == 0)
- {
- old_pc = pc;
- pc = read_register (RP_REGNUM) & ~0x3;
- }
- else
- {
- old_pc = pc;
- pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
- }
- }
-
- /* If PC is inside a linker stub, then dig out the address the stub
- will return to.
-
- Don't do this for long branch stubs. Why? For some unknown reason
- _start is marked as a long branch stub in hpux10. */
- u = find_unwind_entry (pc);
- if (u && u->stub_unwind.stub_type != 0
- && u->stub_unwind.stub_type != LONG_BRANCH)
- {
- unsigned int insn;
-
- /* If this is a dynamic executable, and we're in a signal handler,
- then the call chain will eventually point us into the stub for
- _sigreturn. Unlike most cases, we'll be pointed to the branch
- to the real sigreturn rather than the code after the real branch!.
-
- Else, try to dig the address the stub will return to in the normal
- fashion. */
- insn = read_memory_integer (pc, 4);
- if ((insn & 0xfc00e000) == 0xe8000000)
- return (pc + extract_17 (insn) + 8) & ~0x3;
- else
- {
- if (old_pc == pc)
- spun_around_loop++;
-
- if (spun_around_loop > 1)
- {
- /* We're just about to go around the loop again with
- no more hope of success. Die. */
- error("Unable to find return pc for this frame");
- }
- else
- goto restart;
- }
- }
-
- return pc;
-}
-
-/* We need to correct the PC and the FP for the outermost frame when we are
- in a system call. */
-
-void
-init_extra_frame_info (fromleaf, frame)
- int fromleaf;
- struct frame_info *frame;
-{
- int flags;
- int framesize;
-
- if (frame->next && !fromleaf)
- return;
-
- /* If the next frame represents a frameless function invocation
- then we have to do some adjustments that are normally done by
- FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
- if (fromleaf)
- {
- /* Find the framesize of *this* frame without peeking at the PC
- in the current frame structure (it isn't set yet). */
- framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
-
- /* Now adjust our base frame accordingly. If we have a frame pointer
- use it, else subtract the size of this frame from the current
- frame. (we always want frame->frame to point at the lowest address
- in the frame). */
- if (framesize == -1)
- frame->frame = TARGET_READ_FP ();
- else
- frame->frame -= framesize;
- return;
- }
-
- flags = read_register (FLAGS_REGNUM);
- if (flags & 2) /* In system call? */
- frame->pc = read_register (31) & ~0x3;
-
- /* The outermost frame is always derived from PC-framesize
-
- One might think frameless innermost frames should have
- a frame->frame that is the same as the parent's frame->frame.
- That is wrong; frame->frame in that case should be the *high*
- address of the parent's frame. It's complicated as hell to
- explain, but the parent *always* creates some stack space for
- the child. So the child actually does have a frame of some
- sorts, and its base is the high address in its parent's frame. */
- framesize = find_proc_framesize(frame->pc);
- if (framesize == -1)
- frame->frame = TARGET_READ_FP ();
- else
- frame->frame = read_register (SP_REGNUM) - framesize;
-}
-
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- This may involve searching through prologues for several functions
- at boundaries where GCC calls HP C code, or where code which has
- a frame pointer calls code without a frame pointer. */
-
-CORE_ADDR
-frame_chain (frame)
- struct frame_info *frame;
-{
- int my_framesize, caller_framesize;
- struct unwind_table_entry *u;
- CORE_ADDR frame_base;
- struct frame_info *tmp_frame;
-
- CORE_ADDR caller_pc;
-
- struct minimal_symbol *min_frame_symbol;
- struct symbol *frame_symbol;
- char *frame_symbol_name;
-
- /* If this is a threaded application, and we see the
- routine "__pthread_exit", treat it as the stack root
- for this thread. */
- min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
- frame_symbol = find_pc_function(frame->pc);
-
- if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */)
- {
- /* The test above for "no user function name" would defend
- against the slim likelihood that a user might define a
- routine named "__pthread_exit" and then try to debug it.
-
- If it weren't commented out, and you tried to debug the
- pthread library itself, you'd get errors.
-
- So for today, we don't make that check. */
- frame_symbol_name = SYMBOL_NAME(min_frame_symbol);
- if (frame_symbol_name != 0) {
- if (0 == strncmp(frame_symbol_name,
- THREAD_INITIAL_FRAME_SYMBOL,
- THREAD_INITIAL_FRAME_SYM_LEN)) {
- /* Pretend we've reached the bottom of the stack. */
- return (CORE_ADDR) 0;
- }
- }
- } /* End of hacky code for threads. */
-
- /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
- are easy; at *sp we have a full save state strucutre which we can
- pull the old stack pointer from. Also see frame_saved_pc for
- code to dig a saved PC out of the save state structure. */
- if (pc_in_interrupt_handler (frame->pc))
- frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
-#ifdef FRAME_BASE_BEFORE_SIGTRAMP
- else if (frame->signal_handler_caller)
- {
- FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
- }
-#endif
- else
- frame_base = frame->frame;
-
- /* Get frame sizes for the current frame and the frame of the
- caller. */
- my_framesize = find_proc_framesize (frame->pc);
- caller_pc = FRAME_SAVED_PC(frame);
-
- /* If we can't determine the caller's PC, then it's not likely we can
- really determine anything meaningful about its frame. We'll consider
- this to be stack bottom. */
- if (caller_pc == (CORE_ADDR) 0)
- return (CORE_ADDR) 0;
-
- caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
-
- /* If caller does not have a frame pointer, then its frame
- can be found at current_frame - caller_framesize. */
- if (caller_framesize != -1)
- {
- return frame_base - caller_framesize;
- }
- /* Both caller and callee have frame pointers and are GCC compiled
- (SAVE_SP bit in unwind descriptor is on for both functions.
- The previous frame pointer is found at the top of the current frame. */
- if (caller_framesize == -1 && my_framesize == -1)
- {
- return read_memory_integer (frame_base, 4);
- }
- /* Caller has a frame pointer, but callee does not. This is a little
- more difficult as GCC and HP C lay out locals and callee register save
- areas very differently.
-
- The previous frame pointer could be in a register, or in one of
- several areas on the stack.
-
- Walk from the current frame to the innermost frame examining
- unwind descriptors to determine if %r3 ever gets saved into the
- stack. If so return whatever value got saved into the stack.
- If it was never saved in the stack, then the value in %r3 is still
- valid, so use it.
-
- We use information from unwind descriptors to determine if %r3
- is saved into the stack (Entry_GR field has this information). */
-
- tmp_frame = frame;
- while (tmp_frame)
- {
- u = find_unwind_entry (tmp_frame->pc);
-
- if (!u)
- {
- /* We could find this information by examining prologues. I don't
- think anyone has actually written any tools (not even "strip")
- which leave them out of an executable, so maybe this is a moot
- point. */
- /* ??rehrauer: Actually, it's quite possible to stepi your way into
- code that doesn't have unwind entries. For example, stepping into
- the dynamic linker will give you a PC that has none. Thus, I've
- disabled this warning. */
-#if 0
- warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
-#endif
- return (CORE_ADDR) 0;
- }
-
- /* Entry_GR specifies the number of callee-saved general registers
- saved in the stack. It starts at %r3, so %r3 would be 1. */
- if (u->Entry_GR >= 1 || u->Save_SP
- || tmp_frame->signal_handler_caller
- || pc_in_interrupt_handler (tmp_frame->pc))
- break;
- else
- tmp_frame = tmp_frame->next;
- }
-
- if (tmp_frame)
- {
- /* We may have walked down the chain into a function with a frame
- pointer. */
- if (u->Save_SP
- && !tmp_frame->signal_handler_caller
- && !pc_in_interrupt_handler (tmp_frame->pc))
- {
- return read_memory_integer (tmp_frame->frame, 4);
- }
- /* %r3 was saved somewhere in the stack. Dig it out. */
- else
- {
- struct frame_saved_regs saved_regs;
-
- /* Sick.
-
- For optimization purposes many kernels don't have the
- callee saved registers into the save_state structure upon
- entry into the kernel for a syscall; the optimization
- is usually turned off if the process is being traced so
- that the debugger can get full register state for the
- process.
-
- This scheme works well except for two cases:
-
- * Attaching to a process when the process is in the
- kernel performing a system call (debugger can't get
- full register state for the inferior process since
- the process wasn't being traced when it entered the
- system call).
-
- * Register state is not complete if the system call
- causes the process to core dump.
-
-
- The following heinous code is an attempt to deal with
- the lack of register state in a core dump. It will
- fail miserably if the function which performs the
- system call has a variable sized stack frame. */
-
- get_frame_saved_regs (tmp_frame, &saved_regs);
-
- /* Abominable hack. */
- if (current_target.to_has_execution == 0
- && ((saved_regs.regs[FLAGS_REGNUM]
- && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
- & 0x2))
- || (saved_regs.regs[FLAGS_REGNUM] == 0
- && read_register (FLAGS_REGNUM) & 0x2)))
- {
- u = find_unwind_entry (FRAME_SAVED_PC (frame));
- if (!u)
- {
- return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
- }
- else
- {
- return frame_base - (u->Total_frame_size << 3);
- }
- }
-
- return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
- }
- }
- else
- {
- struct frame_saved_regs saved_regs;
-
- /* Get the innermost frame. */
- tmp_frame = frame;
- while (tmp_frame->next != NULL)
- tmp_frame = tmp_frame->next;
-
- get_frame_saved_regs (tmp_frame, &saved_regs);
- /* Abominable hack. See above. */
- if (current_target.to_has_execution == 0
- && ((saved_regs.regs[FLAGS_REGNUM]
- && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
- & 0x2))
- || (saved_regs.regs[FLAGS_REGNUM] == 0
- && read_register (FLAGS_REGNUM) & 0x2)))
- {
- u = find_unwind_entry (FRAME_SAVED_PC (frame));
- if (!u)
- {
- return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
- }
- else
- {
- return frame_base - (u->Total_frame_size << 3);
- }
- }
-
- /* The value in %r3 was never saved into the stack (thus %r3 still
- holds the value of the previous frame pointer). */
- return TARGET_READ_FP ();
- }
-}
-
-
-/* To see if a frame chain is valid, see if the caller looks like it
- was compiled with gcc. */
-
-int
-hppa_frame_chain_valid (chain, thisframe)
- CORE_ADDR chain;
- struct frame_info *thisframe;
-{
- struct minimal_symbol *msym_us;
- struct minimal_symbol *msym_start;
- struct unwind_table_entry *u, *next_u = NULL;
- struct frame_info *next;
-
- if (!chain)
- return 0;
-
- u = find_unwind_entry (thisframe->pc);
-
- if (u == NULL)
- return 1;
-
- /* We can't just check that the same of msym_us is "_start", because
- someone idiotically decided that they were going to make a Ltext_end
- symbol with the same address. This Ltext_end symbol is totally
- indistinguishable (as nearly as I can tell) from the symbol for a function
- which is (legitimately, since it is in the user's namespace)
- named Ltext_end, so we can't just ignore it. */
- msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
- msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
- if (msym_us
- && msym_start
- && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
- return 0;
-
- /* Grrrr. Some new idiot decided that they don't want _start for the
- PRO configurations; $START$ calls main directly.... Deal with it. */
- msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
- if (msym_us
- && msym_start
- && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
- return 0;
-
- next = get_next_frame (thisframe);
- if (next)
- next_u = find_unwind_entry (next->pc);
-
- /* If this frame does not save SP, has no stack, isn't a stub,
- and doesn't "call" an interrupt routine or signal handler caller,
- then its not valid. */
- if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
- || (thisframe->next && thisframe->next->signal_handler_caller)
- || (next_u && next_u->HP_UX_interrupt_marker))
- return 1;
-
- if (pc_in_linker_stub (thisframe->pc))
- return 1;
-
- return 0;
-}
-
-/*
- These functions deal with saving and restoring register state
- around a function call in the inferior. They keep the stack
- double-word aligned; eventually, on an hp700, the stack will have
- to be aligned to a 64-byte boundary. */
-
-void
-push_dummy_frame (inf_status)
- struct inferior_status *inf_status;
-{
- CORE_ADDR sp, pc, pcspace;
- register int regnum;
- int int_buffer;
- double freg_buffer;
-
- /* Oh, what a hack. If we're trying to perform an inferior call
- while the inferior is asleep, we have to make sure to clear
- the "in system call" bit in the flag register (the call will
- start after the syscall returns, so we're no longer in the system
- call!) This state is kept in "inf_status", change it there.
-
- We also need a number of horrid hacks to deal with lossage in the
- PC queue registers (apparently they're not valid when the in syscall
- bit is set). */
- pc = target_read_pc (inferior_pid);
- int_buffer = read_register (FLAGS_REGNUM);
- if (int_buffer & 0x2)
- {
- unsigned int sid;
- int_buffer &= ~0x2;
- memcpy (inf_status->registers, &int_buffer, 4);
- memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
- pc += 4;
- memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
- pc -= 4;
- sid = (pc >> 30) & 0x3;
- if (sid == 0)
- pcspace = read_register (SR4_REGNUM);
- else
- pcspace = read_register (SR4_REGNUM + 4 + sid);
- memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
- &pcspace, 4);
- memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
- &pcspace, 4);
- }
- else
- pcspace = read_register (PCSQ_HEAD_REGNUM);
-
- /* Space for "arguments"; the RP goes in here. */
- sp = read_register (SP_REGNUM) + 48;
- int_buffer = read_register (RP_REGNUM) | 0x3;
- write_memory (sp - 20, (char *)&int_buffer, 4);
-
- int_buffer = TARGET_READ_FP ();
- write_memory (sp, (char *)&int_buffer, 4);
-
- write_register (FP_REGNUM, sp);
-
- sp += 8;
-
- for (regnum = 1; regnum < 32; regnum++)
- if (regnum != RP_REGNUM && regnum != FP_REGNUM)
- sp = push_word (sp, read_register (regnum));
-
- sp += 4;
-
- for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
- {
- read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
- sp = push_bytes (sp, (char *)&freg_buffer, 8);
- }
- sp = push_word (sp, read_register (IPSW_REGNUM));
- sp = push_word (sp, read_register (SAR_REGNUM));
- sp = push_word (sp, pc);
- sp = push_word (sp, pcspace);
- sp = push_word (sp, pc + 4);
- sp = push_word (sp, pcspace);
- write_register (SP_REGNUM, sp);
-}
-
-static void
-find_dummy_frame_regs (frame, frame_saved_regs)
- struct frame_info *frame;
- struct frame_saved_regs *frame_saved_regs;
-{
- CORE_ADDR fp = frame->frame;
- int i;
-
- frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
- frame_saved_regs->regs[FP_REGNUM] = fp;
- frame_saved_regs->regs[1] = fp + 8;
-
- for (fp += 12, i = 3; i < 32; i++)
- {
- if (i != FP_REGNUM)
- {
- frame_saved_regs->regs[i] = fp;
- fp += 4;
- }
- }
-
- fp += 4;
- for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
- frame_saved_regs->regs[i] = fp;
-
- frame_saved_regs->regs[IPSW_REGNUM] = fp;
- frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
- frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
- frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
- frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
- frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
-}
-
-void
-hppa_pop_frame ()
-{
- register struct frame_info *frame = get_current_frame ();
- register CORE_ADDR fp, npc, target_pc;
- register int regnum;
- struct frame_saved_regs fsr;
- double freg_buffer;
-
- fp = FRAME_FP (frame);
- get_frame_saved_regs (frame, &fsr);
-
-#ifndef NO_PC_SPACE_QUEUE_RESTORE
- if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
- restore_pc_queue (&fsr);
-#endif
-
- for (regnum = 31; regnum > 0; regnum--)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
-
- for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
- if (fsr.regs[regnum])
- {
- read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
- write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
- }
-
- if (fsr.regs[IPSW_REGNUM])
- write_register (IPSW_REGNUM,
- read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
-
- if (fsr.regs[SAR_REGNUM])
- write_register (SAR_REGNUM,
- read_memory_integer (fsr.regs[SAR_REGNUM], 4));
-
- /* If the PC was explicitly saved, then just restore it. */
- if (fsr.regs[PCOQ_TAIL_REGNUM])
- {
- npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
- write_register (PCOQ_TAIL_REGNUM, npc);
- }
- /* Else use the value in %rp to set the new PC. */
- else
- {
- npc = read_register (RP_REGNUM);
- write_pc (npc);
- }
-
- write_register (FP_REGNUM, read_memory_integer (fp, 4));
-
- if (fsr.regs[IPSW_REGNUM]) /* call dummy */
- write_register (SP_REGNUM, fp - 48);
- else
- write_register (SP_REGNUM, fp);
-
- /* The PC we just restored may be inside a return trampoline. If so
- we want to restart the inferior and run it through the trampoline.
-
- Do this by setting a momentary breakpoint at the location the
- trampoline returns to.
-
- Don't skip through the trampoline if we're popping a dummy frame. */
- target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
- if (target_pc && !fsr.regs[IPSW_REGNUM])
- {
- struct symtab_and_line sal;
- struct breakpoint *breakpoint;
- struct cleanup *old_chain;
-
- /* Set up our breakpoint. Set it to be silent as the MI code
- for "return_command" will print the frame we returned to. */
- sal = find_pc_line (target_pc, 0);
- sal.pc = target_pc;
- breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
- breakpoint->silent = 1;
-
- /* So we can clean things up. */
- old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
-
- /* Start up the inferior. */
- clear_proceed_status ();
- proceed_to_finish = 1;
- proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
-
- /* Perform our cleanups. */
- do_cleanups (old_chain);
- }
- flush_cached_frames ();
-}
-
-/* After returning to a dummy on the stack, restore the instruction
- queue space registers. */
-
-static int
-restore_pc_queue (fsr)
- struct frame_saved_regs *fsr;
-{
- CORE_ADDR pc = read_pc ();
- CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
- struct target_waitstatus w;
- int insn_count;
-
- /* Advance past break instruction in the call dummy. */
- write_register (PCOQ_HEAD_REGNUM, pc + 4);
- write_register (PCOQ_TAIL_REGNUM, pc + 8);
-
- /* HPUX doesn't let us set the space registers or the space
- registers of the PC queue through ptrace. Boo, hiss.
- Conveniently, the call dummy has this sequence of instructions
- after the break:
- mtsp r21, sr0
- ble,n 0(sr0, r22)
-
- So, load up the registers and single step until we are in the
- right place. */
-
- write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
- write_register (22, new_pc);
-
- for (insn_count = 0; insn_count < 3; insn_count++)
- {
- /* FIXME: What if the inferior gets a signal right now? Want to
- merge this into wait_for_inferior (as a special kind of
- watchpoint? By setting a breakpoint at the end? Is there
- any other choice? Is there *any* way to do this stuff with
- ptrace() or some equivalent?). */
- resume (1, 0);
- target_wait (inferior_pid, &w);
-
- if (w.kind == TARGET_WAITKIND_SIGNALLED)
- {
- stop_signal = w.value.sig;
- terminal_ours_for_output ();
- printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
- target_signal_to_name (stop_signal),
- target_signal_to_string (stop_signal));
- gdb_flush (gdb_stdout);
- return 0;
- }
- }
- target_terminal_ours ();
- target_fetch_registers (-1);
- return 1;
-}
-
-#if 0
-CORE_ADDR
-hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
-{
- /* array of arguments' offsets */
- int *offset = (int *)alloca(nargs * sizeof (int));
- int cum = 0;
- int i, alignment;
-
- for (i = 0; i < nargs; i++)
- {
- int x = 0;
- /* cum is the sum of the lengths in bytes of
- the arguments seen so far */
- cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
-
- /* value must go at proper alignment. Assume alignment is a
- power of two. */
- alignment = hppa_alignof (VALUE_TYPE (args[i]));
-
- if (cum % alignment)
- cum = (cum + alignment) & -alignment;
- offset[i] = -cum;
-
- }
- sp += max ((cum + 7) & -8, 16);
-
- for (i = 0; i < nargs; i++)
- write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
- TYPE_LENGTH (VALUE_TYPE (args[i])));
-
- if (struct_return)
- write_register (28, struct_addr);
- return sp + 32;
-}
-#endif
-
-/* elz: I am rewriting this function, because the one above is a very
- obscure piece of code.
- This function pushes the arguments on the stack. The stack grows up
- on the PA.
- Each argument goes in one (or more) word (4 bytes) on the stack.
- The first four words for the args must be allocated, even if they
- are not used.
- The 'topmost' arg is arg0, the 'bottom-most' is arg3. (if you think of
- them as 1 word long).
- Below these there can be any number of arguments, as needed by the function.
- If an arg is bigger than one word, it will be written on the stack
- occupying as many words as needed. Args that are bigger than 64bits
- are not copied on the stack, a pointer is passed instead.
-
- On top of the arg0 word there are other 8 words (32bytes) which are used
- for other purposes */
-
-CORE_ADDR
-hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
-{
- /* array of arguments' offsets */
- int *offset = (int *)alloca(nargs * sizeof (int));
- /* array of arguments' lengths: real lengths in bytes, not aligned to word size */
- int *lengths = (int *)alloca(nargs * sizeof (int));
-
- int bytes_reserved; /* this is the number of bytes on the stack occupied by an
- argument. This will be always a multiple of 4 */
-
- int cum_bytes_reserved = 0; /* this is the total number of bytes reserved by the args
- seen so far. It is a multiple of 4 always */
- int cum_bytes_aligned = 0; /* same as above, but aligned on 8 bytes */
- int i;
-
- /* When an arg does not occupy a whole word, for instance in bitfields:
- if the arg is x bits (0<x<32), it must be written
- starting from the (x-1)-th position down until the 0-th position.
- It is enough to align it to the word. */
- /* if an arg occupies 8 bytes, it must be aligned on the 64-bits
- high order word in odd arg word. */
- /* if an arg is larger than 64 bits, we need to pass a pointer to it, and
- copy the actual value on the stack, so that the callee can play with it.
- This is taken care of in valops.c in the call_function_by_hand function.
- The argument that is received in this function here has already be converted
- to a pointer to whatever is needed, so that it just can be pushed
- as a word argument */
-
- for (i = 0; i < nargs; i++)
- {
-
- lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
-
- if (lengths[i] % 4)
- bytes_reserved = (lengths[i] / 4) * 4 + 4;
- else
- bytes_reserved = lengths[i];
-
- offset[i] = cum_bytes_reserved + lengths[i];
-
- if ((bytes_reserved == 8) && (offset[i] % 8)) /* if 64-bit arg is not 64 bit aligned */
- {
- int new_offset=0;
- /* bytes_reserved is already aligned to the word, so we put it at one word
- more down the stack. This will leave one empty word on the
- stack, and one unused register. This is OK, see the calling
- convention doc */
- /* the offset may have to be moved to the corresponding position
- one word down the stack, to maintain
- alignment. */
- new_offset = (offset[i] / 8) * 8 + 8;
- if ((new_offset - offset[i]) >=4)
- {
- bytes_reserved += 4;
- offset[i] += 4;
- }
- }
-
- cum_bytes_reserved += bytes_reserved;
-
- }
-
- /* now move up the sp to reserve at least 4 words required for the args,
- or more than this if needed */
- /* wee also need to keep the sp aligned to 8 bytes */
- cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
- sp += max (cum_bytes_aligned, 16);
-
- /* now write each of the args at the proper offset down the stack */
- for (i = 0; i < nargs; i++)
- write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
-
-
- /* if a structure has to be returned, set up register 28 to hold its address */
- if (struct_return)
- write_register (28, struct_addr);
-
- /* the stack will have other 8 words on top of the args */
- return sp + 32;
-}
-
-
-/* elz: this function returns a value which is built looking at the given address.
- It is called from call_function_by_hand, in case we need to return a
- value which is larger than 64 bits, and it is stored in the stack rather than
- in the registers r28 and r29 or fr4.
- This function does the same stuff as value_being_returned in values.c, but
- gets the value from the stack rather than from the buffer where all the
- registers were saved when the function called completed. */
-value_ptr
-hppa_value_returned_from_stack (valtype , addr)
- register struct type *valtype;
- CORE_ADDR addr;
-{
- register value_ptr val;
-
- val = allocate_value (valtype);
- CHECK_TYPEDEF (valtype);
- target_read_memory(addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
-
- return val;
-}
-
-
-
-/* elz: Used to lookup a symbol in the shared libraries.
- This function calls shl_findsym, indirectly through a
- call to __d_shl_get. __d_shl_get is in end.c, which is always
- linked in by the hp compilers/linkers.
- The call to shl_findsym cannot be made directly because it needs
- to be active in target address space.
- inputs: - minimal symbol pointer for the function we want to look up
- - address in target space of the descriptor for the library
- where we want to look the symbol up.
- This address is retrieved using the
- som_solib_get_solib_by_pc function (somsolib.c).
- output: - real address in the library of the function.
- note: the handle can be null, in which case shl_findsym will look for
- the symbol in all the loaded shared libraries.
- files to look at if you need reference on this stuff:
- dld.c, dld_shl_findsym.c
- end.c
- man entry for shl_findsym */
-
-CORE_ADDR
-find_stub_with_shl_get(function, handle)
- struct minimal_symbol *function;
- CORE_ADDR handle;
-{
- struct symbol *get_sym, *symbol2;
- struct minimal_symbol *buff_minsym, *msymbol;
- struct type *ftype;
- value_ptr *args;
- value_ptr funcval, val;
-
- int x, namelen, err_value, tmp = -1;
- CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
- CORE_ADDR stub_addr;
-
-
- args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
- funcval = find_function_in_inferior("__d_shl_get");
- get_sym = lookup_symbol("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
- buff_minsym = lookup_minimal_symbol("__buffer", NULL, NULL);
- msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
- symbol2 = lookup_symbol("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
- endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
- namelen = strlen(SYMBOL_NAME(function));
- value_return_addr = endo_buff_addr + namelen;
- ftype = check_typedef(SYMBOL_TYPE(get_sym));
-
- /* do alignment */
- if ((x=value_return_addr % 64) !=0)
- value_return_addr = value_return_addr + 64 - x;
-
- errno_return_addr = value_return_addr + 64;
-
-
- /* set up stuff needed by __d_shl_get in buffer in end.o */
-
- target_write_memory(endo_buff_addr, SYMBOL_NAME(function), namelen);
-
- target_write_memory(value_return_addr, (char *) &tmp, 4);
-
- target_write_memory(errno_return_addr, (char *) &tmp, 4);
-
- target_write_memory(SYMBOL_VALUE_ADDRESS(msymbol),
- (char *)&handle, 4);
-
- /* now prepare the arguments for the call */
-
- args[0] = value_from_longest (TYPE_FIELD_TYPE(ftype, 0), 12);
- args[1] = value_from_longest (TYPE_FIELD_TYPE(ftype, 1), SYMBOL_VALUE_ADDRESS(msymbol));
- args[2] = value_from_longest (TYPE_FIELD_TYPE(ftype, 2), endo_buff_addr);
- args[3] = value_from_longest (TYPE_FIELD_TYPE(ftype, 3), TYPE_PROCEDURE);
- args[4] = value_from_longest (TYPE_FIELD_TYPE(ftype, 4), value_return_addr);
- args[5] = value_from_longest (TYPE_FIELD_TYPE(ftype, 5), errno_return_addr);
-
- /* now call the function */
-
- val = call_function_by_hand(funcval, 6, args);
-
- /* now get the results */
-
- target_read_memory(errno_return_addr, (char *) &err_value, sizeof(err_value));
-
- target_read_memory(value_return_addr, (char *) &stub_addr, sizeof(stub_addr));
- if (stub_addr <= 0)
- error("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */
-
- return(stub_addr);
-}
-
-/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
-static CORE_ADDR
-cover_find_stub_with_shl_get (args)
- args_for_find_stub * args;
-{
- return find_stub_with_shl_get (args->msym, args->solib_handle);
-}
-
-
-/* Insert the specified number of args and function address
- into a call sequence of the above form stored at DUMMYNAME.
-
- On the hppa we need to call the stack dummy through $$dyncall.
- Therefore our version of FIX_CALL_DUMMY takes an extra argument,
- real_pc, which is the location where gdb should start up the
- inferior to do the function call. */
-
-CORE_ADDR
-hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
- char *dummy;
- CORE_ADDR pc;
- CORE_ADDR fun;
- int nargs;
- value_ptr *args;
- struct type *type;
- int gcc_p;
-{
- CORE_ADDR dyncall_addr;
- struct minimal_symbol *msymbol;
- struct minimal_symbol *trampoline;
- int flags = read_register (FLAGS_REGNUM);
- struct unwind_table_entry *u;
- CORE_ADDR new_stub=0;
- CORE_ADDR solib_handle=0;
-
- trampoline = NULL;
- msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for $$dyncall trampoline"); /* purecov: deadcode */
-
- dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
-
- /* FUN could be a procedure label, in which case we have to get
- its real address and the value of its GOT/DP. */
- if (fun & 0x2)
- {
- /* Get the GOT/DP value for the target function. It's
- at *(fun+4). Note the call dummy is *NOT* allowed to
- trash %r19 before calling the target function. */
- write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
-
- /* Now get the real address for the function we are calling, it's
- at *fun. */
- fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
- }
- else
- {
-
-#ifndef GDB_TARGET_IS_PA_ELF
- /* FUN could be either an export stub, or the real address of a
- function in a shared library. We must call an import stub
- rather than the export stub or real function for lazy binding
- to work correctly. */
-
- /* elz: let's see if fun is in a shared library */
- solib_handle = som_solib_get_solib_by_pc(fun);
-
- /* elz: for 10.30 and 11.00 the calls via __d_plt_call cannot be made
- via import stubs, only via plables, so this code here becomes useless.
- On 10.20, the plables mechanism works too, so we just ignore this import
- stub stuff */
-#if 0
- if (solib_handle)
- {
- struct objfile *objfile;
- struct minimal_symbol *funsymbol, *stub_symbol;
- CORE_ADDR newfun = 0;
-
- funsymbol = lookup_minimal_symbol_by_pc (fun);
- if (!funsymbol)
- error ("Unable to find minimal symbol for target fucntion.\n");
-
- /* Search all the object files for an import symbol with the
- right name. */
- ALL_OBJFILES (objfile)
- {
- stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
- NULL, objfile);
- /* Found a symbol with the right name. */
- if (stub_symbol)
- {
- struct unwind_table_entry *u;
- /* It must be a shared library trampoline. */
- if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
- continue;
-
- /* It must also be an import stub. */
- u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
- if (!u || u->stub_unwind.stub_type != IMPORT)
- continue;
-
- /* OK. Looks like the correct import stub. */
- newfun = SYMBOL_VALUE (stub_symbol);
- fun = newfun;
- }
- }
- if (newfun == 0)
- write_register (19, som_solib_get_got_by_pc (fun));
- }
-#endif /* end of if 0 */
-#endif
- }
-
- /* If we are calling an import stub (eg calling into a dynamic library)
- then have sr4export call the magic __d_plt_call routine which is linked
- in from end.o. (You can't use _sr4export to call the import stub as
- the value in sp-24 will get fried and you end up returning to the
- wrong location. You can't call the import stub directly as the code
- to bind the PLT entry to a function can't return to a stack address.) */
-
- /* elz:
- There does not have to be an import stub to call a routine in a
- different load module (note: a "load module" is an a.out or a shared
- library). If you call a routine indirectly, going through $$dyncall (or
- $$dyncall_external), you won't go through an import stub. Import stubs
- are only used for direct calls to an imported routine.
-
- What you (wdb) need is to go through $$dyncall with a proper plabel for
- the imported routine. shl_findsym() returns you the address of a plabel
- suitable for use in making an indirect call through, e.g., through
- $$dyncall.
- This is taken care below with the call to find_stub_.... */
-#if 0
- /* elz: this check here is not necessary if we are going to call stuff through
- plabels only, we just now check whether the function we call is in a shlib */
- u = find_unwind_entry (fun);
-
- if (u && u->stub_unwind.stub_type == IMPORT ||
- (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle))
-#endif /* 0 */
- if (solib_handle)
- {
- CORE_ADDR new_fun;
-
- /* Prefer __gcc_plt_call over the HP supplied routine because
- __gcc_plt_call works for any number of arguments. */
- trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
- if (trampoline == NULL)
- trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
-
- if (trampoline == NULL)
- {
- error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g (links in /opt/langtools/lib/end.o)");
- }
- /* This is where sr4export will jump to. */
- new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
-
- if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
- {
- /* if the function is in a shared library, but we have no import sub for
- it, we need to get the plabel from a call to __d_shl_get, which is a
- function in end.o. To call this function we need to set up various things */
-
- /* actually now we just use the plabel any time we make the call,
- because on 10.30 and 11.00 this is the only acceptable way. This also
- works fine for 10.20 */
- /* if (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle) */
- {
- struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc(fun);
-
- new_stub = find_stub_with_shl_get(fmsymbol, solib_handle);
-
- if (new_stub == NULL)
- error("Can't find an import stub for %s", SYMBOL_NAME(fmsymbol)); /* purecov: deadcode */
- }
-
- /* We have to store the address of the stub in __shlib_funcptr. */
- msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
- (struct objfile *)NULL);
- if (msymbol == NULL)
- error ("Can't find an address for __shlib_funcptr"); /* purecov: deadcode */
-
- /* if (new_stub != NULL) */
- target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&new_stub, 4);
- /* this is no longer used */
- /* else
- target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); */
-
- /* We want sr4export to call __d_plt_call, so we claim it is
- the final target. Clear trampoline. */
- fun = new_fun;
- trampoline = NULL;
- }
- }
-
- /* Store upper 21 bits of function address into ldil. fun will either be
- the final target (most cases) or __d_plt_call when calling into a shared
- library and __gcc_plt_call is not available. */
- store_unsigned_integer
- (&dummy[FUNC_LDIL_OFFSET],
- INSTRUCTION_SIZE,
- deposit_21 (fun >> 11,
- extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
- INSTRUCTION_SIZE)));
-
- /* Store lower 11 bits of function address into ldo */
- store_unsigned_integer
- (&dummy[FUNC_LDO_OFFSET],
- INSTRUCTION_SIZE,
- deposit_14 (fun & MASK_11,
- extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
- INSTRUCTION_SIZE)));
-#ifdef SR4EXPORT_LDIL_OFFSET
-
- {
- CORE_ADDR trampoline_addr;
-
- /* We may still need sr4export's address too. */
-
- if (trampoline == NULL)
- {
- msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for _sr4export trampoline"); /* purecov: deadcode */
-
- trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
- }
- else
- trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
-
-
- /* Store upper 21 bits of trampoline's address into ldil */
- store_unsigned_integer
- (&dummy[SR4EXPORT_LDIL_OFFSET],
- INSTRUCTION_SIZE,
- deposit_21 (trampoline_addr >> 11,
- extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
- INSTRUCTION_SIZE)));
-
- /* Store lower 11 bits of trampoline's address into ldo */
- store_unsigned_integer
- (&dummy[SR4EXPORT_LDO_OFFSET],
- INSTRUCTION_SIZE,
- deposit_14 (trampoline_addr & MASK_11,
- extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
- INSTRUCTION_SIZE)));
- }
-#endif
-
- write_register (22, pc);
-
- /* If we are in a syscall, then we should call the stack dummy
- directly. $$dyncall is not needed as the kernel sets up the
- space id registers properly based on the value in %r31. In
- fact calling $$dyncall will not work because the value in %r22
- will be clobbered on the syscall exit path.
-
- Similarly if the current PC is in a shared library. Note however,
- this scheme won't work if the shared library isn't mapped into
- the same space as the stack. */
- if (flags & 2)
- return pc;
-#ifndef GDB_TARGET_IS_PA_ELF
- else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
- return pc;
-#endif
- else
- return dyncall_addr;
-
-}
-
-
-
-
-/* If the pid is in a syscall, then the FP register is not readable.
- We'll return zero in that case, rather than attempting to read it
- and cause a warning. */
-CORE_ADDR
-target_read_fp (pid)
- int pid;
-{
- int flags = read_register (FLAGS_REGNUM);
-
- if (flags & 2) {
- return (CORE_ADDR) 0;
- }
-
- /* This is the only site that may directly read_register () the FP
- register. All others must use TARGET_READ_FP (). */
- return read_register (FP_REGNUM);
-}
-
-
-/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
- bits. */
-
-CORE_ADDR
-target_read_pc (pid)
- int pid;
-{
- int flags = read_register_pid (FLAGS_REGNUM, pid);
-
- /* The following test does not belong here. It is OS-specific, and belongs
- in native code. */
- /* Test SS_INSYSCALL */
- if (flags & 2)
- return read_register_pid (31, pid) & ~0x3;
-
- return read_register_pid (PC_REGNUM, pid) & ~0x3;
-}
-
-/* Write out the PC. If currently in a syscall, then also write the new
- PC value into %r31. */
-
-void
-target_write_pc (v, pid)
- CORE_ADDR v;
- int pid;
-{
- int flags = read_register_pid (FLAGS_REGNUM, pid);
-
- /* The following test does not belong here. It is OS-specific, and belongs
- in native code. */
- /* If in a syscall, then set %r31. Also make sure to get the
- privilege bits set correctly. */
- /* Test SS_INSYSCALL */
- if (flags & 2)
- write_register_pid (31, v | 0x3, pid);
-
- write_register_pid (PC_REGNUM, v, pid);
- write_register_pid (NPC_REGNUM, v + 4, pid);
-}
-
-/* return the alignment of a type in bytes. Structures have the maximum
- alignment required by their fields. */
-
-static int
-hppa_alignof (type)
- struct type *type;
-{
- int max_align, align, i;
- CHECK_TYPEDEF (type);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_INT:
- case TYPE_CODE_FLT:
- return TYPE_LENGTH (type);
- case TYPE_CODE_ARRAY:
- return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- max_align = 1;
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- /* Bit fields have no real alignment. */
- /* if (!TYPE_FIELD_BITPOS (type, i)) */
- if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
- {
- align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
- max_align = max (max_align, align);
- }
- }
- return max_align;
- default:
- return 4;
- }
-}
-
-/* Print the register regnum, or all registers if regnum is -1 */
-
-void
-pa_do_registers_info (regnum, fpregs)
- int regnum;
- int fpregs;
-{
- char raw_regs [REGISTER_BYTES];
- int i;
-
- /* Make a copy of gdb's save area (may cause actual
- reads from the target). */
- for (i = 0; i < NUM_REGS; i++)
- read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
-
- if (regnum == -1)
- pa_print_registers (raw_regs, regnum, fpregs);
- else if (regnum < FP4_REGNUM) {
- long reg_val[2];
-
- /* Why is the value not passed through "extract_signed_integer"
- as in "pa_print_registers" below? */
- pa_register_look_aside(raw_regs, regnum, &reg_val[0]);
-
- if(!is_pa_2) {
- printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
- }
- else {
- /* Fancy % formats to prevent leading zeros. */
- if(reg_val[0] == 0)
- printf_unfiltered("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
- else
- printf_unfiltered("%s %x%8.8x\n", REGISTER_NAME (regnum),
- reg_val[0], reg_val[1]);
- }
- }
- else
- /* Note that real floating point values only start at
- FP4_REGNUM. FP0 and up are just status and error
- registers, which have integral (bit) values. */
- pa_print_fp_reg (regnum);
-}
-
-/********** new function ********************/
-void
-pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
- int regnum;
- int fpregs;
- GDB_FILE *stream;
- enum precision_type precision;
-{
- char raw_regs [REGISTER_BYTES];
- int i;
-
- /* Make a copy of gdb's save area (may cause actual
- reads from the target). */
- for (i = 0; i < NUM_REGS; i++)
- read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
-
- if (regnum == -1)
- pa_strcat_registers (raw_regs, regnum, fpregs, stream);
-
- else if (regnum < FP4_REGNUM) {
- long reg_val[2];
-
- /* Why is the value not passed through "extract_signed_integer"
- as in "pa_print_registers" below? */
- pa_register_look_aside(raw_regs, regnum, &reg_val[0]);
-
- if(!is_pa_2) {
- fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
- }
- else {
- /* Fancy % formats to prevent leading zeros. */
- if(reg_val[0] == 0)
- fprintf_unfiltered(stream, "%s %x", REGISTER_NAME (regnum),
- reg_val[1]);
- else
- fprintf_unfiltered(stream, "%s %x%8.8x", REGISTER_NAME (regnum),
- reg_val[0], reg_val[1]);
- }
- }
- else
- /* Note that real floating point values only start at
- FP4_REGNUM. FP0 and up are just status and error
- registers, which have integral (bit) values. */
- pa_strcat_fp_reg (regnum, stream, precision);
-}
-
-/* If this is a PA2.0 machine, fetch the real 64-bit register
- value. Otherwise use the info from gdb's saved register area.
-
- Note that reg_val is really expected to be an array of longs,
- with two elements. */
-static void
-pa_register_look_aside(raw_regs, regnum, raw_val)
- char *raw_regs;
- int regnum;
- long *raw_val;
-{
- static int know_which = 0; /* False */
-
- int regaddr;
- unsigned int offset;
- register int i;
- int start;
-
-
- char buf[MAX_REGISTER_RAW_SIZE];
- long long reg_val;
-
- if(!know_which) {
- if(CPU_PA_RISC2_0 == sysconf(_SC_CPU_VERSION)) {
- is_pa_2 = (1==1);
- }
-
- know_which = 1; /* True */
- }
-
- raw_val[0] = 0;
- raw_val[1] = 0;
-
- if(!is_pa_2) {
- raw_val[1] = *(long *)(raw_regs + REGISTER_BYTE(regnum));
- return;
- }
-
- /* Code below copied from hppah-nat.c, with fixes for wide
- registers, using different area of save_state, etc. */
- if(regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM) {
- /* Use narrow regs area of save_state and default macro. */
- offset = U_REGS_OFFSET;
- regaddr = register_addr(regnum, offset);
- start = 1;
- }
- else {
- /* Use wide regs area, and calculate registers as 8 bytes wide.
-
- We'd like to do this, but current version of "C" doesn't
- permit "offsetof":
-
- offset = offsetof(save_state_t, ss_wide);
-
- Note that to avoid "C" doing typed pointer arithmetic, we
- have to cast away the type in our offset calculation:
- otherwise we get an offset of 1! */
- save_state_t temp;
- offset = ((int) &temp.ss_wide) - ((int) &temp);
- regaddr = offset + regnum * 8;
- start = 0;
- }
-
- for(i = start; i < 2; i++)
- {
- errno = 0;
- raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
- (PTRACE_ARG3_TYPE) regaddr, 0);
- if (errno != 0)
- {
- /* Warning, not error, in case we are attached; sometimes the
- kernel doesn't let us at the registers. */
- char *err = safe_strerror (errno);
- char *msg = alloca (strlen (err) + 128);
- sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
- warning (msg);
- goto error_exit;
- }
-
- regaddr += sizeof (long);
- }
-
- if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
- raw_val[1] &= ~0x3; /* I think we're masking out space bits */
-
-error_exit:
- ;
-}
-
-/* "Info all-reg" command */
-
-static void
-pa_print_registers (raw_regs, regnum, fpregs)
- char *raw_regs;
- int regnum;
- int fpregs;
-{
- int i,j;
- long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
- long long_val;
-
- for (i = 0; i < 18; i++)
- {
- for (j = 0; j < 4; j++)
- {
- /* Q: Why is the value passed through "extract_signed_integer",
- while above, in "pa_do_registers_info" it isn't?
- A: ? */
- pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]);
-
- /* Even fancier % formats to prevent leading zeros
- and still maintain the output in columns. */
- if(!is_pa_2) {
- /* Being big-endian, on this machine the low bits
- (the ones we want to look at) are in the second longword. */
- long_val = extract_signed_integer (&raw_val[1], 4);
- printf_filtered ("%8.8s: %8x ",
- REGISTER_NAME (i+(j*18)), long_val);
- }
- else {
- /* raw_val = extract_signed_integer(&raw_val, 8); */
- if(raw_val[0] == 0)
- printf_filtered("%8.8s: %8x ",
- REGISTER_NAME (i+(j*18)), raw_val[1]);
- else
- printf_filtered("%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)),
- raw_val[0], raw_val[1]);
- }
- }
- printf_unfiltered ("\n");
- }
-
- if (fpregs)
- for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
- pa_print_fp_reg (i);
-}
-
-/************* new function ******************/
-static void
-pa_strcat_registers (raw_regs, regnum, fpregs, stream)
- char *raw_regs;
- int regnum;
- int fpregs;
- GDB_FILE *stream;
-{
- int i,j;
- long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
- long long_val;
- enum precision_type precision;
-
- precision = unspecified_precision;
-
- for (i = 0; i < 18; i++)
- {
- for (j = 0; j < 4; j++)
- {
- /* Q: Why is the value passed through "extract_signed_integer",
- while above, in "pa_do_registers_info" it isn't?
- A: ? */
- pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]);
-
- /* Even fancier % formats to prevent leading zeros
- and still maintain the output in columns. */
- if(!is_pa_2) {
- /* Being big-endian, on this machine the low bits
- (the ones we want to look at) are in the second longword. */
- long_val = extract_signed_integer(&raw_val[1], 4);
- fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)), long_val);
- }
- else {
- /* raw_val = extract_signed_integer(&raw_val, 8); */
- if(raw_val[0] == 0)
- fprintf_filtered(stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)),
- raw_val[1]);
- else
- fprintf_filtered(stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)),
- raw_val[0], raw_val[1]);
- }
- }
- fprintf_unfiltered (stream, "\n");
- }
-
- if (fpregs)
- for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
- pa_strcat_fp_reg (i, stream, precision);
-}
-
-static void
-pa_print_fp_reg (i)
- int i;
-{
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
- /* Get 32bits of data. */
- read_relative_register_raw_bytes (i, raw_buffer);
-
- /* Put it in the buffer. No conversions are ever necessary. */
- memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
-
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
- fputs_filtered ("(single precision) ", gdb_stdout);
-
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
-
- /* If "i" is even, then this register can also be a double-precision
- FP register. Dump it out as such. */
- if ((i % 2) == 0)
- {
- /* Get the data in raw format for the 2nd half. */
- read_relative_register_raw_bytes (i + 1, raw_buffer);
-
- /* Copy it into the appropriate part of the virtual buffer. */
- memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
- REGISTER_RAW_SIZE (i));
-
- /* Dump it as a double. */
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
- fputs_filtered ("(double precision) ", gdb_stdout);
-
- val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
-}
-
-/*************** new function ***********************/
-static void
-pa_strcat_fp_reg (i, stream, precision)
- int i;
- GDB_FILE *stream;
- enum precision_type precision;
-{
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
- fputs_filtered (REGISTER_NAME (i), stream);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
-
- /* Get 32bits of data. */
- read_relative_register_raw_bytes (i, raw_buffer);
-
- /* Put it in the buffer. No conversions are ever necessary. */
- memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
-
- if (precision == double_precision && (i % 2) == 0)
- {
-
- char raw_buf[MAX_REGISTER_RAW_SIZE];
-
- /* Get the data in raw format for the 2nd half. */
- read_relative_register_raw_bytes (i + 1, raw_buf);
-
- /* Copy it into the appropriate part of the virtual buffer. */
- memcpy (virtual_buffer + REGISTER_RAW_SIZE(i), raw_buf, REGISTER_RAW_SIZE (i));
-
- val_print (builtin_type_double, virtual_buffer, 0, 0 , stream, 0,
- 1, 0, Val_pretty_default);
-
- }
- else {
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
- 1, 0, Val_pretty_default);
- }
-
-}
-
-/* Return one if PC is in the call path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-int
-in_solib_call_trampoline (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- struct minimal_symbol *minsym;
- struct unwind_table_entry *u;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR sr4export = 0;
-
-/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- /* First see if PC is in one of the two C-library trampolines. */
- if (!dyncall)
- {
- minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (minsym)
- dyncall = SYMBOL_VALUE_ADDRESS (minsym);
- else
- dyncall = -1;
- }
-
- if (!sr4export)
- {
- minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (minsym)
- sr4export = SYMBOL_VALUE_ADDRESS (minsym);
- else
- sr4export = -1;
- }
-
- if (pc == dyncall || pc == sr4export)
- return 1;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- if (u->stub_unwind.stub_type == 0)
- return 0;
-
- /* By definition a long-branch stub is a call stub. */
- if (u->stub_unwind.stub_type == LONG_BRANCH)
- return 1;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 1;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 0;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
- return 0; /* purecov: deadcode */
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0; /* purecov: deadcode */
-}
-
-/* Return one if PC is in the return path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-int
-in_solib_return_trampoline (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- struct unwind_table_entry *u;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub or it's just a long branch stub, then
- return zero. */
- if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
- return 0;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 0;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 1;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
- return 0; /* purecov: deadcode */
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0; /* purecov: deadcode */
-
-}
-
-/* Figure out if PC is in a trampoline, and if so find out where
- the trampoline will jump to. If not in a trampoline, return zero.
-
- Simple code examination probably is not a good idea since the code
- sequences in trampolines can also appear in user code.
-
- We use unwinds and information from the minimal symbol table to
- determine when we're in a trampoline. This won't work for ELF
- (yet) since it doesn't create stub unwind entries. Whether or
- not ELF will create stub unwinds or normal unwinds for linker
- stubs is still being debated.
-
- This should handle simple calls through dyncall or sr4export,
- long calls, argument relocation stubs, and dyncall/sr4export
- calling an argument relocation stub. It even handles some stubs
- used in dynamic executables. */
-
-# if 0
-CORE_ADDR
-skip_trampoline_code (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- return find_solib_trampoline_target(pc);
-}
-
-#endif
-
-CORE_ADDR
-skip_trampoline_code (pc, name)
- CORE_ADDR pc;
- char *name;
-{
- long orig_pc = pc;
- long prev_inst, curr_inst, loc;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR dyncall_external = 0;
- static CORE_ADDR sr4export = 0;
- struct minimal_symbol *msym;
- struct unwind_table_entry *u;
-
-
-/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- if (!dyncall)
- {
- msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msym)
- dyncall = SYMBOL_VALUE_ADDRESS (msym);
- else
- dyncall = -1;
- }
-
- if (!dyncall_external)
- {
- msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
- if (msym)
- dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
- else
- dyncall_external = -1;
- }
-
- if (!sr4export)
- {
- msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msym)
- sr4export = SYMBOL_VALUE_ADDRESS (msym);
- else
- sr4export = -1;
- }
-
- /* Addresses passed to dyncall may *NOT* be the actual address
- of the function. So we may have to do something special. */
- if (pc == dyncall)
- {
- pc = (CORE_ADDR) read_register (22);
-
- /* If bit 30 (counting from the left) is on, then pc is the address of
- the PLT entry for this function, not the address of the function
- itself. Bit 31 has meaning too, but only for MPE. */
- if (pc & 0x2)
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
- }
- if (pc == dyncall_external)
- {
- pc = (CORE_ADDR) read_register (22);
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
- }
- else if (pc == sr4export)
- pc = (CORE_ADDR) (read_register (22));
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- /* elz: attention here! (FIXME) because of a compiler/linker
- error, some stubs which should have a non zero stub_unwind.stub_type
- have unfortunately a value of zero. So this function would return here
- as if we were not in a trampoline. To fix this, we go look at the partial
- symbol information, which reports this guy as a stub.
- (FIXME): Unfortunately, we are not that lucky: it turns out that the
- partial symbol information is also wrong sometimes. This is because
- when it is entered (somread.c::som_symtab_read()) it can happen that
- if the type of the symbol (from the som) is Entry, and the symbol is
- in a shared library, then it can also be a trampoline. This would
- be OK, except that I believe the way they decide if we are ina shared library
- does not work. SOOOO..., even if we have a regular function w/o trampolines
- its minimal symbol can be assigned type mst_solib_trampoline.
- Also, if we find that the symbol is a real stub, then we fix the unwind
- descriptor, and define the stub type to be EXPORT.
- Hopefully this is correct most of the times. */
- if (u->stub_unwind.stub_type == 0)
- {
-
-/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
- we can delete all the code which appears between the lines */
-/*--------------------------------------------------------------------------*/
- msym = lookup_minimal_symbol_by_pc (pc);
-
- if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
- return orig_pc == pc ? 0 : pc & ~0x3;
-
- else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
- {
- struct objfile *objfile;
- struct minimal_symbol *msymbol;
- int function_found = 0;
-
- /* go look if there is another minimal symbol with the same name as
- this one, but with type mst_text. This would happen if the msym
- is an actual trampoline, in which case there would be another
- symbol with the same name corresponding to the real function */
-
- ALL_MSYMBOLS (objfile, msymbol)
- {
- if (MSYMBOL_TYPE (msymbol) == mst_text
- && STREQ (SYMBOL_NAME (msymbol) , SYMBOL_NAME (msym)))
- {
- function_found = 1;
- break;
- }
- }
-
- if (function_found)
- /* the type of msym is correct (mst_solib_trampoline), but
- the unwind info is wrong, so set it to the correct value */
- u->stub_unwind.stub_type = EXPORT;
- else
- /* the stub type info in the unwind is correct (this is not a
- trampoline), but the msym type information is wrong, it
- should be mst_text. So we need to fix the msym, and also
- get out of this function */
- {
- MSYMBOL_TYPE (msym) = mst_text;
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
-/*--------------------------------------------------------------------------*/
- }
-
- /* It's a stub. Search for a branch and figure out where it goes.
- Note we have to handle multi insn branch sequences like ldil;ble.
- Most (all?) other branches can be determined by examining the contents
- of certain registers and the stack. */
-
- loc = pc;
- curr_inst = 0;
- prev_inst = 0;
- while (1)
- {
- /* Make sure we haven't walked outside the range of this stub. */
- if (u != find_unwind_entry (loc))
- {
- warning ("Unable to find branch in linker stub");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- prev_inst = curr_inst;
- curr_inst = read_memory_integer (loc, 4);
-
- /* Does it look like a branch external using %r1? Then it's the
- branch from the stub to the actual function. */
- if ((curr_inst & 0xffe0e000) == 0xe0202000)
- {
- /* Yup. See if the previous instruction loaded
- a value into %r1. If so compute and return the jump address. */
- if ((prev_inst & 0xffe00000) == 0x20200000)
- return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
- else
- {
- warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* Does it look like a be 0(sr0,%r21)? OR
- Does it look like a be, n 0(sr0,%r21)? OR
- Does it look like a bve (r21)? (this is on PA2.0)
- Does it look like a bve, n(r21)? (this is also on PA2.0)
- That's the branch from an
- import stub to an export stub.
-
- It is impossible to determine the target of the branch via
- simple examination of instructions and/or data (consider
- that the address in the plabel may be the address of the
- bind-on-reference routine in the dynamic loader).
-
- So we have try an alternative approach.
-
- Get the name of the symbol at our current location; it should
- be a stub symbol with the same name as the symbol in the
- shared library.
-
- Then lookup a minimal symbol with the same name; we should
- get the minimal symbol for the target routine in the shared
- library as those take precedence of import/export stubs. */
- if ((curr_inst == 0xe2a00000) ||
- (curr_inst == 0xe2a00002) ||
- (curr_inst == 0xeaa0d000) ||
- (curr_inst == 0xeaa0d002))
- {
- struct minimal_symbol *stubsym, *libsym;
-
- stubsym = lookup_minimal_symbol_by_pc (loc);
- if (stubsym == NULL)
- {
- warning ("Unable to find symbol for 0x%x", loc);
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
- if (libsym == NULL)
- {
- warning ("Unable to find library symbol for %s\n",
- SYMBOL_NAME (stubsym));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- return SYMBOL_VALUE (libsym);
- }
-
- /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
- branch from the stub to the actual function. */
- /*elz*/
- else if ((curr_inst & 0xffe0e000) == 0xe8400000
- || (curr_inst & 0xffe0e000) == 0xe8000000
- || (curr_inst & 0xffe0e000) == 0xe800A000)
- return (loc + extract_17 (curr_inst) + 8) & ~0x3;
-
- /* Does it look like bv (rp)? Note this depends on the
- current stack pointer being the same as the stack
- pointer in the stub itself! This is a branch on from the
- stub back to the original caller. */
- /*else if ((curr_inst & 0xffe0e000) == 0xe840c000)*/
- else if ((curr_inst & 0xffe0f000) == 0xe840c000)
- {
- /* Yup. See if the previous instruction loaded
- rp from sp - 8. */
- if (prev_inst == 0x4bc23ff1)
- return (read_memory_integer
- (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
- else
- {
- warning ("Unable to find restore of %%rp before bv (%%rp).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* elz: added this case to capture the new instruction
- at the end of the return part of an export stub used by
- the PA2.0: BVE, n (rp) */
- else if ((curr_inst & 0xffe0f000) == 0xe840d000)
- {
- return (read_memory_integer
- (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
- }
-
- /* What about be,n 0(sr0,%rp)? It's just another way we return to
- the original caller from the stub. Used in dynamic executables. */
- else if (curr_inst == 0xe0400002)
- {
- /* The value we jump to is sitting in sp - 24. But that's
- loaded several instructions before the be instruction.
- I guess we could check for the previous instruction being
- mtsp %r1,%sr0 if we want to do sanity checking. */
- return (read_memory_integer
- (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
- }
-
- /* Haven't found the branch yet, but we're still in the stub.
- Keep looking. */
- loc += 4;
- }
-}
-
-
-/* For the given instruction (INST), return any adjustment it makes
- to the stack pointer or zero for no adjustment.
-
- This only handles instructions commonly found in prologues. */
-
-static int
-prologue_inst_adjust_sp (inst)
- unsigned long inst;
-{
- /* This must persist across calls. */
- static int save_high21;
-
- /* The most common way to perform a stack adjustment ldo X(sp),sp */
- if ((inst & 0xffffc000) == 0x37de0000)
- return extract_14 (inst);
-
- /* stwm X,D(sp) */
- if ((inst & 0xffe00000) == 0x6fc00000)
- return extract_14 (inst);
-
- /* addil high21,%r1; ldo low11,(%r1),%r30)
- save high bits in save_high21 for later use. */
- if ((inst & 0xffe00000) == 0x28200000)
- {
- save_high21 = extract_21 (inst);
- return 0;
- }
-
- if ((inst & 0xffff0000) == 0x343e0000)
- return save_high21 + extract_14 (inst);
-
- /* fstws as used by the HP compilers. */
- if ((inst & 0xffffffe0) == 0x2fd01220)
- return extract_5_load (inst);
-
- /* No adjustment. */
- return 0;
-}
-
-/* Return nonzero if INST is a branch of some kind, else return zero. */
-
-static int
-is_branch (inst)
- unsigned long inst;
-{
- switch (inst >> 26)
- {
- case 0x20:
- case 0x21:
- case 0x22:
- case 0x23:
- case 0x28:
- case 0x29:
- case 0x2a:
- case 0x2b:
- case 0x30:
- case 0x31:
- case 0x32:
- case 0x33:
- case 0x38:
- case 0x39:
- case 0x3a:
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Return the register number for a GR which is saved by INST or
- zero it INST does not save a GR. */
-
-static int
-inst_saves_gr (inst)
- unsigned long inst;
-{
- /* Does it look like a stw? */
- if ((inst >> 26) == 0x1a)
- return extract_5R_store (inst);
-
- /* Does it look like a stwm? GCC & HPC may use this in prologues. */
- if ((inst >> 26) == 0x1b)
- return extract_5R_store (inst);
-
- /* Does it look like sth or stb? HPC versions 9.0 and later use these
- too. */
- if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
- return extract_5R_store (inst);
-
- return 0;
-}
-
-/* Return the register number for a FR which is saved by INST or
- zero it INST does not save a FR.
-
- Note we only care about full 64bit register stores (that's the only
- kind of stores the prologue will use).
-
- FIXME: What about argument stores with the HP compiler in ANSI mode? */
-
-static int
-inst_saves_fr (inst)
- unsigned long inst;
-{
- /* is this an FSTDS ?*/
- if ((inst & 0xfc00dfc0) == 0x2c001200)
- return extract_5r_store (inst);
- /* is this an FSTWS ?*/
- if ((inst & 0xfc00df80) == 0x24001200)
- return extract_5r_store (inst);
- return 0;
-}
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code.
-
- Use information in the unwind table to determine what exactly should
- be in the prologue. */
-
-
-CORE_ADDR
-skip_prologue_hard_way (pc)
- CORE_ADDR pc;
-{
- char buf[4];
- CORE_ADDR orig_pc = pc;
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- unsigned long args_stored, status, i, restart_gr, restart_fr;
- struct unwind_table_entry *u;
-
- restart_gr = 0;
- restart_fr = 0;
-
-restart:
- u = find_unwind_entry (pc);
- if (!u)
- return pc;
-
- /* If we are not at the beginning of a function, then return now. */
- if ((pc & ~0x3) != u->region_start)
- return pc;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* An indication that args may be stored into the stack. Unfortunately
- the HPUX compilers tend to set this in cases where no args were
- stored too!. */
- args_stored = 1;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
- save_gr &= ~restart_gr;
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
- save_fr &= ~restart_fr;
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimzied GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
- || args_stored)
- {
- unsigned int reg_num;
- unsigned long old_stack_remaining, old_save_gr, old_save_fr;
- unsigned long old_save_rp, old_save_sp, next_inst;
-
- /* Save copies of all the triggers so we can compare them later
- (only for HPC). */
- old_save_gr = save_gr;
- old_save_fr = save_fr;
- old_save_rp = save_rp;
- old_save_sp = save_sp;
- old_stack_remaining = stack_remaining;
-
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There is only one instruction used for saving RP into the stack. */
- if (inst == 0x6bc23fd9)
- save_rp = 0;
-
- /* This is the only way we save SP into the stack. At this time
- the HP compilers never bother to save SP into the stack. */
- if ((inst & 0xffffc000) == 0x6fc10000)
- save_sp = 0;
-
- /* Account for general and floating-point register saves. */
- reg_num = inst_saves_gr (inst);
- save_gr &= ~(1 << reg_num);
-
- /* Ugh. Also account for argument stores into the stack.
- Unfortunately args_stored only tells us that some arguments
- where stored into the stack. Not how many or what kind!
-
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. We have similar code for the fp arg stores below.
-
- FIXME. Can still die if we have a mix of GR and FR argument
- stores! */
- if (reg_num >= 23 && reg_num <= 26)
- {
- while (reg_num >= 23 && reg_num <= 26)
- {
- pc += 4;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_gr (inst);
- }
- args_stored = 0;
- continue;
- }
-
- reg_num = inst_saves_fr (inst);
- save_fr &= ~(1 << reg_num);
-
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* We've got to be read to handle the ldo before the fp register
- save. */
- if ((inst & 0xfc000000) == 0x34000000
- && inst_saves_fr (next_inst) >= 4
- && inst_saves_fr (next_inst) <= 7)
- {
- /* So we drop into the code below in a reasonable state. */
- reg_num = inst_saves_fr (next_inst);
- pc -= 4;
- }
-
- /* Ugh. Also account for argument stores into the stack.
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. */
- if (reg_num >= 4 && reg_num <= 7)
- {
- while (reg_num >= 4 && reg_num <= 7)
- {
- pc += 8;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- if ((inst & 0xfc000000) != 0x34000000)
- break;
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_fr (next_inst);
- }
- args_stored = 0;
- continue;
- }
-
- /* Quit if we hit any kind of branch. This can happen if a prologue
- instruction is in the delay slot of the first call/branch. */
- if (is_branch (inst))
- break;
-
- /* What a crock. The HP compilers set args_stored even if no
- arguments were stored into the stack (boo hiss). This could
- cause this code to then skip a bunch of user insns (up to the
- first branch).
-
- To combat this we try to identify when args_stored was bogusly
- set and clear it. We only do this when args_stored is nonzero,
- all other resources are accounted for, and nothing changed on
- this pass. */
- if (args_stored
- && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- && old_save_gr == save_gr && old_save_fr == save_fr
- && old_save_rp == save_rp && old_save_sp == save_sp
- && old_stack_remaining == stack_remaining)
- break;
-
- /* Bump the PC. */
- pc += 4;
- }
-
- /* We've got a tenative location for the end of the prologue. However
- because of limitations in the unwind descriptor mechanism we may
- have went too far into user code looking for the save of a register
- that does not exist. So, if there registers we expected to be saved
- but never were, mask them out and restart.
-
- This should only happen in optimized code, and should be very rare. */
- if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
- {
- pc = orig_pc;
- restart_gr = save_gr;
- restart_fr = save_fr;
- goto restart;
- }
-
- return pc;
-}
-
-
-
-
-
-/* return 0 if we cannot determine the end of the prologue,
- return the new pc value if we know where the prologue ends */
-
-static CORE_ADDR
-after_prologue (pc)
- CORE_ADDR pc;
-{
- struct symtab_and_line sal;
- CORE_ADDR func_addr, func_end;
- struct symbol *f;
-
- if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- return 0; /* Unknown */
-
- f = find_pc_function (pc);
- if (!f)
- return 0; /* no debug info, do it the hard way! */
-
- sal = find_pc_line (func_addr, 0);
-
- if (sal.end < func_end)
- {
- /* this happens when the function has no prologue, because the way
- find_pc_line works: elz. Note: this may not be a very good
- way to decide whether a function has a prologue or not, but
- it is the best I can do with the info available
- Also, this will work for functions like: int f()
- {
- return 2;
- }
- I.e. the bp will be inserted at the first open brace.
- For functions where the body is only one line written like this:
- int f()
- { return 2; }
- this will make the breakpoint to be at the last brace, after the body
- has been executed already. What's the point of stepping through a function
- without any variables anyway?? */
-
- if ((SYMBOL_LINE(f) > 0) && (SYMBOL_LINE(f) < sal.line))
- return pc; /*no adjusment will be made*/
- else
- return sal.end; /* this is the end of the prologue */
- }
- /* The line after the prologue is after the end of the function. In this
- case, put the end of the prologue is the beginning of the function. */
- /* This should happen only when the function is prologueless and has no
- code in it. For instance void dumb(){} Note: this kind of function
- is used quite a lot in the test system */
-
- else return pc; /* no adjustment will be made */
-}
-
-/* To skip prologues, I use this predicate. Returns either PC itself
- if the code at PC does not look like a function prologue; otherwise
- returns an address that (if we're lucky) follows the prologue. If
- LENIENT, then we must skip everything which is involved in setting
- up the frame (it's OK to skip more, just so long as we don't skip
- anything which might clobber the registers which are being saved.
- Currently we must not skip more on the alpha, but we might the lenient
- stuff some day. */
-
-CORE_ADDR
-skip_prologue (pc)
- CORE_ADDR pc;
-{
- unsigned long inst;
- int offset;
- CORE_ADDR post_prologue_pc;
- char buf[4];
-
-#ifdef GDB_TARGET_HAS_SHARED_LIBS
- /* Silently return the unaltered pc upon memory errors.
- This could happen on OSF/1 if decode_line_1 tries to skip the
- prologue for quickstarted shared library functions when the
- shared library is not yet mapped in.
- Reading target memory is slow over serial lines, so we perform
- this check only if the target has shared libraries. */
- if (target_read_memory (pc, buf, 4))
- return pc;
-#endif
-
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
-
- post_prologue_pc = after_prologue (pc);
-
- if (post_prologue_pc != 0)
- return max (pc, post_prologue_pc);
-
-
- /* Can't determine prologue from the symbol table, (this can happen if there
- is no debug information) so we need to fall back on the old code, which
- looks at the instructions */
- /* FIXME (elz) !!!!: this may create a problem if, once the bp is hit, the user says
- where: the backtrace info is not right: this is because the point at which we
- break is at the very first instruction of the function. At this time the stuff that
- needs to be saved on the stack, has not been saved yet, so the backtrace
- cannot know all it needs to know. This will need to be fixed in the
- actual backtrace code. (Note: this is what DDE does) */
-
- else
-
- return (skip_prologue_hard_way(pc));
-
-#if 0
-/* elz: I am keeping this code around just in case, but remember, all the
- instructions are for alpha: you should change all to the hppa instructions */
-
- /* Can't determine prologue from the symbol table, need to examine
- instructions. */
-
- /* Skip the typical prologue instructions. These are the stack adjustment
- instruction and the instructions that save registers on the stack
- or in the gcc frame. */
- for (offset = 0; offset < 100; offset += 4)
- {
- int status;
-
- status = read_memory_nobpt (pc + offset, buf, 4);
- if (status)
- memory_error (status, pc + offset);
- inst = extract_unsigned_integer (buf, 4);
-
- /* The alpha has no delay slots. But let's keep the lenient stuff,
- we might need it for something else in the future. */
- if (lenient && 0)
- continue;
-
- if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
- continue;
- if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
- continue;
- if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
- continue;
- else if ((inst & 0xfc1f0000) == 0xb41e0000
- && (inst & 0xffff0000) != 0xb7fe0000)
- continue; /* stq reg,n($sp) */
- /* reg != $zero */
- else if ((inst & 0xfc1f0000) == 0x9c1e0000
- && (inst & 0xffff0000) != 0x9ffe0000)
- continue; /* stt reg,n($sp) */
- /* reg != $zero */
- else if (inst == 0x47de040f) /* bis sp,sp,fp */
- continue;
- else
- break;
- }
- return pc + offset;
-#endif /* 0 */
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame. */
-
-void
-hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
- struct frame_info *frame_info;
- struct frame_saved_regs *frame_saved_regs;
-{
- CORE_ADDR pc;
- struct unwind_table_entry *u;
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- int status, i, reg;
- char buf[4];
- int fp_loc = -1;
-
- /* Zero out everything. */
- memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
-
- /* Call dummy frames always look the same, so there's no need to
- examine the dummy code to determine locations of saved registers;
- instead, let find_dummy_frame_regs fill in the correct offsets
- for the saved registers. */
- if ((frame_info->pc >= frame_info->frame
- && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
- + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
- + 6 * 4)))
- find_dummy_frame_regs (frame_info, frame_saved_regs);
-
- /* Interrupt handlers are special too. They lay out the register
- state in the exact same order as the register numbers in GDB. */
- if (pc_in_interrupt_handler (frame_info->pc))
- {
- for (i = 0; i < NUM_REGS; i++)
- {
- /* SP is a little special. */
- if (i == SP_REGNUM)
- frame_saved_regs->regs[SP_REGNUM]
- = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
- else
- frame_saved_regs->regs[i] = frame_info->frame + i * 4;
- }
- return;
- }
-
-#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
- /* Handle signal handler callers. */
- if (frame_info->signal_handler_caller)
- {
- FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
- return;
- }
-#endif
-
- /* Get the starting address of the function referred to by the PC
- saved in frame. */
- pc = get_pc_function_start (frame_info->pc);
-
- /* Yow! */
- u = find_unwind_entry (pc);
- if (!u)
- return;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
-
- /* The frame always represents the value of %sp at entry to the
- current function (and is thus equivalent to the "saved" stack
- pointer. */
- frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimzied GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- {
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There is only one instruction used for saving RP into the stack. */
- if (inst == 0x6bc23fd9)
- {
- save_rp = 0;
- frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
- }
-
- /* Just note that we found the save of SP into the stack. The
- value for frame_saved_regs was computed above. */
- if ((inst & 0xffffc000) == 0x6fc10000)
- save_sp = 0;
-
- /* Account for general and floating-point register saves. */
- reg = inst_saves_gr (inst);
- if (reg >= 3 && reg <= 18
- && (!u->Save_SP || reg != FP_REGNUM))
- {
- save_gr &= ~(1 << reg);
-
- /* stwm with a positive displacement is a *post modify*. */
- if ((inst >> 26) == 0x1b
- && extract_14 (inst) >= 0)
- frame_saved_regs->regs[reg] = frame_info->frame;
- else
- {
- /* Handle code with and without frame pointers. */
- if (u->Save_SP)
- frame_saved_regs->regs[reg]
- = frame_info->frame + extract_14 (inst);
- else
- frame_saved_regs->regs[reg]
- = frame_info->frame + (u->Total_frame_size << 3)
- + extract_14 (inst);
- }
- }
-
-
- /* GCC handles callee saved FP regs a little differently.
-
- It emits an instruction to put the value of the start of
- the FP store area into %r1. It then uses fstds,ma with
- a basereg of %r1 for the stores.
-
- HP CC emits them at the current stack pointer modifying
- the stack pointer as it stores each register. */
-
- /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
- if ((inst & 0xffffc000) == 0x34610000
- || (inst & 0xffffc000) == 0x37c10000)
- fp_loc = extract_14 (inst);
-
- reg = inst_saves_fr (inst);
- if (reg >= 12 && reg <= 21)
- {
- /* Note +4 braindamage below is necessary because the FP status
- registers are internally 8 registers rather than the expected
- 4 registers. */
- save_fr &= ~(1 << reg);
- if (fp_loc == -1)
- {
- /* 1st HP CC FP register store. After this instruction
- we've set enough state that the GCC and HPCC code are
- both handled in the same manner. */
- frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
- fp_loc = 8;
- }
- else
- {
- frame_saved_regs->regs[reg + FP0_REGNUM + 4]
- = frame_info->frame + fp_loc;
- fp_loc += 8;
- }
- }
-
- /* Quit if we hit any kind of branch. This can happen if a prologue
- instruction is in the delay slot of the first call/branch. */
- if (is_branch (inst))
- break;
-
- /* Bump the PC. */
- pc += 4;
- }
-}
-
-
-/* Exception handling support for the HP-UX ANSI C++ compiler.
- The compiler (aCC) provides a callback for exception events;
- GDB can set a breakpoint on this callback and find out what
- exception event has occurred. */
-
-/* The name of the hook to be set to point to the callback function */
-static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
-/* The name of the function to be used to set the hook value */
-static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
-/* The name of the callback function in end.o */
-static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
-/* Name of function in end.o on which a break is set (called by above) */
-static char HP_ACC_EH_break[] = "__d_eh_break";
-/* Name of flag (in end.o) that enables catching throws */
-static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
-/* Name of flag (in end.o) that enables catching catching */
-static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
-/* The enum used by aCC */
-typedef enum {
- __EH_NOTIFY_THROW,
- __EH_NOTIFY_CATCH
-} __eh_notification;
-
-/* Is exception-handling support available with this executable? */
-static int hp_cxx_exception_support = 0;
-/* Has the initialize function been run? */
-int hp_cxx_exception_support_initialized = 0;
-/* Similar to above, but imported from breakpoint.c -- non-target-specific */
-extern int exception_support_initialized;
-/* Address of __eh_notify_hook */
-static CORE_ADDR eh_notify_hook_addr = NULL;
-/* Address of __d_eh_notify_callback */
-static CORE_ADDR eh_notify_callback_addr = NULL;
-/* Address of __d_eh_break */
-static CORE_ADDR eh_break_addr = NULL;
-/* Address of __d_eh_catch_catch */
-static CORE_ADDR eh_catch_catch_addr = NULL;
-/* Address of __d_eh_catch_throw */
-static CORE_ADDR eh_catch_throw_addr = NULL;
-/* Sal for __d_eh_break */
-static struct symtab_and_line * break_callback_sal = NULL;
-
-/* Code in end.c expects __d_pid to be set in the inferior,
- otherwise __d_eh_notify_callback doesn't bother to call
- __d_eh_break! So we poke the pid into this symbol
- ourselves.
- 0 => success
- 1 => failure */
-int
-setup_d_pid_in_inferior ()
-{
- CORE_ADDR anaddr;
- struct minimal_symbol * msymbol;
- char buf[4]; /* FIXME 32x64? */
-
- /* Slam the pid of the process into __d_pid; failing is only a warning! */
- msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
- if (msymbol == NULL)
- {
- warning ("Unable to find __d_pid symbol in object file.");
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- return 1;
- }
-
- anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
- store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
- if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Unable to write __d_pid");
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- return 1;
- }
- return 0;
-}
-
-/* Initialize exception catchpoint support by looking for the
- necessary hooks/callbacks in end.o, etc., and set the hook value to
- point to the required debug function
-
- Return 0 => failure
- 1 => success */
-
-static int
-initialize_hp_cxx_exception_support ()
-{
- struct symtabs_and_lines sals;
- struct cleanup * old_chain;
- struct cleanup * canonical_strings_chain = NULL;
- int i;
- char * addr_start;
- char * addr_end = NULL;
- char ** canonical = (char **) NULL;
- int thread = -1;
- struct symbol * sym = NULL;
- struct minimal_symbol * msym = NULL;
- struct objfile * objfile;
- asection *shlib_info;
-
- /* Detect and disallow recursion. On HP-UX with aCC, infinite
- recursion is a possibility because finding the hook for exception
- callbacks involves making a call in the inferior, which means
- re-inserting breakpoints which can re-invoke this code */
-
- static int recurse = 0;
- if (recurse > 0)
- {
- hp_cxx_exception_support_initialized = 0;
- exception_support_initialized = 0;
- return 0;
- }
-
- hp_cxx_exception_support = 0;
-
- /* First check if we have seen any HP compiled objects; if not,
- it is very unlikely that HP's idiosyncratic callback mechanism
- for exception handling debug support will be available!
- This will percolate back up to breakpoint.c, where our callers
- will decide to try the g++ exception-handling support instead. */
- if (!hp_som_som_object_present)
- return 0;
-
- /* We have a SOM executable with SOM debug info; find the hooks */
-
- /* First look for the notify hook provided by aCC runtime libs */
- /* If we find this symbol, we conclude that the executable must
- have HP aCC exception support built in. If this symbol is not
- found, even though we're a HP SOM-SOM file, we may have been
- built with some other compiler (not aCC). This results percolates
- back up to our callers in breakpoint.c which can decide to
- try the g++ style of exception support instead.
- If this symbol is found but the other symbols we require are
- not found, there is something weird going on, and g++ support
- should *not* be tried as an alternative.
-
- ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
- ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
-
- /* libCsup has this hook; it'll usually be non-debuggable */
- msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
- if (msym)
- {
- eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("GDB will be unable to intercept exception events.");
- eh_notify_hook_addr = 0;
- hp_cxx_exception_support = 0;
- return 0;
- }
-
-#if 0 /* DEBUGGING */
- printf ("Hook addr found is %lx\n", eh_notify_hook_addr);
-#endif
-
- /* Next look for the notify callback routine in end.o */
- /* This is always available in the SOM symbol dictionary if end.o is linked in */
- msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
- if (msym)
- {
- eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- warning ("GDB will be unable to intercept exception events.");
- eh_notify_callback_addr = 0;
- return 0;
- }
-
- /* Check whether the executable is dynamically linked or archive bound */
- /* With an archive-bound executable we can use the raw addresses we find
- for the callback function, etc. without modification. For an executable
- with shared libraries, we have to do more work to find the plabel, which
- can be the target of a call through $$dyncall from the aCC runtime support
- library (libCsup) which is linked shared by default by aCC. */
- /* This test below was copied from somsolib.c/somread.c. It may not be a very
- reliable one to test that an executable is linked shared. pai/1997-07-18 */
- shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
- if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
- {
- /* The minsym we have has the local code address, but that's not the
- plabel that can be used by an inter-load-module call. */
- /* Find solib handle for main image (which has end.o), and use that
- and the min sym as arguments to __d_shl_get() (which does the equivalent
- of shl_findsym()) to find the plabel. */
-
- args_for_find_stub args;
- static char message[] = "Error while finding exception callback hook:\n";
-
- args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
- args.msym = msym;
-
- recurse++;
- eh_notify_callback_addr = catch_errors ((int (*) PARAMS ((char *))) cover_find_stub_with_shl_get,
- (char *) &args,
- message, RETURN_MASK_ALL);
- recurse--;
-
-#if 0 /* DEBUGGING */
- printf ("found plabel for eh notify callback: %x\n", eh_notify_callback_addr);
-#endif
-
- exception_catchpoints_are_fragile = 1;
-
- if (!eh_notify_callback_addr)
- {
- /* We can get here either if there is no plabel in the export list
- for the main image, or if something strange happened (??) */
- warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
- warning ("GDB will not be able to intercept exception events.");
- return 0;
- }
- }
- else
- exception_catchpoints_are_fragile = 0;
-
-#if 0 /* DEBUGGING */
- printf ("Cb addr found is %lx\n", eh_notify_callback_addr);
-#endif
-
- /* Now, look for the breakpointable routine in end.o */
- /* This should also be available in the SOM symbol dict. if end.o linked in */
- msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
- if (msym)
- {
- eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- warning ("GDB will be unable to intercept exception events.");
- eh_break_addr = 0;
- return 0;
- }
-
-#if 0 /* DEBUGGING */
- printf ("break addr found is %lx\n", eh_break_addr);
-#endif
-
- /* Next look for the catch enable flag provided in end.o */
- sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
- VAR_NAMESPACE, 0, (struct symtab **) NULL);
- if (sym) /* sometimes present in debug info */
- {
- eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
- hp_cxx_exception_support = 1;
- }
- else /* otherwise look in SOM symbol dict. */
- {
- msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
- if (msym)
- {
- eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to enable interception of exception catches.");
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- return 0;
- }
- }
-
-#if 0 /* DEBUGGING */
- printf ("catch catch addr found is %lx\n", eh_catch_catch_addr);
-#endif
-
- /* Next look for the catch enable flag provided end.o */
- sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
- VAR_NAMESPACE, 0, (struct symtab **) NULL);
- if (sym) /* sometimes present in debug info */
- {
- eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
- hp_cxx_exception_support = 1;
- }
- else /* otherwise look in SOM symbol dict. */
- {
- msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
- if (msym)
- {
- eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to enable interception of exception throws.");
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- return 0;
- }
- }
-
-#if 0 /* DEBUGGING */
- printf ("catch throw addr found is %lx\n", eh_catch_throw_addr);
-#endif
-
- /* Set the flags */
- hp_cxx_exception_support = 2; /* everything worked so far */
- hp_cxx_exception_support_initialized = 1;
- exception_support_initialized = 1;
-
- return 1;
-}
-
-/* Target operation for enabling or disabling interception of
- exception events.
- KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
- ENABLE is either 0 (disable) or 1 (enable).
- Return value is NULL if no support found;
- -1 if something went wrong,
- or a pointer to a symtab/line struct if the breakpointable
- address was found. */
-
-struct symtab_and_line *
-child_enable_exception_callback (kind, enable)
- enum exception_event_kind kind;
- int enable;
-{
- char buf[4];
-
- if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
- if (!initialize_hp_cxx_exception_support ())
- return NULL;
-
- switch (hp_cxx_exception_support)
- {
- case 0:
- /* Assuming no HP support at all */
- return NULL;
- case 1:
- /* HP support should be present, but something went wrong */
- return (struct symtab_and_line *) -1; /* yuck! */
- /* there may be other cases in the future */
- }
-
- /* Set the EH hook to point to the callback routine */
- store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
- /* pai: (temp) FIXME should there be a pack operation first? */
- if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
- {
- warning ("Could not write to target memory for exception event callback.");
- warning ("Interception of exception events may not work.");
- return (struct symtab_and_line *) -1;
- }
- if (enable)
- {
- /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-(*/
- if (inferior_pid > 0)
- {
- if (setup_d_pid_in_inferior ())
- return (struct symtab_and_line *) -1;
- }
- else
- {
- warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */
- return (struct symtab_and_line *) -1; /* purecov: deadcode */
- }
- }
-
- switch (kind)
- {
- case EX_EVENT_THROW:
- store_unsigned_integer (buf, 4, enable ? 1 : 0);
- if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Couldn't enable exception throw interception.");
- return (struct symtab_and_line *) -1;
- }
- break;
- case EX_EVENT_CATCH:
- store_unsigned_integer (buf, 4, enable ? 1 : 0);
- if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Couldn't enable exception catch interception.");
- return (struct symtab_and_line *) -1;
- }
- break;
- default: /* purecov: deadcode */
- error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */
- }
-
- /* Copy break address into new sal struct, malloc'ing if needed. */
- if (!break_callback_sal)
- {
- break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
- }
- INIT_SAL(break_callback_sal);
- break_callback_sal->symtab = NULL;
- break_callback_sal->pc = eh_break_addr;
- break_callback_sal->line = 0;
- break_callback_sal->end = eh_break_addr;
-
- return break_callback_sal;
-}
-
-/* Record some information about the current exception event */
-static struct exception_event_record current_ex_event;
-/* Convenience struct */
-static struct symtab_and_line null_symtab_and_line = { NULL, 0, 0, 0 };
-
-/* Report current exception event. Returns a pointer to a record
- that describes the kind of the event, where it was thrown from,
- and where it will be caught. More information may be reported
- in the future */
-struct exception_event_record *
-child_get_current_exception_event ()
-{
- CORE_ADDR event_kind;
- CORE_ADDR throw_addr;
- CORE_ADDR catch_addr;
- struct frame_info *fi, *curr_frame;
- int level = 1;
-
- curr_frame = get_current_frame();
- if (!curr_frame)
- return (struct exception_event_record *) NULL;
-
- /* Go up one frame to __d_eh_notify_callback, because at the
- point when this code is executed, there's garbage in the
- arguments of __d_eh_break. */
- fi = find_relative_frame (curr_frame, &level);
- if (level != 0)
- return (struct exception_event_record *) NULL;
-
- select_frame (fi, -1);
-
- /* Read in the arguments */
- /* __d_eh_notify_callback() is called with 3 arguments:
- 1. event kind catch or throw
- 2. the target address if known
- 3. a flag -- not sure what this is. pai/1997-07-17 */
- event_kind = read_register (ARG0_REGNUM);
- catch_addr = read_register (ARG1_REGNUM);
-
- /* Now go down to a user frame */
- /* For a throw, __d_eh_break is called by
- __d_eh_notify_callback which is called by
- __notify_throw which is called
- from user code.
- For a catch, __d_eh_break is called by
- __d_eh_notify_callback which is called by
- <stackwalking stuff> which is called by
- __throw__<stuff> or __rethrow_<stuff> which is called
- from user code. */
- /* FIXME: Don't use such magic numbers; search for the frames */
- level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
- fi = find_relative_frame (curr_frame, &level);
- if (level != 0)
- return (struct exception_event_record *) NULL;
-
- select_frame (fi, -1);
- throw_addr = fi->pc;
-
- /* Go back to original (top) frame */
- select_frame (curr_frame, -1);
-
- current_ex_event.kind = (enum exception_event_kind) event_kind;
- current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
- current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
-
- return &current_ex_event;
-}
-
-
-#ifdef MAINTENANCE_CMDS
-
-static void
-unwind_command (exp, from_tty)
- char *exp;
- int from_tty;
-{
- CORE_ADDR address;
- struct unwind_table_entry *u;
-
- /* If we have an expression, evaluate it and use it as the address. */
-
- if (exp != 0 && *exp != 0)
- address = parse_and_eval_address (exp);
- else
- return;
-
- u = find_unwind_entry (address);
-
- if (!u)
- {
- printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
- return;
- }
-
- printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
-
- printf_unfiltered ("\tregion_start = ");
- print_address (u->region_start, gdb_stdout);
-
- printf_unfiltered ("\n\tregion_end = ");
- print_address (u->region_end, gdb_stdout);
-
-#ifdef __STDC__
-#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
-#else
-#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
-#endif
-
- printf_unfiltered ("\n\tflags =");
- pif (Cannot_unwind);
- pif (Millicode);
- pif (Millicode_save_sr0);
- pif (Entry_SR);
- pif (Args_stored);
- pif (Variable_Frame);
- pif (Separate_Package_Body);
- pif (Frame_Extension_Millicode);
- pif (Stack_Overflow_Check);
- pif (Two_Instruction_SP_Increment);
- pif (Ada_Region);
- pif (Save_SP);
- pif (Save_RP);
- pif (Save_MRP_in_frame);
- pif (extn_ptr_defined);
- pif (Cleanup_defined);
- pif (MPE_XL_interrupt_marker);
- pif (HP_UX_interrupt_marker);
- pif (Large_frame);
-
- putchar_unfiltered ('\n');
-
-#ifdef __STDC__
-#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
-#else
-#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
-#endif
-
- pin (Region_description);
- pin (Entry_FR);
- pin (Entry_GR);
- pin (Total_frame_size);
-}
-#endif /* MAINTENANCE_CMDS */
-
-#ifdef PREPARE_TO_PROCEED
-
-/* If the user has switched threads, and there is a breakpoint
- at the old thread's pc location, then switch to that thread
- and return TRUE, else return FALSE and don't do a thread
- switch (or rather, don't seem to have done a thread switch).
-
- Ptrace-based gdb will always return FALSE to the thread-switch
- query, and thus also to PREPARE_TO_PROCEED.
-
- The important thing is whether there is a BPT instruction,
- not how many user breakpoints there are. So we have to worry
- about things like these:
-
- o Non-bp stop -- NO
-
- o User hits bp, no switch -- NO
-
- o User hits bp, switches threads -- YES
-
- o User hits bp, deletes bp, switches threads -- NO
-
- o User hits bp, deletes one of two or more bps
- at that PC, user switches threads -- YES
-
- o Plus, since we're buffering events, the user may have hit a
- breakpoint, deleted the breakpoint and then gotten another
- hit on that same breakpoint on another thread which
- actually hit before the delete. (FIXME in breakpoint.c
- so that "dead" breakpoints are ignored?) -- NO
-
- For these reasons, we have to violate information hiding and
- call "breakpoint_here_p". If core gdb thinks there is a bpt
- here, that's what counts, as core gdb is the one which is
- putting the BPT instruction in and taking it out. */
-int
-hppa_prepare_to_proceed()
-{
- pid_t old_thread;
- pid_t current_thread;
-
- old_thread = hppa_switched_threads(inferior_pid);
- if (old_thread != 0)
- {
- /* Switched over from "old_thread". Try to do
- as little work as possible, 'cause mostly
- we're going to switch back. */
- CORE_ADDR new_pc;
- CORE_ADDR old_pc = read_pc();
-
- /* Yuk, shouldn't use global to specify current
- thread. But that's how gdb does it. */
- current_thread = inferior_pid;
- inferior_pid = old_thread;
-
- new_pc = read_pc();
- if (new_pc != old_pc /* If at same pc, no need */
- && breakpoint_here_p (new_pc))
- {
- /* User hasn't deleted the BP.
- Return TRUE, finishing switch to "old_thread". */
- flush_cached_frames ();
- registers_changed ();
-#if 0
- printf("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
- current_thread, inferior_pid);
-#endif
-
- return 1;
- }
-
- /* Otherwise switch back to the user-chosen thread. */
- inferior_pid = current_thread;
- new_pc = read_pc(); /* Re-prime register cache */
- }
-
- return 0;
-}
-#endif /* PREPARE_TO_PROCEED */
-
-void
-_initialize_hppa_tdep ()
-{
- tm_print_insn = print_insn_hppa;
-
-#ifdef MAINTENANCE_CMDS
- add_cmd ("unwind", class_maintenance, unwind_command,
- "Print unwind table entry at given address.",
- &maintenanceprintlist);
-#endif /* MAINTENANCE_CMDS */
-}