diff options
Diffstat (limited to 'gdb/hppa-tdep.c')
-rw-r--r-- | gdb/hppa-tdep.c | 4437 |
1 files changed, 0 insertions, 4437 deletions
diff --git a/gdb/hppa-tdep.c b/gdb/hppa-tdep.c deleted file mode 100644 index f784c21..0000000 --- a/gdb/hppa-tdep.c +++ /dev/null @@ -1,4437 +0,0 @@ -/* Target-dependent code for the HP PA architecture, for GDB. - Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 - Free Software Foundation, Inc. - - Contributed by the Center for Software Science at the - University of Utah (pa-gdb-bugs@cs.utah.edu). - -This file is part of GDB. - -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - -#include "defs.h" -#include "frame.h" -#include "bfd.h" -#include "inferior.h" -#include "value.h" - -/* For argument passing to the inferior */ -#include "symtab.h" - -#ifdef USG -#include <sys/types.h> -#endif - -#include <dl.h> -#include <sys/param.h> -#include <signal.h> - -#include <sys/ptrace.h> -#include <machine/save_state.h> - -#ifdef COFF_ENCAPSULATE -#include "a.out.encap.h" -#else -#endif - -/*#include <sys/user.h> After a.out.h */ -#include <sys/file.h> -#include "gdb_stat.h" -#include "wait.h" - -#include "gdbcore.h" -#include "gdbcmd.h" -#include "target.h" -#include "symfile.h" -#include "objfiles.h" - -/* To support asking "What CPU is this?" */ -#include <unistd.h> - -/* To support detection of the pseudo-initial frame - that threads have. */ -#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" -#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) - -static int extract_5_load PARAMS ((unsigned int)); - -static unsigned extract_5R_store PARAMS ((unsigned int)); - -static unsigned extract_5r_store PARAMS ((unsigned int)); - -static void find_dummy_frame_regs PARAMS ((struct frame_info *, - struct frame_saved_regs *)); - -static int find_proc_framesize PARAMS ((CORE_ADDR)); - -static int find_return_regnum PARAMS ((CORE_ADDR)); - -struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR)); - -static int extract_17 PARAMS ((unsigned int)); - -static unsigned deposit_21 PARAMS ((unsigned int, unsigned int)); - -static int extract_21 PARAMS ((unsigned)); - -static unsigned deposit_14 PARAMS ((int, unsigned int)); - -static int extract_14 PARAMS ((unsigned)); - -static void unwind_command PARAMS ((char *, int)); - -static int low_sign_extend PARAMS ((unsigned int, unsigned int)); - -static int sign_extend PARAMS ((unsigned int, unsigned int)); - -static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); - -static int hppa_alignof PARAMS ((struct type *)); - -/* To support multi-threading and stepping. */ -int hppa_prepare_to_proceed PARAMS (()); - -static int prologue_inst_adjust_sp PARAMS ((unsigned long)); - -static int is_branch PARAMS ((unsigned long)); - -static int inst_saves_gr PARAMS ((unsigned long)); - -static int inst_saves_fr PARAMS ((unsigned long)); - -static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); - -static int pc_in_linker_stub PARAMS ((CORE_ADDR)); - -static int compare_unwind_entries PARAMS ((const void *, const void *)); - -static void read_unwind_info PARAMS ((struct objfile *)); - -static void internalize_unwinds PARAMS ((struct objfile *, - struct unwind_table_entry *, - asection *, unsigned int, - unsigned int, CORE_ADDR)); -static void pa_print_registers PARAMS ((char *, int, int)); -static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *)); -static void pa_register_look_aside PARAMS ((char *, int, long *)); -static void pa_print_fp_reg PARAMS ((int)); -static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type)); - -typedef struct { - struct minimal_symbol * msym; - CORE_ADDR solib_handle; -} args_for_find_stub; - -static CORE_ADDR cover_find_stub_with_shl_get PARAMS ((args_for_find_stub *)); - -static int is_pa_2 = 0; /* False */ - -/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ -extern int hp_som_som_object_present; - -/* In breakpoint.c */ -extern int exception_catchpoints_are_fragile; - -/* This is defined in valops.c. */ -extern value_ptr -find_function_in_inferior PARAMS((char *)); - -/* Should call_function allocate stack space for a struct return? */ -int -hppa_use_struct_convention (gcc_p, type) - int gcc_p; - struct type *type; -{ - return (TYPE_LENGTH (type) > 8); -} - - -/* Routines to extract various sized constants out of hppa - instructions. */ - -/* This assumes that no garbage lies outside of the lower bits of - value. */ - -static int -sign_extend (val, bits) - unsigned val, bits; -{ - return (int)(val >> (bits - 1) ? (-1 << bits) | val : val); -} - -/* For many immediate values the sign bit is the low bit! */ - -static int -low_sign_extend (val, bits) - unsigned val, bits; -{ - return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); -} - -/* extract the immediate field from a ld{bhw}s instruction */ - -#if 0 - -unsigned -get_field (val, from, to) - unsigned val, from, to; -{ - val = val >> 31 - to; - return val & ((1 << 32 - from) - 1); -} - -unsigned -set_field (val, from, to, new_val) - unsigned *val, from, to; -{ - unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); - return *val = *val & mask | (new_val << (31 - from)); -} - -/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ - -int -extract_3 (word) - unsigned word; -{ - return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); -} - -#endif - -static int -extract_5_load (word) - unsigned word; -{ - return low_sign_extend (word >> 16 & MASK_5, 5); -} - -#if 0 - -/* extract the immediate field from a st{bhw}s instruction */ - -int -extract_5_store (word) - unsigned word; -{ - return low_sign_extend (word & MASK_5, 5); -} - -#endif /* 0 */ - -/* extract the immediate field from a break instruction */ - -static unsigned -extract_5r_store (word) - unsigned word; -{ - return (word & MASK_5); -} - -/* extract the immediate field from a {sr}sm instruction */ - -static unsigned -extract_5R_store (word) - unsigned word; -{ - return (word >> 16 & MASK_5); -} - -/* extract an 11 bit immediate field */ - -#if 0 - -int -extract_11 (word) - unsigned word; -{ - return low_sign_extend (word & MASK_11, 11); -} - -#endif - -/* extract a 14 bit immediate field */ - -static int -extract_14 (word) - unsigned word; -{ - return low_sign_extend (word & MASK_14, 14); -} - -/* deposit a 14 bit constant in a word */ - -static unsigned -deposit_14 (opnd, word) - int opnd; - unsigned word; -{ - unsigned sign = (opnd < 0 ? 1 : 0); - - return word | ((unsigned)opnd << 1 & MASK_14) | sign; -} - -/* extract a 21 bit constant */ - -static int -extract_21 (word) - unsigned word; -{ - int val; - - word &= MASK_21; - word <<= 11; - val = GET_FIELD (word, 20, 20); - val <<= 11; - val |= GET_FIELD (word, 9, 19); - val <<= 2; - val |= GET_FIELD (word, 5, 6); - val <<= 5; - val |= GET_FIELD (word, 0, 4); - val <<= 2; - val |= GET_FIELD (word, 7, 8); - return sign_extend (val, 21) << 11; -} - -/* deposit a 21 bit constant in a word. Although 21 bit constants are - usually the top 21 bits of a 32 bit constant, we assume that only - the low 21 bits of opnd are relevant */ - -static unsigned -deposit_21 (opnd, word) - unsigned opnd, word; -{ - unsigned val = 0; - - val |= GET_FIELD (opnd, 11 + 14, 11 + 18); - val <<= 2; - val |= GET_FIELD (opnd, 11 + 12, 11 + 13); - val <<= 2; - val |= GET_FIELD (opnd, 11 + 19, 11 + 20); - val <<= 11; - val |= GET_FIELD (opnd, 11 + 1, 11 + 11); - val <<= 1; - val |= GET_FIELD (opnd, 11 + 0, 11 + 0); - return word | val; -} - -/* extract a 12 bit constant from branch instructions */ - -#if 0 - -int -extract_12 (word) - unsigned word; -{ - return sign_extend (GET_FIELD (word, 19, 28) | - GET_FIELD (word, 29, 29) << 10 | - (word & 0x1) << 11, 12) << 2; -} - -/* Deposit a 17 bit constant in an instruction (like bl). */ - -unsigned int -deposit_17 (opnd, word) - unsigned opnd, word; -{ - word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */ - word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */ - word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */ - word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */ - - return word; -} - -#endif - -/* extract a 17 bit constant from branch instructions, returning the - 19 bit signed value. */ - -static int -extract_17 (word) - unsigned word; -{ - return sign_extend (GET_FIELD (word, 19, 28) | - GET_FIELD (word, 29, 29) << 10 | - GET_FIELD (word, 11, 15) << 11 | - (word & 0x1) << 16, 17) << 2; -} - - -/* Compare the start address for two unwind entries returning 1 if - the first address is larger than the second, -1 if the second is - larger than the first, and zero if they are equal. */ - -static int -compare_unwind_entries (arg1, arg2) - const void *arg1; - const void *arg2; -{ - const struct unwind_table_entry *a = arg1; - const struct unwind_table_entry *b = arg2; - - if (a->region_start > b->region_start) - return 1; - else if (a->region_start < b->region_start) - return -1; - else - return 0; -} - -static void -internalize_unwinds (objfile, table, section, entries, size, text_offset) - struct objfile *objfile; - struct unwind_table_entry *table; - asection *section; - unsigned int entries, size; - CORE_ADDR text_offset; -{ - /* We will read the unwind entries into temporary memory, then - fill in the actual unwind table. */ - if (size > 0) - { - unsigned long tmp; - unsigned i; - char *buf = alloca (size); - - bfd_get_section_contents (objfile->obfd, section, buf, 0, size); - - /* Now internalize the information being careful to handle host/target - endian issues. */ - for (i = 0; i < entries; i++) - { - table[i].region_start = bfd_get_32 (objfile->obfd, - (bfd_byte *)buf); - table[i].region_start += text_offset; - buf += 4; - table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); - table[i].region_end += text_offset; - buf += 4; - tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); - buf += 4; - table[i].Cannot_unwind = (tmp >> 31) & 0x1; - table[i].Millicode = (tmp >> 30) & 0x1; - table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; - table[i].Region_description = (tmp >> 27) & 0x3; - table[i].reserved1 = (tmp >> 26) & 0x1; - table[i].Entry_SR = (tmp >> 25) & 0x1; - table[i].Entry_FR = (tmp >> 21) & 0xf; - table[i].Entry_GR = (tmp >> 16) & 0x1f; - table[i].Args_stored = (tmp >> 15) & 0x1; - table[i].Variable_Frame = (tmp >> 14) & 0x1; - table[i].Separate_Package_Body = (tmp >> 13) & 0x1; - table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; - table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; - table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; - table[i].Ada_Region = (tmp >> 9) & 0x1; - table[i].cxx_info = (tmp >> 8) & 0x1; - table[i].cxx_try_catch = (tmp >> 7) & 0x1; - table[i].sched_entry_seq = (tmp >> 6) & 0x1; - table[i].reserved2 = (tmp >> 5) & 0x1; - table[i].Save_SP = (tmp >> 4) & 0x1; - table[i].Save_RP = (tmp >> 3) & 0x1; - table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; - table[i].extn_ptr_defined = (tmp >> 1) & 0x1; - table[i].Cleanup_defined = tmp & 0x1; - tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); - buf += 4; - table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; - table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; - table[i].Large_frame = (tmp >> 29) & 0x1; - table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; - table[i].reserved4 = (tmp >> 27) & 0x1; - table[i].Total_frame_size = tmp & 0x7ffffff; - - /* Stub unwinds are handled elsewhere. */ - table[i].stub_unwind.stub_type = 0; - table[i].stub_unwind.padding = 0; - } - } -} - -/* Read in the backtrace information stored in the `$UNWIND_START$' section of - the object file. This info is used mainly by find_unwind_entry() to find - out the stack frame size and frame pointer used by procedures. We put - everything on the psymbol obstack in the objfile so that it automatically - gets freed when the objfile is destroyed. */ - -static void -read_unwind_info (objfile) - struct objfile *objfile; -{ - asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; - unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; - unsigned index, unwind_entries, elf_unwind_entries; - unsigned stub_entries, total_entries; - CORE_ADDR text_offset; - struct obj_unwind_info *ui; - obj_private_data_t *obj_private; - - text_offset = ANOFFSET (objfile->section_offsets, 0); - ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack, - sizeof (struct obj_unwind_info)); - - ui->table = NULL; - ui->cache = NULL; - ui->last = -1; - - /* Get hooks to all unwind sections. Note there is no linker-stub unwind - section in ELF at the moment. */ - unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); - elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); - stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); - - /* Get sizes and unwind counts for all sections. */ - if (unwind_sec) - { - unwind_size = bfd_section_size (objfile->obfd, unwind_sec); - unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; - } - else - { - unwind_size = 0; - unwind_entries = 0; - } - - if (elf_unwind_sec) - { - elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */ - elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */ - } - else - { - elf_unwind_size = 0; - elf_unwind_entries = 0; - } - - if (stub_unwind_sec) - { - stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); - stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; - } - else - { - stub_unwind_size = 0; - stub_entries = 0; - } - - /* Compute total number of unwind entries and their total size. */ - total_entries = unwind_entries + elf_unwind_entries + stub_entries; - total_size = total_entries * sizeof (struct unwind_table_entry); - - /* Allocate memory for the unwind table. */ - ui->table = (struct unwind_table_entry *) - obstack_alloc (&objfile->psymbol_obstack, total_size); - ui->last = total_entries - 1; - - /* Internalize the standard unwind entries. */ - index = 0; - internalize_unwinds (objfile, &ui->table[index], unwind_sec, - unwind_entries, unwind_size, text_offset); - index += unwind_entries; - internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, - elf_unwind_entries, elf_unwind_size, text_offset); - index += elf_unwind_entries; - - /* Now internalize the stub unwind entries. */ - if (stub_unwind_size > 0) - { - unsigned int i; - char *buf = alloca (stub_unwind_size); - - /* Read in the stub unwind entries. */ - bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, - 0, stub_unwind_size); - - /* Now convert them into regular unwind entries. */ - for (i = 0; i < stub_entries; i++, index++) - { - /* Clear out the next unwind entry. */ - memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); - - /* Convert offset & size into region_start and region_end. - Stuff away the stub type into "reserved" fields. */ - ui->table[index].region_start = bfd_get_32 (objfile->obfd, - (bfd_byte *) buf); - ui->table[index].region_start += text_offset; - buf += 4; - ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, - (bfd_byte *) buf); - buf += 2; - ui->table[index].region_end - = ui->table[index].region_start + 4 * - (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); - buf += 2; - } - - } - - /* Unwind table needs to be kept sorted. */ - qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), - compare_unwind_entries); - - /* Keep a pointer to the unwind information. */ - if(objfile->obj_private == NULL) - { - obj_private = (obj_private_data_t *) - obstack_alloc(&objfile->psymbol_obstack, - sizeof(obj_private_data_t)); - obj_private->unwind_info = NULL; - obj_private->so_info = NULL; - - objfile->obj_private = (PTR) obj_private; - } - obj_private = (obj_private_data_t *)objfile->obj_private; - obj_private->unwind_info = ui; -} - -/* Lookup the unwind (stack backtrace) info for the given PC. We search all - of the objfiles seeking the unwind table entry for this PC. Each objfile - contains a sorted list of struct unwind_table_entry. Since we do a binary - search of the unwind tables, we depend upon them to be sorted. */ - -struct unwind_table_entry * -find_unwind_entry(pc) - CORE_ADDR pc; -{ - int first, middle, last; - struct objfile *objfile; - - /* A function at address 0? Not in HP-UX! */ - if (pc == (CORE_ADDR) 0) - return NULL; - - ALL_OBJFILES (objfile) - { - struct obj_unwind_info *ui; - ui = NULL; - if (objfile->obj_private) - ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info; - - if (!ui) - { - read_unwind_info (objfile); - if (objfile->obj_private == NULL) - error ("Internal error reading unwind information."); /* purecov: deadcode */ - ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info; - } - - /* First, check the cache */ - - if (ui->cache - && pc >= ui->cache->region_start - && pc <= ui->cache->region_end) - return ui->cache; - - /* Not in the cache, do a binary search */ - - first = 0; - last = ui->last; - - while (first <= last) - { - middle = (first + last) / 2; - if (pc >= ui->table[middle].region_start - && pc <= ui->table[middle].region_end) - { - ui->cache = &ui->table[middle]; - return &ui->table[middle]; - } - - if (pc < ui->table[middle].region_start) - last = middle - 1; - else - first = middle + 1; - } - } /* ALL_OBJFILES() */ - return NULL; -} - -/* Return the adjustment necessary to make for addresses on the stack - as presented by hpread.c. - - This is necessary because of the stack direction on the PA and the - bizarre way in which someone (?) decided they wanted to handle - frame pointerless code in GDB. */ -int -hpread_adjust_stack_address (func_addr) - CORE_ADDR func_addr; -{ - struct unwind_table_entry *u; - - u = find_unwind_entry (func_addr); - if (!u) - return 0; - else - return u->Total_frame_size << 3; -} - -/* Called to determine if PC is in an interrupt handler of some - kind. */ - -static int -pc_in_interrupt_handler (pc) - CORE_ADDR pc; -{ - struct unwind_table_entry *u; - struct minimal_symbol *msym_us; - - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though - its frame isn't a pure interrupt frame. Deal with this. */ - msym_us = lookup_minimal_symbol_by_pc (pc); - - return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); -} - -/* Called when no unwind descriptor was found for PC. Returns 1 if it - appears that PC is in a linker stub. */ - -static int -pc_in_linker_stub (pc) - CORE_ADDR pc; -{ - int found_magic_instruction = 0; - int i; - char buf[4]; - - /* If unable to read memory, assume pc is not in a linker stub. */ - if (target_read_memory (pc, buf, 4) != 0) - return 0; - - /* We are looking for something like - - ; $$dyncall jams RP into this special spot in the frame (RP') - ; before calling the "call stub" - ldw -18(sp),rp - - ldsid (rp),r1 ; Get space associated with RP into r1 - mtsp r1,sp ; Move it into space register 0 - be,n 0(sr0),rp) ; back to your regularly scheduled program */ - - /* Maximum known linker stub size is 4 instructions. Search forward - from the given PC, then backward. */ - for (i = 0; i < 4; i++) - { - /* If we hit something with an unwind, stop searching this direction. */ - - if (find_unwind_entry (pc + i * 4) != 0) - break; - - /* Check for ldsid (rp),r1 which is the magic instruction for a - return from a cross-space function call. */ - if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) - { - found_magic_instruction = 1; - break; - } - /* Add code to handle long call/branch and argument relocation stubs - here. */ - } - - if (found_magic_instruction != 0) - return 1; - - /* Now look backward. */ - for (i = 0; i < 4; i++) - { - /* If we hit something with an unwind, stop searching this direction. */ - - if (find_unwind_entry (pc - i * 4) != 0) - break; - - /* Check for ldsid (rp),r1 which is the magic instruction for a - return from a cross-space function call. */ - if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) - { - found_magic_instruction = 1; - break; - } - /* Add code to handle long call/branch and argument relocation stubs - here. */ - } - return found_magic_instruction; -} - -static int -find_return_regnum(pc) - CORE_ADDR pc; -{ - struct unwind_table_entry *u; - - u = find_unwind_entry (pc); - - if (!u) - return RP_REGNUM; - - if (u->Millicode) - return 31; - - return RP_REGNUM; -} - -/* Return size of frame, or -1 if we should use a frame pointer. */ -static int -find_proc_framesize (pc) - CORE_ADDR pc; -{ - struct unwind_table_entry *u; - struct minimal_symbol *msym_us; - - /* This may indicate a bug in our callers... */ - if (pc == (CORE_ADDR)0) - return -1; - - u = find_unwind_entry (pc); - - if (!u) - { - if (pc_in_linker_stub (pc)) - /* Linker stubs have a zero size frame. */ - return 0; - else - return -1; - } - - msym_us = lookup_minimal_symbol_by_pc (pc); - - /* If Save_SP is set, and we're not in an interrupt or signal caller, - then we have a frame pointer. Use it. */ - if (u->Save_SP && !pc_in_interrupt_handler (pc) - && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) - return -1; - - return u->Total_frame_size << 3; -} - -/* Return offset from sp at which rp is saved, or 0 if not saved. */ -static int rp_saved PARAMS ((CORE_ADDR)); - -static int -rp_saved (pc) - CORE_ADDR pc; -{ - struct unwind_table_entry *u; - - /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ - if (pc == (CORE_ADDR) 0) - return 0; - - u = find_unwind_entry (pc); - - if (!u) - { - if (pc_in_linker_stub (pc)) - /* This is the so-called RP'. */ - return -24; - else - return 0; - } - - if (u->Save_RP) - return -20; - else if (u->stub_unwind.stub_type != 0) - { - switch (u->stub_unwind.stub_type) - { - case EXPORT: - case IMPORT: - return -24; - case PARAMETER_RELOCATION: - return -8; - default: - return 0; - } - } - else - return 0; -} - -int -frameless_function_invocation (frame) - struct frame_info *frame; -{ - struct unwind_table_entry *u; - - u = find_unwind_entry (frame->pc); - - if (u == 0) - return 0; - - return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); -} - -CORE_ADDR -saved_pc_after_call (frame) - struct frame_info *frame; -{ - int ret_regnum; - CORE_ADDR pc; - struct unwind_table_entry *u; - - ret_regnum = find_return_regnum (get_frame_pc (frame)); - pc = read_register (ret_regnum) & ~0x3; - - /* If PC is in a linker stub, then we need to dig the address - the stub will return to out of the stack. */ - u = find_unwind_entry (pc); - if (u && u->stub_unwind.stub_type != 0) - return FRAME_SAVED_PC (frame); - else - return pc; -} - -CORE_ADDR -hppa_frame_saved_pc (frame) - struct frame_info *frame; -{ - CORE_ADDR pc = get_frame_pc (frame); - struct unwind_table_entry *u; - CORE_ADDR old_pc; - int spun_around_loop = 0; - int rp_offset = 0; - - /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner - at the base of the frame in an interrupt handler. Registers within - are saved in the exact same order as GDB numbers registers. How - convienent. */ - if (pc_in_interrupt_handler (pc)) - return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; - -#ifdef FRAME_SAVED_PC_IN_SIGTRAMP - /* Deal with signal handler caller frames too. */ - if (frame->signal_handler_caller) - { - CORE_ADDR rp; - FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); - return rp & ~0x3; - } -#endif - - if (frameless_function_invocation (frame)) - { - int ret_regnum; - - ret_regnum = find_return_regnum (pc); - - /* If the next frame is an interrupt frame or a signal - handler caller, then we need to look in the saved - register area to get the return pointer (the values - in the registers may not correspond to anything useful). */ - if (frame->next - && (frame->next->signal_handler_caller - || pc_in_interrupt_handler (frame->next->pc))) - { - struct frame_saved_regs saved_regs; - - get_frame_saved_regs (frame->next, &saved_regs); - if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) - { - pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; - - /* Syscalls are really two frames. The syscall stub itself - with a return pointer in %rp and the kernel call with - a return pointer in %r31. We return the %rp variant - if %r31 is the same as frame->pc. */ - if (pc == frame->pc) - pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; - } - else - pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; - } - else - pc = read_register (ret_regnum) & ~0x3; - } - else - { - spun_around_loop = 0; - old_pc = pc; - -restart: - rp_offset = rp_saved (pc); - - /* Similar to code in frameless function case. If the next - frame is a signal or interrupt handler, then dig the right - information out of the saved register info. */ - if (rp_offset == 0 - && frame->next - && (frame->next->signal_handler_caller - || pc_in_interrupt_handler (frame->next->pc))) - { - struct frame_saved_regs saved_regs; - - get_frame_saved_regs (frame->next, &saved_regs); - if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) - { - pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; - - /* Syscalls are really two frames. The syscall stub itself - with a return pointer in %rp and the kernel call with - a return pointer in %r31. We return the %rp variant - if %r31 is the same as frame->pc. */ - if (pc == frame->pc) - pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; - } - else - pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; - } - else if (rp_offset == 0) - { - old_pc = pc; - pc = read_register (RP_REGNUM) & ~0x3; - } - else - { - old_pc = pc; - pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; - } - } - - /* If PC is inside a linker stub, then dig out the address the stub - will return to. - - Don't do this for long branch stubs. Why? For some unknown reason - _start is marked as a long branch stub in hpux10. */ - u = find_unwind_entry (pc); - if (u && u->stub_unwind.stub_type != 0 - && u->stub_unwind.stub_type != LONG_BRANCH) - { - unsigned int insn; - - /* If this is a dynamic executable, and we're in a signal handler, - then the call chain will eventually point us into the stub for - _sigreturn. Unlike most cases, we'll be pointed to the branch - to the real sigreturn rather than the code after the real branch!. - - Else, try to dig the address the stub will return to in the normal - fashion. */ - insn = read_memory_integer (pc, 4); - if ((insn & 0xfc00e000) == 0xe8000000) - return (pc + extract_17 (insn) + 8) & ~0x3; - else - { - if (old_pc == pc) - spun_around_loop++; - - if (spun_around_loop > 1) - { - /* We're just about to go around the loop again with - no more hope of success. Die. */ - error("Unable to find return pc for this frame"); - } - else - goto restart; - } - } - - return pc; -} - -/* We need to correct the PC and the FP for the outermost frame when we are - in a system call. */ - -void -init_extra_frame_info (fromleaf, frame) - int fromleaf; - struct frame_info *frame; -{ - int flags; - int framesize; - - if (frame->next && !fromleaf) - return; - - /* If the next frame represents a frameless function invocation - then we have to do some adjustments that are normally done by - FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ - if (fromleaf) - { - /* Find the framesize of *this* frame without peeking at the PC - in the current frame structure (it isn't set yet). */ - framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); - - /* Now adjust our base frame accordingly. If we have a frame pointer - use it, else subtract the size of this frame from the current - frame. (we always want frame->frame to point at the lowest address - in the frame). */ - if (framesize == -1) - frame->frame = TARGET_READ_FP (); - else - frame->frame -= framesize; - return; - } - - flags = read_register (FLAGS_REGNUM); - if (flags & 2) /* In system call? */ - frame->pc = read_register (31) & ~0x3; - - /* The outermost frame is always derived from PC-framesize - - One might think frameless innermost frames should have - a frame->frame that is the same as the parent's frame->frame. - That is wrong; frame->frame in that case should be the *high* - address of the parent's frame. It's complicated as hell to - explain, but the parent *always* creates some stack space for - the child. So the child actually does have a frame of some - sorts, and its base is the high address in its parent's frame. */ - framesize = find_proc_framesize(frame->pc); - if (framesize == -1) - frame->frame = TARGET_READ_FP (); - else - frame->frame = read_register (SP_REGNUM) - framesize; -} - -/* Given a GDB frame, determine the address of the calling function's frame. - This will be used to create a new GDB frame struct, and then - INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. - - This may involve searching through prologues for several functions - at boundaries where GCC calls HP C code, or where code which has - a frame pointer calls code without a frame pointer. */ - -CORE_ADDR -frame_chain (frame) - struct frame_info *frame; -{ - int my_framesize, caller_framesize; - struct unwind_table_entry *u; - CORE_ADDR frame_base; - struct frame_info *tmp_frame; - - CORE_ADDR caller_pc; - - struct minimal_symbol *min_frame_symbol; - struct symbol *frame_symbol; - char *frame_symbol_name; - - /* If this is a threaded application, and we see the - routine "__pthread_exit", treat it as the stack root - for this thread. */ - min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc); - frame_symbol = find_pc_function(frame->pc); - - if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */) - { - /* The test above for "no user function name" would defend - against the slim likelihood that a user might define a - routine named "__pthread_exit" and then try to debug it. - - If it weren't commented out, and you tried to debug the - pthread library itself, you'd get errors. - - So for today, we don't make that check. */ - frame_symbol_name = SYMBOL_NAME(min_frame_symbol); - if (frame_symbol_name != 0) { - if (0 == strncmp(frame_symbol_name, - THREAD_INITIAL_FRAME_SYMBOL, - THREAD_INITIAL_FRAME_SYM_LEN)) { - /* Pretend we've reached the bottom of the stack. */ - return (CORE_ADDR) 0; - } - } - } /* End of hacky code for threads. */ - - /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These - are easy; at *sp we have a full save state strucutre which we can - pull the old stack pointer from. Also see frame_saved_pc for - code to dig a saved PC out of the save state structure. */ - if (pc_in_interrupt_handler (frame->pc)) - frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); -#ifdef FRAME_BASE_BEFORE_SIGTRAMP - else if (frame->signal_handler_caller) - { - FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); - } -#endif - else - frame_base = frame->frame; - - /* Get frame sizes for the current frame and the frame of the - caller. */ - my_framesize = find_proc_framesize (frame->pc); - caller_pc = FRAME_SAVED_PC(frame); - - /* If we can't determine the caller's PC, then it's not likely we can - really determine anything meaningful about its frame. We'll consider - this to be stack bottom. */ - if (caller_pc == (CORE_ADDR) 0) - return (CORE_ADDR) 0; - - caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); - - /* If caller does not have a frame pointer, then its frame - can be found at current_frame - caller_framesize. */ - if (caller_framesize != -1) - { - return frame_base - caller_framesize; - } - /* Both caller and callee have frame pointers and are GCC compiled - (SAVE_SP bit in unwind descriptor is on for both functions. - The previous frame pointer is found at the top of the current frame. */ - if (caller_framesize == -1 && my_framesize == -1) - { - return read_memory_integer (frame_base, 4); - } - /* Caller has a frame pointer, but callee does not. This is a little - more difficult as GCC and HP C lay out locals and callee register save - areas very differently. - - The previous frame pointer could be in a register, or in one of - several areas on the stack. - - Walk from the current frame to the innermost frame examining - unwind descriptors to determine if %r3 ever gets saved into the - stack. If so return whatever value got saved into the stack. - If it was never saved in the stack, then the value in %r3 is still - valid, so use it. - - We use information from unwind descriptors to determine if %r3 - is saved into the stack (Entry_GR field has this information). */ - - tmp_frame = frame; - while (tmp_frame) - { - u = find_unwind_entry (tmp_frame->pc); - - if (!u) - { - /* We could find this information by examining prologues. I don't - think anyone has actually written any tools (not even "strip") - which leave them out of an executable, so maybe this is a moot - point. */ - /* ??rehrauer: Actually, it's quite possible to stepi your way into - code that doesn't have unwind entries. For example, stepping into - the dynamic linker will give you a PC that has none. Thus, I've - disabled this warning. */ -#if 0 - warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); -#endif - return (CORE_ADDR) 0; - } - - /* Entry_GR specifies the number of callee-saved general registers - saved in the stack. It starts at %r3, so %r3 would be 1. */ - if (u->Entry_GR >= 1 || u->Save_SP - || tmp_frame->signal_handler_caller - || pc_in_interrupt_handler (tmp_frame->pc)) - break; - else - tmp_frame = tmp_frame->next; - } - - if (tmp_frame) - { - /* We may have walked down the chain into a function with a frame - pointer. */ - if (u->Save_SP - && !tmp_frame->signal_handler_caller - && !pc_in_interrupt_handler (tmp_frame->pc)) - { - return read_memory_integer (tmp_frame->frame, 4); - } - /* %r3 was saved somewhere in the stack. Dig it out. */ - else - { - struct frame_saved_regs saved_regs; - - /* Sick. - - For optimization purposes many kernels don't have the - callee saved registers into the save_state structure upon - entry into the kernel for a syscall; the optimization - is usually turned off if the process is being traced so - that the debugger can get full register state for the - process. - - This scheme works well except for two cases: - - * Attaching to a process when the process is in the - kernel performing a system call (debugger can't get - full register state for the inferior process since - the process wasn't being traced when it entered the - system call). - - * Register state is not complete if the system call - causes the process to core dump. - - - The following heinous code is an attempt to deal with - the lack of register state in a core dump. It will - fail miserably if the function which performs the - system call has a variable sized stack frame. */ - - get_frame_saved_regs (tmp_frame, &saved_regs); - - /* Abominable hack. */ - if (current_target.to_has_execution == 0 - && ((saved_regs.regs[FLAGS_REGNUM] - && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) - & 0x2)) - || (saved_regs.regs[FLAGS_REGNUM] == 0 - && read_register (FLAGS_REGNUM) & 0x2))) - { - u = find_unwind_entry (FRAME_SAVED_PC (frame)); - if (!u) - { - return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); - } - else - { - return frame_base - (u->Total_frame_size << 3); - } - } - - return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); - } - } - else - { - struct frame_saved_regs saved_regs; - - /* Get the innermost frame. */ - tmp_frame = frame; - while (tmp_frame->next != NULL) - tmp_frame = tmp_frame->next; - - get_frame_saved_regs (tmp_frame, &saved_regs); - /* Abominable hack. See above. */ - if (current_target.to_has_execution == 0 - && ((saved_regs.regs[FLAGS_REGNUM] - && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) - & 0x2)) - || (saved_regs.regs[FLAGS_REGNUM] == 0 - && read_register (FLAGS_REGNUM) & 0x2))) - { - u = find_unwind_entry (FRAME_SAVED_PC (frame)); - if (!u) - { - return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); - } - else - { - return frame_base - (u->Total_frame_size << 3); - } - } - - /* The value in %r3 was never saved into the stack (thus %r3 still - holds the value of the previous frame pointer). */ - return TARGET_READ_FP (); - } -} - - -/* To see if a frame chain is valid, see if the caller looks like it - was compiled with gcc. */ - -int -hppa_frame_chain_valid (chain, thisframe) - CORE_ADDR chain; - struct frame_info *thisframe; -{ - struct minimal_symbol *msym_us; - struct minimal_symbol *msym_start; - struct unwind_table_entry *u, *next_u = NULL; - struct frame_info *next; - - if (!chain) - return 0; - - u = find_unwind_entry (thisframe->pc); - - if (u == NULL) - return 1; - - /* We can't just check that the same of msym_us is "_start", because - someone idiotically decided that they were going to make a Ltext_end - symbol with the same address. This Ltext_end symbol is totally - indistinguishable (as nearly as I can tell) from the symbol for a function - which is (legitimately, since it is in the user's namespace) - named Ltext_end, so we can't just ignore it. */ - msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); - msym_start = lookup_minimal_symbol ("_start", NULL, NULL); - if (msym_us - && msym_start - && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) - return 0; - - /* Grrrr. Some new idiot decided that they don't want _start for the - PRO configurations; $START$ calls main directly.... Deal with it. */ - msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); - if (msym_us - && msym_start - && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) - return 0; - - next = get_next_frame (thisframe); - if (next) - next_u = find_unwind_entry (next->pc); - - /* If this frame does not save SP, has no stack, isn't a stub, - and doesn't "call" an interrupt routine or signal handler caller, - then its not valid. */ - if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 - || (thisframe->next && thisframe->next->signal_handler_caller) - || (next_u && next_u->HP_UX_interrupt_marker)) - return 1; - - if (pc_in_linker_stub (thisframe->pc)) - return 1; - - return 0; -} - -/* - These functions deal with saving and restoring register state - around a function call in the inferior. They keep the stack - double-word aligned; eventually, on an hp700, the stack will have - to be aligned to a 64-byte boundary. */ - -void -push_dummy_frame (inf_status) - struct inferior_status *inf_status; -{ - CORE_ADDR sp, pc, pcspace; - register int regnum; - int int_buffer; - double freg_buffer; - - /* Oh, what a hack. If we're trying to perform an inferior call - while the inferior is asleep, we have to make sure to clear - the "in system call" bit in the flag register (the call will - start after the syscall returns, so we're no longer in the system - call!) This state is kept in "inf_status", change it there. - - We also need a number of horrid hacks to deal with lossage in the - PC queue registers (apparently they're not valid when the in syscall - bit is set). */ - pc = target_read_pc (inferior_pid); - int_buffer = read_register (FLAGS_REGNUM); - if (int_buffer & 0x2) - { - unsigned int sid; - int_buffer &= ~0x2; - memcpy (inf_status->registers, &int_buffer, 4); - memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); - pc += 4; - memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); - pc -= 4; - sid = (pc >> 30) & 0x3; - if (sid == 0) - pcspace = read_register (SR4_REGNUM); - else - pcspace = read_register (SR4_REGNUM + 4 + sid); - memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), - &pcspace, 4); - memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), - &pcspace, 4); - } - else - pcspace = read_register (PCSQ_HEAD_REGNUM); - - /* Space for "arguments"; the RP goes in here. */ - sp = read_register (SP_REGNUM) + 48; - int_buffer = read_register (RP_REGNUM) | 0x3; - write_memory (sp - 20, (char *)&int_buffer, 4); - - int_buffer = TARGET_READ_FP (); - write_memory (sp, (char *)&int_buffer, 4); - - write_register (FP_REGNUM, sp); - - sp += 8; - - for (regnum = 1; regnum < 32; regnum++) - if (regnum != RP_REGNUM && regnum != FP_REGNUM) - sp = push_word (sp, read_register (regnum)); - - sp += 4; - - for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) - { - read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); - sp = push_bytes (sp, (char *)&freg_buffer, 8); - } - sp = push_word (sp, read_register (IPSW_REGNUM)); - sp = push_word (sp, read_register (SAR_REGNUM)); - sp = push_word (sp, pc); - sp = push_word (sp, pcspace); - sp = push_word (sp, pc + 4); - sp = push_word (sp, pcspace); - write_register (SP_REGNUM, sp); -} - -static void -find_dummy_frame_regs (frame, frame_saved_regs) - struct frame_info *frame; - struct frame_saved_regs *frame_saved_regs; -{ - CORE_ADDR fp = frame->frame; - int i; - - frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; - frame_saved_regs->regs[FP_REGNUM] = fp; - frame_saved_regs->regs[1] = fp + 8; - - for (fp += 12, i = 3; i < 32; i++) - { - if (i != FP_REGNUM) - { - frame_saved_regs->regs[i] = fp; - fp += 4; - } - } - - fp += 4; - for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) - frame_saved_regs->regs[i] = fp; - - frame_saved_regs->regs[IPSW_REGNUM] = fp; - frame_saved_regs->regs[SAR_REGNUM] = fp + 4; - frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; - frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; - frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; - frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; -} - -void -hppa_pop_frame () -{ - register struct frame_info *frame = get_current_frame (); - register CORE_ADDR fp, npc, target_pc; - register int regnum; - struct frame_saved_regs fsr; - double freg_buffer; - - fp = FRAME_FP (frame); - get_frame_saved_regs (frame, &fsr); - -#ifndef NO_PC_SPACE_QUEUE_RESTORE - if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ - restore_pc_queue (&fsr); -#endif - - for (regnum = 31; regnum > 0; regnum--) - if (fsr.regs[regnum]) - write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); - - for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) - if (fsr.regs[regnum]) - { - read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); - write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); - } - - if (fsr.regs[IPSW_REGNUM]) - write_register (IPSW_REGNUM, - read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); - - if (fsr.regs[SAR_REGNUM]) - write_register (SAR_REGNUM, - read_memory_integer (fsr.regs[SAR_REGNUM], 4)); - - /* If the PC was explicitly saved, then just restore it. */ - if (fsr.regs[PCOQ_TAIL_REGNUM]) - { - npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); - write_register (PCOQ_TAIL_REGNUM, npc); - } - /* Else use the value in %rp to set the new PC. */ - else - { - npc = read_register (RP_REGNUM); - write_pc (npc); - } - - write_register (FP_REGNUM, read_memory_integer (fp, 4)); - - if (fsr.regs[IPSW_REGNUM]) /* call dummy */ - write_register (SP_REGNUM, fp - 48); - else - write_register (SP_REGNUM, fp); - - /* The PC we just restored may be inside a return trampoline. If so - we want to restart the inferior and run it through the trampoline. - - Do this by setting a momentary breakpoint at the location the - trampoline returns to. - - Don't skip through the trampoline if we're popping a dummy frame. */ - target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; - if (target_pc && !fsr.regs[IPSW_REGNUM]) - { - struct symtab_and_line sal; - struct breakpoint *breakpoint; - struct cleanup *old_chain; - - /* Set up our breakpoint. Set it to be silent as the MI code - for "return_command" will print the frame we returned to. */ - sal = find_pc_line (target_pc, 0); - sal.pc = target_pc; - breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); - breakpoint->silent = 1; - - /* So we can clean things up. */ - old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint); - - /* Start up the inferior. */ - clear_proceed_status (); - proceed_to_finish = 1; - proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); - - /* Perform our cleanups. */ - do_cleanups (old_chain); - } - flush_cached_frames (); -} - -/* After returning to a dummy on the stack, restore the instruction - queue space registers. */ - -static int -restore_pc_queue (fsr) - struct frame_saved_regs *fsr; -{ - CORE_ADDR pc = read_pc (); - CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); - struct target_waitstatus w; - int insn_count; - - /* Advance past break instruction in the call dummy. */ - write_register (PCOQ_HEAD_REGNUM, pc + 4); - write_register (PCOQ_TAIL_REGNUM, pc + 8); - - /* HPUX doesn't let us set the space registers or the space - registers of the PC queue through ptrace. Boo, hiss. - Conveniently, the call dummy has this sequence of instructions - after the break: - mtsp r21, sr0 - ble,n 0(sr0, r22) - - So, load up the registers and single step until we are in the - right place. */ - - write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); - write_register (22, new_pc); - - for (insn_count = 0; insn_count < 3; insn_count++) - { - /* FIXME: What if the inferior gets a signal right now? Want to - merge this into wait_for_inferior (as a special kind of - watchpoint? By setting a breakpoint at the end? Is there - any other choice? Is there *any* way to do this stuff with - ptrace() or some equivalent?). */ - resume (1, 0); - target_wait (inferior_pid, &w); - - if (w.kind == TARGET_WAITKIND_SIGNALLED) - { - stop_signal = w.value.sig; - terminal_ours_for_output (); - printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", - target_signal_to_name (stop_signal), - target_signal_to_string (stop_signal)); - gdb_flush (gdb_stdout); - return 0; - } - } - target_terminal_ours (); - target_fetch_registers (-1); - return 1; -} - -#if 0 -CORE_ADDR -hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) - int nargs; - value_ptr *args; - CORE_ADDR sp; - int struct_return; - CORE_ADDR struct_addr; -{ - /* array of arguments' offsets */ - int *offset = (int *)alloca(nargs * sizeof (int)); - int cum = 0; - int i, alignment; - - for (i = 0; i < nargs; i++) - { - int x = 0; - /* cum is the sum of the lengths in bytes of - the arguments seen so far */ - cum += TYPE_LENGTH (VALUE_TYPE (args[i])); - - /* value must go at proper alignment. Assume alignment is a - power of two. */ - alignment = hppa_alignof (VALUE_TYPE (args[i])); - - if (cum % alignment) - cum = (cum + alignment) & -alignment; - offset[i] = -cum; - - } - sp += max ((cum + 7) & -8, 16); - - for (i = 0; i < nargs; i++) - write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), - TYPE_LENGTH (VALUE_TYPE (args[i]))); - - if (struct_return) - write_register (28, struct_addr); - return sp + 32; -} -#endif - -/* elz: I am rewriting this function, because the one above is a very - obscure piece of code. - This function pushes the arguments on the stack. The stack grows up - on the PA. - Each argument goes in one (or more) word (4 bytes) on the stack. - The first four words for the args must be allocated, even if they - are not used. - The 'topmost' arg is arg0, the 'bottom-most' is arg3. (if you think of - them as 1 word long). - Below these there can be any number of arguments, as needed by the function. - If an arg is bigger than one word, it will be written on the stack - occupying as many words as needed. Args that are bigger than 64bits - are not copied on the stack, a pointer is passed instead. - - On top of the arg0 word there are other 8 words (32bytes) which are used - for other purposes */ - -CORE_ADDR -hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) - int nargs; - value_ptr *args; - CORE_ADDR sp; - int struct_return; - CORE_ADDR struct_addr; -{ - /* array of arguments' offsets */ - int *offset = (int *)alloca(nargs * sizeof (int)); - /* array of arguments' lengths: real lengths in bytes, not aligned to word size */ - int *lengths = (int *)alloca(nargs * sizeof (int)); - - int bytes_reserved; /* this is the number of bytes on the stack occupied by an - argument. This will be always a multiple of 4 */ - - int cum_bytes_reserved = 0; /* this is the total number of bytes reserved by the args - seen so far. It is a multiple of 4 always */ - int cum_bytes_aligned = 0; /* same as above, but aligned on 8 bytes */ - int i; - - /* When an arg does not occupy a whole word, for instance in bitfields: - if the arg is x bits (0<x<32), it must be written - starting from the (x-1)-th position down until the 0-th position. - It is enough to align it to the word. */ - /* if an arg occupies 8 bytes, it must be aligned on the 64-bits - high order word in odd arg word. */ - /* if an arg is larger than 64 bits, we need to pass a pointer to it, and - copy the actual value on the stack, so that the callee can play with it. - This is taken care of in valops.c in the call_function_by_hand function. - The argument that is received in this function here has already be converted - to a pointer to whatever is needed, so that it just can be pushed - as a word argument */ - - for (i = 0; i < nargs; i++) - { - - lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); - - if (lengths[i] % 4) - bytes_reserved = (lengths[i] / 4) * 4 + 4; - else - bytes_reserved = lengths[i]; - - offset[i] = cum_bytes_reserved + lengths[i]; - - if ((bytes_reserved == 8) && (offset[i] % 8)) /* if 64-bit arg is not 64 bit aligned */ - { - int new_offset=0; - /* bytes_reserved is already aligned to the word, so we put it at one word - more down the stack. This will leave one empty word on the - stack, and one unused register. This is OK, see the calling - convention doc */ - /* the offset may have to be moved to the corresponding position - one word down the stack, to maintain - alignment. */ - new_offset = (offset[i] / 8) * 8 + 8; - if ((new_offset - offset[i]) >=4) - { - bytes_reserved += 4; - offset[i] += 4; - } - } - - cum_bytes_reserved += bytes_reserved; - - } - - /* now move up the sp to reserve at least 4 words required for the args, - or more than this if needed */ - /* wee also need to keep the sp aligned to 8 bytes */ - cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved); - sp += max (cum_bytes_aligned, 16); - - /* now write each of the args at the proper offset down the stack */ - for (i = 0; i < nargs; i++) - write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); - - - /* if a structure has to be returned, set up register 28 to hold its address */ - if (struct_return) - write_register (28, struct_addr); - - /* the stack will have other 8 words on top of the args */ - return sp + 32; -} - - -/* elz: this function returns a value which is built looking at the given address. - It is called from call_function_by_hand, in case we need to return a - value which is larger than 64 bits, and it is stored in the stack rather than - in the registers r28 and r29 or fr4. - This function does the same stuff as value_being_returned in values.c, but - gets the value from the stack rather than from the buffer where all the - registers were saved when the function called completed. */ -value_ptr -hppa_value_returned_from_stack (valtype , addr) - register struct type *valtype; - CORE_ADDR addr; -{ - register value_ptr val; - - val = allocate_value (valtype); - CHECK_TYPEDEF (valtype); - target_read_memory(addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); - - return val; -} - - - -/* elz: Used to lookup a symbol in the shared libraries. - This function calls shl_findsym, indirectly through a - call to __d_shl_get. __d_shl_get is in end.c, which is always - linked in by the hp compilers/linkers. - The call to shl_findsym cannot be made directly because it needs - to be active in target address space. - inputs: - minimal symbol pointer for the function we want to look up - - address in target space of the descriptor for the library - where we want to look the symbol up. - This address is retrieved using the - som_solib_get_solib_by_pc function (somsolib.c). - output: - real address in the library of the function. - note: the handle can be null, in which case shl_findsym will look for - the symbol in all the loaded shared libraries. - files to look at if you need reference on this stuff: - dld.c, dld_shl_findsym.c - end.c - man entry for shl_findsym */ - -CORE_ADDR -find_stub_with_shl_get(function, handle) - struct minimal_symbol *function; - CORE_ADDR handle; -{ - struct symbol *get_sym, *symbol2; - struct minimal_symbol *buff_minsym, *msymbol; - struct type *ftype; - value_ptr *args; - value_ptr funcval, val; - - int x, namelen, err_value, tmp = -1; - CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; - CORE_ADDR stub_addr; - - - args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */ - funcval = find_function_in_inferior("__d_shl_get"); - get_sym = lookup_symbol("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL); - buff_minsym = lookup_minimal_symbol("__buffer", NULL, NULL); - msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); - symbol2 = lookup_symbol("__shldp", NULL, VAR_NAMESPACE, NULL, NULL); - endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); - namelen = strlen(SYMBOL_NAME(function)); - value_return_addr = endo_buff_addr + namelen; - ftype = check_typedef(SYMBOL_TYPE(get_sym)); - - /* do alignment */ - if ((x=value_return_addr % 64) !=0) - value_return_addr = value_return_addr + 64 - x; - - errno_return_addr = value_return_addr + 64; - - - /* set up stuff needed by __d_shl_get in buffer in end.o */ - - target_write_memory(endo_buff_addr, SYMBOL_NAME(function), namelen); - - target_write_memory(value_return_addr, (char *) &tmp, 4); - - target_write_memory(errno_return_addr, (char *) &tmp, 4); - - target_write_memory(SYMBOL_VALUE_ADDRESS(msymbol), - (char *)&handle, 4); - - /* now prepare the arguments for the call */ - - args[0] = value_from_longest (TYPE_FIELD_TYPE(ftype, 0), 12); - args[1] = value_from_longest (TYPE_FIELD_TYPE(ftype, 1), SYMBOL_VALUE_ADDRESS(msymbol)); - args[2] = value_from_longest (TYPE_FIELD_TYPE(ftype, 2), endo_buff_addr); - args[3] = value_from_longest (TYPE_FIELD_TYPE(ftype, 3), TYPE_PROCEDURE); - args[4] = value_from_longest (TYPE_FIELD_TYPE(ftype, 4), value_return_addr); - args[5] = value_from_longest (TYPE_FIELD_TYPE(ftype, 5), errno_return_addr); - - /* now call the function */ - - val = call_function_by_hand(funcval, 6, args); - - /* now get the results */ - - target_read_memory(errno_return_addr, (char *) &err_value, sizeof(err_value)); - - target_read_memory(value_return_addr, (char *) &stub_addr, sizeof(stub_addr)); - if (stub_addr <= 0) - error("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */ - - return(stub_addr); -} - -/* Cover routine for find_stub_with_shl_get to pass to catch_errors */ -static CORE_ADDR -cover_find_stub_with_shl_get (args) - args_for_find_stub * args; -{ - return find_stub_with_shl_get (args->msym, args->solib_handle); -} - - -/* Insert the specified number of args and function address - into a call sequence of the above form stored at DUMMYNAME. - - On the hppa we need to call the stack dummy through $$dyncall. - Therefore our version of FIX_CALL_DUMMY takes an extra argument, - real_pc, which is the location where gdb should start up the - inferior to do the function call. */ - -CORE_ADDR -hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) - char *dummy; - CORE_ADDR pc; - CORE_ADDR fun; - int nargs; - value_ptr *args; - struct type *type; - int gcc_p; -{ - CORE_ADDR dyncall_addr; - struct minimal_symbol *msymbol; - struct minimal_symbol *trampoline; - int flags = read_register (FLAGS_REGNUM); - struct unwind_table_entry *u; - CORE_ADDR new_stub=0; - CORE_ADDR solib_handle=0; - - trampoline = NULL; - msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); - if (msymbol == NULL) - error ("Can't find an address for $$dyncall trampoline"); /* purecov: deadcode */ - - dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); - - /* FUN could be a procedure label, in which case we have to get - its real address and the value of its GOT/DP. */ - if (fun & 0x2) - { - /* Get the GOT/DP value for the target function. It's - at *(fun+4). Note the call dummy is *NOT* allowed to - trash %r19 before calling the target function. */ - write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); - - /* Now get the real address for the function we are calling, it's - at *fun. */ - fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); - } - else - { - -#ifndef GDB_TARGET_IS_PA_ELF - /* FUN could be either an export stub, or the real address of a - function in a shared library. We must call an import stub - rather than the export stub or real function for lazy binding - to work correctly. */ - - /* elz: let's see if fun is in a shared library */ - solib_handle = som_solib_get_solib_by_pc(fun); - - /* elz: for 10.30 and 11.00 the calls via __d_plt_call cannot be made - via import stubs, only via plables, so this code here becomes useless. - On 10.20, the plables mechanism works too, so we just ignore this import - stub stuff */ -#if 0 - if (solib_handle) - { - struct objfile *objfile; - struct minimal_symbol *funsymbol, *stub_symbol; - CORE_ADDR newfun = 0; - - funsymbol = lookup_minimal_symbol_by_pc (fun); - if (!funsymbol) - error ("Unable to find minimal symbol for target fucntion.\n"); - - /* Search all the object files for an import symbol with the - right name. */ - ALL_OBJFILES (objfile) - { - stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), - NULL, objfile); - /* Found a symbol with the right name. */ - if (stub_symbol) - { - struct unwind_table_entry *u; - /* It must be a shared library trampoline. */ - if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) - continue; - - /* It must also be an import stub. */ - u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); - if (!u || u->stub_unwind.stub_type != IMPORT) - continue; - - /* OK. Looks like the correct import stub. */ - newfun = SYMBOL_VALUE (stub_symbol); - fun = newfun; - } - } - if (newfun == 0) - write_register (19, som_solib_get_got_by_pc (fun)); - } -#endif /* end of if 0 */ -#endif - } - - /* If we are calling an import stub (eg calling into a dynamic library) - then have sr4export call the magic __d_plt_call routine which is linked - in from end.o. (You can't use _sr4export to call the import stub as - the value in sp-24 will get fried and you end up returning to the - wrong location. You can't call the import stub directly as the code - to bind the PLT entry to a function can't return to a stack address.) */ - - /* elz: - There does not have to be an import stub to call a routine in a - different load module (note: a "load module" is an a.out or a shared - library). If you call a routine indirectly, going through $$dyncall (or - $$dyncall_external), you won't go through an import stub. Import stubs - are only used for direct calls to an imported routine. - - What you (wdb) need is to go through $$dyncall with a proper plabel for - the imported routine. shl_findsym() returns you the address of a plabel - suitable for use in making an indirect call through, e.g., through - $$dyncall. - This is taken care below with the call to find_stub_.... */ -#if 0 - /* elz: this check here is not necessary if we are going to call stuff through - plabels only, we just now check whether the function we call is in a shlib */ - u = find_unwind_entry (fun); - - if (u && u->stub_unwind.stub_type == IMPORT || - (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle)) -#endif /* 0 */ - if (solib_handle) - { - CORE_ADDR new_fun; - - /* Prefer __gcc_plt_call over the HP supplied routine because - __gcc_plt_call works for any number of arguments. */ - trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); - if (trampoline == NULL) - trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); - - if (trampoline == NULL) - { - error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g (links in /opt/langtools/lib/end.o)"); - } - /* This is where sr4export will jump to. */ - new_fun = SYMBOL_VALUE_ADDRESS (trampoline); - - if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0) - { - /* if the function is in a shared library, but we have no import sub for - it, we need to get the plabel from a call to __d_shl_get, which is a - function in end.o. To call this function we need to set up various things */ - - /* actually now we just use the plabel any time we make the call, - because on 10.30 and 11.00 this is the only acceptable way. This also - works fine for 10.20 */ - /* if (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle) */ - { - struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc(fun); - - new_stub = find_stub_with_shl_get(fmsymbol, solib_handle); - - if (new_stub == NULL) - error("Can't find an import stub for %s", SYMBOL_NAME(fmsymbol)); /* purecov: deadcode */ - } - - /* We have to store the address of the stub in __shlib_funcptr. */ - msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, - (struct objfile *)NULL); - if (msymbol == NULL) - error ("Can't find an address for __shlib_funcptr"); /* purecov: deadcode */ - - /* if (new_stub != NULL) */ - target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&new_stub, 4); - /* this is no longer used */ - /* else - target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); */ - - /* We want sr4export to call __d_plt_call, so we claim it is - the final target. Clear trampoline. */ - fun = new_fun; - trampoline = NULL; - } - } - - /* Store upper 21 bits of function address into ldil. fun will either be - the final target (most cases) or __d_plt_call when calling into a shared - library and __gcc_plt_call is not available. */ - store_unsigned_integer - (&dummy[FUNC_LDIL_OFFSET], - INSTRUCTION_SIZE, - deposit_21 (fun >> 11, - extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], - INSTRUCTION_SIZE))); - - /* Store lower 11 bits of function address into ldo */ - store_unsigned_integer - (&dummy[FUNC_LDO_OFFSET], - INSTRUCTION_SIZE, - deposit_14 (fun & MASK_11, - extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], - INSTRUCTION_SIZE))); -#ifdef SR4EXPORT_LDIL_OFFSET - - { - CORE_ADDR trampoline_addr; - - /* We may still need sr4export's address too. */ - - if (trampoline == NULL) - { - msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); - if (msymbol == NULL) - error ("Can't find an address for _sr4export trampoline"); /* purecov: deadcode */ - - trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); - } - else - trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); - - - /* Store upper 21 bits of trampoline's address into ldil */ - store_unsigned_integer - (&dummy[SR4EXPORT_LDIL_OFFSET], - INSTRUCTION_SIZE, - deposit_21 (trampoline_addr >> 11, - extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], - INSTRUCTION_SIZE))); - - /* Store lower 11 bits of trampoline's address into ldo */ - store_unsigned_integer - (&dummy[SR4EXPORT_LDO_OFFSET], - INSTRUCTION_SIZE, - deposit_14 (trampoline_addr & MASK_11, - extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], - INSTRUCTION_SIZE))); - } -#endif - - write_register (22, pc); - - /* If we are in a syscall, then we should call the stack dummy - directly. $$dyncall is not needed as the kernel sets up the - space id registers properly based on the value in %r31. In - fact calling $$dyncall will not work because the value in %r22 - will be clobbered on the syscall exit path. - - Similarly if the current PC is in a shared library. Note however, - this scheme won't work if the shared library isn't mapped into - the same space as the stack. */ - if (flags & 2) - return pc; -#ifndef GDB_TARGET_IS_PA_ELF - else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) - return pc; -#endif - else - return dyncall_addr; - -} - - - - -/* If the pid is in a syscall, then the FP register is not readable. - We'll return zero in that case, rather than attempting to read it - and cause a warning. */ -CORE_ADDR -target_read_fp (pid) - int pid; -{ - int flags = read_register (FLAGS_REGNUM); - - if (flags & 2) { - return (CORE_ADDR) 0; - } - - /* This is the only site that may directly read_register () the FP - register. All others must use TARGET_READ_FP (). */ - return read_register (FP_REGNUM); -} - - -/* Get the PC from %r31 if currently in a syscall. Also mask out privilege - bits. */ - -CORE_ADDR -target_read_pc (pid) - int pid; -{ - int flags = read_register_pid (FLAGS_REGNUM, pid); - - /* The following test does not belong here. It is OS-specific, and belongs - in native code. */ - /* Test SS_INSYSCALL */ - if (flags & 2) - return read_register_pid (31, pid) & ~0x3; - - return read_register_pid (PC_REGNUM, pid) & ~0x3; -} - -/* Write out the PC. If currently in a syscall, then also write the new - PC value into %r31. */ - -void -target_write_pc (v, pid) - CORE_ADDR v; - int pid; -{ - int flags = read_register_pid (FLAGS_REGNUM, pid); - - /* The following test does not belong here. It is OS-specific, and belongs - in native code. */ - /* If in a syscall, then set %r31. Also make sure to get the - privilege bits set correctly. */ - /* Test SS_INSYSCALL */ - if (flags & 2) - write_register_pid (31, v | 0x3, pid); - - write_register_pid (PC_REGNUM, v, pid); - write_register_pid (NPC_REGNUM, v + 4, pid); -} - -/* return the alignment of a type in bytes. Structures have the maximum - alignment required by their fields. */ - -static int -hppa_alignof (type) - struct type *type; -{ - int max_align, align, i; - CHECK_TYPEDEF (type); - switch (TYPE_CODE (type)) - { - case TYPE_CODE_PTR: - case TYPE_CODE_INT: - case TYPE_CODE_FLT: - return TYPE_LENGTH (type); - case TYPE_CODE_ARRAY: - return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); - case TYPE_CODE_STRUCT: - case TYPE_CODE_UNION: - max_align = 1; - for (i = 0; i < TYPE_NFIELDS (type); i++) - { - /* Bit fields have no real alignment. */ - /* if (!TYPE_FIELD_BITPOS (type, i)) */ - if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ - { - align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); - max_align = max (max_align, align); - } - } - return max_align; - default: - return 4; - } -} - -/* Print the register regnum, or all registers if regnum is -1 */ - -void -pa_do_registers_info (regnum, fpregs) - int regnum; - int fpregs; -{ - char raw_regs [REGISTER_BYTES]; - int i; - - /* Make a copy of gdb's save area (may cause actual - reads from the target). */ - for (i = 0; i < NUM_REGS; i++) - read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); - - if (regnum == -1) - pa_print_registers (raw_regs, regnum, fpregs); - else if (regnum < FP4_REGNUM) { - long reg_val[2]; - - /* Why is the value not passed through "extract_signed_integer" - as in "pa_print_registers" below? */ - pa_register_look_aside(raw_regs, regnum, ®_val[0]); - - if(!is_pa_2) { - printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]); - } - else { - /* Fancy % formats to prevent leading zeros. */ - if(reg_val[0] == 0) - printf_unfiltered("%s %x\n", REGISTER_NAME (regnum), reg_val[1]); - else - printf_unfiltered("%s %x%8.8x\n", REGISTER_NAME (regnum), - reg_val[0], reg_val[1]); - } - } - else - /* Note that real floating point values only start at - FP4_REGNUM. FP0 and up are just status and error - registers, which have integral (bit) values. */ - pa_print_fp_reg (regnum); -} - -/********** new function ********************/ -void -pa_do_strcat_registers_info (regnum, fpregs, stream, precision) - int regnum; - int fpregs; - GDB_FILE *stream; - enum precision_type precision; -{ - char raw_regs [REGISTER_BYTES]; - int i; - - /* Make a copy of gdb's save area (may cause actual - reads from the target). */ - for (i = 0; i < NUM_REGS; i++) - read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); - - if (regnum == -1) - pa_strcat_registers (raw_regs, regnum, fpregs, stream); - - else if (regnum < FP4_REGNUM) { - long reg_val[2]; - - /* Why is the value not passed through "extract_signed_integer" - as in "pa_print_registers" below? */ - pa_register_look_aside(raw_regs, regnum, ®_val[0]); - - if(!is_pa_2) { - fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]); - } - else { - /* Fancy % formats to prevent leading zeros. */ - if(reg_val[0] == 0) - fprintf_unfiltered(stream, "%s %x", REGISTER_NAME (regnum), - reg_val[1]); - else - fprintf_unfiltered(stream, "%s %x%8.8x", REGISTER_NAME (regnum), - reg_val[0], reg_val[1]); - } - } - else - /* Note that real floating point values only start at - FP4_REGNUM. FP0 and up are just status and error - registers, which have integral (bit) values. */ - pa_strcat_fp_reg (regnum, stream, precision); -} - -/* If this is a PA2.0 machine, fetch the real 64-bit register - value. Otherwise use the info from gdb's saved register area. - - Note that reg_val is really expected to be an array of longs, - with two elements. */ -static void -pa_register_look_aside(raw_regs, regnum, raw_val) - char *raw_regs; - int regnum; - long *raw_val; -{ - static int know_which = 0; /* False */ - - int regaddr; - unsigned int offset; - register int i; - int start; - - - char buf[MAX_REGISTER_RAW_SIZE]; - long long reg_val; - - if(!know_which) { - if(CPU_PA_RISC2_0 == sysconf(_SC_CPU_VERSION)) { - is_pa_2 = (1==1); - } - - know_which = 1; /* True */ - } - - raw_val[0] = 0; - raw_val[1] = 0; - - if(!is_pa_2) { - raw_val[1] = *(long *)(raw_regs + REGISTER_BYTE(regnum)); - return; - } - - /* Code below copied from hppah-nat.c, with fixes for wide - registers, using different area of save_state, etc. */ - if(regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM) { - /* Use narrow regs area of save_state and default macro. */ - offset = U_REGS_OFFSET; - regaddr = register_addr(regnum, offset); - start = 1; - } - else { - /* Use wide regs area, and calculate registers as 8 bytes wide. - - We'd like to do this, but current version of "C" doesn't - permit "offsetof": - - offset = offsetof(save_state_t, ss_wide); - - Note that to avoid "C" doing typed pointer arithmetic, we - have to cast away the type in our offset calculation: - otherwise we get an offset of 1! */ - save_state_t temp; - offset = ((int) &temp.ss_wide) - ((int) &temp); - regaddr = offset + regnum * 8; - start = 0; - } - - for(i = start; i < 2; i++) - { - errno = 0; - raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid, - (PTRACE_ARG3_TYPE) regaddr, 0); - if (errno != 0) - { - /* Warning, not error, in case we are attached; sometimes the - kernel doesn't let us at the registers. */ - char *err = safe_strerror (errno); - char *msg = alloca (strlen (err) + 128); - sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); - warning (msg); - goto error_exit; - } - - regaddr += sizeof (long); - } - - if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) - raw_val[1] &= ~0x3; /* I think we're masking out space bits */ - -error_exit: - ; -} - -/* "Info all-reg" command */ - -static void -pa_print_registers (raw_regs, regnum, fpregs) - char *raw_regs; - int regnum; - int fpregs; -{ - int i,j; - long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ - long long_val; - - for (i = 0; i < 18; i++) - { - for (j = 0; j < 4; j++) - { - /* Q: Why is the value passed through "extract_signed_integer", - while above, in "pa_do_registers_info" it isn't? - A: ? */ - pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]); - - /* Even fancier % formats to prevent leading zeros - and still maintain the output in columns. */ - if(!is_pa_2) { - /* Being big-endian, on this machine the low bits - (the ones we want to look at) are in the second longword. */ - long_val = extract_signed_integer (&raw_val[1], 4); - printf_filtered ("%8.8s: %8x ", - REGISTER_NAME (i+(j*18)), long_val); - } - else { - /* raw_val = extract_signed_integer(&raw_val, 8); */ - if(raw_val[0] == 0) - printf_filtered("%8.8s: %8x ", - REGISTER_NAME (i+(j*18)), raw_val[1]); - else - printf_filtered("%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)), - raw_val[0], raw_val[1]); - } - } - printf_unfiltered ("\n"); - } - - if (fpregs) - for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ - pa_print_fp_reg (i); -} - -/************* new function ******************/ -static void -pa_strcat_registers (raw_regs, regnum, fpregs, stream) - char *raw_regs; - int regnum; - int fpregs; - GDB_FILE *stream; -{ - int i,j; - long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ - long long_val; - enum precision_type precision; - - precision = unspecified_precision; - - for (i = 0; i < 18; i++) - { - for (j = 0; j < 4; j++) - { - /* Q: Why is the value passed through "extract_signed_integer", - while above, in "pa_do_registers_info" it isn't? - A: ? */ - pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]); - - /* Even fancier % formats to prevent leading zeros - and still maintain the output in columns. */ - if(!is_pa_2) { - /* Being big-endian, on this machine the low bits - (the ones we want to look at) are in the second longword. */ - long_val = extract_signed_integer(&raw_val[1], 4); - fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)), long_val); - } - else { - /* raw_val = extract_signed_integer(&raw_val, 8); */ - if(raw_val[0] == 0) - fprintf_filtered(stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)), - raw_val[1]); - else - fprintf_filtered(stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)), - raw_val[0], raw_val[1]); - } - } - fprintf_unfiltered (stream, "\n"); - } - - if (fpregs) - for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ - pa_strcat_fp_reg (i, stream, precision); -} - -static void -pa_print_fp_reg (i) - int i; -{ - char raw_buffer[MAX_REGISTER_RAW_SIZE]; - char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; - - /* Get 32bits of data. */ - read_relative_register_raw_bytes (i, raw_buffer); - - /* Put it in the buffer. No conversions are ever necessary. */ - memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); - - fputs_filtered (REGISTER_NAME (i), gdb_stdout); - print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); - fputs_filtered ("(single precision) ", gdb_stdout); - - val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, - 1, 0, Val_pretty_default); - printf_filtered ("\n"); - - /* If "i" is even, then this register can also be a double-precision - FP register. Dump it out as such. */ - if ((i % 2) == 0) - { - /* Get the data in raw format for the 2nd half. */ - read_relative_register_raw_bytes (i + 1, raw_buffer); - - /* Copy it into the appropriate part of the virtual buffer. */ - memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, - REGISTER_RAW_SIZE (i)); - - /* Dump it as a double. */ - fputs_filtered (REGISTER_NAME (i), gdb_stdout); - print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); - fputs_filtered ("(double precision) ", gdb_stdout); - - val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, - 1, 0, Val_pretty_default); - printf_filtered ("\n"); - } -} - -/*************** new function ***********************/ -static void -pa_strcat_fp_reg (i, stream, precision) - int i; - GDB_FILE *stream; - enum precision_type precision; -{ - char raw_buffer[MAX_REGISTER_RAW_SIZE]; - char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; - - fputs_filtered (REGISTER_NAME (i), stream); - print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); - - /* Get 32bits of data. */ - read_relative_register_raw_bytes (i, raw_buffer); - - /* Put it in the buffer. No conversions are ever necessary. */ - memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); - - if (precision == double_precision && (i % 2) == 0) - { - - char raw_buf[MAX_REGISTER_RAW_SIZE]; - - /* Get the data in raw format for the 2nd half. */ - read_relative_register_raw_bytes (i + 1, raw_buf); - - /* Copy it into the appropriate part of the virtual buffer. */ - memcpy (virtual_buffer + REGISTER_RAW_SIZE(i), raw_buf, REGISTER_RAW_SIZE (i)); - - val_print (builtin_type_double, virtual_buffer, 0, 0 , stream, 0, - 1, 0, Val_pretty_default); - - } - else { - val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, - 1, 0, Val_pretty_default); - } - -} - -/* Return one if PC is in the call path of a trampoline, else return zero. - - Note we return one for *any* call trampoline (long-call, arg-reloc), not - just shared library trampolines (import, export). */ - -int -in_solib_call_trampoline (pc, name) - CORE_ADDR pc; - char *name; -{ - struct minimal_symbol *minsym; - struct unwind_table_entry *u; - static CORE_ADDR dyncall = 0; - static CORE_ADDR sr4export = 0; - -/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a - new exec file */ - - /* First see if PC is in one of the two C-library trampolines. */ - if (!dyncall) - { - minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); - if (minsym) - dyncall = SYMBOL_VALUE_ADDRESS (minsym); - else - dyncall = -1; - } - - if (!sr4export) - { - minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); - if (minsym) - sr4export = SYMBOL_VALUE_ADDRESS (minsym); - else - sr4export = -1; - } - - if (pc == dyncall || pc == sr4export) - return 1; - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub, then return now. */ - if (u->stub_unwind.stub_type == 0) - return 0; - - /* By definition a long-branch stub is a call stub. */ - if (u->stub_unwind.stub_type == LONG_BRANCH) - return 1; - - /* The call and return path execute the same instructions within - an IMPORT stub! So an IMPORT stub is both a call and return - trampoline. */ - if (u->stub_unwind.stub_type == IMPORT) - return 1; - - /* Parameter relocation stubs always have a call path and may have a - return path. */ - if (u->stub_unwind.stub_type == PARAMETER_RELOCATION - || u->stub_unwind.stub_type == EXPORT) - { - CORE_ADDR addr; - - /* Search forward from the current PC until we hit a branch - or the end of the stub. */ - for (addr = pc; addr <= u->region_end; addr += 4) - { - unsigned long insn; - - insn = read_memory_integer (addr, 4); - - /* Does it look like a bl? If so then it's the call path, if - we find a bv or be first, then we're on the return path. */ - if ((insn & 0xfc00e000) == 0xe8000000) - return 1; - else if ((insn & 0xfc00e001) == 0xe800c000 - || (insn & 0xfc000000) == 0xe0000000) - return 0; - } - - /* Should never happen. */ - warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */ - return 0; /* purecov: deadcode */ - } - - /* Unknown stub type. For now, just return zero. */ - return 0; /* purecov: deadcode */ -} - -/* Return one if PC is in the return path of a trampoline, else return zero. - - Note we return one for *any* call trampoline (long-call, arg-reloc), not - just shared library trampolines (import, export). */ - -int -in_solib_return_trampoline (pc, name) - CORE_ADDR pc; - char *name; -{ - struct unwind_table_entry *u; - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub or it's just a long branch stub, then - return zero. */ - if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) - return 0; - - /* The call and return path execute the same instructions within - an IMPORT stub! So an IMPORT stub is both a call and return - trampoline. */ - if (u->stub_unwind.stub_type == IMPORT) - return 1; - - /* Parameter relocation stubs always have a call path and may have a - return path. */ - if (u->stub_unwind.stub_type == PARAMETER_RELOCATION - || u->stub_unwind.stub_type == EXPORT) - { - CORE_ADDR addr; - - /* Search forward from the current PC until we hit a branch - or the end of the stub. */ - for (addr = pc; addr <= u->region_end; addr += 4) - { - unsigned long insn; - - insn = read_memory_integer (addr, 4); - - /* Does it look like a bl? If so then it's the call path, if - we find a bv or be first, then we're on the return path. */ - if ((insn & 0xfc00e000) == 0xe8000000) - return 0; - else if ((insn & 0xfc00e001) == 0xe800c000 - || (insn & 0xfc000000) == 0xe0000000) - return 1; - } - - /* Should never happen. */ - warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */ - return 0; /* purecov: deadcode */ - } - - /* Unknown stub type. For now, just return zero. */ - return 0; /* purecov: deadcode */ - -} - -/* Figure out if PC is in a trampoline, and if so find out where - the trampoline will jump to. If not in a trampoline, return zero. - - Simple code examination probably is not a good idea since the code - sequences in trampolines can also appear in user code. - - We use unwinds and information from the minimal symbol table to - determine when we're in a trampoline. This won't work for ELF - (yet) since it doesn't create stub unwind entries. Whether or - not ELF will create stub unwinds or normal unwinds for linker - stubs is still being debated. - - This should handle simple calls through dyncall or sr4export, - long calls, argument relocation stubs, and dyncall/sr4export - calling an argument relocation stub. It even handles some stubs - used in dynamic executables. */ - -# if 0 -CORE_ADDR -skip_trampoline_code (pc, name) - CORE_ADDR pc; - char *name; -{ - return find_solib_trampoline_target(pc); -} - -#endif - -CORE_ADDR -skip_trampoline_code (pc, name) - CORE_ADDR pc; - char *name; -{ - long orig_pc = pc; - long prev_inst, curr_inst, loc; - static CORE_ADDR dyncall = 0; - static CORE_ADDR dyncall_external = 0; - static CORE_ADDR sr4export = 0; - struct minimal_symbol *msym; - struct unwind_table_entry *u; - - -/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a - new exec file */ - - if (!dyncall) - { - msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); - if (msym) - dyncall = SYMBOL_VALUE_ADDRESS (msym); - else - dyncall = -1; - } - - if (!dyncall_external) - { - msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); - if (msym) - dyncall_external = SYMBOL_VALUE_ADDRESS (msym); - else - dyncall_external = -1; - } - - if (!sr4export) - { - msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); - if (msym) - sr4export = SYMBOL_VALUE_ADDRESS (msym); - else - sr4export = -1; - } - - /* Addresses passed to dyncall may *NOT* be the actual address - of the function. So we may have to do something special. */ - if (pc == dyncall) - { - pc = (CORE_ADDR) read_register (22); - - /* If bit 30 (counting from the left) is on, then pc is the address of - the PLT entry for this function, not the address of the function - itself. Bit 31 has meaning too, but only for MPE. */ - if (pc & 0x2) - pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); - } - if (pc == dyncall_external) - { - pc = (CORE_ADDR) read_register (22); - pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); - } - else if (pc == sr4export) - pc = (CORE_ADDR) (read_register (22)); - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub, then return now. */ - /* elz: attention here! (FIXME) because of a compiler/linker - error, some stubs which should have a non zero stub_unwind.stub_type - have unfortunately a value of zero. So this function would return here - as if we were not in a trampoline. To fix this, we go look at the partial - symbol information, which reports this guy as a stub. - (FIXME): Unfortunately, we are not that lucky: it turns out that the - partial symbol information is also wrong sometimes. This is because - when it is entered (somread.c::som_symtab_read()) it can happen that - if the type of the symbol (from the som) is Entry, and the symbol is - in a shared library, then it can also be a trampoline. This would - be OK, except that I believe the way they decide if we are ina shared library - does not work. SOOOO..., even if we have a regular function w/o trampolines - its minimal symbol can be assigned type mst_solib_trampoline. - Also, if we find that the symbol is a real stub, then we fix the unwind - descriptor, and define the stub type to be EXPORT. - Hopefully this is correct most of the times. */ - if (u->stub_unwind.stub_type == 0) - { - -/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed - we can delete all the code which appears between the lines */ -/*--------------------------------------------------------------------------*/ - msym = lookup_minimal_symbol_by_pc (pc); - - if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) - return orig_pc == pc ? 0 : pc & ~0x3; - - else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) - { - struct objfile *objfile; - struct minimal_symbol *msymbol; - int function_found = 0; - - /* go look if there is another minimal symbol with the same name as - this one, but with type mst_text. This would happen if the msym - is an actual trampoline, in which case there would be another - symbol with the same name corresponding to the real function */ - - ALL_MSYMBOLS (objfile, msymbol) - { - if (MSYMBOL_TYPE (msymbol) == mst_text - && STREQ (SYMBOL_NAME (msymbol) , SYMBOL_NAME (msym))) - { - function_found = 1; - break; - } - } - - if (function_found) - /* the type of msym is correct (mst_solib_trampoline), but - the unwind info is wrong, so set it to the correct value */ - u->stub_unwind.stub_type = EXPORT; - else - /* the stub type info in the unwind is correct (this is not a - trampoline), but the msym type information is wrong, it - should be mst_text. So we need to fix the msym, and also - get out of this function */ - { - MSYMBOL_TYPE (msym) = mst_text; - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - -/*--------------------------------------------------------------------------*/ - } - - /* It's a stub. Search for a branch and figure out where it goes. - Note we have to handle multi insn branch sequences like ldil;ble. - Most (all?) other branches can be determined by examining the contents - of certain registers and the stack. */ - - loc = pc; - curr_inst = 0; - prev_inst = 0; - while (1) - { - /* Make sure we haven't walked outside the range of this stub. */ - if (u != find_unwind_entry (loc)) - { - warning ("Unable to find branch in linker stub"); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - prev_inst = curr_inst; - curr_inst = read_memory_integer (loc, 4); - - /* Does it look like a branch external using %r1? Then it's the - branch from the stub to the actual function. */ - if ((curr_inst & 0xffe0e000) == 0xe0202000) - { - /* Yup. See if the previous instruction loaded - a value into %r1. If so compute and return the jump address. */ - if ((prev_inst & 0xffe00000) == 0x20200000) - return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; - else - { - warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - - /* Does it look like a be 0(sr0,%r21)? OR - Does it look like a be, n 0(sr0,%r21)? OR - Does it look like a bve (r21)? (this is on PA2.0) - Does it look like a bve, n(r21)? (this is also on PA2.0) - That's the branch from an - import stub to an export stub. - - It is impossible to determine the target of the branch via - simple examination of instructions and/or data (consider - that the address in the plabel may be the address of the - bind-on-reference routine in the dynamic loader). - - So we have try an alternative approach. - - Get the name of the symbol at our current location; it should - be a stub symbol with the same name as the symbol in the - shared library. - - Then lookup a minimal symbol with the same name; we should - get the minimal symbol for the target routine in the shared - library as those take precedence of import/export stubs. */ - if ((curr_inst == 0xe2a00000) || - (curr_inst == 0xe2a00002) || - (curr_inst == 0xeaa0d000) || - (curr_inst == 0xeaa0d002)) - { - struct minimal_symbol *stubsym, *libsym; - - stubsym = lookup_minimal_symbol_by_pc (loc); - if (stubsym == NULL) - { - warning ("Unable to find symbol for 0x%x", loc); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); - if (libsym == NULL) - { - warning ("Unable to find library symbol for %s\n", - SYMBOL_NAME (stubsym)); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - return SYMBOL_VALUE (libsym); - } - - /* Does it look like bl X,%rp or bl X,%r0? Another way to do a - branch from the stub to the actual function. */ - /*elz*/ - else if ((curr_inst & 0xffe0e000) == 0xe8400000 - || (curr_inst & 0xffe0e000) == 0xe8000000 - || (curr_inst & 0xffe0e000) == 0xe800A000) - return (loc + extract_17 (curr_inst) + 8) & ~0x3; - - /* Does it look like bv (rp)? Note this depends on the - current stack pointer being the same as the stack - pointer in the stub itself! This is a branch on from the - stub back to the original caller. */ - /*else if ((curr_inst & 0xffe0e000) == 0xe840c000)*/ - else if ((curr_inst & 0xffe0f000) == 0xe840c000) - { - /* Yup. See if the previous instruction loaded - rp from sp - 8. */ - if (prev_inst == 0x4bc23ff1) - return (read_memory_integer - (read_register (SP_REGNUM) - 8, 4)) & ~0x3; - else - { - warning ("Unable to find restore of %%rp before bv (%%rp)."); - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - - /* elz: added this case to capture the new instruction - at the end of the return part of an export stub used by - the PA2.0: BVE, n (rp) */ - else if ((curr_inst & 0xffe0f000) == 0xe840d000) - { - return (read_memory_integer - (read_register (SP_REGNUM) - 24, 4)) & ~0x3; - } - - /* What about be,n 0(sr0,%rp)? It's just another way we return to - the original caller from the stub. Used in dynamic executables. */ - else if (curr_inst == 0xe0400002) - { - /* The value we jump to is sitting in sp - 24. But that's - loaded several instructions before the be instruction. - I guess we could check for the previous instruction being - mtsp %r1,%sr0 if we want to do sanity checking. */ - return (read_memory_integer - (read_register (SP_REGNUM) - 24, 4)) & ~0x3; - } - - /* Haven't found the branch yet, but we're still in the stub. - Keep looking. */ - loc += 4; - } -} - - -/* For the given instruction (INST), return any adjustment it makes - to the stack pointer or zero for no adjustment. - - This only handles instructions commonly found in prologues. */ - -static int -prologue_inst_adjust_sp (inst) - unsigned long inst; -{ - /* This must persist across calls. */ - static int save_high21; - - /* The most common way to perform a stack adjustment ldo X(sp),sp */ - if ((inst & 0xffffc000) == 0x37de0000) - return extract_14 (inst); - - /* stwm X,D(sp) */ - if ((inst & 0xffe00000) == 0x6fc00000) - return extract_14 (inst); - - /* addil high21,%r1; ldo low11,(%r1),%r30) - save high bits in save_high21 for later use. */ - if ((inst & 0xffe00000) == 0x28200000) - { - save_high21 = extract_21 (inst); - return 0; - } - - if ((inst & 0xffff0000) == 0x343e0000) - return save_high21 + extract_14 (inst); - - /* fstws as used by the HP compilers. */ - if ((inst & 0xffffffe0) == 0x2fd01220) - return extract_5_load (inst); - - /* No adjustment. */ - return 0; -} - -/* Return nonzero if INST is a branch of some kind, else return zero. */ - -static int -is_branch (inst) - unsigned long inst; -{ - switch (inst >> 26) - { - case 0x20: - case 0x21: - case 0x22: - case 0x23: - case 0x28: - case 0x29: - case 0x2a: - case 0x2b: - case 0x30: - case 0x31: - case 0x32: - case 0x33: - case 0x38: - case 0x39: - case 0x3a: - return 1; - - default: - return 0; - } -} - -/* Return the register number for a GR which is saved by INST or - zero it INST does not save a GR. */ - -static int -inst_saves_gr (inst) - unsigned long inst; -{ - /* Does it look like a stw? */ - if ((inst >> 26) == 0x1a) - return extract_5R_store (inst); - - /* Does it look like a stwm? GCC & HPC may use this in prologues. */ - if ((inst >> 26) == 0x1b) - return extract_5R_store (inst); - - /* Does it look like sth or stb? HPC versions 9.0 and later use these - too. */ - if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) - return extract_5R_store (inst); - - return 0; -} - -/* Return the register number for a FR which is saved by INST or - zero it INST does not save a FR. - - Note we only care about full 64bit register stores (that's the only - kind of stores the prologue will use). - - FIXME: What about argument stores with the HP compiler in ANSI mode? */ - -static int -inst_saves_fr (inst) - unsigned long inst; -{ - /* is this an FSTDS ?*/ - if ((inst & 0xfc00dfc0) == 0x2c001200) - return extract_5r_store (inst); - /* is this an FSTWS ?*/ - if ((inst & 0xfc00df80) == 0x24001200) - return extract_5r_store (inst); - return 0; -} - -/* Advance PC across any function entry prologue instructions - to reach some "real" code. - - Use information in the unwind table to determine what exactly should - be in the prologue. */ - - -CORE_ADDR -skip_prologue_hard_way (pc) - CORE_ADDR pc; -{ - char buf[4]; - CORE_ADDR orig_pc = pc; - unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; - unsigned long args_stored, status, i, restart_gr, restart_fr; - struct unwind_table_entry *u; - - restart_gr = 0; - restart_fr = 0; - -restart: - u = find_unwind_entry (pc); - if (!u) - return pc; - - /* If we are not at the beginning of a function, then return now. */ - if ((pc & ~0x3) != u->region_start) - return pc; - - /* This is how much of a frame adjustment we need to account for. */ - stack_remaining = u->Total_frame_size << 3; - - /* Magic register saves we want to know about. */ - save_rp = u->Save_RP; - save_sp = u->Save_SP; - - /* An indication that args may be stored into the stack. Unfortunately - the HPUX compilers tend to set this in cases where no args were - stored too!. */ - args_stored = 1; - - /* Turn the Entry_GR field into a bitmask. */ - save_gr = 0; - for (i = 3; i < u->Entry_GR + 3; i++) - { - /* Frame pointer gets saved into a special location. */ - if (u->Save_SP && i == FP_REGNUM) - continue; - - save_gr |= (1 << i); - } - save_gr &= ~restart_gr; - - /* Turn the Entry_FR field into a bitmask too. */ - save_fr = 0; - for (i = 12; i < u->Entry_FR + 12; i++) - save_fr |= (1 << i); - save_fr &= ~restart_fr; - - /* Loop until we find everything of interest or hit a branch. - - For unoptimized GCC code and for any HP CC code this will never ever - examine any user instructions. - - For optimzied GCC code we're faced with problems. GCC will schedule - its prologue and make prologue instructions available for delay slot - filling. The end result is user code gets mixed in with the prologue - and a prologue instruction may be in the delay slot of the first branch - or call. - - Some unexpected things are expected with debugging optimized code, so - we allow this routine to walk past user instructions in optimized - GCC code. */ - while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 - || args_stored) - { - unsigned int reg_num; - unsigned long old_stack_remaining, old_save_gr, old_save_fr; - unsigned long old_save_rp, old_save_sp, next_inst; - - /* Save copies of all the triggers so we can compare them later - (only for HPC). */ - old_save_gr = save_gr; - old_save_fr = save_fr; - old_save_rp = save_rp; - old_save_sp = save_sp; - old_stack_remaining = stack_remaining; - - status = target_read_memory (pc, buf, 4); - inst = extract_unsigned_integer (buf, 4); - - /* Yow! */ - if (status != 0) - return pc; - - /* Note the interesting effects of this instruction. */ - stack_remaining -= prologue_inst_adjust_sp (inst); - - /* There is only one instruction used for saving RP into the stack. */ - if (inst == 0x6bc23fd9) - save_rp = 0; - - /* This is the only way we save SP into the stack. At this time - the HP compilers never bother to save SP into the stack. */ - if ((inst & 0xffffc000) == 0x6fc10000) - save_sp = 0; - - /* Account for general and floating-point register saves. */ - reg_num = inst_saves_gr (inst); - save_gr &= ~(1 << reg_num); - - /* Ugh. Also account for argument stores into the stack. - Unfortunately args_stored only tells us that some arguments - where stored into the stack. Not how many or what kind! - - This is a kludge as on the HP compiler sets this bit and it - never does prologue scheduling. So once we see one, skip past - all of them. We have similar code for the fp arg stores below. - - FIXME. Can still die if we have a mix of GR and FR argument - stores! */ - if (reg_num >= 23 && reg_num <= 26) - { - while (reg_num >= 23 && reg_num <= 26) - { - pc += 4; - status = target_read_memory (pc, buf, 4); - inst = extract_unsigned_integer (buf, 4); - if (status != 0) - return pc; - reg_num = inst_saves_gr (inst); - } - args_stored = 0; - continue; - } - - reg_num = inst_saves_fr (inst); - save_fr &= ~(1 << reg_num); - - status = target_read_memory (pc + 4, buf, 4); - next_inst = extract_unsigned_integer (buf, 4); - - /* Yow! */ - if (status != 0) - return pc; - - /* We've got to be read to handle the ldo before the fp register - save. */ - if ((inst & 0xfc000000) == 0x34000000 - && inst_saves_fr (next_inst) >= 4 - && inst_saves_fr (next_inst) <= 7) - { - /* So we drop into the code below in a reasonable state. */ - reg_num = inst_saves_fr (next_inst); - pc -= 4; - } - - /* Ugh. Also account for argument stores into the stack. - This is a kludge as on the HP compiler sets this bit and it - never does prologue scheduling. So once we see one, skip past - all of them. */ - if (reg_num >= 4 && reg_num <= 7) - { - while (reg_num >= 4 && reg_num <= 7) - { - pc += 8; - status = target_read_memory (pc, buf, 4); - inst = extract_unsigned_integer (buf, 4); - if (status != 0) - return pc; - if ((inst & 0xfc000000) != 0x34000000) - break; - status = target_read_memory (pc + 4, buf, 4); - next_inst = extract_unsigned_integer (buf, 4); - if (status != 0) - return pc; - reg_num = inst_saves_fr (next_inst); - } - args_stored = 0; - continue; - } - - /* Quit if we hit any kind of branch. This can happen if a prologue - instruction is in the delay slot of the first call/branch. */ - if (is_branch (inst)) - break; - - /* What a crock. The HP compilers set args_stored even if no - arguments were stored into the stack (boo hiss). This could - cause this code to then skip a bunch of user insns (up to the - first branch). - - To combat this we try to identify when args_stored was bogusly - set and clear it. We only do this when args_stored is nonzero, - all other resources are accounted for, and nothing changed on - this pass. */ - if (args_stored - && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) - && old_save_gr == save_gr && old_save_fr == save_fr - && old_save_rp == save_rp && old_save_sp == save_sp - && old_stack_remaining == stack_remaining) - break; - - /* Bump the PC. */ - pc += 4; - } - - /* We've got a tenative location for the end of the prologue. However - because of limitations in the unwind descriptor mechanism we may - have went too far into user code looking for the save of a register - that does not exist. So, if there registers we expected to be saved - but never were, mask them out and restart. - - This should only happen in optimized code, and should be very rare. */ - if (save_gr || (save_fr && ! (restart_fr || restart_gr))) - { - pc = orig_pc; - restart_gr = save_gr; - restart_fr = save_fr; - goto restart; - } - - return pc; -} - - - - - -/* return 0 if we cannot determine the end of the prologue, - return the new pc value if we know where the prologue ends */ - -static CORE_ADDR -after_prologue (pc) - CORE_ADDR pc; -{ - struct symtab_and_line sal; - CORE_ADDR func_addr, func_end; - struct symbol *f; - - if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) - return 0; /* Unknown */ - - f = find_pc_function (pc); - if (!f) - return 0; /* no debug info, do it the hard way! */ - - sal = find_pc_line (func_addr, 0); - - if (sal.end < func_end) - { - /* this happens when the function has no prologue, because the way - find_pc_line works: elz. Note: this may not be a very good - way to decide whether a function has a prologue or not, but - it is the best I can do with the info available - Also, this will work for functions like: int f() - { - return 2; - } - I.e. the bp will be inserted at the first open brace. - For functions where the body is only one line written like this: - int f() - { return 2; } - this will make the breakpoint to be at the last brace, after the body - has been executed already. What's the point of stepping through a function - without any variables anyway?? */ - - if ((SYMBOL_LINE(f) > 0) && (SYMBOL_LINE(f) < sal.line)) - return pc; /*no adjusment will be made*/ - else - return sal.end; /* this is the end of the prologue */ - } - /* The line after the prologue is after the end of the function. In this - case, put the end of the prologue is the beginning of the function. */ - /* This should happen only when the function is prologueless and has no - code in it. For instance void dumb(){} Note: this kind of function - is used quite a lot in the test system */ - - else return pc; /* no adjustment will be made */ -} - -/* To skip prologues, I use this predicate. Returns either PC itself - if the code at PC does not look like a function prologue; otherwise - returns an address that (if we're lucky) follows the prologue. If - LENIENT, then we must skip everything which is involved in setting - up the frame (it's OK to skip more, just so long as we don't skip - anything which might clobber the registers which are being saved. - Currently we must not skip more on the alpha, but we might the lenient - stuff some day. */ - -CORE_ADDR -skip_prologue (pc) - CORE_ADDR pc; -{ - unsigned long inst; - int offset; - CORE_ADDR post_prologue_pc; - char buf[4]; - -#ifdef GDB_TARGET_HAS_SHARED_LIBS - /* Silently return the unaltered pc upon memory errors. - This could happen on OSF/1 if decode_line_1 tries to skip the - prologue for quickstarted shared library functions when the - shared library is not yet mapped in. - Reading target memory is slow over serial lines, so we perform - this check only if the target has shared libraries. */ - if (target_read_memory (pc, buf, 4)) - return pc; -#endif - - /* See if we can determine the end of the prologue via the symbol table. - If so, then return either PC, or the PC after the prologue, whichever - is greater. */ - - post_prologue_pc = after_prologue (pc); - - if (post_prologue_pc != 0) - return max (pc, post_prologue_pc); - - - /* Can't determine prologue from the symbol table, (this can happen if there - is no debug information) so we need to fall back on the old code, which - looks at the instructions */ - /* FIXME (elz) !!!!: this may create a problem if, once the bp is hit, the user says - where: the backtrace info is not right: this is because the point at which we - break is at the very first instruction of the function. At this time the stuff that - needs to be saved on the stack, has not been saved yet, so the backtrace - cannot know all it needs to know. This will need to be fixed in the - actual backtrace code. (Note: this is what DDE does) */ - - else - - return (skip_prologue_hard_way(pc)); - -#if 0 -/* elz: I am keeping this code around just in case, but remember, all the - instructions are for alpha: you should change all to the hppa instructions */ - - /* Can't determine prologue from the symbol table, need to examine - instructions. */ - - /* Skip the typical prologue instructions. These are the stack adjustment - instruction and the instructions that save registers on the stack - or in the gcc frame. */ - for (offset = 0; offset < 100; offset += 4) - { - int status; - - status = read_memory_nobpt (pc + offset, buf, 4); - if (status) - memory_error (status, pc + offset); - inst = extract_unsigned_integer (buf, 4); - - /* The alpha has no delay slots. But let's keep the lenient stuff, - we might need it for something else in the future. */ - if (lenient && 0) - continue; - - if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ - continue; - if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ - continue; - if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ - continue; - else if ((inst & 0xfc1f0000) == 0xb41e0000 - && (inst & 0xffff0000) != 0xb7fe0000) - continue; /* stq reg,n($sp) */ - /* reg != $zero */ - else if ((inst & 0xfc1f0000) == 0x9c1e0000 - && (inst & 0xffff0000) != 0x9ffe0000) - continue; /* stt reg,n($sp) */ - /* reg != $zero */ - else if (inst == 0x47de040f) /* bis sp,sp,fp */ - continue; - else - break; - } - return pc + offset; -#endif /* 0 */ -} - -/* Put here the code to store, into a struct frame_saved_regs, - the addresses of the saved registers of frame described by FRAME_INFO. - This includes special registers such as pc and fp saved in special - ways in the stack frame. sp is even more special: - the address we return for it IS the sp for the next frame. */ - -void -hppa_frame_find_saved_regs (frame_info, frame_saved_regs) - struct frame_info *frame_info; - struct frame_saved_regs *frame_saved_regs; -{ - CORE_ADDR pc; - struct unwind_table_entry *u; - unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; - int status, i, reg; - char buf[4]; - int fp_loc = -1; - - /* Zero out everything. */ - memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); - - /* Call dummy frames always look the same, so there's no need to - examine the dummy code to determine locations of saved registers; - instead, let find_dummy_frame_regs fill in the correct offsets - for the saved registers. */ - if ((frame_info->pc >= frame_info->frame - && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH - + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 - + 6 * 4))) - find_dummy_frame_regs (frame_info, frame_saved_regs); - - /* Interrupt handlers are special too. They lay out the register - state in the exact same order as the register numbers in GDB. */ - if (pc_in_interrupt_handler (frame_info->pc)) - { - for (i = 0; i < NUM_REGS; i++) - { - /* SP is a little special. */ - if (i == SP_REGNUM) - frame_saved_regs->regs[SP_REGNUM] - = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); - else - frame_saved_regs->regs[i] = frame_info->frame + i * 4; - } - return; - } - -#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP - /* Handle signal handler callers. */ - if (frame_info->signal_handler_caller) - { - FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); - return; - } -#endif - - /* Get the starting address of the function referred to by the PC - saved in frame. */ - pc = get_pc_function_start (frame_info->pc); - - /* Yow! */ - u = find_unwind_entry (pc); - if (!u) - return; - - /* This is how much of a frame adjustment we need to account for. */ - stack_remaining = u->Total_frame_size << 3; - - /* Magic register saves we want to know about. */ - save_rp = u->Save_RP; - save_sp = u->Save_SP; - - /* Turn the Entry_GR field into a bitmask. */ - save_gr = 0; - for (i = 3; i < u->Entry_GR + 3; i++) - { - /* Frame pointer gets saved into a special location. */ - if (u->Save_SP && i == FP_REGNUM) - continue; - - save_gr |= (1 << i); - } - - /* Turn the Entry_FR field into a bitmask too. */ - save_fr = 0; - for (i = 12; i < u->Entry_FR + 12; i++) - save_fr |= (1 << i); - - /* The frame always represents the value of %sp at entry to the - current function (and is thus equivalent to the "saved" stack - pointer. */ - frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; - - /* Loop until we find everything of interest or hit a branch. - - For unoptimized GCC code and for any HP CC code this will never ever - examine any user instructions. - - For optimzied GCC code we're faced with problems. GCC will schedule - its prologue and make prologue instructions available for delay slot - filling. The end result is user code gets mixed in with the prologue - and a prologue instruction may be in the delay slot of the first branch - or call. - - Some unexpected things are expected with debugging optimized code, so - we allow this routine to walk past user instructions in optimized - GCC code. */ - while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) - { - status = target_read_memory (pc, buf, 4); - inst = extract_unsigned_integer (buf, 4); - - /* Yow! */ - if (status != 0) - return; - - /* Note the interesting effects of this instruction. */ - stack_remaining -= prologue_inst_adjust_sp (inst); - - /* There is only one instruction used for saving RP into the stack. */ - if (inst == 0x6bc23fd9) - { - save_rp = 0; - frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; - } - - /* Just note that we found the save of SP into the stack. The - value for frame_saved_regs was computed above. */ - if ((inst & 0xffffc000) == 0x6fc10000) - save_sp = 0; - - /* Account for general and floating-point register saves. */ - reg = inst_saves_gr (inst); - if (reg >= 3 && reg <= 18 - && (!u->Save_SP || reg != FP_REGNUM)) - { - save_gr &= ~(1 << reg); - - /* stwm with a positive displacement is a *post modify*. */ - if ((inst >> 26) == 0x1b - && extract_14 (inst) >= 0) - frame_saved_regs->regs[reg] = frame_info->frame; - else - { - /* Handle code with and without frame pointers. */ - if (u->Save_SP) - frame_saved_regs->regs[reg] - = frame_info->frame + extract_14 (inst); - else - frame_saved_regs->regs[reg] - = frame_info->frame + (u->Total_frame_size << 3) - + extract_14 (inst); - } - } - - - /* GCC handles callee saved FP regs a little differently. - - It emits an instruction to put the value of the start of - the FP store area into %r1. It then uses fstds,ma with - a basereg of %r1 for the stores. - - HP CC emits them at the current stack pointer modifying - the stack pointer as it stores each register. */ - - /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ - if ((inst & 0xffffc000) == 0x34610000 - || (inst & 0xffffc000) == 0x37c10000) - fp_loc = extract_14 (inst); - - reg = inst_saves_fr (inst); - if (reg >= 12 && reg <= 21) - { - /* Note +4 braindamage below is necessary because the FP status - registers are internally 8 registers rather than the expected - 4 registers. */ - save_fr &= ~(1 << reg); - if (fp_loc == -1) - { - /* 1st HP CC FP register store. After this instruction - we've set enough state that the GCC and HPCC code are - both handled in the same manner. */ - frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; - fp_loc = 8; - } - else - { - frame_saved_regs->regs[reg + FP0_REGNUM + 4] - = frame_info->frame + fp_loc; - fp_loc += 8; - } - } - - /* Quit if we hit any kind of branch. This can happen if a prologue - instruction is in the delay slot of the first call/branch. */ - if (is_branch (inst)) - break; - - /* Bump the PC. */ - pc += 4; - } -} - - -/* Exception handling support for the HP-UX ANSI C++ compiler. - The compiler (aCC) provides a callback for exception events; - GDB can set a breakpoint on this callback and find out what - exception event has occurred. */ - -/* The name of the hook to be set to point to the callback function */ -static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; -/* The name of the function to be used to set the hook value */ -static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; -/* The name of the callback function in end.o */ -static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; -/* Name of function in end.o on which a break is set (called by above) */ -static char HP_ACC_EH_break[] = "__d_eh_break"; -/* Name of flag (in end.o) that enables catching throws */ -static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; -/* Name of flag (in end.o) that enables catching catching */ -static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; -/* The enum used by aCC */ -typedef enum { - __EH_NOTIFY_THROW, - __EH_NOTIFY_CATCH -} __eh_notification; - -/* Is exception-handling support available with this executable? */ -static int hp_cxx_exception_support = 0; -/* Has the initialize function been run? */ -int hp_cxx_exception_support_initialized = 0; -/* Similar to above, but imported from breakpoint.c -- non-target-specific */ -extern int exception_support_initialized; -/* Address of __eh_notify_hook */ -static CORE_ADDR eh_notify_hook_addr = NULL; -/* Address of __d_eh_notify_callback */ -static CORE_ADDR eh_notify_callback_addr = NULL; -/* Address of __d_eh_break */ -static CORE_ADDR eh_break_addr = NULL; -/* Address of __d_eh_catch_catch */ -static CORE_ADDR eh_catch_catch_addr = NULL; -/* Address of __d_eh_catch_throw */ -static CORE_ADDR eh_catch_throw_addr = NULL; -/* Sal for __d_eh_break */ -static struct symtab_and_line * break_callback_sal = NULL; - -/* Code in end.c expects __d_pid to be set in the inferior, - otherwise __d_eh_notify_callback doesn't bother to call - __d_eh_break! So we poke the pid into this symbol - ourselves. - 0 => success - 1 => failure */ -int -setup_d_pid_in_inferior () -{ - CORE_ADDR anaddr; - struct minimal_symbol * msymbol; - char buf[4]; /* FIXME 32x64? */ - - /* Slam the pid of the process into __d_pid; failing is only a warning! */ - msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); - if (msymbol == NULL) - { - warning ("Unable to find __d_pid symbol in object file."); - warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); - return 1; - } - - anaddr = SYMBOL_VALUE_ADDRESS (msymbol); - store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */ - if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ - { - warning ("Unable to write __d_pid"); - warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); - return 1; - } - return 0; -} - -/* Initialize exception catchpoint support by looking for the - necessary hooks/callbacks in end.o, etc., and set the hook value to - point to the required debug function - - Return 0 => failure - 1 => success */ - -static int -initialize_hp_cxx_exception_support () -{ - struct symtabs_and_lines sals; - struct cleanup * old_chain; - struct cleanup * canonical_strings_chain = NULL; - int i; - char * addr_start; - char * addr_end = NULL; - char ** canonical = (char **) NULL; - int thread = -1; - struct symbol * sym = NULL; - struct minimal_symbol * msym = NULL; - struct objfile * objfile; - asection *shlib_info; - - /* Detect and disallow recursion. On HP-UX with aCC, infinite - recursion is a possibility because finding the hook for exception - callbacks involves making a call in the inferior, which means - re-inserting breakpoints which can re-invoke this code */ - - static int recurse = 0; - if (recurse > 0) - { - hp_cxx_exception_support_initialized = 0; - exception_support_initialized = 0; - return 0; - } - - hp_cxx_exception_support = 0; - - /* First check if we have seen any HP compiled objects; if not, - it is very unlikely that HP's idiosyncratic callback mechanism - for exception handling debug support will be available! - This will percolate back up to breakpoint.c, where our callers - will decide to try the g++ exception-handling support instead. */ - if (!hp_som_som_object_present) - return 0; - - /* We have a SOM executable with SOM debug info; find the hooks */ - - /* First look for the notify hook provided by aCC runtime libs */ - /* If we find this symbol, we conclude that the executable must - have HP aCC exception support built in. If this symbol is not - found, even though we're a HP SOM-SOM file, we may have been - built with some other compiler (not aCC). This results percolates - back up to our callers in breakpoint.c which can decide to - try the g++ style of exception support instead. - If this symbol is found but the other symbols we require are - not found, there is something weird going on, and g++ support - should *not* be tried as an alternative. - - ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. - ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ - - /* libCsup has this hook; it'll usually be non-debuggable */ - msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); - if (msym) - { - eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); - hp_cxx_exception_support = 1; - } - else - { - warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); - warning ("Executable may not have been compiled debuggable with HP aCC."); - warning ("GDB will be unable to intercept exception events."); - eh_notify_hook_addr = 0; - hp_cxx_exception_support = 0; - return 0; - } - -#if 0 /* DEBUGGING */ - printf ("Hook addr found is %lx\n", eh_notify_hook_addr); -#endif - - /* Next look for the notify callback routine in end.o */ - /* This is always available in the SOM symbol dictionary if end.o is linked in */ - msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); - if (msym) - { - eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); - hp_cxx_exception_support = 1; - } - else - { - warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); - warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); - warning ("GDB will be unable to intercept exception events."); - eh_notify_callback_addr = 0; - return 0; - } - - /* Check whether the executable is dynamically linked or archive bound */ - /* With an archive-bound executable we can use the raw addresses we find - for the callback function, etc. without modification. For an executable - with shared libraries, we have to do more work to find the plabel, which - can be the target of a call through $$dyncall from the aCC runtime support - library (libCsup) which is linked shared by default by aCC. */ - /* This test below was copied from somsolib.c/somread.c. It may not be a very - reliable one to test that an executable is linked shared. pai/1997-07-18 */ - shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); - if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) - { - /* The minsym we have has the local code address, but that's not the - plabel that can be used by an inter-load-module call. */ - /* Find solib handle for main image (which has end.o), and use that - and the min sym as arguments to __d_shl_get() (which does the equivalent - of shl_findsym()) to find the plabel. */ - - args_for_find_stub args; - static char message[] = "Error while finding exception callback hook:\n"; - - args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); - args.msym = msym; - - recurse++; - eh_notify_callback_addr = catch_errors ((int (*) PARAMS ((char *))) cover_find_stub_with_shl_get, - (char *) &args, - message, RETURN_MASK_ALL); - recurse--; - -#if 0 /* DEBUGGING */ - printf ("found plabel for eh notify callback: %x\n", eh_notify_callback_addr); -#endif - - exception_catchpoints_are_fragile = 1; - - if (!eh_notify_callback_addr) - { - /* We can get here either if there is no plabel in the export list - for the main image, or if something strange happened (??) */ - warning ("Couldn't find a plabel (indirect function label) for the exception callback."); - warning ("GDB will not be able to intercept exception events."); - return 0; - } - } - else - exception_catchpoints_are_fragile = 0; - -#if 0 /* DEBUGGING */ - printf ("Cb addr found is %lx\n", eh_notify_callback_addr); -#endif - - /* Now, look for the breakpointable routine in end.o */ - /* This should also be available in the SOM symbol dict. if end.o linked in */ - msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); - if (msym) - { - eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); - hp_cxx_exception_support = 1; - } - else - { - warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); - warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); - warning ("GDB will be unable to intercept exception events."); - eh_break_addr = 0; - return 0; - } - -#if 0 /* DEBUGGING */ - printf ("break addr found is %lx\n", eh_break_addr); -#endif - - /* Next look for the catch enable flag provided in end.o */ - sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, - VAR_NAMESPACE, 0, (struct symtab **) NULL); - if (sym) /* sometimes present in debug info */ - { - eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); - hp_cxx_exception_support = 1; - } - else /* otherwise look in SOM symbol dict. */ - { - msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); - if (msym) - { - eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); - hp_cxx_exception_support = 1; - } - else - { - warning ("Unable to enable interception of exception catches."); - warning ("Executable may not have been compiled debuggable with HP aCC."); - warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); - return 0; - } - } - -#if 0 /* DEBUGGING */ - printf ("catch catch addr found is %lx\n", eh_catch_catch_addr); -#endif - - /* Next look for the catch enable flag provided end.o */ - sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, - VAR_NAMESPACE, 0, (struct symtab **) NULL); - if (sym) /* sometimes present in debug info */ - { - eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); - hp_cxx_exception_support = 1; - } - else /* otherwise look in SOM symbol dict. */ - { - msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); - if (msym) - { - eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); - hp_cxx_exception_support = 1; - } - else - { - warning ("Unable to enable interception of exception throws."); - warning ("Executable may not have been compiled debuggable with HP aCC."); - warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); - return 0; - } - } - -#if 0 /* DEBUGGING */ - printf ("catch throw addr found is %lx\n", eh_catch_throw_addr); -#endif - - /* Set the flags */ - hp_cxx_exception_support = 2; /* everything worked so far */ - hp_cxx_exception_support_initialized = 1; - exception_support_initialized = 1; - - return 1; -} - -/* Target operation for enabling or disabling interception of - exception events. - KIND is either EX_EVENT_THROW or EX_EVENT_CATCH - ENABLE is either 0 (disable) or 1 (enable). - Return value is NULL if no support found; - -1 if something went wrong, - or a pointer to a symtab/line struct if the breakpointable - address was found. */ - -struct symtab_and_line * -child_enable_exception_callback (kind, enable) - enum exception_event_kind kind; - int enable; -{ - char buf[4]; - - if (!exception_support_initialized || !hp_cxx_exception_support_initialized) - if (!initialize_hp_cxx_exception_support ()) - return NULL; - - switch (hp_cxx_exception_support) - { - case 0: - /* Assuming no HP support at all */ - return NULL; - case 1: - /* HP support should be present, but something went wrong */ - return (struct symtab_and_line *) -1; /* yuck! */ - /* there may be other cases in the future */ - } - - /* Set the EH hook to point to the callback routine */ - store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ - /* pai: (temp) FIXME should there be a pack operation first? */ - if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ - { - warning ("Could not write to target memory for exception event callback."); - warning ("Interception of exception events may not work."); - return (struct symtab_and_line *) -1; - } - if (enable) - { - /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-(*/ - if (inferior_pid > 0) - { - if (setup_d_pid_in_inferior ()) - return (struct symtab_and_line *) -1; - } - else - { - warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */ - return (struct symtab_and_line *) -1; /* purecov: deadcode */ - } - } - - switch (kind) - { - case EX_EVENT_THROW: - store_unsigned_integer (buf, 4, enable ? 1 : 0); - if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ - { - warning ("Couldn't enable exception throw interception."); - return (struct symtab_and_line *) -1; - } - break; - case EX_EVENT_CATCH: - store_unsigned_integer (buf, 4, enable ? 1 : 0); - if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ - { - warning ("Couldn't enable exception catch interception."); - return (struct symtab_and_line *) -1; - } - break; - default: /* purecov: deadcode */ - error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */ - } - - /* Copy break address into new sal struct, malloc'ing if needed. */ - if (!break_callback_sal) - { - break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); - } - INIT_SAL(break_callback_sal); - break_callback_sal->symtab = NULL; - break_callback_sal->pc = eh_break_addr; - break_callback_sal->line = 0; - break_callback_sal->end = eh_break_addr; - - return break_callback_sal; -} - -/* Record some information about the current exception event */ -static struct exception_event_record current_ex_event; -/* Convenience struct */ -static struct symtab_and_line null_symtab_and_line = { NULL, 0, 0, 0 }; - -/* Report current exception event. Returns a pointer to a record - that describes the kind of the event, where it was thrown from, - and where it will be caught. More information may be reported - in the future */ -struct exception_event_record * -child_get_current_exception_event () -{ - CORE_ADDR event_kind; - CORE_ADDR throw_addr; - CORE_ADDR catch_addr; - struct frame_info *fi, *curr_frame; - int level = 1; - - curr_frame = get_current_frame(); - if (!curr_frame) - return (struct exception_event_record *) NULL; - - /* Go up one frame to __d_eh_notify_callback, because at the - point when this code is executed, there's garbage in the - arguments of __d_eh_break. */ - fi = find_relative_frame (curr_frame, &level); - if (level != 0) - return (struct exception_event_record *) NULL; - - select_frame (fi, -1); - - /* Read in the arguments */ - /* __d_eh_notify_callback() is called with 3 arguments: - 1. event kind catch or throw - 2. the target address if known - 3. a flag -- not sure what this is. pai/1997-07-17 */ - event_kind = read_register (ARG0_REGNUM); - catch_addr = read_register (ARG1_REGNUM); - - /* Now go down to a user frame */ - /* For a throw, __d_eh_break is called by - __d_eh_notify_callback which is called by - __notify_throw which is called - from user code. - For a catch, __d_eh_break is called by - __d_eh_notify_callback which is called by - <stackwalking stuff> which is called by - __throw__<stuff> or __rethrow_<stuff> which is called - from user code. */ - /* FIXME: Don't use such magic numbers; search for the frames */ - level = (event_kind == EX_EVENT_THROW) ? 3 : 4; - fi = find_relative_frame (curr_frame, &level); - if (level != 0) - return (struct exception_event_record *) NULL; - - select_frame (fi, -1); - throw_addr = fi->pc; - - /* Go back to original (top) frame */ - select_frame (curr_frame, -1); - - current_ex_event.kind = (enum exception_event_kind) event_kind; - current_ex_event.throw_sal = find_pc_line (throw_addr, 1); - current_ex_event.catch_sal = find_pc_line (catch_addr, 1); - - return ¤t_ex_event; -} - - -#ifdef MAINTENANCE_CMDS - -static void -unwind_command (exp, from_tty) - char *exp; - int from_tty; -{ - CORE_ADDR address; - struct unwind_table_entry *u; - - /* If we have an expression, evaluate it and use it as the address. */ - - if (exp != 0 && *exp != 0) - address = parse_and_eval_address (exp); - else - return; - - u = find_unwind_entry (address); - - if (!u) - { - printf_unfiltered ("Can't find unwind table entry for %s\n", exp); - return; - } - - printf_unfiltered ("unwind_table_entry (0x%x):\n", u); - - printf_unfiltered ("\tregion_start = "); - print_address (u->region_start, gdb_stdout); - - printf_unfiltered ("\n\tregion_end = "); - print_address (u->region_end, gdb_stdout); - -#ifdef __STDC__ -#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); -#else -#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD"); -#endif - - printf_unfiltered ("\n\tflags ="); - pif (Cannot_unwind); - pif (Millicode); - pif (Millicode_save_sr0); - pif (Entry_SR); - pif (Args_stored); - pif (Variable_Frame); - pif (Separate_Package_Body); - pif (Frame_Extension_Millicode); - pif (Stack_Overflow_Check); - pif (Two_Instruction_SP_Increment); - pif (Ada_Region); - pif (Save_SP); - pif (Save_RP); - pif (Save_MRP_in_frame); - pif (extn_ptr_defined); - pif (Cleanup_defined); - pif (MPE_XL_interrupt_marker); - pif (HP_UX_interrupt_marker); - pif (Large_frame); - - putchar_unfiltered ('\n'); - -#ifdef __STDC__ -#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); -#else -#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD); -#endif - - pin (Region_description); - pin (Entry_FR); - pin (Entry_GR); - pin (Total_frame_size); -} -#endif /* MAINTENANCE_CMDS */ - -#ifdef PREPARE_TO_PROCEED - -/* If the user has switched threads, and there is a breakpoint - at the old thread's pc location, then switch to that thread - and return TRUE, else return FALSE and don't do a thread - switch (or rather, don't seem to have done a thread switch). - - Ptrace-based gdb will always return FALSE to the thread-switch - query, and thus also to PREPARE_TO_PROCEED. - - The important thing is whether there is a BPT instruction, - not how many user breakpoints there are. So we have to worry - about things like these: - - o Non-bp stop -- NO - - o User hits bp, no switch -- NO - - o User hits bp, switches threads -- YES - - o User hits bp, deletes bp, switches threads -- NO - - o User hits bp, deletes one of two or more bps - at that PC, user switches threads -- YES - - o Plus, since we're buffering events, the user may have hit a - breakpoint, deleted the breakpoint and then gotten another - hit on that same breakpoint on another thread which - actually hit before the delete. (FIXME in breakpoint.c - so that "dead" breakpoints are ignored?) -- NO - - For these reasons, we have to violate information hiding and - call "breakpoint_here_p". If core gdb thinks there is a bpt - here, that's what counts, as core gdb is the one which is - putting the BPT instruction in and taking it out. */ -int -hppa_prepare_to_proceed() -{ - pid_t old_thread; - pid_t current_thread; - - old_thread = hppa_switched_threads(inferior_pid); - if (old_thread != 0) - { - /* Switched over from "old_thread". Try to do - as little work as possible, 'cause mostly - we're going to switch back. */ - CORE_ADDR new_pc; - CORE_ADDR old_pc = read_pc(); - - /* Yuk, shouldn't use global to specify current - thread. But that's how gdb does it. */ - current_thread = inferior_pid; - inferior_pid = old_thread; - - new_pc = read_pc(); - if (new_pc != old_pc /* If at same pc, no need */ - && breakpoint_here_p (new_pc)) - { - /* User hasn't deleted the BP. - Return TRUE, finishing switch to "old_thread". */ - flush_cached_frames (); - registers_changed (); -#if 0 - printf("---> PREPARE_TO_PROCEED (was %d, now %d)!\n", - current_thread, inferior_pid); -#endif - - return 1; - } - - /* Otherwise switch back to the user-chosen thread. */ - inferior_pid = current_thread; - new_pc = read_pc(); /* Re-prime register cache */ - } - - return 0; -} -#endif /* PREPARE_TO_PROCEED */ - -void -_initialize_hppa_tdep () -{ - tm_print_insn = print_insn_hppa; - -#ifdef MAINTENANCE_CMDS - add_cmd ("unwind", class_maintenance, unwind_command, - "Print unwind table entry at given address.", - &maintenanceprintlist); -#endif /* MAINTENANCE_CMDS */ -} |