aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppa-hpux-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/hppa-hpux-tdep.c')
-rw-r--r--gdb/hppa-hpux-tdep.c1572
1 files changed, 0 insertions, 1572 deletions
diff --git a/gdb/hppa-hpux-tdep.c b/gdb/hppa-hpux-tdep.c
deleted file mode 100644
index 3c0f390..0000000
--- a/gdb/hppa-hpux-tdep.c
+++ /dev/null
@@ -1,1572 +0,0 @@
-/* Target-dependent code for HP-UX on PA-RISC.
-
- Copyright (C) 2002-2015 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-#include "defs.h"
-#include "arch-utils.h"
-#include "gdbcore.h"
-#include "osabi.h"
-#include "frame.h"
-#include "frame-unwind.h"
-#include "trad-frame.h"
-#include "symtab.h"
-#include "objfiles.h"
-#include "inferior.h"
-#include "infcall.h"
-#include "observer.h"
-#include "hppa-tdep.h"
-#include "solib-som.h"
-#include "solib-pa64.h"
-#include "regset.h"
-#include "regcache.h"
-
-#define IS_32BIT_TARGET(_gdbarch) \
- ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
-
-/* Bit in the `ss_flag' member of `struct save_state' that indicates
- that the 64-bit register values are live. From
- <machine/save_state.h>. */
-#define HPPA_HPUX_SS_WIDEREGS 0x40
-
-/* Offsets of various parts of `struct save_state'. From
- <machine/save_state.h>. */
-#define HPPA_HPUX_SS_FLAGS_OFFSET 0
-#define HPPA_HPUX_SS_NARROW_OFFSET 4
-#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
-#define HPPA_HPUX_SS_WIDE_OFFSET 640
-
-/* The size of `struct save_state. */
-#define HPPA_HPUX_SAVE_STATE_SIZE 1152
-
-/* The size of `struct pa89_save_state', which corresponds to PA-RISC
- 1.1, the lowest common denominator that we support. */
-#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
-
-
-/* Forward declarations. */
-extern void _initialize_hppa_hpux_tdep (void);
-extern initialize_file_ftype _initialize_hppa_hpux_tdep;
-
-/* Return one if PC is in the call path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-static int
-hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct bound_minimal_symbol minsym;
- struct unwind_table_entry *u;
-
- /* First see if PC is in one of the two C-library trampolines. */
- if (pc == hppa_symbol_address("$$dyncall")
- || pc == hppa_symbol_address("_sr4export"))
- return 1;
-
- minsym = lookup_minimal_symbol_by_pc (pc);
- if (minsym.minsym
- && strcmp (MSYMBOL_LINKAGE_NAME (minsym.minsym), ".stub") == 0)
- return 1;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- if (u->stub_unwind.stub_type == 0)
- return 0;
-
- /* By definition a long-branch stub is a call stub. */
- if (u->stub_unwind.stub_type == LONG_BRANCH)
- return 1;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4, byte_order);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 1;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 0;
- }
-
- /* Should never happen. */
- warning (_("Unable to find branch in parameter relocation stub."));
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
-}
-
-static int
-hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-
- /* PA64 has a completely different stub/trampoline scheme. Is it
- better? Maybe. It's certainly harder to determine with any
- certainty that we are in a stub because we can not refer to the
- unwinders to help.
-
- The heuristic is simple. Try to lookup the current PC value in th
- minimal symbol table. If that fails, then assume we are not in a
- stub and return.
-
- Then see if the PC value falls within the section bounds for the
- section containing the minimal symbol we found in the first
- step. If it does, then assume we are not in a stub and return.
-
- Finally peek at the instructions to see if they look like a stub. */
- struct bound_minimal_symbol minsym;
- asection *sec;
- CORE_ADDR addr;
- int insn;
-
- minsym = lookup_minimal_symbol_by_pc (pc);
- if (! minsym.minsym)
- return 0;
-
- sec = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym)->the_bfd_section;
-
- if (bfd_get_section_vma (sec->owner, sec) <= pc
- && pc < (bfd_get_section_vma (sec->owner, sec)
- + bfd_section_size (sec->owner, sec)))
- return 0;
-
- /* We might be in a stub. Peek at the instructions. Stubs are 3
- instructions long. */
- insn = read_memory_integer (pc, 4, byte_order);
-
- /* Find out where we think we are within the stub. */
- if ((insn & 0xffffc00e) == 0x53610000)
- addr = pc;
- else if ((insn & 0xffffffff) == 0xe820d000)
- addr = pc - 4;
- else if ((insn & 0xffffc00e) == 0x537b0000)
- addr = pc - 8;
- else
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr, 4, byte_order);
- if ((insn & 0xffffc00e) != 0x53610000)
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr + 4, 4, byte_order);
- if ((insn & 0xffffffff) != 0xe820d000)
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr + 8, 4, byte_order);
- if ((insn & 0xffffc00e) != 0x537b0000)
- return 0;
-
- /* Looks like a stub. */
- return 1;
-}
-
-/* Return one if PC is in the return path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-static int
-hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
- CORE_ADDR pc, const char *name)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct unwind_table_entry *u;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub or it's just a long branch stub, then
- return zero. */
- if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
- return 0;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4, byte_order);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 0;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 1;
- }
-
- /* Should never happen. */
- warning (_("Unable to find branch in parameter relocation stub."));
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
-
-}
-
-/* Figure out if PC is in a trampoline, and if so find out where
- the trampoline will jump to. If not in a trampoline, return zero.
-
- Simple code examination probably is not a good idea since the code
- sequences in trampolines can also appear in user code.
-
- We use unwinds and information from the minimal symbol table to
- determine when we're in a trampoline. This won't work for ELF
- (yet) since it doesn't create stub unwind entries. Whether or
- not ELF will create stub unwinds or normal unwinds for linker
- stubs is still being debated.
-
- This should handle simple calls through dyncall or sr4export,
- long calls, argument relocation stubs, and dyncall/sr4export
- calling an argument relocation stub. It even handles some stubs
- used in dynamic executables. */
-
-static CORE_ADDR
-hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
-{
- struct gdbarch *gdbarch = get_frame_arch (frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- long orig_pc = pc;
- long prev_inst, curr_inst, loc;
- struct bound_minimal_symbol msym;
- struct unwind_table_entry *u;
-
- /* Addresses passed to dyncall may *NOT* be the actual address
- of the function. So we may have to do something special. */
- if (pc == hppa_symbol_address("$$dyncall"))
- {
- pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
-
- /* If bit 30 (counting from the left) is on, then pc is the address of
- the PLT entry for this function, not the address of the function
- itself. Bit 31 has meaning too, but only for MPE. */
- if (pc & 0x2)
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size,
- byte_order);
- }
- if (pc == hppa_symbol_address("$$dyncall_external"))
- {
- pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
- }
- else if (pc == hppa_symbol_address("_sr4export"))
- pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- /* elz: attention here! (FIXME) because of a compiler/linker
- error, some stubs which should have a non zero stub_unwind.stub_type
- have unfortunately a value of zero. So this function would return here
- as if we were not in a trampoline. To fix this, we go look at the partial
- symbol information, which reports this guy as a stub.
- (FIXME): Unfortunately, we are not that lucky: it turns out that the
- partial symbol information is also wrong sometimes. This is because
- when it is entered (somread.c::som_symtab_read()) it can happen that
- if the type of the symbol (from the som) is Entry, and the symbol is
- in a shared library, then it can also be a trampoline. This would be OK,
- except that I believe the way they decide if we are ina shared library
- does not work. SOOOO..., even if we have a regular function w/o
- trampolines its minimal symbol can be assigned type mst_solib_trampoline.
- Also, if we find that the symbol is a real stub, then we fix the unwind
- descriptor, and define the stub type to be EXPORT.
- Hopefully this is correct most of the times. */
- if (u->stub_unwind.stub_type == 0)
- {
-
-/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
- we can delete all the code which appears between the lines. */
-/*--------------------------------------------------------------------------*/
- msym = lookup_minimal_symbol_by_pc (pc);
-
- if (msym.minsym == NULL
- || MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
- return orig_pc == pc ? 0 : pc & ~0x3;
-
- else if (msym.minsym != NULL
- && MSYMBOL_TYPE (msym.minsym) == mst_solib_trampoline)
- {
- struct objfile *objfile;
- struct minimal_symbol *msymbol;
- int function_found = 0;
-
- /* Go look if there is another minimal symbol with the same name as
- this one, but with type mst_text. This would happen if the msym
- is an actual trampoline, in which case there would be another
- symbol with the same name corresponding to the real function. */
-
- ALL_MSYMBOLS (objfile, msymbol)
- {
- if (MSYMBOL_TYPE (msymbol) == mst_text
- && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
- MSYMBOL_LINKAGE_NAME (msym.minsym)) == 0)
- {
- function_found = 1;
- break;
- }
- }
-
- if (function_found)
- /* The type of msym is correct (mst_solib_trampoline), but
- the unwind info is wrong, so set it to the correct value. */
- u->stub_unwind.stub_type = EXPORT;
- else
- /* The stub type info in the unwind is correct (this is not a
- trampoline), but the msym type information is wrong, it
- should be mst_text. So we need to fix the msym, and also
- get out of this function. */
- {
- MSYMBOL_TYPE (msym.minsym) = mst_text;
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
-/*--------------------------------------------------------------------------*/
- }
-
- /* It's a stub. Search for a branch and figure out where it goes.
- Note we have to handle multi insn branch sequences like ldil;ble.
- Most (all?) other branches can be determined by examining the contents
- of certain registers and the stack. */
-
- loc = pc;
- curr_inst = 0;
- prev_inst = 0;
- while (1)
- {
- /* Make sure we haven't walked outside the range of this stub. */
- if (u != find_unwind_entry (loc))
- {
- warning (_("Unable to find branch in linker stub"));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- prev_inst = curr_inst;
- curr_inst = read_memory_integer (loc, 4, byte_order);
-
- /* Does it look like a branch external using %r1? Then it's the
- branch from the stub to the actual function. */
- if ((curr_inst & 0xffe0e000) == 0xe0202000)
- {
- /* Yup. See if the previous instruction loaded
- a value into %r1. If so compute and return the jump address. */
- if ((prev_inst & 0xffe00000) == 0x20200000)
- return (hppa_extract_21 (prev_inst)
- + hppa_extract_17 (curr_inst)) & ~0x3;
- else
- {
- warning (_("Unable to find ldil X,%%r1 "
- "before ble Y(%%sr4,%%r1)."));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* Does it look like a be 0(sr0,%r21)? OR
- Does it look like a be, n 0(sr0,%r21)? OR
- Does it look like a bve (r21)? (this is on PA2.0)
- Does it look like a bve, n(r21)? (this is also on PA2.0)
- That's the branch from an
- import stub to an export stub.
-
- It is impossible to determine the target of the branch via
- simple examination of instructions and/or data (consider
- that the address in the plabel may be the address of the
- bind-on-reference routine in the dynamic loader).
-
- So we have try an alternative approach.
-
- Get the name of the symbol at our current location; it should
- be a stub symbol with the same name as the symbol in the
- shared library.
-
- Then lookup a minimal symbol with the same name; we should
- get the minimal symbol for the target routine in the shared
- library as those take precedence of import/export stubs. */
- if ((curr_inst == 0xe2a00000) ||
- (curr_inst == 0xe2a00002) ||
- (curr_inst == 0xeaa0d000) ||
- (curr_inst == 0xeaa0d002))
- {
- struct bound_minimal_symbol stubsym;
- struct bound_minimal_symbol libsym;
-
- stubsym = lookup_minimal_symbol_by_pc (loc);
- if (stubsym.minsym == NULL)
- {
- warning (_("Unable to find symbol for 0x%lx"), loc);
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- libsym = lookup_minimal_symbol (MSYMBOL_LINKAGE_NAME (stubsym.minsym),
- NULL, NULL);
- if (libsym.minsym == NULL)
- {
- warning (_("Unable to find library symbol for %s."),
- MSYMBOL_PRINT_NAME (stubsym.minsym));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- return MSYMBOL_VALUE (libsym.minsym);
- }
-
- /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
- branch from the stub to the actual function. */
- /*elz */
- else if ((curr_inst & 0xffe0e000) == 0xe8400000
- || (curr_inst & 0xffe0e000) == 0xe8000000
- || (curr_inst & 0xffe0e000) == 0xe800A000)
- return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
-
- /* Does it look like bv (rp)? Note this depends on the
- current stack pointer being the same as the stack
- pointer in the stub itself! This is a branch on from the
- stub back to the original caller. */
- /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
- else if ((curr_inst & 0xffe0f000) == 0xe840c000)
- {
- /* Yup. See if the previous instruction loaded
- rp from sp - 8. */
- if (prev_inst == 0x4bc23ff1)
- {
- CORE_ADDR sp;
- sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
- return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
- }
- else
- {
- warning (_("Unable to find restore of %%rp before bv (%%rp)."));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* elz: added this case to capture the new instruction
- at the end of the return part of an export stub used by
- the PA2.0: BVE, n (rp) */
- else if ((curr_inst & 0xffe0f000) == 0xe840d000)
- {
- return (read_memory_integer
- (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
- word_size, byte_order)) & ~0x3;
- }
-
- /* What about be,n 0(sr0,%rp)? It's just another way we return to
- the original caller from the stub. Used in dynamic executables. */
- else if (curr_inst == 0xe0400002)
- {
- /* The value we jump to is sitting in sp - 24. But that's
- loaded several instructions before the be instruction.
- I guess we could check for the previous instruction being
- mtsp %r1,%sr0 if we want to do sanity checking. */
- return (read_memory_integer
- (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
- word_size, byte_order)) & ~0x3;
- }
-
- /* Haven't found the branch yet, but we're still in the stub.
- Keep looking. */
- loc += 4;
- }
-}
-
-static void
-hppa_skip_permanent_breakpoint (struct regcache *regcache)
-{
- /* To step over a breakpoint instruction on the PA takes some
- fiddling with the instruction address queue.
-
- When we stop at a breakpoint, the IA queue front (the instruction
- we're executing now) points at the breakpoint instruction, and
- the IA queue back (the next instruction to execute) points to
- whatever instruction we would execute after the breakpoint, if it
- were an ordinary instruction. This is the case even if the
- breakpoint is in the delay slot of a branch instruction.
-
- Clearly, to step past the breakpoint, we need to set the queue
- front to the back. But what do we put in the back? What
- instruction comes after that one? Because of the branch delay
- slot, the next insn is always at the back + 4. */
-
- ULONGEST pcoq_tail, pcsq_tail;
- regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
- regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
-
- regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
- regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
-
- regcache_cooked_write_unsigned (regcache,
- HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
- /* We can leave the tail's space the same, since there's no jump. */
-}
-
-
-/* Signal frames. */
-struct hppa_hpux_sigtramp_unwind_cache
-{
- CORE_ADDR base;
- struct trad_frame_saved_reg *saved_regs;
-};
-
-static int hppa_hpux_tramp_reg[] = {
- HPPA_SAR_REGNUM,
- HPPA_PCOQ_HEAD_REGNUM,
- HPPA_PCSQ_HEAD_REGNUM,
- HPPA_PCOQ_TAIL_REGNUM,
- HPPA_PCSQ_TAIL_REGNUM,
- HPPA_EIEM_REGNUM,
- HPPA_IIR_REGNUM,
- HPPA_ISR_REGNUM,
- HPPA_IOR_REGNUM,
- HPPA_IPSW_REGNUM,
- -1,
- HPPA_SR4_REGNUM,
- HPPA_SR4_REGNUM + 1,
- HPPA_SR4_REGNUM + 2,
- HPPA_SR4_REGNUM + 3,
- HPPA_SR4_REGNUM + 4,
- HPPA_SR4_REGNUM + 5,
- HPPA_SR4_REGNUM + 6,
- HPPA_SR4_REGNUM + 7,
- HPPA_RCR_REGNUM,
- HPPA_PID0_REGNUM,
- HPPA_PID1_REGNUM,
- HPPA_CCR_REGNUM,
- HPPA_PID2_REGNUM,
- HPPA_PID3_REGNUM,
- HPPA_TR0_REGNUM,
- HPPA_TR0_REGNUM + 1,
- HPPA_TR0_REGNUM + 2,
- HPPA_CR27_REGNUM
-};
-
-static struct hppa_hpux_sigtramp_unwind_cache *
-hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
- void **this_cache)
-
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct hppa_hpux_sigtramp_unwind_cache *info;
- unsigned int flag;
- CORE_ADDR sp, scptr, off;
- int i, incr, szoff;
-
- if (*this_cache)
- return *this_cache;
-
- info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
- *this_cache = info;
- info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
-
- sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
-
- if (IS_32BIT_TARGET (gdbarch))
- scptr = sp - 1352;
- else
- scptr = sp - 1520;
-
- off = scptr;
-
- /* See /usr/include/machine/save_state.h for the structure of the
- save_state_t structure. */
-
- flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
- 4, byte_order);
-
- if (!(flag & HPPA_HPUX_SS_WIDEREGS))
- {
- /* Narrow registers. */
- off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
- incr = 4;
- szoff = 0;
- }
- else
- {
- /* Wide registers. */
- off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
- incr = 8;
- szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
- }
-
- for (i = 1; i < 32; i++)
- {
- info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
- off += incr;
- }
-
- for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
- {
- if (hppa_hpux_tramp_reg[i] > 0)
- info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
-
- off += incr;
- }
-
- /* TODO: fp regs */
-
- info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
-
- return info;
-}
-
-static void
-hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
- void **this_prologue_cache,
- struct frame_id *this_id)
-{
- struct hppa_hpux_sigtramp_unwind_cache *info
- = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
-
- *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
-}
-
-static struct value *
-hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
- void **this_prologue_cache,
- int regnum)
-{
- struct hppa_hpux_sigtramp_unwind_cache *info
- = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
-
- return hppa_frame_prev_register_helper (this_frame,
- info->saved_regs, regnum);
-}
-
-static int
-hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
- struct frame_info *this_frame,
- void **this_cache)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct unwind_table_entry *u;
- CORE_ADDR pc = get_frame_pc (this_frame);
-
- u = find_unwind_entry (pc);
-
- /* If this is an export stub, try to get the unwind descriptor for
- the actual function itself. */
- if (u && u->stub_unwind.stub_type == EXPORT)
- {
- gdb_byte buf[HPPA_INSN_SIZE];
- unsigned long insn;
-
- if (!safe_frame_unwind_memory (this_frame, u->region_start,
- buf, sizeof buf))
- return 0;
-
- insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
- if ((insn & 0xffe0e000) == 0xe8400000)
- u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
- }
-
- if (u && u->HP_UX_interrupt_marker)
- return 1;
-
- return 0;
-}
-
-static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
- SIGTRAMP_FRAME,
- default_frame_unwind_stop_reason,
- hppa_hpux_sigtramp_frame_this_id,
- hppa_hpux_sigtramp_frame_prev_register,
- NULL,
- hppa_hpux_sigtramp_unwind_sniffer
-};
-
-static CORE_ADDR
-hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
- struct value *function)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR faddr;
-
- faddr = value_as_address (function);
-
- /* Is this a plabel? If so, dereference it to get the gp value. */
- if (faddr & 2)
- {
- int status;
- gdb_byte buf[4];
-
- faddr &= ~3;
-
- status = target_read_memory (faddr + 4, buf, sizeof (buf));
- if (status == 0)
- return extract_unsigned_integer (buf, sizeof (buf), byte_order);
- }
-
- return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
-}
-
-static CORE_ADDR
-hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
- struct value *function)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- CORE_ADDR faddr;
- gdb_byte buf[32];
-
- faddr = value_as_address (function);
-
- if (pc_in_section (faddr, ".opd"))
- {
- target_read_memory (faddr, buf, sizeof (buf));
- return extract_unsigned_integer (&buf[24], 8, byte_order);
- }
- else
- {
- return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
- }
-}
-
-static unsigned int ldsid_pattern[] = {
- 0x000010a0, /* ldsid (rX),rY */
- 0x00001820, /* mtsp rY,sr0 */
- 0xe0000000 /* be,n (sr0,rX) */
-};
-
-static CORE_ADDR
-hppa_hpux_search_pattern (struct gdbarch *gdbarch,
- CORE_ADDR start, CORE_ADDR end,
- unsigned int *patterns, int count)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
- unsigned int *insns;
- gdb_byte *buf;
- int offset, i;
-
- buf = alloca (num_insns * HPPA_INSN_SIZE);
- insns = alloca (num_insns * sizeof (unsigned int));
-
- read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
- for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
- insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
-
- for (offset = 0; offset <= num_insns - count; offset++)
- {
- for (i = 0; i < count; i++)
- {
- if ((insns[offset + i] & patterns[i]) != patterns[i])
- break;
- }
- if (i == count)
- break;
- }
-
- if (offset <= num_insns - count)
- return start + offset * HPPA_INSN_SIZE;
- else
- return 0;
-}
-
-static CORE_ADDR
-hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
- int *argreg)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct objfile *obj;
- struct obj_section *sec;
- struct hppa_objfile_private *priv;
- struct frame_info *frame;
- struct unwind_table_entry *u;
- CORE_ADDR addr, rp;
- gdb_byte buf[4];
- unsigned int insn;
-
- sec = find_pc_section (pc);
- obj = sec->objfile;
- priv = objfile_data (obj, hppa_objfile_priv_data);
-
- if (!priv)
- priv = hppa_init_objfile_priv_data (obj);
- if (!priv)
- error (_("Internal error creating objfile private data."));
-
- /* Use the cached value if we have one. */
- if (priv->dummy_call_sequence_addr != 0)
- {
- *argreg = priv->dummy_call_sequence_reg;
- return priv->dummy_call_sequence_addr;
- }
-
- /* First try a heuristic; if we are in a shared library call, our return
- pointer is likely to point at an export stub. */
- frame = get_current_frame ();
- rp = frame_unwind_register_unsigned (frame, 2);
- u = find_unwind_entry (rp);
- if (u && u->stub_unwind.stub_type == EXPORT)
- {
- addr = hppa_hpux_search_pattern (gdbarch,
- u->region_start, u->region_end,
- ldsid_pattern,
- ARRAY_SIZE (ldsid_pattern));
- if (addr)
- goto found_pattern;
- }
-
- /* Next thing to try is to look for an export stub. */
- if (priv->unwind_info)
- {
- int i;
-
- for (i = 0; i < priv->unwind_info->last; i++)
- {
- struct unwind_table_entry *u;
- u = &priv->unwind_info->table[i];
- if (u->stub_unwind.stub_type == EXPORT)
- {
- addr = hppa_hpux_search_pattern (gdbarch,
- u->region_start, u->region_end,
- ldsid_pattern,
- ARRAY_SIZE (ldsid_pattern));
- if (addr)
- {
- goto found_pattern;
- }
- }
- }
- }
-
- /* Finally, if this is the main executable, try to locate a sequence
- from noshlibs */
- addr = hppa_symbol_address ("noshlibs");
- sec = find_pc_section (addr);
-
- if (sec && sec->objfile == obj)
- {
- CORE_ADDR start, end;
-
- find_pc_partial_function (addr, NULL, &start, &end);
- if (start != 0 && end != 0)
- {
- addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
- ARRAY_SIZE (ldsid_pattern));
- if (addr)
- goto found_pattern;
- }
- }
-
- /* Can't find a suitable sequence. */
- return 0;
-
-found_pattern:
- target_read_memory (addr, buf, sizeof (buf));
- insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
- priv->dummy_call_sequence_addr = addr;
- priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
-
- *argreg = priv->dummy_call_sequence_reg;
- return priv->dummy_call_sequence_addr;
-}
-
-static CORE_ADDR
-hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
- int *argreg)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- struct objfile *obj;
- struct obj_section *sec;
- struct hppa_objfile_private *priv;
- CORE_ADDR addr;
- struct minimal_symbol *msym;
-
- sec = find_pc_section (pc);
- obj = sec->objfile;
- priv = objfile_data (obj, hppa_objfile_priv_data);
-
- if (!priv)
- priv = hppa_init_objfile_priv_data (obj);
- if (!priv)
- error (_("Internal error creating objfile private data."));
-
- /* Use the cached value if we have one. */
- if (priv->dummy_call_sequence_addr != 0)
- {
- *argreg = priv->dummy_call_sequence_reg;
- return priv->dummy_call_sequence_addr;
- }
-
- /* FIXME: Without stub unwind information, locating a suitable sequence is
- fairly difficult. For now, we implement a very naive and inefficient
- scheme; try to read in blocks of code, and look for a "bve,n (rp)"
- instruction. These are likely to occur at the end of functions, so
- we only look at the last two instructions of each function. */
- ALL_OBJFILE_MSYMBOLS (obj, msym)
- {
- CORE_ADDR begin, end;
- const char *name;
- gdb_byte buf[2 * HPPA_INSN_SIZE];
- int offset;
-
- find_pc_partial_function (MSYMBOL_VALUE_ADDRESS (obj, msym), &name,
- &begin, &end);
-
- if (name == NULL || begin == 0 || end == 0)
- continue;
-
- if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
- {
- for (offset = 0; offset < sizeof (buf); offset++)
- {
- unsigned int insn;
-
- insn = extract_unsigned_integer (buf + offset,
- HPPA_INSN_SIZE, byte_order);
- if (insn == 0xe840d002) /* bve,n (rp) */
- {
- addr = (end - sizeof (buf)) + offset;
- goto found_pattern;
- }
- }
- }
- }
-
- /* Can't find a suitable sequence. */
- return 0;
-
-found_pattern:
- priv->dummy_call_sequence_addr = addr;
- /* Right now we only look for a "bve,l (rp)" sequence, so the register is
- always HPPA_RP_REGNUM. */
- priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
-
- *argreg = priv->dummy_call_sequence_reg;
- return priv->dummy_call_sequence_addr;
-}
-
-static CORE_ADDR
-hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
-{
- struct objfile *objfile;
- struct bound_minimal_symbol funsym;
- struct bound_minimal_symbol stubsym;
- CORE_ADDR stubaddr;
-
- funsym = lookup_minimal_symbol_by_pc (funcaddr);
- stubaddr = 0;
-
- ALL_OBJFILES (objfile)
- {
- stubsym = lookup_minimal_symbol_solib_trampoline
- (MSYMBOL_LINKAGE_NAME (funsym.minsym), objfile);
-
- if (stubsym.minsym)
- {
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (MSYMBOL_VALUE (stubsym.minsym));
- if (u == NULL
- || (u->stub_unwind.stub_type != IMPORT
- && u->stub_unwind.stub_type != IMPORT_SHLIB))
- continue;
-
- stubaddr = MSYMBOL_VALUE (stubsym.minsym);
-
- /* If we found an IMPORT stub, then we can stop searching;
- if we found an IMPORT_SHLIB, we want to continue the search
- in the hopes that we will find an IMPORT stub. */
- if (u->stub_unwind.stub_type == IMPORT)
- break;
- }
- }
-
- return stubaddr;
-}
-
-static int
-hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- int sr;
- /* The space register to use is encoded in the top 2 bits of the address. */
- sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
- return sr + 4;
-}
-
-static CORE_ADDR
-hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
-{
- /* In order for us to restore the space register to its starting state,
- we need the dummy trampoline to return to an instruction address in
- the same space as where we started the call. We used to place the
- breakpoint near the current pc, however, this breaks nested dummy calls
- as the nested call will hit the breakpoint address and terminate
- prematurely. Instead, we try to look for an address in the same space to
- put the breakpoint.
-
- This is similar in spirit to putting the breakpoint at the "entry point"
- of an executable. */
-
- struct obj_section *sec;
- struct unwind_table_entry *u;
- struct minimal_symbol *msym;
- CORE_ADDR func;
-
- sec = find_pc_section (addr);
- if (sec)
- {
- /* First try the lowest address in the section; we can use it as long
- as it is "regular" code (i.e. not a stub). */
- u = find_unwind_entry (obj_section_addr (sec));
- if (!u || u->stub_unwind.stub_type == 0)
- return obj_section_addr (sec);
-
- /* Otherwise, we need to find a symbol for a regular function. We
- do this by walking the list of msymbols in the objfile. The symbol
- we find should not be the same as the function that was passed in. */
-
- /* FIXME: this is broken, because we can find a function that will be
- called by the dummy call target function, which will still not
- work. */
-
- find_pc_partial_function (addr, NULL, &func, NULL);
- ALL_OBJFILE_MSYMBOLS (sec->objfile, msym)
- {
- u = find_unwind_entry (MSYMBOL_VALUE_ADDRESS (sec->objfile, msym));
- if (func != MSYMBOL_VALUE_ADDRESS (sec->objfile, msym)
- && (!u || u->stub_unwind.stub_type == 0))
- return MSYMBOL_VALUE_ADDRESS (sec->objfile, msym);
- }
- }
-
- warning (_("Cannot find suitable address to place dummy breakpoint; nested "
- "calls may fail."));
- return addr - 4;
-}
-
-static CORE_ADDR
-hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
- CORE_ADDR funcaddr,
- struct value **args, int nargs,
- struct type *value_type,
- CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
- struct regcache *regcache)
-{
- CORE_ADDR pc, stubaddr;
- int argreg = 0;
-
- pc = regcache_read_pc (regcache);
-
- /* Note: we don't want to pass a function descriptor here; push_dummy_call
- fills in the PIC register for us. */
- funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
-
- /* The simple case is where we call a function in the same space that we are
- currently in; in that case we don't really need to do anything. */
- if (hppa_hpux_sr_for_addr (gdbarch, pc)
- == hppa_hpux_sr_for_addr (gdbarch, funcaddr))
- {
- /* Intraspace call. */
- *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
- *real_pc = funcaddr;
- regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);
-
- return sp;
- }
-
- /* In order to make an interspace call, we need to go through a stub.
- gcc supplies an appropriate stub called "__gcc_plt_call", however, if
- an application is compiled with HP compilers then this stub is not
- available. We used to fallback to "__d_plt_call", however that stub
- is not entirely useful for us because it doesn't do an interspace
- return back to the caller. Also, on hppa64-hpux, there is no
- __gcc_plt_call available. In order to keep the code uniform, we
- instead don't use either of these stubs, but instead write our own
- onto the stack.
-
- A problem arises since the stack is located in a different space than
- code, so in order to branch to a stack stub, we will need to do an
- interspace branch. Previous versions of gdb did this by modifying code
- at the current pc and doing single-stepping to set the pcsq. Since this
- is highly undesirable, we use a different scheme:
-
- All we really need to do the branch to the stub is a short instruction
- sequence like this:
-
- PA1.1:
- ldsid (rX),r1
- mtsp r1,sr0
- be,n (sr0,rX)
-
- PA2.0:
- bve,n (sr0,rX)
-
- Instead of writing these sequences ourselves, we can find it in
- the instruction stream that belongs to the current space. While this
- seems difficult at first, we are actually guaranteed to find the sequences
- in several places:
-
- For 32-bit code:
- - in export stubs for shared libraries
- - in the "noshlibs" routine in the main module
-
- For 64-bit code:
- - at the end of each "regular" function
-
- We cache the address of these sequences in the objfile's private data
- since these operations can potentially be quite expensive.
-
- So, what we do is:
- - write a stack trampoline
- - look for a suitable instruction sequence in the current space
- - point the sequence at the trampoline
- - set the return address of the trampoline to the current space
- (see hppa_hpux_find_dummy_call_bpaddr)
- - set the continuing address of the "dummy code" as the sequence. */
-
- if (IS_32BIT_TARGET (gdbarch))
- {
-#define INSN(I1, I2, I3, I4) 0x ## I1, 0x ## I2, 0x ## I3, 0x ## I4
- static const gdb_byte hppa32_tramp[] = {
- INSN(0f,df,12,91), /* stw r31,-8(,sp) */
- INSN(02,c0,10,a1), /* ldsid (,r22),r1 */
- INSN(00,01,18,20), /* mtsp r1,sr0 */
- INSN(e6,c0,00,00), /* be,l 0(sr0,r22),%sr0,%r31 */
- INSN(08,1f,02,42), /* copy r31,rp */
- INSN(0f,d1,10,82), /* ldw -8(,sp),rp */
- INSN(00,40,10,a1), /* ldsid (,rp),r1 */
- INSN(00,01,18,20), /* mtsp r1,sr0 */
- INSN(e0,40,00,00), /* be 0(sr0,rp) */
- INSN(08,00,02,40) /* nop */
- };
-
- /* for hppa32, we must call the function through a stub so that on
- return it can return to the space of our trampoline. */
- stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
- if (stubaddr == 0)
- error (_("Cannot call external function not referenced by application "
- "(no import stub).\n"));
- regcache_cooked_write_unsigned (regcache, 22, stubaddr);
-
- write_memory (sp, hppa32_tramp, sizeof (hppa32_tramp));
-
- *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
- regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
-
- *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
- if (*real_pc == 0)
- error (_("Cannot make interspace call from here."));
-
- regcache_cooked_write_unsigned (regcache, argreg, sp);
-
- sp += sizeof (hppa32_tramp);
- }
- else
- {
- static const gdb_byte hppa64_tramp[] = {
- INSN(ea,c0,f0,00), /* bve,l (r22),%r2 */
- INSN(0f,df,12,d1), /* std r31,-8(,sp) */
- INSN(0f,d1,10,c2), /* ldd -8(,sp),rp */
- INSN(e8,40,d0,02), /* bve,n (rp) */
- INSN(08,00,02,40) /* nop */
- };
-#undef INSN
-
- /* for hppa64, we don't need to call through a stub; all functions
- return via a bve. */
- regcache_cooked_write_unsigned (regcache, 22, funcaddr);
- write_memory (sp, hppa64_tramp, sizeof (hppa64_tramp));
-
- *bp_addr = pc - 4;
- regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
-
- *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
- if (*real_pc == 0)
- error (_("Cannot make interspace call from here."));
-
- regcache_cooked_write_unsigned (regcache, argreg, sp);
-
- sp += sizeof (hppa64_tramp);
- }
-
- sp = gdbarch_frame_align (gdbarch, sp);
-
- return sp;
-}
-
-
-
-static void
-hppa_hpux_supply_ss_narrow (struct regcache *regcache,
- int regnum, const gdb_byte *save_state)
-{
- const gdb_byte *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
- int i, offset = 0;
-
- for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
- {
- if (regnum == i || regnum == -1)
- regcache_raw_supply (regcache, i, ss_narrow + offset);
-
- offset += 4;
- }
-}
-
-static void
-hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
- int regnum, const gdb_byte *save_state)
-{
- const gdb_byte *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
- int i, offset = 0;
-
- /* FIXME: We view the floating-point state as 64 single-precision
- registers for 32-bit code, and 32 double-precision register for
- 64-bit code. This distinction is artificial and should be
- eliminated. If that ever happens, we should remove the if-clause
- below. */
-
- if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
- {
- for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
- {
- if (regnum == i || regnum == -1)
- regcache_raw_supply (regcache, i, ss_fpblock + offset);
-
- offset += 4;
- }
- }
- else
- {
- for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
- {
- if (regnum == i || regnum == -1)
- regcache_raw_supply (regcache, i, ss_fpblock + offset);
-
- offset += 8;
- }
- }
-}
-
-static void
-hppa_hpux_supply_ss_wide (struct regcache *regcache,
- int regnum, const gdb_byte *save_state)
-{
- const gdb_byte *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
- int i, offset = 8;
-
- if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
- offset += 4;
-
- for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
- {
- if (regnum == i || regnum == -1)
- regcache_raw_supply (regcache, i, ss_wide + offset);
-
- offset += 8;
- }
-}
-
-static void
-hppa_hpux_supply_save_state (const struct regset *regset,
- struct regcache *regcache,
- int regnum, const void *regs, size_t len)
-{
- struct gdbarch *gdbarch = get_regcache_arch (regcache);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- const gdb_byte *proc_info = regs;
- const gdb_byte *save_state = proc_info + 8;
- ULONGEST flags;
-
- flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
- 4, byte_order);
- if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
- {
- size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
- gdb_byte buf[8];
-
- store_unsigned_integer (buf, size, byte_order, flags);
- regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
- }
-
- /* If the SS_WIDEREGS flag is set, we really do need the full
- `struct save_state'. */
- if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
- error (_("Register set contents too small"));
-
- if (flags & HPPA_HPUX_SS_WIDEREGS)
- hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
- else
- hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
-
- hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
-}
-
-/* HP-UX register set. */
-
-static const struct regset hppa_hpux_regset =
-{
- NULL,
- hppa_hpux_supply_save_state,
- NULL,
- REGSET_VARIABLE_SIZE
-};
-
-static void
-hppa_hpux_iterate_over_regset_sections (struct gdbarch *gdbarch,
- iterate_over_regset_sections_cb *cb,
- void *cb_data,
- const struct regcache *regcache)
-{
- cb (".reg", HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8, &hppa_hpux_regset,
- NULL, cb_data);
-}
-
-
-/* Bit in the `ss_flag' member of `struct save_state' that indicates
- the state was saved from a system call. From
- <machine/save_state.h>. */
-#define HPPA_HPUX_SS_INSYSCALL 0x02
-
-static CORE_ADDR
-hppa_hpux_read_pc (struct regcache *regcache)
-{
- ULONGEST flags;
-
- /* If we're currently in a system call return the contents of %r31. */
- regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
- if (flags & HPPA_HPUX_SS_INSYSCALL)
- {
- ULONGEST pc;
- regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
- return pc & ~0x3;
- }
-
- return hppa_read_pc (regcache);
-}
-
-static void
-hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
-{
- ULONGEST flags;
-
- /* If we're currently in a system call also write PC into %r31. */
- regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
- if (flags & HPPA_HPUX_SS_INSYSCALL)
- regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);
-
- hppa_write_pc (regcache, pc);
-}
-
-static CORE_ADDR
-hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- ULONGEST flags;
-
- /* If we're currently in a system call return the contents of %r31. */
- flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
- if (flags & HPPA_HPUX_SS_INSYSCALL)
- return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
-
- return hppa_unwind_pc (gdbarch, next_frame);
-}
-
-
-/* Given the current value of the pc, check to see if it is inside a stub, and
- if so, change the value of the pc to point to the caller of the stub.
- THIS_FRAME is the current frame in the current list of frames.
- BASE contains to stack frame base of the current frame.
- SAVE_REGS is the register file stored in the frame cache. */
-static void
-hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
- struct trad_frame_saved_reg *saved_regs)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- struct value *pcoq_head_val;
- ULONGEST pcoq_head;
- CORE_ADDR stubpc;
- struct unwind_table_entry *u;
-
- pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs,
- HPPA_PCOQ_HEAD_REGNUM);
- pcoq_head =
- extract_unsigned_integer (value_contents_all (pcoq_head_val),
- register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
- byte_order);
-
- u = find_unwind_entry (pcoq_head);
- if (u && u->stub_unwind.stub_type == EXPORT)
- {
- stubpc = read_memory_integer (base - 24, word_size, byte_order);
- trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
- }
- else if (hppa_symbol_address ("__gcc_plt_call")
- == get_pc_function_start (pcoq_head))
- {
- stubpc = read_memory_integer (base - 8, word_size, byte_order);
- trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
- }
-}
-
-static void
-hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (IS_32BIT_TARGET (gdbarch))
- tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
- else
- tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
-
- tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
-
- set_gdbarch_in_solib_return_trampoline
- (gdbarch, hppa_hpux_in_solib_return_trampoline);
- set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
-
- set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
- set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
-
- set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
- set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
- set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
- set_gdbarch_skip_permanent_breakpoint
- (gdbarch, hppa_skip_permanent_breakpoint);
-
- set_gdbarch_iterate_over_regset_sections
- (gdbarch, hppa_hpux_iterate_over_regset_sections);
-
- frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
-}
-
-static void
-hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- tdep->is_elf = 0;
-
- tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
-
- hppa_hpux_init_abi (info, gdbarch);
- som_solib_select (gdbarch);
-}
-
-static void
-hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- tdep->is_elf = 1;
- tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
-
- hppa_hpux_init_abi (info, gdbarch);
- pa64_solib_select (gdbarch);
-}
-
-static enum gdb_osabi
-hppa_hpux_core_osabi_sniffer (bfd *abfd)
-{
- if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
- return GDB_OSABI_HPUX_SOM;
- else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
- {
- asection *section;
-
- section = bfd_get_section_by_name (abfd, ".kernel");
- if (section)
- {
- bfd_size_type size;
- char *contents;
-
- size = bfd_section_size (abfd, section);
- contents = alloca (size);
- if (bfd_get_section_contents (abfd, section, contents,
- (file_ptr) 0, size)
- && strcmp (contents, "HP-UX") == 0)
- return GDB_OSABI_HPUX_ELF;
- }
- }
-
- return GDB_OSABI_UNKNOWN;
-}
-
-void
-_initialize_hppa_hpux_tdep (void)
-{
- /* BFD doesn't set a flavour for HP-UX style core files. It doesn't
- set the architecture either. */
- gdbarch_register_osabi_sniffer (bfd_arch_unknown,
- bfd_target_unknown_flavour,
- hppa_hpux_core_osabi_sniffer);
- gdbarch_register_osabi_sniffer (bfd_arch_hppa,
- bfd_target_elf_flavour,
- hppa_hpux_core_osabi_sniffer);
-
- gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
- hppa_hpux_som_init_abi);
- gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
- hppa_hpux_elf_init_abi);
-}