diff options
Diffstat (limited to 'gdb/hppa-hpux-tdep.c')
-rw-r--r-- | gdb/hppa-hpux-tdep.c | 1572 |
1 files changed, 0 insertions, 1572 deletions
diff --git a/gdb/hppa-hpux-tdep.c b/gdb/hppa-hpux-tdep.c deleted file mode 100644 index 3c0f390..0000000 --- a/gdb/hppa-hpux-tdep.c +++ /dev/null @@ -1,1572 +0,0 @@ -/* Target-dependent code for HP-UX on PA-RISC. - - Copyright (C) 2002-2015 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. */ - -#include "defs.h" -#include "arch-utils.h" -#include "gdbcore.h" -#include "osabi.h" -#include "frame.h" -#include "frame-unwind.h" -#include "trad-frame.h" -#include "symtab.h" -#include "objfiles.h" -#include "inferior.h" -#include "infcall.h" -#include "observer.h" -#include "hppa-tdep.h" -#include "solib-som.h" -#include "solib-pa64.h" -#include "regset.h" -#include "regcache.h" - -#define IS_32BIT_TARGET(_gdbarch) \ - ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4) - -/* Bit in the `ss_flag' member of `struct save_state' that indicates - that the 64-bit register values are live. From - <machine/save_state.h>. */ -#define HPPA_HPUX_SS_WIDEREGS 0x40 - -/* Offsets of various parts of `struct save_state'. From - <machine/save_state.h>. */ -#define HPPA_HPUX_SS_FLAGS_OFFSET 0 -#define HPPA_HPUX_SS_NARROW_OFFSET 4 -#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256 -#define HPPA_HPUX_SS_WIDE_OFFSET 640 - -/* The size of `struct save_state. */ -#define HPPA_HPUX_SAVE_STATE_SIZE 1152 - -/* The size of `struct pa89_save_state', which corresponds to PA-RISC - 1.1, the lowest common denominator that we support. */ -#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512 - - -/* Forward declarations. */ -extern void _initialize_hppa_hpux_tdep (void); -extern initialize_file_ftype _initialize_hppa_hpux_tdep; - -/* Return one if PC is in the call path of a trampoline, else return zero. - - Note we return one for *any* call trampoline (long-call, arg-reloc), not - just shared library trampolines (import, export). */ - -static int -hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct bound_minimal_symbol minsym; - struct unwind_table_entry *u; - - /* First see if PC is in one of the two C-library trampolines. */ - if (pc == hppa_symbol_address("$$dyncall") - || pc == hppa_symbol_address("_sr4export")) - return 1; - - minsym = lookup_minimal_symbol_by_pc (pc); - if (minsym.minsym - && strcmp (MSYMBOL_LINKAGE_NAME (minsym.minsym), ".stub") == 0) - return 1; - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub, then return now. */ - if (u->stub_unwind.stub_type == 0) - return 0; - - /* By definition a long-branch stub is a call stub. */ - if (u->stub_unwind.stub_type == LONG_BRANCH) - return 1; - - /* The call and return path execute the same instructions within - an IMPORT stub! So an IMPORT stub is both a call and return - trampoline. */ - if (u->stub_unwind.stub_type == IMPORT) - return 1; - - /* Parameter relocation stubs always have a call path and may have a - return path. */ - if (u->stub_unwind.stub_type == PARAMETER_RELOCATION - || u->stub_unwind.stub_type == EXPORT) - { - CORE_ADDR addr; - - /* Search forward from the current PC until we hit a branch - or the end of the stub. */ - for (addr = pc; addr <= u->region_end; addr += 4) - { - unsigned long insn; - - insn = read_memory_integer (addr, 4, byte_order); - - /* Does it look like a bl? If so then it's the call path, if - we find a bv or be first, then we're on the return path. */ - if ((insn & 0xfc00e000) == 0xe8000000) - return 1; - else if ((insn & 0xfc00e001) == 0xe800c000 - || (insn & 0xfc000000) == 0xe0000000) - return 0; - } - - /* Should never happen. */ - warning (_("Unable to find branch in parameter relocation stub.")); - return 0; - } - - /* Unknown stub type. For now, just return zero. */ - return 0; -} - -static int -hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - - /* PA64 has a completely different stub/trampoline scheme. Is it - better? Maybe. It's certainly harder to determine with any - certainty that we are in a stub because we can not refer to the - unwinders to help. - - The heuristic is simple. Try to lookup the current PC value in th - minimal symbol table. If that fails, then assume we are not in a - stub and return. - - Then see if the PC value falls within the section bounds for the - section containing the minimal symbol we found in the first - step. If it does, then assume we are not in a stub and return. - - Finally peek at the instructions to see if they look like a stub. */ - struct bound_minimal_symbol minsym; - asection *sec; - CORE_ADDR addr; - int insn; - - minsym = lookup_minimal_symbol_by_pc (pc); - if (! minsym.minsym) - return 0; - - sec = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym)->the_bfd_section; - - if (bfd_get_section_vma (sec->owner, sec) <= pc - && pc < (bfd_get_section_vma (sec->owner, sec) - + bfd_section_size (sec->owner, sec))) - return 0; - - /* We might be in a stub. Peek at the instructions. Stubs are 3 - instructions long. */ - insn = read_memory_integer (pc, 4, byte_order); - - /* Find out where we think we are within the stub. */ - if ((insn & 0xffffc00e) == 0x53610000) - addr = pc; - else if ((insn & 0xffffffff) == 0xe820d000) - addr = pc - 4; - else if ((insn & 0xffffc00e) == 0x537b0000) - addr = pc - 8; - else - return 0; - - /* Now verify each insn in the range looks like a stub instruction. */ - insn = read_memory_integer (addr, 4, byte_order); - if ((insn & 0xffffc00e) != 0x53610000) - return 0; - - /* Now verify each insn in the range looks like a stub instruction. */ - insn = read_memory_integer (addr + 4, 4, byte_order); - if ((insn & 0xffffffff) != 0xe820d000) - return 0; - - /* Now verify each insn in the range looks like a stub instruction. */ - insn = read_memory_integer (addr + 8, 4, byte_order); - if ((insn & 0xffffc00e) != 0x537b0000) - return 0; - - /* Looks like a stub. */ - return 1; -} - -/* Return one if PC is in the return path of a trampoline, else return zero. - - Note we return one for *any* call trampoline (long-call, arg-reloc), not - just shared library trampolines (import, export). */ - -static int -hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch, - CORE_ADDR pc, const char *name) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct unwind_table_entry *u; - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub or it's just a long branch stub, then - return zero. */ - if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) - return 0; - - /* The call and return path execute the same instructions within - an IMPORT stub! So an IMPORT stub is both a call and return - trampoline. */ - if (u->stub_unwind.stub_type == IMPORT) - return 1; - - /* Parameter relocation stubs always have a call path and may have a - return path. */ - if (u->stub_unwind.stub_type == PARAMETER_RELOCATION - || u->stub_unwind.stub_type == EXPORT) - { - CORE_ADDR addr; - - /* Search forward from the current PC until we hit a branch - or the end of the stub. */ - for (addr = pc; addr <= u->region_end; addr += 4) - { - unsigned long insn; - - insn = read_memory_integer (addr, 4, byte_order); - - /* Does it look like a bl? If so then it's the call path, if - we find a bv or be first, then we're on the return path. */ - if ((insn & 0xfc00e000) == 0xe8000000) - return 0; - else if ((insn & 0xfc00e001) == 0xe800c000 - || (insn & 0xfc000000) == 0xe0000000) - return 1; - } - - /* Should never happen. */ - warning (_("Unable to find branch in parameter relocation stub.")); - return 0; - } - - /* Unknown stub type. For now, just return zero. */ - return 0; - -} - -/* Figure out if PC is in a trampoline, and if so find out where - the trampoline will jump to. If not in a trampoline, return zero. - - Simple code examination probably is not a good idea since the code - sequences in trampolines can also appear in user code. - - We use unwinds and information from the minimal symbol table to - determine when we're in a trampoline. This won't work for ELF - (yet) since it doesn't create stub unwind entries. Whether or - not ELF will create stub unwinds or normal unwinds for linker - stubs is still being debated. - - This should handle simple calls through dyncall or sr4export, - long calls, argument relocation stubs, and dyncall/sr4export - calling an argument relocation stub. It even handles some stubs - used in dynamic executables. */ - -static CORE_ADDR -hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) -{ - struct gdbarch *gdbarch = get_frame_arch (frame); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - long orig_pc = pc; - long prev_inst, curr_inst, loc; - struct bound_minimal_symbol msym; - struct unwind_table_entry *u; - - /* Addresses passed to dyncall may *NOT* be the actual address - of the function. So we may have to do something special. */ - if (pc == hppa_symbol_address("$$dyncall")) - { - pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); - - /* If bit 30 (counting from the left) is on, then pc is the address of - the PLT entry for this function, not the address of the function - itself. Bit 31 has meaning too, but only for MPE. */ - if (pc & 0x2) - pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, - byte_order); - } - if (pc == hppa_symbol_address("$$dyncall_external")) - { - pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); - pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order); - } - else if (pc == hppa_symbol_address("_sr4export")) - pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); - - /* Get the unwind descriptor corresponding to PC, return zero - if no unwind was found. */ - u = find_unwind_entry (pc); - if (!u) - return 0; - - /* If this isn't a linker stub, then return now. */ - /* elz: attention here! (FIXME) because of a compiler/linker - error, some stubs which should have a non zero stub_unwind.stub_type - have unfortunately a value of zero. So this function would return here - as if we were not in a trampoline. To fix this, we go look at the partial - symbol information, which reports this guy as a stub. - (FIXME): Unfortunately, we are not that lucky: it turns out that the - partial symbol information is also wrong sometimes. This is because - when it is entered (somread.c::som_symtab_read()) it can happen that - if the type of the symbol (from the som) is Entry, and the symbol is - in a shared library, then it can also be a trampoline. This would be OK, - except that I believe the way they decide if we are ina shared library - does not work. SOOOO..., even if we have a regular function w/o - trampolines its minimal symbol can be assigned type mst_solib_trampoline. - Also, if we find that the symbol is a real stub, then we fix the unwind - descriptor, and define the stub type to be EXPORT. - Hopefully this is correct most of the times. */ - if (u->stub_unwind.stub_type == 0) - { - -/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed - we can delete all the code which appears between the lines. */ -/*--------------------------------------------------------------------------*/ - msym = lookup_minimal_symbol_by_pc (pc); - - if (msym.minsym == NULL - || MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) - return orig_pc == pc ? 0 : pc & ~0x3; - - else if (msym.minsym != NULL - && MSYMBOL_TYPE (msym.minsym) == mst_solib_trampoline) - { - struct objfile *objfile; - struct minimal_symbol *msymbol; - int function_found = 0; - - /* Go look if there is another minimal symbol with the same name as - this one, but with type mst_text. This would happen if the msym - is an actual trampoline, in which case there would be another - symbol with the same name corresponding to the real function. */ - - ALL_MSYMBOLS (objfile, msymbol) - { - if (MSYMBOL_TYPE (msymbol) == mst_text - && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), - MSYMBOL_LINKAGE_NAME (msym.minsym)) == 0) - { - function_found = 1; - break; - } - } - - if (function_found) - /* The type of msym is correct (mst_solib_trampoline), but - the unwind info is wrong, so set it to the correct value. */ - u->stub_unwind.stub_type = EXPORT; - else - /* The stub type info in the unwind is correct (this is not a - trampoline), but the msym type information is wrong, it - should be mst_text. So we need to fix the msym, and also - get out of this function. */ - { - MSYMBOL_TYPE (msym.minsym) = mst_text; - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - -/*--------------------------------------------------------------------------*/ - } - - /* It's a stub. Search for a branch and figure out where it goes. - Note we have to handle multi insn branch sequences like ldil;ble. - Most (all?) other branches can be determined by examining the contents - of certain registers and the stack. */ - - loc = pc; - curr_inst = 0; - prev_inst = 0; - while (1) - { - /* Make sure we haven't walked outside the range of this stub. */ - if (u != find_unwind_entry (loc)) - { - warning (_("Unable to find branch in linker stub")); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - prev_inst = curr_inst; - curr_inst = read_memory_integer (loc, 4, byte_order); - - /* Does it look like a branch external using %r1? Then it's the - branch from the stub to the actual function. */ - if ((curr_inst & 0xffe0e000) == 0xe0202000) - { - /* Yup. See if the previous instruction loaded - a value into %r1. If so compute and return the jump address. */ - if ((prev_inst & 0xffe00000) == 0x20200000) - return (hppa_extract_21 (prev_inst) - + hppa_extract_17 (curr_inst)) & ~0x3; - else - { - warning (_("Unable to find ldil X,%%r1 " - "before ble Y(%%sr4,%%r1).")); - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - - /* Does it look like a be 0(sr0,%r21)? OR - Does it look like a be, n 0(sr0,%r21)? OR - Does it look like a bve (r21)? (this is on PA2.0) - Does it look like a bve, n(r21)? (this is also on PA2.0) - That's the branch from an - import stub to an export stub. - - It is impossible to determine the target of the branch via - simple examination of instructions and/or data (consider - that the address in the plabel may be the address of the - bind-on-reference routine in the dynamic loader). - - So we have try an alternative approach. - - Get the name of the symbol at our current location; it should - be a stub symbol with the same name as the symbol in the - shared library. - - Then lookup a minimal symbol with the same name; we should - get the minimal symbol for the target routine in the shared - library as those take precedence of import/export stubs. */ - if ((curr_inst == 0xe2a00000) || - (curr_inst == 0xe2a00002) || - (curr_inst == 0xeaa0d000) || - (curr_inst == 0xeaa0d002)) - { - struct bound_minimal_symbol stubsym; - struct bound_minimal_symbol libsym; - - stubsym = lookup_minimal_symbol_by_pc (loc); - if (stubsym.minsym == NULL) - { - warning (_("Unable to find symbol for 0x%lx"), loc); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - libsym = lookup_minimal_symbol (MSYMBOL_LINKAGE_NAME (stubsym.minsym), - NULL, NULL); - if (libsym.minsym == NULL) - { - warning (_("Unable to find library symbol for %s."), - MSYMBOL_PRINT_NAME (stubsym.minsym)); - return orig_pc == pc ? 0 : pc & ~0x3; - } - - return MSYMBOL_VALUE (libsym.minsym); - } - - /* Does it look like bl X,%rp or bl X,%r0? Another way to do a - branch from the stub to the actual function. */ - /*elz */ - else if ((curr_inst & 0xffe0e000) == 0xe8400000 - || (curr_inst & 0xffe0e000) == 0xe8000000 - || (curr_inst & 0xffe0e000) == 0xe800A000) - return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3; - - /* Does it look like bv (rp)? Note this depends on the - current stack pointer being the same as the stack - pointer in the stub itself! This is a branch on from the - stub back to the original caller. */ - /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ - else if ((curr_inst & 0xffe0f000) == 0xe840c000) - { - /* Yup. See if the previous instruction loaded - rp from sp - 8. */ - if (prev_inst == 0x4bc23ff1) - { - CORE_ADDR sp; - sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM); - return read_memory_integer (sp - 8, 4, byte_order) & ~0x3; - } - else - { - warning (_("Unable to find restore of %%rp before bv (%%rp).")); - return orig_pc == pc ? 0 : pc & ~0x3; - } - } - - /* elz: added this case to capture the new instruction - at the end of the return part of an export stub used by - the PA2.0: BVE, n (rp) */ - else if ((curr_inst & 0xffe0f000) == 0xe840d000) - { - return (read_memory_integer - (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, - word_size, byte_order)) & ~0x3; - } - - /* What about be,n 0(sr0,%rp)? It's just another way we return to - the original caller from the stub. Used in dynamic executables. */ - else if (curr_inst == 0xe0400002) - { - /* The value we jump to is sitting in sp - 24. But that's - loaded several instructions before the be instruction. - I guess we could check for the previous instruction being - mtsp %r1,%sr0 if we want to do sanity checking. */ - return (read_memory_integer - (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, - word_size, byte_order)) & ~0x3; - } - - /* Haven't found the branch yet, but we're still in the stub. - Keep looking. */ - loc += 4; - } -} - -static void -hppa_skip_permanent_breakpoint (struct regcache *regcache) -{ - /* To step over a breakpoint instruction on the PA takes some - fiddling with the instruction address queue. - - When we stop at a breakpoint, the IA queue front (the instruction - we're executing now) points at the breakpoint instruction, and - the IA queue back (the next instruction to execute) points to - whatever instruction we would execute after the breakpoint, if it - were an ordinary instruction. This is the case even if the - breakpoint is in the delay slot of a branch instruction. - - Clearly, to step past the breakpoint, we need to set the queue - front to the back. But what do we put in the back? What - instruction comes after that one? Because of the branch delay - slot, the next insn is always at the back + 4. */ - - ULONGEST pcoq_tail, pcsq_tail; - regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail); - regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail); - - regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail); - regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail); - - regcache_cooked_write_unsigned (regcache, - HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4); - /* We can leave the tail's space the same, since there's no jump. */ -} - - -/* Signal frames. */ -struct hppa_hpux_sigtramp_unwind_cache -{ - CORE_ADDR base; - struct trad_frame_saved_reg *saved_regs; -}; - -static int hppa_hpux_tramp_reg[] = { - HPPA_SAR_REGNUM, - HPPA_PCOQ_HEAD_REGNUM, - HPPA_PCSQ_HEAD_REGNUM, - HPPA_PCOQ_TAIL_REGNUM, - HPPA_PCSQ_TAIL_REGNUM, - HPPA_EIEM_REGNUM, - HPPA_IIR_REGNUM, - HPPA_ISR_REGNUM, - HPPA_IOR_REGNUM, - HPPA_IPSW_REGNUM, - -1, - HPPA_SR4_REGNUM, - HPPA_SR4_REGNUM + 1, - HPPA_SR4_REGNUM + 2, - HPPA_SR4_REGNUM + 3, - HPPA_SR4_REGNUM + 4, - HPPA_SR4_REGNUM + 5, - HPPA_SR4_REGNUM + 6, - HPPA_SR4_REGNUM + 7, - HPPA_RCR_REGNUM, - HPPA_PID0_REGNUM, - HPPA_PID1_REGNUM, - HPPA_CCR_REGNUM, - HPPA_PID2_REGNUM, - HPPA_PID3_REGNUM, - HPPA_TR0_REGNUM, - HPPA_TR0_REGNUM + 1, - HPPA_TR0_REGNUM + 2, - HPPA_CR27_REGNUM -}; - -static struct hppa_hpux_sigtramp_unwind_cache * -hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, - void **this_cache) - -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct hppa_hpux_sigtramp_unwind_cache *info; - unsigned int flag; - CORE_ADDR sp, scptr, off; - int i, incr, szoff; - - if (*this_cache) - return *this_cache; - - info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache); - *this_cache = info; - info->saved_regs = trad_frame_alloc_saved_regs (this_frame); - - sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); - - if (IS_32BIT_TARGET (gdbarch)) - scptr = sp - 1352; - else - scptr = sp - 1520; - - off = scptr; - - /* See /usr/include/machine/save_state.h for the structure of the - save_state_t structure. */ - - flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET, - 4, byte_order); - - if (!(flag & HPPA_HPUX_SS_WIDEREGS)) - { - /* Narrow registers. */ - off = scptr + HPPA_HPUX_SS_NARROW_OFFSET; - incr = 4; - szoff = 0; - } - else - { - /* Wide registers. */ - off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8; - incr = 8; - szoff = (tdep->bytes_per_address == 4 ? 4 : 0); - } - - for (i = 1; i < 32; i++) - { - info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff; - off += incr; - } - - for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++) - { - if (hppa_hpux_tramp_reg[i] > 0) - info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff; - - off += incr; - } - - /* TODO: fp regs */ - - info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); - - return info; -} - -static void -hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame, - void **this_prologue_cache, - struct frame_id *this_id) -{ - struct hppa_hpux_sigtramp_unwind_cache *info - = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); - - *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); -} - -static struct value * -hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame, - void **this_prologue_cache, - int regnum) -{ - struct hppa_hpux_sigtramp_unwind_cache *info - = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); - - return hppa_frame_prev_register_helper (this_frame, - info->saved_regs, regnum); -} - -static int -hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self, - struct frame_info *this_frame, - void **this_cache) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct unwind_table_entry *u; - CORE_ADDR pc = get_frame_pc (this_frame); - - u = find_unwind_entry (pc); - - /* If this is an export stub, try to get the unwind descriptor for - the actual function itself. */ - if (u && u->stub_unwind.stub_type == EXPORT) - { - gdb_byte buf[HPPA_INSN_SIZE]; - unsigned long insn; - - if (!safe_frame_unwind_memory (this_frame, u->region_start, - buf, sizeof buf)) - return 0; - - insn = extract_unsigned_integer (buf, sizeof buf, byte_order); - if ((insn & 0xffe0e000) == 0xe8400000) - u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8); - } - - if (u && u->HP_UX_interrupt_marker) - return 1; - - return 0; -} - -static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = { - SIGTRAMP_FRAME, - default_frame_unwind_stop_reason, - hppa_hpux_sigtramp_frame_this_id, - hppa_hpux_sigtramp_frame_prev_register, - NULL, - hppa_hpux_sigtramp_unwind_sniffer -}; - -static CORE_ADDR -hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch, - struct value *function) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - CORE_ADDR faddr; - - faddr = value_as_address (function); - - /* Is this a plabel? If so, dereference it to get the gp value. */ - if (faddr & 2) - { - int status; - gdb_byte buf[4]; - - faddr &= ~3; - - status = target_read_memory (faddr + 4, buf, sizeof (buf)); - if (status == 0) - return extract_unsigned_integer (buf, sizeof (buf), byte_order); - } - - return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); -} - -static CORE_ADDR -hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch, - struct value *function) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - CORE_ADDR faddr; - gdb_byte buf[32]; - - faddr = value_as_address (function); - - if (pc_in_section (faddr, ".opd")) - { - target_read_memory (faddr, buf, sizeof (buf)); - return extract_unsigned_integer (&buf[24], 8, byte_order); - } - else - { - return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); - } -} - -static unsigned int ldsid_pattern[] = { - 0x000010a0, /* ldsid (rX),rY */ - 0x00001820, /* mtsp rY,sr0 */ - 0xe0000000 /* be,n (sr0,rX) */ -}; - -static CORE_ADDR -hppa_hpux_search_pattern (struct gdbarch *gdbarch, - CORE_ADDR start, CORE_ADDR end, - unsigned int *patterns, int count) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE; - unsigned int *insns; - gdb_byte *buf; - int offset, i; - - buf = alloca (num_insns * HPPA_INSN_SIZE); - insns = alloca (num_insns * sizeof (unsigned int)); - - read_memory (start, buf, num_insns * HPPA_INSN_SIZE); - for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE) - insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); - - for (offset = 0; offset <= num_insns - count; offset++) - { - for (i = 0; i < count; i++) - { - if ((insns[offset + i] & patterns[i]) != patterns[i]) - break; - } - if (i == count) - break; - } - - if (offset <= num_insns - count) - return start + offset * HPPA_INSN_SIZE; - else - return 0; -} - -static CORE_ADDR -hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, - int *argreg) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct objfile *obj; - struct obj_section *sec; - struct hppa_objfile_private *priv; - struct frame_info *frame; - struct unwind_table_entry *u; - CORE_ADDR addr, rp; - gdb_byte buf[4]; - unsigned int insn; - - sec = find_pc_section (pc); - obj = sec->objfile; - priv = objfile_data (obj, hppa_objfile_priv_data); - - if (!priv) - priv = hppa_init_objfile_priv_data (obj); - if (!priv) - error (_("Internal error creating objfile private data.")); - - /* Use the cached value if we have one. */ - if (priv->dummy_call_sequence_addr != 0) - { - *argreg = priv->dummy_call_sequence_reg; - return priv->dummy_call_sequence_addr; - } - - /* First try a heuristic; if we are in a shared library call, our return - pointer is likely to point at an export stub. */ - frame = get_current_frame (); - rp = frame_unwind_register_unsigned (frame, 2); - u = find_unwind_entry (rp); - if (u && u->stub_unwind.stub_type == EXPORT) - { - addr = hppa_hpux_search_pattern (gdbarch, - u->region_start, u->region_end, - ldsid_pattern, - ARRAY_SIZE (ldsid_pattern)); - if (addr) - goto found_pattern; - } - - /* Next thing to try is to look for an export stub. */ - if (priv->unwind_info) - { - int i; - - for (i = 0; i < priv->unwind_info->last; i++) - { - struct unwind_table_entry *u; - u = &priv->unwind_info->table[i]; - if (u->stub_unwind.stub_type == EXPORT) - { - addr = hppa_hpux_search_pattern (gdbarch, - u->region_start, u->region_end, - ldsid_pattern, - ARRAY_SIZE (ldsid_pattern)); - if (addr) - { - goto found_pattern; - } - } - } - } - - /* Finally, if this is the main executable, try to locate a sequence - from noshlibs */ - addr = hppa_symbol_address ("noshlibs"); - sec = find_pc_section (addr); - - if (sec && sec->objfile == obj) - { - CORE_ADDR start, end; - - find_pc_partial_function (addr, NULL, &start, &end); - if (start != 0 && end != 0) - { - addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern, - ARRAY_SIZE (ldsid_pattern)); - if (addr) - goto found_pattern; - } - } - - /* Can't find a suitable sequence. */ - return 0; - -found_pattern: - target_read_memory (addr, buf, sizeof (buf)); - insn = extract_unsigned_integer (buf, sizeof (buf), byte_order); - priv->dummy_call_sequence_addr = addr; - priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f; - - *argreg = priv->dummy_call_sequence_reg; - return priv->dummy_call_sequence_addr; -} - -static CORE_ADDR -hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, - int *argreg) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct objfile *obj; - struct obj_section *sec; - struct hppa_objfile_private *priv; - CORE_ADDR addr; - struct minimal_symbol *msym; - - sec = find_pc_section (pc); - obj = sec->objfile; - priv = objfile_data (obj, hppa_objfile_priv_data); - - if (!priv) - priv = hppa_init_objfile_priv_data (obj); - if (!priv) - error (_("Internal error creating objfile private data.")); - - /* Use the cached value if we have one. */ - if (priv->dummy_call_sequence_addr != 0) - { - *argreg = priv->dummy_call_sequence_reg; - return priv->dummy_call_sequence_addr; - } - - /* FIXME: Without stub unwind information, locating a suitable sequence is - fairly difficult. For now, we implement a very naive and inefficient - scheme; try to read in blocks of code, and look for a "bve,n (rp)" - instruction. These are likely to occur at the end of functions, so - we only look at the last two instructions of each function. */ - ALL_OBJFILE_MSYMBOLS (obj, msym) - { - CORE_ADDR begin, end; - const char *name; - gdb_byte buf[2 * HPPA_INSN_SIZE]; - int offset; - - find_pc_partial_function (MSYMBOL_VALUE_ADDRESS (obj, msym), &name, - &begin, &end); - - if (name == NULL || begin == 0 || end == 0) - continue; - - if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0) - { - for (offset = 0; offset < sizeof (buf); offset++) - { - unsigned int insn; - - insn = extract_unsigned_integer (buf + offset, - HPPA_INSN_SIZE, byte_order); - if (insn == 0xe840d002) /* bve,n (rp) */ - { - addr = (end - sizeof (buf)) + offset; - goto found_pattern; - } - } - } - } - - /* Can't find a suitable sequence. */ - return 0; - -found_pattern: - priv->dummy_call_sequence_addr = addr; - /* Right now we only look for a "bve,l (rp)" sequence, so the register is - always HPPA_RP_REGNUM. */ - priv->dummy_call_sequence_reg = HPPA_RP_REGNUM; - - *argreg = priv->dummy_call_sequence_reg; - return priv->dummy_call_sequence_addr; -} - -static CORE_ADDR -hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr) -{ - struct objfile *objfile; - struct bound_minimal_symbol funsym; - struct bound_minimal_symbol stubsym; - CORE_ADDR stubaddr; - - funsym = lookup_minimal_symbol_by_pc (funcaddr); - stubaddr = 0; - - ALL_OBJFILES (objfile) - { - stubsym = lookup_minimal_symbol_solib_trampoline - (MSYMBOL_LINKAGE_NAME (funsym.minsym), objfile); - - if (stubsym.minsym) - { - struct unwind_table_entry *u; - - u = find_unwind_entry (MSYMBOL_VALUE (stubsym.minsym)); - if (u == NULL - || (u->stub_unwind.stub_type != IMPORT - && u->stub_unwind.stub_type != IMPORT_SHLIB)) - continue; - - stubaddr = MSYMBOL_VALUE (stubsym.minsym); - - /* If we found an IMPORT stub, then we can stop searching; - if we found an IMPORT_SHLIB, we want to continue the search - in the hopes that we will find an IMPORT stub. */ - if (u->stub_unwind.stub_type == IMPORT) - break; - } - } - - return stubaddr; -} - -static int -hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr) -{ - int sr; - /* The space register to use is encoded in the top 2 bits of the address. */ - sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2); - return sr + 4; -} - -static CORE_ADDR -hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr) -{ - /* In order for us to restore the space register to its starting state, - we need the dummy trampoline to return to an instruction address in - the same space as where we started the call. We used to place the - breakpoint near the current pc, however, this breaks nested dummy calls - as the nested call will hit the breakpoint address and terminate - prematurely. Instead, we try to look for an address in the same space to - put the breakpoint. - - This is similar in spirit to putting the breakpoint at the "entry point" - of an executable. */ - - struct obj_section *sec; - struct unwind_table_entry *u; - struct minimal_symbol *msym; - CORE_ADDR func; - - sec = find_pc_section (addr); - if (sec) - { - /* First try the lowest address in the section; we can use it as long - as it is "regular" code (i.e. not a stub). */ - u = find_unwind_entry (obj_section_addr (sec)); - if (!u || u->stub_unwind.stub_type == 0) - return obj_section_addr (sec); - - /* Otherwise, we need to find a symbol for a regular function. We - do this by walking the list of msymbols in the objfile. The symbol - we find should not be the same as the function that was passed in. */ - - /* FIXME: this is broken, because we can find a function that will be - called by the dummy call target function, which will still not - work. */ - - find_pc_partial_function (addr, NULL, &func, NULL); - ALL_OBJFILE_MSYMBOLS (sec->objfile, msym) - { - u = find_unwind_entry (MSYMBOL_VALUE_ADDRESS (sec->objfile, msym)); - if (func != MSYMBOL_VALUE_ADDRESS (sec->objfile, msym) - && (!u || u->stub_unwind.stub_type == 0)) - return MSYMBOL_VALUE_ADDRESS (sec->objfile, msym); - } - } - - warning (_("Cannot find suitable address to place dummy breakpoint; nested " - "calls may fail.")); - return addr - 4; -} - -static CORE_ADDR -hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, - CORE_ADDR funcaddr, - struct value **args, int nargs, - struct type *value_type, - CORE_ADDR *real_pc, CORE_ADDR *bp_addr, - struct regcache *regcache) -{ - CORE_ADDR pc, stubaddr; - int argreg = 0; - - pc = regcache_read_pc (regcache); - - /* Note: we don't want to pass a function descriptor here; push_dummy_call - fills in the PIC register for us. */ - funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL); - - /* The simple case is where we call a function in the same space that we are - currently in; in that case we don't really need to do anything. */ - if (hppa_hpux_sr_for_addr (gdbarch, pc) - == hppa_hpux_sr_for_addr (gdbarch, funcaddr)) - { - /* Intraspace call. */ - *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); - *real_pc = funcaddr; - regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr); - - return sp; - } - - /* In order to make an interspace call, we need to go through a stub. - gcc supplies an appropriate stub called "__gcc_plt_call", however, if - an application is compiled with HP compilers then this stub is not - available. We used to fallback to "__d_plt_call", however that stub - is not entirely useful for us because it doesn't do an interspace - return back to the caller. Also, on hppa64-hpux, there is no - __gcc_plt_call available. In order to keep the code uniform, we - instead don't use either of these stubs, but instead write our own - onto the stack. - - A problem arises since the stack is located in a different space than - code, so in order to branch to a stack stub, we will need to do an - interspace branch. Previous versions of gdb did this by modifying code - at the current pc and doing single-stepping to set the pcsq. Since this - is highly undesirable, we use a different scheme: - - All we really need to do the branch to the stub is a short instruction - sequence like this: - - PA1.1: - ldsid (rX),r1 - mtsp r1,sr0 - be,n (sr0,rX) - - PA2.0: - bve,n (sr0,rX) - - Instead of writing these sequences ourselves, we can find it in - the instruction stream that belongs to the current space. While this - seems difficult at first, we are actually guaranteed to find the sequences - in several places: - - For 32-bit code: - - in export stubs for shared libraries - - in the "noshlibs" routine in the main module - - For 64-bit code: - - at the end of each "regular" function - - We cache the address of these sequences in the objfile's private data - since these operations can potentially be quite expensive. - - So, what we do is: - - write a stack trampoline - - look for a suitable instruction sequence in the current space - - point the sequence at the trampoline - - set the return address of the trampoline to the current space - (see hppa_hpux_find_dummy_call_bpaddr) - - set the continuing address of the "dummy code" as the sequence. */ - - if (IS_32BIT_TARGET (gdbarch)) - { -#define INSN(I1, I2, I3, I4) 0x ## I1, 0x ## I2, 0x ## I3, 0x ## I4 - static const gdb_byte hppa32_tramp[] = { - INSN(0f,df,12,91), /* stw r31,-8(,sp) */ - INSN(02,c0,10,a1), /* ldsid (,r22),r1 */ - INSN(00,01,18,20), /* mtsp r1,sr0 */ - INSN(e6,c0,00,00), /* be,l 0(sr0,r22),%sr0,%r31 */ - INSN(08,1f,02,42), /* copy r31,rp */ - INSN(0f,d1,10,82), /* ldw -8(,sp),rp */ - INSN(00,40,10,a1), /* ldsid (,rp),r1 */ - INSN(00,01,18,20), /* mtsp r1,sr0 */ - INSN(e0,40,00,00), /* be 0(sr0,rp) */ - INSN(08,00,02,40) /* nop */ - }; - - /* for hppa32, we must call the function through a stub so that on - return it can return to the space of our trampoline. */ - stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr); - if (stubaddr == 0) - error (_("Cannot call external function not referenced by application " - "(no import stub).\n")); - regcache_cooked_write_unsigned (regcache, 22, stubaddr); - - write_memory (sp, hppa32_tramp, sizeof (hppa32_tramp)); - - *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); - regcache_cooked_write_unsigned (regcache, 31, *bp_addr); - - *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); - if (*real_pc == 0) - error (_("Cannot make interspace call from here.")); - - regcache_cooked_write_unsigned (regcache, argreg, sp); - - sp += sizeof (hppa32_tramp); - } - else - { - static const gdb_byte hppa64_tramp[] = { - INSN(ea,c0,f0,00), /* bve,l (r22),%r2 */ - INSN(0f,df,12,d1), /* std r31,-8(,sp) */ - INSN(0f,d1,10,c2), /* ldd -8(,sp),rp */ - INSN(e8,40,d0,02), /* bve,n (rp) */ - INSN(08,00,02,40) /* nop */ - }; -#undef INSN - - /* for hppa64, we don't need to call through a stub; all functions - return via a bve. */ - regcache_cooked_write_unsigned (regcache, 22, funcaddr); - write_memory (sp, hppa64_tramp, sizeof (hppa64_tramp)); - - *bp_addr = pc - 4; - regcache_cooked_write_unsigned (regcache, 31, *bp_addr); - - *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); - if (*real_pc == 0) - error (_("Cannot make interspace call from here.")); - - regcache_cooked_write_unsigned (regcache, argreg, sp); - - sp += sizeof (hppa64_tramp); - } - - sp = gdbarch_frame_align (gdbarch, sp); - - return sp; -} - - - -static void -hppa_hpux_supply_ss_narrow (struct regcache *regcache, - int regnum, const gdb_byte *save_state) -{ - const gdb_byte *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET; - int i, offset = 0; - - for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) - { - if (regnum == i || regnum == -1) - regcache_raw_supply (regcache, i, ss_narrow + offset); - - offset += 4; - } -} - -static void -hppa_hpux_supply_ss_fpblock (struct regcache *regcache, - int regnum, const gdb_byte *save_state) -{ - const gdb_byte *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET; - int i, offset = 0; - - /* FIXME: We view the floating-point state as 64 single-precision - registers for 32-bit code, and 32 double-precision register for - 64-bit code. This distinction is artificial and should be - eliminated. If that ever happens, we should remove the if-clause - below. */ - - if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4) - { - for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++) - { - if (regnum == i || regnum == -1) - regcache_raw_supply (regcache, i, ss_fpblock + offset); - - offset += 4; - } - } - else - { - for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++) - { - if (regnum == i || regnum == -1) - regcache_raw_supply (regcache, i, ss_fpblock + offset); - - offset += 8; - } - } -} - -static void -hppa_hpux_supply_ss_wide (struct regcache *regcache, - int regnum, const gdb_byte *save_state) -{ - const gdb_byte *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET; - int i, offset = 8; - - if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4) - offset += 4; - - for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) - { - if (regnum == i || regnum == -1) - regcache_raw_supply (regcache, i, ss_wide + offset); - - offset += 8; - } -} - -static void -hppa_hpux_supply_save_state (const struct regset *regset, - struct regcache *regcache, - int regnum, const void *regs, size_t len) -{ - struct gdbarch *gdbarch = get_regcache_arch (regcache); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - const gdb_byte *proc_info = regs; - const gdb_byte *save_state = proc_info + 8; - ULONGEST flags; - - flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, - 4, byte_order); - if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM) - { - size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM); - gdb_byte buf[8]; - - store_unsigned_integer (buf, size, byte_order, flags); - regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf); - } - - /* If the SS_WIDEREGS flag is set, we really do need the full - `struct save_state'. */ - if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE) - error (_("Register set contents too small")); - - if (flags & HPPA_HPUX_SS_WIDEREGS) - hppa_hpux_supply_ss_wide (regcache, regnum, save_state); - else - hppa_hpux_supply_ss_narrow (regcache, regnum, save_state); - - hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state); -} - -/* HP-UX register set. */ - -static const struct regset hppa_hpux_regset = -{ - NULL, - hppa_hpux_supply_save_state, - NULL, - REGSET_VARIABLE_SIZE -}; - -static void -hppa_hpux_iterate_over_regset_sections (struct gdbarch *gdbarch, - iterate_over_regset_sections_cb *cb, - void *cb_data, - const struct regcache *regcache) -{ - cb (".reg", HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8, &hppa_hpux_regset, - NULL, cb_data); -} - - -/* Bit in the `ss_flag' member of `struct save_state' that indicates - the state was saved from a system call. From - <machine/save_state.h>. */ -#define HPPA_HPUX_SS_INSYSCALL 0x02 - -static CORE_ADDR -hppa_hpux_read_pc (struct regcache *regcache) -{ - ULONGEST flags; - - /* If we're currently in a system call return the contents of %r31. */ - regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); - if (flags & HPPA_HPUX_SS_INSYSCALL) - { - ULONGEST pc; - regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc); - return pc & ~0x3; - } - - return hppa_read_pc (regcache); -} - -static void -hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc) -{ - ULONGEST flags; - - /* If we're currently in a system call also write PC into %r31. */ - regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); - if (flags & HPPA_HPUX_SS_INSYSCALL) - regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3); - - hppa_write_pc (regcache, pc); -} - -static CORE_ADDR -hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - ULONGEST flags; - - /* If we're currently in a system call return the contents of %r31. */ - flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM); - if (flags & HPPA_HPUX_SS_INSYSCALL) - return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3; - - return hppa_unwind_pc (gdbarch, next_frame); -} - - -/* Given the current value of the pc, check to see if it is inside a stub, and - if so, change the value of the pc to point to the caller of the stub. - THIS_FRAME is the current frame in the current list of frames. - BASE contains to stack frame base of the current frame. - SAVE_REGS is the register file stored in the frame cache. */ -static void -hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base, - struct trad_frame_saved_reg *saved_regs) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - struct value *pcoq_head_val; - ULONGEST pcoq_head; - CORE_ADDR stubpc; - struct unwind_table_entry *u; - - pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs, - HPPA_PCOQ_HEAD_REGNUM); - pcoq_head = - extract_unsigned_integer (value_contents_all (pcoq_head_val), - register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM), - byte_order); - - u = find_unwind_entry (pcoq_head); - if (u && u->stub_unwind.stub_type == EXPORT) - { - stubpc = read_memory_integer (base - 24, word_size, byte_order); - trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); - } - else if (hppa_symbol_address ("__gcc_plt_call") - == get_pc_function_start (pcoq_head)) - { - stubpc = read_memory_integer (base - 8, word_size, byte_order); - trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); - } -} - -static void -hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (IS_32BIT_TARGET (gdbarch)) - tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline; - else - tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline; - - tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub; - - set_gdbarch_in_solib_return_trampoline - (gdbarch, hppa_hpux_in_solib_return_trampoline); - set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code); - - set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code); - set_gdbarch_call_dummy_location (gdbarch, ON_STACK); - - set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc); - set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc); - set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc); - set_gdbarch_skip_permanent_breakpoint - (gdbarch, hppa_skip_permanent_breakpoint); - - set_gdbarch_iterate_over_regset_sections - (gdbarch, hppa_hpux_iterate_over_regset_sections); - - frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind); -} - -static void -hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - tdep->is_elf = 0; - - tdep->find_global_pointer = hppa32_hpux_find_global_pointer; - - hppa_hpux_init_abi (info, gdbarch); - som_solib_select (gdbarch); -} - -static void -hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - tdep->is_elf = 1; - tdep->find_global_pointer = hppa64_hpux_find_global_pointer; - - hppa_hpux_init_abi (info, gdbarch); - pa64_solib_select (gdbarch); -} - -static enum gdb_osabi -hppa_hpux_core_osabi_sniffer (bfd *abfd) -{ - if (strcmp (bfd_get_target (abfd), "hpux-core") == 0) - return GDB_OSABI_HPUX_SOM; - else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0) - { - asection *section; - - section = bfd_get_section_by_name (abfd, ".kernel"); - if (section) - { - bfd_size_type size; - char *contents; - - size = bfd_section_size (abfd, section); - contents = alloca (size); - if (bfd_get_section_contents (abfd, section, contents, - (file_ptr) 0, size) - && strcmp (contents, "HP-UX") == 0) - return GDB_OSABI_HPUX_ELF; - } - } - - return GDB_OSABI_UNKNOWN; -} - -void -_initialize_hppa_hpux_tdep (void) -{ - /* BFD doesn't set a flavour for HP-UX style core files. It doesn't - set the architecture either. */ - gdbarch_register_osabi_sniffer (bfd_arch_unknown, - bfd_target_unknown_flavour, - hppa_hpux_core_osabi_sniffer); - gdbarch_register_osabi_sniffer (bfd_arch_hppa, - bfd_target_elf_flavour, - hppa_hpux_core_osabi_sniffer); - - gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM, - hppa_hpux_som_init_abi); - gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF, - hppa_hpux_elf_init_abi); -} |