aboutsummaryrefslogtreecommitdiff
path: root/gdb/gdb-int.texinfo
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/gdb-int.texinfo')
-rwxr-xr-xgdb/gdb-int.texinfo242
1 files changed, 0 insertions, 242 deletions
diff --git a/gdb/gdb-int.texinfo b/gdb/gdb-int.texinfo
deleted file mode 100755
index cc1b188..0000000
--- a/gdb/gdb-int.texinfo
+++ /dev/null
@@ -1,242 +0,0 @@
-\input texinfo
-@setfilename gdb-internals
-@ifinfo
-This file documents the internals of the GNU debugger GDB.
-
-Copyright (C) 1990, 1991 Free Software Foundation, Inc.
-Contributed by Cygnus Support. Written by John Gilmore.
-
-Permission is granted to make and distribute verbatim copies of
-this manual provided the copyright notice and this permission notice
-are preserved on all copies.
-
-@ignore
-Permission is granted to process this file through Tex and print the
-results, provided the printed document carries copying permission
-notice identical to this one except for the removal of this paragraph
-(this paragraph not being relevant to the printed manual).
-
-@end ignore
-Permission is granted to copy or distribute modified versions of this
-manual under the terms of the GPL (for which purpose this text may be
-regarded as a program in the language TeX).
-@end ifinfo
-
-@setchapternewpage odd
-@settitle GDB Internals
-@titlepage
-@title{Working in GDB}
-@subtitle{A guide to the internals of the GNU debugger}
-@author John Gilmore
-@author Cygnus Support
-@page
-@tex
-\def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
-\xdef\manvers{\$Revision$} % For use in headers, footers too
-{\parskip=0pt
-\hfill Cygnus Support\par
-\hfill \manvers\par
-\hfill \TeX{}info \texinfoversion\par
-}
-@end tex
-
-@vskip 0pt plus 1filll
-Copyright @copyright{} 1990, 1991 Free Software Foundation, Inc.
-
-Permission is granted to make and distribute verbatim copies of
-this manual provided the copyright notice and this permission notice
-are preserved on all copies.
-
-@end titlepage
-
-@node Top, Cleanups, (dir), (dir)
-
-@menu
-* Cleanups:: Cleanups
-* Wrapping:: Wrapping output lines
-* Releases:: Configuring GDB for release
-* README:: The README file
-* New Architectures:: Defining a new host or target architecture
-* Host versus Targt:: What features are in which files
-
-@end menu
-
-@node Cleanups, Wrapping, Top, Top
-@chapter Cleanups
-
-Cleanups are a structured way to deal with things that need to be done
-later. When your code does something (like malloc some memory, or open
-a file) that needs to be undone later (e.g. free the memory or close
-the file), it can make a cleanup. The cleanup will be done at some
-future point: when the command is finished, when an error occurs, or
-when your code decides it's time to do cleanups.
-
-You can also discard cleanups, that is, throw them away without doing
-what they say. This is only done if you ask that it be done.
-
-Syntax:
-
-@table @code
-@item old_chain = make_cleanup (function, arg);
-This makes a cleanup which will cause FUNCTION to be called with ARG
-(a char *) later. The result, OLD_CHAIN, is a handle that can be
-passed to do_cleanups or discard_cleanups later. Unless you are
-going to call do_cleanups or discard_cleanups yourself,
-you can ignore the result from make_cleanup.
-
-
-@item do_cleanups (old_chain);
-Performs all cleanups done since make_cleanup returned OLD_CHAIN.
-E.g.: make_cleanup (a, 0); old = make_cleanup (b, 0); do_cleanups (old);
-will call b() but will not call a(). The cleanup that calls a() will remain
-in the cleanup chain, and will be done later unless otherwise discarded.
-
-@item discard_cleanups (old_chain);
-Same as do_cleanups except that it just removes the cleanups from the
-chain and does not call the specified functions.
-
-@end table
-
-Some functions, e.g. @code{fputs_filtered()} or @code{error()}, specify that they
-``should not be called when cleanups are not in place''. This means
-that any actions you need to reverse in the case of an error or
-interruption must be on the cleanup chain before you call these functions,
-since they might never return to your code (they @samp{longjmp} instead).
-
-
-@node Wrapping, Releases, Cleanups, Top
-@chapter Wrapping output lines
-
-Output that goes through printf_filtered or fputs_filtered or
-fputs_demangled needs only to have calls to wrap_here() added
-in places that would be good breaking points. The utility routines
-will take care of actually wrapping if the line width is exceeded.
-
-The argument to wrap_here() is an indentation string which is printed
-ONLY if the line breaks there. This argument is saved away and used
-later. It must remain valid until the next call to wrap_here() or
-until a newline has been printed through the *_filtered functions.
-Don't pass in a local variable and then return!
-
-It is usually best to call wrap_here() after printing a comma or space.
-If you call it before printing a space, make sure that your indentation
-properly accounts for the leading space that will print if the line wraps
-there.
-
-Any function or set of functions that produce filtered output must finish
-by printing a newline, to flush the wrap buffer, before switching to
-unfiltered ("printf") output. Symbol reading routines that print
-warnings are a good example.
-
-
-@node Releases, README, Wrapping, Top
-@chapter Configuring GDB for release
-
-
-GDB should be released after doing @samp{config.gdb none} in the top level
-directory. This will leave a makefile there, but no tm- or xm- files.
-The makefile is needed, for example, for @samp{make gdb.tar.Z}@dots{} If you
-have tm- or xm-files in the main source directory, C's include rules
-cause them to be used in preference to tm- and xm-files in the
-subdirectories where the user will actually configure and build the
-binaries.
-
-@samp{config.gdb none} is also a good way to rebuild the top level Makefile
-after changing Makefile.dist, alldeps.mak, etc.
-
-
-
-@node README, New Architectures, Releases, Top
-@chapter The README file
-
-
-Check the README file, it often has useful information that does not
-appear anywhere else in the directory.
-
-
-
-@node New Architectures, Host versus Target, README, Top
-@chapter Defining a new host or target architecture
-
-
-When building support for a new host and/or target, this will help you
-organize where to put the various parts. @var{ARCH} stands for the
-architecture involved.
-
-Object files needed when the host system is an @var{ARCH} are listed in
-the file @file{xconfig/@var{ARCH}}, in the Makefile macro @samp{XDEPFILES
-= }@dots{}. You can also define XXXXXX in there.
-
-There are some ``generic'' versions of routines that can be used by
-various host systems. If these routines work for the @var{ARCH} host,
-you can just include the generic file's name (with .o, not .c) in
-@code{XDEPFILES}. Otherwise, you will need to write routines that
-perform the same functions as the generic file, put them into
-@code{@var{ARCH}-xdep.c}, and put @code{@var{ARCH}-xdep.o} into
-@code{XDEPFILES}. These generic host support files include:
-
-@example
- coredep.c, coredep.o
-@end example
-
-@table @code
-@item fetch_core_registers()
-Support for reading registers out of a core file. This routine calls
-@code{register_addr(}), see below.
-
-@item register_addr()
-If your @code{xm-@var{ARCH}.h} file defines the macro @code{REGISTER_U_ADDR(reg)} to be the
-offset within the @samp{user} struct of a register (represented as a GDB
-register number), @file{coredep.c} will define the @code{register_addr()} function
-and use the macro in it. If you do not define @code{REGISTER_U_ADDR}, but
-you are using the standard @code{fetch_core_registers}, you
-will need to define your own version of @code{register_addr}, put it into
-your @code{@var{ARCH}-xdep.c} file, and be sure @code{@var{ARCH}-xdep.o} is in the @code{XDEPFILES} list.
-If you have your own @code{fetch_core_registers}, you only need to define
-@code{register_addr} if your @code{fetch_core_registers} calls it. Many custom
-@code{fetch_core_registers} implementations simply locate the registers
-themselves.
-@end table
-
-Files needed when the target system is an @var{ARCH} are listed in the file
-@file{tconfig/@var{ARCH}}, in the @code{Makefile} macro @samp{TDEPFILES = }@dots{}. You can also
-define XXXXXX in there.
-
-Similar generic support files for target systems are:
-
-@example
- exec.c, exec.o:
-@end example
-
-This file defines functions for accessing files that are executable
-on the target system. These functions open and examine an exec file,
-extract data from one, write data to one, print information about one,
-etc. Now that executable files are handled with BFD, every architecture
-should be able to use the generic exec.c rather than its own custom code.
-
-@node Host versus Target, , README, Top
-@chapter What is considered ``host-dependent'' versus ``target-dependent''?
-
-The xconfig/*, xm-*.h and *-xdep.c files are for host support. The
-question is, what features or aspects of a debugging or cross-debugging
-environment are considered to be ``host'' support.
-
-Defines and include files needed to build on the host are host support.
-Examples are tty support, system defined types, host byte order, host
-float format.
-
-Unix child process support is considered an aspect of the host. Since
-when you fork on the host you are still on the host, the various macros
-needed for finding the registers in the upage, running ptrace, and such
-are all in the host-dependent files.
-
-This is still somewhat of a grey area; I (John Gilmore) didn't do the
-xm- and tm- split for gdb (it was done by Jim Kingdon) so I have had to
-figure out the grounds on which it was split, and make my own choices
-as I evolve it. I have moved many things out of the xdep files
-actually, partly as a result of BFD and partly by removing duplicated
-code.
-
-@contents
-@bye
-