aboutsummaryrefslogtreecommitdiff
path: root/gdb/frv-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/frv-tdep.c')
-rw-r--r--gdb/frv-tdep.c57
1 files changed, 1 insertions, 56 deletions
diff --git a/gdb/frv-tdep.c b/gdb/frv-tdep.c
index 621848e..b7936e7 100644
--- a/gdb/frv-tdep.c
+++ b/gdb/frv-tdep.c
@@ -33,6 +33,7 @@
#include "sim-regno.h"
#include "gdb/sim-frv.h"
#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
+#include "symtab.h"
extern void _initialize_frv_tdep (void);
@@ -413,62 +414,6 @@ is_argument_reg (int reg)
return (8 <= reg && reg <= 13);
}
-/* Given PC at the function's start address, attempt to find the
- prologue end using SAL information. Return zero if the skip fails.
-
- A non-optimized prologue traditionally has one SAL for the function
- and a second for the function body. A single line function has
- them both pointing at the same line.
-
- An optimized prologue is similar but the prologue may contain
- instructions (SALs) from the instruction body. Need to skip those
- while not getting into the function body.
-
- The functions end point and an increasing SAL line are used as
- indicators of the prologue's endpoint.
-
- This code is based on the function refine_prologue_limit (versions
- found in both ia64 and ppc). */
-
-static CORE_ADDR
-skip_prologue_using_sal (CORE_ADDR func_addr)
-{
- struct symtab_and_line prologue_sal;
- CORE_ADDR start_pc;
- CORE_ADDR end_pc;
-
- /* Get an initial range for the function. */
- find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
- start_pc += FUNCTION_START_OFFSET;
-
- prologue_sal = find_pc_line (start_pc, 0);
- if (prologue_sal.line != 0)
- {
- while (prologue_sal.end < end_pc)
- {
- struct symtab_and_line sal;
-
- sal = find_pc_line (prologue_sal.end, 0);
- if (sal.line == 0)
- break;
- /* Assume that a consecutive SAL for the same (or larger)
- line mark the prologue -> body transition. */
- if (sal.line >= prologue_sal.line)
- break;
- /* The case in which compiler's optimizer/scheduler has
- moved instructions into the prologue. We look ahead in
- the function looking for address ranges whose
- corresponding line number is less the first one that we
- found for the function. This is more conservative then
- refine_prologue_limit which scans a large number of SALs
- looking for any in the prologue */
- prologue_sal = sal;
- }
- }
- return prologue_sal.end;
-}
-
-
/* Scan an FR-V prologue, starting at PC, until frame->PC.
If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
We assume FRAME's saved_regs array has already been allocated and cleared.