aboutsummaryrefslogtreecommitdiff
path: root/gdb/findvar.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/findvar.c')
-rw-r--r--gdb/findvar.c1553
1 files changed, 0 insertions, 1553 deletions
diff --git a/gdb/findvar.c b/gdb/findvar.c
deleted file mode 100644
index 298abf7..0000000
--- a/gdb/findvar.c
+++ /dev/null
@@ -1,1553 +0,0 @@
-/* Find a variable's value in memory, for GDB, the GNU debugger.
- Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
- Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "symtab.h"
-#include "gdbtypes.h"
-#include "frame.h"
-#include "value.h"
-#include "gdbcore.h"
-#include "inferior.h"
-#include "target.h"
-#include "gdb_string.h"
-#include "floatformat.h"
-#include "symfile.h" /* for overlay functions */
-
-/* This is used to indicate that we don't know the format of the floating point
- number. Typically, this is useful for native ports, where the actual format
- is irrelevant, since no conversions will be taking place. */
-
-const struct floatformat floatformat_unknown;
-
-/* Registers we shouldn't try to store. */
-#if !defined (CANNOT_STORE_REGISTER)
-#define CANNOT_STORE_REGISTER(regno) 0
-#endif
-
-static void
-write_register_gen PARAMS ((int, char *));
-
-/* Basic byte-swapping routines. GDB has needed these for a long time...
- All extract a target-format integer at ADDR which is LEN bytes long. */
-
-#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
- /* 8 bit characters are a pretty safe assumption these days, so we
- assume it throughout all these swapping routines. If we had to deal with
- 9 bit characters, we would need to make len be in bits and would have
- to re-write these routines... */
- you lose
-#endif
-
-LONGEST
-extract_signed_integer (addr, len)
- PTR addr;
- int len;
-{
- LONGEST retval;
- unsigned char *p;
- unsigned char *startaddr = (unsigned char *)addr;
- unsigned char *endaddr = startaddr + len;
-
- if (len > (int) sizeof (LONGEST))
- error ("\
-That operation is not available on integers of more than %d bytes.",
- sizeof (LONGEST));
-
- /* Start at the most significant end of the integer, and work towards
- the least significant. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- p = startaddr;
- /* Do the sign extension once at the start. */
- retval = ((LONGEST)*p ^ 0x80) - 0x80;
- for (++p; p < endaddr; ++p)
- retval = (retval << 8) | *p;
- }
- else
- {
- p = endaddr - 1;
- /* Do the sign extension once at the start. */
- retval = ((LONGEST)*p ^ 0x80) - 0x80;
- for (--p; p >= startaddr; --p)
- retval = (retval << 8) | *p;
- }
- return retval;
-}
-
-ULONGEST
-extract_unsigned_integer (addr, len)
- PTR addr;
- int len;
-{
- ULONGEST retval;
- unsigned char *p;
- unsigned char *startaddr = (unsigned char *)addr;
- unsigned char *endaddr = startaddr + len;
-
- if (len > (int) sizeof (ULONGEST))
- error ("\
-That operation is not available on integers of more than %d bytes.",
- sizeof (ULONGEST));
-
- /* Start at the most significant end of the integer, and work towards
- the least significant. */
- retval = 0;
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- for (p = startaddr; p < endaddr; ++p)
- retval = (retval << 8) | *p;
- }
- else
- {
- for (p = endaddr - 1; p >= startaddr; --p)
- retval = (retval << 8) | *p;
- }
- return retval;
-}
-
-/* Sometimes a long long unsigned integer can be extracted as a
- LONGEST value. This is done so that we can print these values
- better. If this integer can be converted to a LONGEST, this
- function returns 1 and sets *PVAL. Otherwise it returns 0. */
-
-int
-extract_long_unsigned_integer (addr, orig_len, pval)
- PTR addr;
- int orig_len;
- LONGEST *pval;
-{
- char *p, *first_addr;
- int len;
-
- len = orig_len;
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- for (p = (char *) addr;
- len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
- p++)
- {
- if (*p == 0)
- len--;
- else
- break;
- }
- first_addr = p;
- }
- else
- {
- first_addr = (char *) addr;
- for (p = (char *) addr + orig_len - 1;
- len > (int) sizeof (LONGEST) && p >= (char *) addr;
- p--)
- {
- if (*p == 0)
- len--;
- else
- break;
- }
- }
-
- if (len <= (int) sizeof (LONGEST))
- {
- *pval = (LONGEST) extract_unsigned_integer (first_addr,
- sizeof (LONGEST));
- return 1;
- }
-
- return 0;
-}
-
-CORE_ADDR
-extract_address (addr, len)
- PTR addr;
- int len;
-{
- /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
- whether we want this to be true eventually. */
- return extract_unsigned_integer (addr, len);
-}
-
-void
-store_signed_integer (addr, len, val)
- PTR addr;
- int len;
- LONGEST val;
-{
- unsigned char *p;
- unsigned char *startaddr = (unsigned char *)addr;
- unsigned char *endaddr = startaddr + len;
-
- /* Start at the least significant end of the integer, and work towards
- the most significant. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- for (p = endaddr - 1; p >= startaddr; --p)
- {
- *p = val & 0xff;
- val >>= 8;
- }
- }
- else
- {
- for (p = startaddr; p < endaddr; ++p)
- {
- *p = val & 0xff;
- val >>= 8;
- }
- }
-}
-
-void
-store_unsigned_integer (addr, len, val)
- PTR addr;
- int len;
- ULONGEST val;
-{
- unsigned char *p;
- unsigned char *startaddr = (unsigned char *)addr;
- unsigned char *endaddr = startaddr + len;
-
- /* Start at the least significant end of the integer, and work towards
- the most significant. */
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- for (p = endaddr - 1; p >= startaddr; --p)
- {
- *p = val & 0xff;
- val >>= 8;
- }
- }
- else
- {
- for (p = startaddr; p < endaddr; ++p)
- {
- *p = val & 0xff;
- val >>= 8;
- }
- }
-}
-
-void
-store_address (addr, len, val)
- PTR addr;
- int len;
- CORE_ADDR val;
-{
- /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
- whether we want this to be true eventually. */
- store_unsigned_integer (addr, len, (LONGEST)val);
-}
-
-/* Swap LEN bytes at BUFFER between target and host byte-order. */
-#define SWAP_FLOATING(buffer,len) \
- do \
- { \
- if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
- { \
- char tmp; \
- char *p = (char *)(buffer); \
- char *q = ((char *)(buffer)) + len - 1; \
- for (; p < q; p++, q--) \
- { \
- tmp = *q; \
- *q = *p; \
- *p = tmp; \
- } \
- } \
- } \
- while (0)
-
-/* Extract a floating-point number from a target-order byte-stream at ADDR.
- Returns the value as type DOUBLEST.
-
- If the host and target formats agree, we just copy the raw data into the
- appropriate type of variable and return, letting the host increase precision
- as necessary. Otherwise, we call the conversion routine and let it do the
- dirty work. */
-
-DOUBLEST
-extract_floating (addr, len)
- PTR addr;
- int len;
-{
- DOUBLEST dretval;
-
- if (len == sizeof (float))
- {
- if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
- {
- float retval;
-
- memcpy (&retval, addr, sizeof (retval));
- return retval;
- }
- else
- floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
- }
- else if (len == sizeof (double))
- {
- if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
- {
- double retval;
-
- memcpy (&retval, addr, sizeof (retval));
- return retval;
- }
- else
- floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
- }
- else if (len == sizeof (DOUBLEST))
- {
- if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
- {
- DOUBLEST retval;
-
- memcpy (&retval, addr, sizeof (retval));
- return retval;
- }
- else
- floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
- }
- else
- {
- error ("Can't deal with a floating point number of %d bytes.", len);
- }
-
- return dretval;
-}
-
-void
-store_floating (addr, len, val)
- PTR addr;
- int len;
- DOUBLEST val;
-{
- if (len == sizeof (float))
- {
- if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
- {
- float floatval = val;
-
- memcpy (addr, &floatval, sizeof (floatval));
- }
- else
- floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
- }
- else if (len == sizeof (double))
- {
- if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
- {
- double doubleval = val;
-
- memcpy (addr, &doubleval, sizeof (doubleval));
- }
- else
- floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
- }
- else if (len == sizeof (DOUBLEST))
- {
- if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
- memcpy (addr, &val, sizeof (val));
- else
- floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
- }
- else
- {
- error ("Can't deal with a floating point number of %d bytes.", len);
- }
-}
-
-#if !defined (GET_SAVED_REGISTER)
-
-/* Return the address in which frame FRAME's value of register REGNUM
- has been saved in memory. Or return zero if it has not been saved.
- If REGNUM specifies the SP, the value we return is actually
- the SP value, not an address where it was saved. */
-
-CORE_ADDR
-find_saved_register (frame, regnum)
- struct frame_info *frame;
- int regnum;
-{
- struct frame_saved_regs saved_regs;
-
- register struct frame_info *frame1 = NULL;
- register CORE_ADDR addr = 0;
-
- if (frame == NULL) /* No regs saved if want current frame */
- return 0;
-
-#ifdef HAVE_REGISTER_WINDOWS
- /* We assume that a register in a register window will only be saved
- in one place (since the name changes and/or disappears as you go
- towards inner frames), so we only call get_frame_saved_regs on
- the current frame. This is directly in contradiction to the
- usage below, which assumes that registers used in a frame must be
- saved in a lower (more interior) frame. This change is a result
- of working on a register window machine; get_frame_saved_regs
- always returns the registers saved within a frame, within the
- context (register namespace) of that frame. */
-
- /* However, note that we don't want this to return anything if
- nothing is saved (if there's a frame inside of this one). Also,
- callers to this routine asking for the stack pointer want the
- stack pointer saved for *this* frame; this is returned from the
- next frame. */
-
- if (REGISTER_IN_WINDOW_P(regnum))
- {
- frame1 = get_next_frame (frame);
- if (!frame1) return 0; /* Registers of this frame are active. */
-
- /* Get the SP from the next frame in; it will be this
- current frame. */
- if (regnum != SP_REGNUM)
- frame1 = frame;
-
- get_frame_saved_regs (frame1, &saved_regs);
- return saved_regs.regs[regnum]; /* ... which might be zero */
- }
-#endif /* HAVE_REGISTER_WINDOWS */
-
- /* Note that this next routine assumes that registers used in
- frame x will be saved only in the frame that x calls and
- frames interior to it. This is not true on the sparc, but the
- above macro takes care of it, so we should be all right. */
- while (1)
- {
- QUIT;
- frame1 = get_prev_frame (frame1);
- if (frame1 == 0 || frame1 == frame)
- break;
- get_frame_saved_regs (frame1, &saved_regs);
- if (saved_regs.regs[regnum])
- addr = saved_regs.regs[regnum];
- }
-
- return addr;
-}
-
-/* Find register number REGNUM relative to FRAME and put its (raw,
- target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
- variable was optimized out (and thus can't be fetched). Set *LVAL
- to lval_memory, lval_register, or not_lval, depending on whether
- the value was fetched from memory, from a register, or in a strange
- and non-modifiable way (e.g. a frame pointer which was calculated
- rather than fetched). Set *ADDRP to the address, either in memory
- on as a REGISTER_BYTE offset into the registers array.
-
- Note that this implementation never sets *LVAL to not_lval. But
- it can be replaced by defining GET_SAVED_REGISTER and supplying
- your own.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lval;
-{
- CORE_ADDR addr;
-
- if (!target_has_registers)
- error ("No registers.");
-
- /* Normal systems don't optimize out things with register numbers. */
- if (optimized != NULL)
- *optimized = 0;
- addr = find_saved_register (frame, regnum);
- if (addr != 0)
- {
- if (lval != NULL)
- *lval = lval_memory;
- if (regnum == SP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- /* Put it back in target format. */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
- }
- if (addrp != NULL)
- *addrp = 0;
- return;
- }
- if (raw_buffer != NULL)
- read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
- }
- else
- {
- if (lval != NULL)
- *lval = lval_register;
- addr = REGISTER_BYTE (regnum);
- if (raw_buffer != NULL)
- read_register_gen (regnum, raw_buffer);
- }
- if (addrp != NULL)
- *addrp = addr;
-}
-#endif /* GET_SAVED_REGISTER. */
-
-/* Copy the bytes of register REGNUM, relative to the current stack frame,
- into our memory at MYADDR, in target byte order.
- The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
-
- Returns 1 if could not be read, 0 if could. */
-
-int
-read_relative_register_raw_bytes (regnum, myaddr)
- int regnum;
- char *myaddr;
-{
- int optim;
- if (regnum == FP_REGNUM && selected_frame)
- {
- /* Put it back in target format. */
- store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM),
- FRAME_FP(selected_frame));
- return 0;
- }
-
- get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
- regnum, (enum lval_type *)NULL);
-
- if (register_valid [regnum] < 0)
- return 1; /* register value not available */
-
- return optim;
-}
-
-/* Return a `value' with the contents of register REGNUM
- in its virtual format, with the type specified by
- REGISTER_VIRTUAL_TYPE.
-
- NOTE: returns NULL if register value is not available.
- Caller will check return value or die! */
-
-value_ptr
-value_of_register (regnum)
- int regnum;
-{
- CORE_ADDR addr;
- int optim;
- register value_ptr reg_val;
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- enum lval_type lval;
-
- get_saved_register (raw_buffer, &optim, &addr,
- selected_frame, regnum, &lval);
-
- if (register_valid[regnum] < 0)
- return NULL; /* register value not available */
-
- reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
-
- /* Convert raw data to virtual format if necessary. */
-
-#ifdef REGISTER_CONVERTIBLE
- if (REGISTER_CONVERTIBLE (regnum))
- {
- REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
- raw_buffer, VALUE_CONTENTS_RAW (reg_val));
- }
- else
-#endif
- if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
- memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
- REGISTER_RAW_SIZE (regnum));
- else
- fatal ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
- REGISTER_NAME (regnum), regnum,
- REGISTER_RAW_SIZE (regnum), REGISTER_VIRTUAL_SIZE (regnum));
- VALUE_LVAL (reg_val) = lval;
- VALUE_ADDRESS (reg_val) = addr;
- VALUE_REGNO (reg_val) = regnum;
- VALUE_OPTIMIZED_OUT (reg_val) = optim;
- return reg_val;
-}
-
-/* Low level examining and depositing of registers.
-
- The caller is responsible for making
- sure that the inferior is stopped before calling the fetching routines,
- or it will get garbage. (a change from GDB version 3, in which
- the caller got the value from the last stop). */
-
-/* Contents of the registers in target byte order.
- We allocate some extra slop since we do a lot of memcpy's around
- `registers', and failing-soft is better than failing hard. */
-
-char registers[REGISTER_BYTES + /* SLOP */ 256];
-
-/* Nonzero if that register has been fetched,
- -1 if register value not available. */
-SIGNED char register_valid[NUM_REGS];
-
-/* The thread/process associated with the current set of registers. For now,
- -1 is special, and means `no current process'. */
-int registers_pid = -1;
-
-/* Indicate that registers may have changed, so invalidate the cache. */
-
-void
-registers_changed ()
-{
- int i;
- int numregs = ARCH_NUM_REGS;
-
- registers_pid = -1;
-
- /* Force cleanup of any alloca areas if using C alloca instead of
- a builtin alloca. This particular call is used to clean up
- areas allocated by low level target code which may build up
- during lengthy interactions between gdb and the target before
- gdb gives control to the user (ie watchpoints). */
- alloca (0);
-
- for (i = 0; i < numregs; i++)
- register_valid[i] = 0;
-
- if (registers_changed_hook)
- registers_changed_hook ();
-}
-
-/* Indicate that all registers have been fetched, so mark them all valid. */
-void
-registers_fetched ()
-{
- int i;
- int numregs = ARCH_NUM_REGS;
- for (i = 0; i < numregs; i++)
- register_valid[i] = 1;
-}
-
-/* read_register_bytes and write_register_bytes are generally a *BAD* idea.
- They are inefficient because they need to check for partial updates, which
- can only be done by scanning through all of the registers and seeing if the
- bytes that are being read/written fall inside of an invalid register. [The
- main reason this is necessary is that register sizes can vary, so a simple
- index won't suffice.] It is far better to call read_register_gen if you
- want to get at the raw register contents, as it only takes a regno as an
- argument, and therefore can't do a partial register update. It would also
- be good to have a write_register_gen for similar reasons.
-
- Prior to the recent fixes to check for partial updates, both read and
- write_register_bytes always checked to see if any registers were stale, and
- then called target_fetch_registers (-1) to update the whole set. This
- caused really slowed things down for remote targets. */
-
-/* Copy INLEN bytes of consecutive data from registers
- starting with the INREGBYTE'th byte of register data
- into memory at MYADDR. */
-
-void
-read_register_bytes (inregbyte, myaddr, inlen)
- int inregbyte;
- char *myaddr;
- int inlen;
-{
- int inregend = inregbyte + inlen;
- int regno;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- /* See if we are trying to read bytes from out-of-date registers. If so,
- update just those registers. */
-
- for (regno = 0; regno < NUM_REGS; regno++)
- {
- int regstart, regend;
- int startin, endin;
-
- if (register_valid[regno])
- continue;
-
- if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
- continue;
-
- regstart = REGISTER_BYTE (regno);
- regend = regstart + REGISTER_RAW_SIZE (regno);
-
- startin = regstart >= inregbyte && regstart < inregend;
- endin = regend > inregbyte && regend <= inregend;
-
- if (!startin && !endin)
- continue;
-
- /* We've found an invalid register where at least one byte will be read.
- Update it from the target. */
-
- target_fetch_registers (regno);
-
- if (!register_valid[regno])
- error ("read_register_bytes: Couldn't update register %d.", regno);
- }
-
- if (myaddr != NULL)
- memcpy (myaddr, &registers[inregbyte], inlen);
-}
-
-/* Read register REGNO into memory at MYADDR, which must be large enough
- for REGISTER_RAW_BYTES (REGNO). Target byte-order.
- If the register is known to be the size of a CORE_ADDR or smaller,
- read_register can be used instead. */
-void
-read_register_gen (regno, myaddr)
- int regno;
- char *myaddr;
-{
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- if (!register_valid[regno])
- target_fetch_registers (regno);
- memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
- REGISTER_RAW_SIZE (regno));
-}
-
-/* Write register REGNO at MYADDR to the target. MYADDR points at
- REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
-
-static void
-write_register_gen (regno, myaddr)
- int regno;
- char *myaddr;
-{
- int size;
-
- /* On the sparc, writing %g0 is a no-op, so we don't even want to change
- the registers array if something writes to this register. */
- if (CANNOT_STORE_REGISTER (regno))
- return;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- size = REGISTER_RAW_SIZE(regno);
-
- /* If we have a valid copy of the register, and new value == old value,
- then don't bother doing the actual store. */
-
- if (register_valid [regno]
- && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
- return;
-
- target_prepare_to_store ();
-
- memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
-
- register_valid [regno] = 1;
-
- target_store_registers (regno);
-
- if (regno == PC_REGNUM && pc_changed_hook)
- pc_changed_hook ();
-}
-
-/* Copy INLEN bytes of consecutive data from memory at MYADDR
- into registers starting with the MYREGSTART'th byte of register data. */
-
-void
-write_register_bytes (myregstart, myaddr, inlen)
- int myregstart;
- char *myaddr;
- int inlen;
-{
- int myregend = myregstart + inlen;
- int regno;
-
- target_prepare_to_store ();
-
- /* Scan through the registers updating any that are covered by the range
- myregstart<=>myregend using write_register_gen, which does nice things
- like handling threads, and avoiding updates when the new and old contents
- are the same. */
-
- for (regno = 0; regno < NUM_REGS; regno++)
- {
- int regstart, regend;
- int startin, endin;
- char regbuf[MAX_REGISTER_RAW_SIZE];
-
- regstart = REGISTER_BYTE (regno);
- regend = regstart + REGISTER_RAW_SIZE (regno);
-
- startin = regstart >= myregstart && regstart < myregend;
- endin = regend > myregstart && regend <= myregend;
-
- if (!startin && !endin)
- continue; /* Register is completely out of range */
-
- if (startin && endin) /* register is completely in range */
- {
- write_register_gen (regno, myaddr + (regstart - myregstart));
- continue;
- }
-
- /* We may be doing a partial update of an invalid register. Update it
- from the target before scribbling on it. */
- read_register_gen (regno, regbuf);
-
- if (startin)
- memcpy (registers + regstart,
- myaddr + regstart - myregstart,
- myregend - regstart);
- else /* endin */
- memcpy (registers + myregstart,
- myaddr,
- regend - myregstart);
- target_store_registers (regno);
- }
-}
-
-/* Return the raw contents of register REGNO, regarding it as an integer. */
-/* This probably should be returning LONGEST rather than CORE_ADDR. */
-
-CORE_ADDR
-read_register (regno)
- int regno;
-{
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- if (!register_valid[regno])
- target_fetch_registers (regno);
-
- return extract_address (&registers[REGISTER_BYTE (regno)],
- REGISTER_RAW_SIZE(regno));
-}
-
-CORE_ADDR
-read_register_pid (regno, pid)
- int regno, pid;
-{
- int save_pid;
- CORE_ADDR retval;
-
- if (pid == inferior_pid)
- return read_register (regno);
-
- save_pid = inferior_pid;
-
- inferior_pid = pid;
-
- retval = read_register (regno);
-
- inferior_pid = save_pid;
-
- return retval;
-}
-
-/* Store VALUE, into the raw contents of register number REGNO. */
-
-void
-write_register (regno, val)
- int regno;
- LONGEST val;
-{
- PTR buf;
- int size;
-
- /* On the sparc, writing %g0 is a no-op, so we don't even want to change
- the registers array if something writes to this register. */
- if (CANNOT_STORE_REGISTER (regno))
- return;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- size = REGISTER_RAW_SIZE(regno);
- buf = alloca (size);
- store_signed_integer (buf, size, (LONGEST) val);
-
- /* If we have a valid copy of the register, and new value == old value,
- then don't bother doing the actual store. */
-
- if (register_valid [regno]
- && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
- return;
-
- target_prepare_to_store ();
-
- memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
-
- register_valid [regno] = 1;
-
- target_store_registers (regno);
-}
-
-void
-write_register_pid (regno, val, pid)
- int regno;
- LONGEST val;
- int pid;
-{
- int save_pid;
-
- if (pid == inferior_pid)
- {
- write_register (regno, val);
- return;
- }
-
- save_pid = inferior_pid;
-
- inferior_pid = pid;
-
- write_register (regno, val);
-
- inferior_pid = save_pid;
-}
-
-/* Record that register REGNO contains VAL.
- This is used when the value is obtained from the inferior or core dump,
- so there is no need to store the value there.
-
- If VAL is a NULL pointer, then it's probably an unsupported register. We
- just set it's value to all zeros. We might want to record this fact, and
- report it to the users of read_register and friends.
-*/
-
-void
-supply_register (regno, val)
- int regno;
- char *val;
-{
-#if 1
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-#endif
-
- register_valid[regno] = 1;
- if (val)
- memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
- else
- memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
-
- /* On some architectures, e.g. HPPA, there are a few stray bits in some
- registers, that the rest of the code would like to ignore. */
-#ifdef CLEAN_UP_REGISTER_VALUE
- CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
-#endif
-}
-
-
-/* This routine is getting awfully cluttered with #if's. It's probably
- time to turn this into READ_PC and define it in the tm.h file.
- Ditto for write_pc. */
-
-CORE_ADDR
-read_pc_pid (pid)
- int pid;
-{
-#ifdef TARGET_READ_PC
- return TARGET_READ_PC (pid);
-#else
- return ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
-#endif
-}
-
-CORE_ADDR
-read_pc ()
-{
- return read_pc_pid (inferior_pid);
-}
-
-void
-write_pc_pid (pc, pid)
- CORE_ADDR pc;
- int pid;
-{
-#ifdef TARGET_WRITE_PC
- TARGET_WRITE_PC (pc, pid);
-#else
- write_register_pid (PC_REGNUM, pc, pid);
-#ifdef NPC_REGNUM
- write_register_pid (NPC_REGNUM, pc + 4, pid);
-#ifdef NNPC_REGNUM
- write_register_pid (NNPC_REGNUM, pc + 8, pid);
-#endif
-#endif
-#endif
-}
-
-void
-write_pc (pc)
- CORE_ADDR pc;
-{
- write_pc_pid (pc, inferior_pid);
-}
-
-/* Cope with strage ways of getting to the stack and frame pointers */
-
-CORE_ADDR
-read_sp ()
-{
-#ifdef TARGET_READ_SP
- return TARGET_READ_SP ();
-#else
- return read_register (SP_REGNUM);
-#endif
-}
-
-void
-write_sp (val)
- CORE_ADDR val;
-{
-#ifdef TARGET_WRITE_SP
- TARGET_WRITE_SP (val);
-#else
- write_register (SP_REGNUM, val);
-#endif
-}
-
-CORE_ADDR
-read_fp ()
-{
-#ifdef TARGET_READ_FP
- return TARGET_READ_FP ();
-#else
- return read_register (FP_REGNUM);
-#endif
-}
-
-void
-write_fp (val)
- CORE_ADDR val;
-{
-#ifdef TARGET_WRITE_FP
- TARGET_WRITE_FP (val);
-#else
- write_register (FP_REGNUM, val);
-#endif
-}
-
-/* Will calling read_var_value or locate_var_value on SYM end
- up caring what frame it is being evaluated relative to? SYM must
- be non-NULL. */
-int
-symbol_read_needs_frame (sym)
- struct symbol *sym;
-{
- switch (SYMBOL_CLASS (sym))
- {
- /* All cases listed explicitly so that gcc -Wall will detect it if
- we failed to consider one. */
- case LOC_REGISTER:
- case LOC_ARG:
- case LOC_REF_ARG:
- case LOC_REGPARM:
- case LOC_REGPARM_ADDR:
- case LOC_LOCAL:
- case LOC_LOCAL_ARG:
- case LOC_BASEREG:
- case LOC_BASEREG_ARG:
- return 1;
-
- case LOC_UNDEF:
- case LOC_CONST:
- case LOC_STATIC:
- case LOC_TYPEDEF:
-
- case LOC_LABEL:
- /* Getting the address of a label can be done independently of the block,
- even if some *uses* of that address wouldn't work so well without
- the right frame. */
-
- case LOC_BLOCK:
- case LOC_CONST_BYTES:
- case LOC_UNRESOLVED:
- case LOC_OPTIMIZED_OUT:
- return 0;
- }
- return 1;
-}
-
-/* Given a struct symbol for a variable,
- and a stack frame id, read the value of the variable
- and return a (pointer to a) struct value containing the value.
- If the variable cannot be found, return a zero pointer.
- If FRAME is NULL, use the selected_frame. */
-
-value_ptr
-read_var_value (var, frame)
- register struct symbol *var;
- struct frame_info *frame;
-{
- register value_ptr v;
- struct type *type = SYMBOL_TYPE (var);
- CORE_ADDR addr;
- register int len;
-
- v = allocate_value (type);
- VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
- VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
-
- len = TYPE_LENGTH (type);
-
- if (frame == NULL) frame = selected_frame;
-
- switch (SYMBOL_CLASS (var))
- {
- case LOC_CONST:
- /* Put the constant back in target format. */
- store_signed_integer (VALUE_CONTENTS_RAW (v), len,
- (LONGEST) SYMBOL_VALUE (var));
- VALUE_LVAL (v) = not_lval;
- return v;
-
- case LOC_LABEL:
- /* Put the constant back in target format. */
- if (overlay_debugging)
- store_address (VALUE_CONTENTS_RAW (v), len,
- symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
- SYMBOL_BFD_SECTION (var)));
- else
- store_address (VALUE_CONTENTS_RAW (v), len,
- SYMBOL_VALUE_ADDRESS (var));
- VALUE_LVAL (v) = not_lval;
- return v;
-
- case LOC_CONST_BYTES:
- {
- char *bytes_addr;
- bytes_addr = SYMBOL_VALUE_BYTES (var);
- memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
- VALUE_LVAL (v) = not_lval;
- return v;
- }
-
- case LOC_STATIC:
- if (overlay_debugging)
- addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
- SYMBOL_BFD_SECTION (var));
- else
- addr = SYMBOL_VALUE_ADDRESS (var);
- break;
-
- case LOC_ARG:
- if (frame == NULL)
- return 0;
- addr = FRAME_ARGS_ADDRESS (frame);
- if (!addr)
- return 0;
- addr += SYMBOL_VALUE (var);
- break;
-
- case LOC_REF_ARG:
- if (frame == NULL)
- return 0;
- addr = FRAME_ARGS_ADDRESS (frame);
- if (!addr)
- return 0;
- addr += SYMBOL_VALUE (var);
- addr = read_memory_unsigned_integer
- (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
- break;
-
- case LOC_LOCAL:
- case LOC_LOCAL_ARG:
- if (frame == NULL)
- return 0;
- addr = FRAME_LOCALS_ADDRESS (frame);
- addr += SYMBOL_VALUE (var);
- break;
-
- case LOC_BASEREG:
- case LOC_BASEREG_ARG:
- {
- char buf[MAX_REGISTER_RAW_SIZE];
- get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
- NULL);
- addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
- addr += SYMBOL_VALUE (var);
- break;
- }
-
- case LOC_TYPEDEF:
- error ("Cannot look up value of a typedef");
- break;
-
- case LOC_BLOCK:
- if (overlay_debugging)
- VALUE_ADDRESS (v) = symbol_overlayed_address
- (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
- else
- VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
- return v;
-
- case LOC_REGISTER:
- case LOC_REGPARM:
- case LOC_REGPARM_ADDR:
- {
- struct block *b;
- int regno = SYMBOL_VALUE (var);
- value_ptr regval;
-
- if (frame == NULL)
- return 0;
- b = get_frame_block (frame);
-
- if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
- {
- regval = value_from_register (lookup_pointer_type (type),
- regno,
- frame);
-
- if (regval == NULL)
- error ("Value of register variable not available.");
-
- addr = value_as_pointer (regval);
- VALUE_LVAL (v) = lval_memory;
- }
- else
- {
- regval = value_from_register (type, regno, frame);
-
- if (regval == NULL)
- error ("Value of register variable not available.");
- return regval;
- }
- }
- break;
-
- case LOC_UNRESOLVED:
- {
- struct minimal_symbol *msym;
-
- msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
- if (msym == NULL)
- return 0;
- if (overlay_debugging)
- addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
- SYMBOL_BFD_SECTION (msym));
- else
- addr = SYMBOL_VALUE_ADDRESS (msym);
- }
- break;
-
- case LOC_OPTIMIZED_OUT:
- VALUE_LVAL (v) = not_lval;
- VALUE_OPTIMIZED_OUT (v) = 1;
- return v;
-
- default:
- error ("Cannot look up value of a botched symbol.");
- break;
- }
-
- VALUE_ADDRESS (v) = addr;
- VALUE_LAZY (v) = 1;
- return v;
-}
-
-/* Return a value of type TYPE, stored in register REGNUM, in frame
- FRAME.
-
- NOTE: returns NULL if register value is not available.
- Caller will check return value or die! */
-
-value_ptr
-value_from_register (type, regnum, frame)
- struct type *type;
- int regnum;
- struct frame_info *frame;
-{
- char raw_buffer [MAX_REGISTER_RAW_SIZE];
- CORE_ADDR addr;
- int optim;
- value_ptr v = allocate_value (type);
- char *value_bytes = 0;
- int value_bytes_copied = 0;
- int num_storage_locs;
- enum lval_type lval;
- int len;
-
- CHECK_TYPEDEF (type);
- len = TYPE_LENGTH (type);
-
- VALUE_REGNO (v) = regnum;
-
- num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
- ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
- 1);
-
- if (num_storage_locs > 1
-#ifdef GDB_TARGET_IS_H8500
- || TYPE_CODE (type) == TYPE_CODE_PTR
-#endif
- )
- {
- /* Value spread across multiple storage locations. */
-
- int local_regnum;
- int mem_stor = 0, reg_stor = 0;
- int mem_tracking = 1;
- CORE_ADDR last_addr = 0;
- CORE_ADDR first_addr = 0;
-
- value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
-
- /* Copy all of the data out, whereever it may be. */
-
-#ifdef GDB_TARGET_IS_H8500
-/* This piece of hideosity is required because the H8500 treats registers
- differently depending upon whether they are used as pointers or not. As a
- pointer, a register needs to have a page register tacked onto the front.
- An alternate way to do this would be to have gcc output different register
- numbers for the pointer & non-pointer form of the register. But, it
- doesn't, so we're stuck with this. */
-
- if (TYPE_CODE (type) == TYPE_CODE_PTR
- && len > 2)
- {
- int page_regnum;
-
- switch (regnum)
- {
- case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
- page_regnum = SEG_D_REGNUM;
- break;
- case R4_REGNUM: case R5_REGNUM:
- page_regnum = SEG_E_REGNUM;
- break;
- case R6_REGNUM: case R7_REGNUM:
- page_regnum = SEG_T_REGNUM;
- break;
- }
-
- value_bytes[0] = 0;
- get_saved_register (value_bytes + 1,
- &optim,
- &addr,
- frame,
- page_regnum,
- &lval);
-
- if (register_valid[page_regnum] == -1)
- return NULL; /* register value not available */
-
- if (lval == lval_register)
- reg_stor++;
- else
- mem_stor++;
- first_addr = addr;
- last_addr = addr;
-
- get_saved_register (value_bytes + 2,
- &optim,
- &addr,
- frame,
- regnum,
- &lval);
-
- if (register_valid[regnum] == -1)
- return NULL; /* register value not available */
-
- if (lval == lval_register)
- reg_stor++;
- else
- {
- mem_stor++;
- mem_tracking = mem_tracking && (addr == last_addr);
- }
- last_addr = addr;
- }
- else
-#endif /* GDB_TARGET_IS_H8500 */
- for (local_regnum = regnum;
- value_bytes_copied < len;
- (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
- ++local_regnum))
- {
- get_saved_register (value_bytes + value_bytes_copied,
- &optim,
- &addr,
- frame,
- local_regnum,
- &lval);
-
- if (register_valid[local_regnum] == -1)
- return NULL; /* register value not available */
-
- if (regnum == local_regnum)
- first_addr = addr;
- if (lval == lval_register)
- reg_stor++;
- else
- {
- mem_stor++;
-
- mem_tracking =
- (mem_tracking
- && (regnum == local_regnum
- || addr == last_addr));
- }
- last_addr = addr;
- }
-
- if ((reg_stor && mem_stor)
- || (mem_stor && !mem_tracking))
- /* Mixed storage; all of the hassle we just went through was
- for some good purpose. */
- {
- VALUE_LVAL (v) = lval_reg_frame_relative;
- VALUE_FRAME (v) = FRAME_FP (frame);
- VALUE_FRAME_REGNUM (v) = regnum;
- }
- else if (mem_stor)
- {
- VALUE_LVAL (v) = lval_memory;
- VALUE_ADDRESS (v) = first_addr;
- }
- else if (reg_stor)
- {
- VALUE_LVAL (v) = lval_register;
- VALUE_ADDRESS (v) = first_addr;
- }
- else
- fatal ("value_from_register: Value not stored anywhere!");
-
- VALUE_OPTIMIZED_OUT (v) = optim;
-
- /* Any structure stored in more than one register will always be
- an integral number of registers. Otherwise, you'd need to do
- some fiddling with the last register copied here for little
- endian machines. */
-
- /* Copy into the contents section of the value. */
- memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
-
- /* Finally do any conversion necessary when extracting this
- type from more than one register. */
-#ifdef REGISTER_CONVERT_TO_TYPE
- REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
-#endif
- return v;
- }
-
- /* Data is completely contained within a single register. Locate the
- register's contents in a real register or in core;
- read the data in raw format. */
-
- get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
-
- if (register_valid[regnum] == -1)
- return NULL; /* register value not available */
-
- VALUE_OPTIMIZED_OUT (v) = optim;
- VALUE_LVAL (v) = lval;
- VALUE_ADDRESS (v) = addr;
-
- /* Convert raw data to virtual format if necessary. */
-
-#ifdef REGISTER_CONVERTIBLE
- if (REGISTER_CONVERTIBLE (regnum))
- {
- REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
- raw_buffer, VALUE_CONTENTS_RAW (v));
- }
- else
-#endif
- {
- /* Raw and virtual formats are the same for this register. */
-
- if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
- {
- /* Big-endian, and we want less than full size. */
- VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
- }
-
- memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
- }
-
- return v;
-}
-
-/* Given a struct symbol for a variable or function,
- and a stack frame id,
- return a (pointer to a) struct value containing the properly typed
- address. */
-
-value_ptr
-locate_var_value (var, frame)
- register struct symbol *var;
- struct frame_info *frame;
-{
- CORE_ADDR addr = 0;
- struct type *type = SYMBOL_TYPE (var);
- value_ptr lazy_value;
-
- /* Evaluate it first; if the result is a memory address, we're fine.
- Lazy evaluation pays off here. */
-
- lazy_value = read_var_value (var, frame);
- if (lazy_value == 0)
- error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
-
- if (VALUE_LAZY (lazy_value)
- || TYPE_CODE (type) == TYPE_CODE_FUNC)
- {
- value_ptr val;
-
- addr = VALUE_ADDRESS (lazy_value);
- val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
- VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
- return val;
- }
-
- /* Not a memory address; check what the problem was. */
- switch (VALUE_LVAL (lazy_value))
- {
- case lval_register:
- case lval_reg_frame_relative:
- error ("Address requested for identifier \"%s\" which is in a register.",
- SYMBOL_SOURCE_NAME (var));
- break;
-
- default:
- error ("Can't take address of \"%s\" which isn't an lvalue.",
- SYMBOL_SOURCE_NAME (var));
- break;
- }
- return 0; /* For lint -- never reached */
-}