aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-lang.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/f-lang.c')
-rw-r--r--gdb/f-lang.c712
1 files changed, 631 insertions, 81 deletions
diff --git a/gdb/f-lang.c b/gdb/f-lang.c
index ec5d6d1..3c6d5a5 100644
--- a/gdb/f-lang.c
+++ b/gdb/f-lang.c
@@ -36,9 +36,36 @@
#include "c-lang.h"
#include "target-float.h"
#include "gdbarch.h"
+#include "gdbcmd.h"
+#include "f-array-walker.h"
#include <math.h>
+/* Whether GDB should repack array slices created by the user. */
+static bool repack_array_slices = false;
+
+/* Implement 'show fortran repack-array-slices'. */
+static void
+show_repack_array_slices (struct ui_file *file, int from_tty,
+ struct cmd_list_element *c, const char *value)
+{
+ fprintf_filtered (file, _("Repacking of Fortran array slices is %s.\n"),
+ value);
+}
+
+/* Debugging of Fortran's array slicing. */
+static bool fortran_array_slicing_debug = false;
+
+/* Implement 'show debug fortran-array-slicing'. */
+static void
+show_fortran_array_slicing_debug (struct ui_file *file, int from_tty,
+ struct cmd_list_element *c,
+ const char *value)
+{
+ fprintf_filtered (file, _("Debugging of Fortran array slicing is %s.\n"),
+ value);
+}
+
/* Local functions */
static struct value *fortran_argument_convert (struct value *value,
@@ -101,57 +128,6 @@ const struct op_print f_language::op_print_tab[] =
};
-/* Called from fortran_value_subarray to take a slice of an array or a
- string. ARRAY is the array or string to be accessed. EXP, POS, and
- NOSIDE are as for evaluate_subexp_standard. Return a value that is a
- slice of the array. */
-
-static struct value *
-value_f90_subarray (struct value *array,
- struct expression *exp, int *pos, enum noside noside)
-{
- int pc = (*pos) + 1;
- LONGEST low_bound, high_bound, stride;
- struct type *range = check_typedef (value_type (array)->index_type ());
- enum range_flag range_flag
- = (enum range_flag) longest_to_int (exp->elts[pc].longconst);
-
- *pos += 3;
-
- if (range_flag & RANGE_LOW_BOUND_DEFAULT)
- low_bound = range->bounds ()->low.const_val ();
- else
- low_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
-
- if (range_flag & RANGE_HIGH_BOUND_DEFAULT)
- high_bound = range->bounds ()->high.const_val ();
- else
- high_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
-
- if (range_flag & RANGE_HAS_STRIDE)
- stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
- else
- stride = 1;
-
- if (stride != 1)
- error (_("Fortran array strides are not currently supported"));
-
- return value_slice (array, low_bound, high_bound - low_bound + 1);
-}
-
-/* Helper for skipping all the arguments in an undetermined argument list.
- This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
- case of evaluate_subexp_standard as multiple, but not all, code paths
- require a generic skip. */
-
-static void
-skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
- enum noside noside)
-{
- for (int i = 0; i < nargs; ++i)
- evaluate_subexp (nullptr, exp, pos, noside);
-}
-
/* Return the number of dimensions for a Fortran array or string. */
int
@@ -176,6 +152,145 @@ calc_f77_array_dims (struct type *array_type)
return ndimen;
}
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
+ slices. This is a base class for two alternative repacking mechanisms,
+ one for when repacking from a lazy value, and one for repacking from a
+ non-lazy (already loaded) value. */
+class fortran_array_repacker_base_impl
+ : public fortran_array_walker_base_impl
+{
+public:
+ /* Constructor, DEST is the value we are repacking into. */
+ fortran_array_repacker_base_impl (struct value *dest)
+ : m_dest (dest),
+ m_dest_offset (0)
+ { /* Nothing. */ }
+
+ /* When we start processing the inner most dimension, this is where we
+ will be creating values for each element as we load them and then copy
+ them into the M_DEST value. Set a value mark so we can free these
+ temporary values. */
+ void start_dimension (bool inner_p)
+ {
+ if (inner_p)
+ {
+ gdb_assert (m_mark == nullptr);
+ m_mark = value_mark ();
+ }
+ }
+
+ /* When we finish processing the inner most dimension free all temporary
+ value that were created. */
+ void finish_dimension (bool inner_p, bool last_p)
+ {
+ if (inner_p)
+ {
+ gdb_assert (m_mark != nullptr);
+ value_free_to_mark (m_mark);
+ m_mark = nullptr;
+ }
+ }
+
+protected:
+ /* Copy the contents of array element ELT into M_DEST at the next
+ available offset. */
+ void copy_element_to_dest (struct value *elt)
+ {
+ value_contents_copy (m_dest, m_dest_offset, elt, 0,
+ TYPE_LENGTH (value_type (elt)));
+ m_dest_offset += TYPE_LENGTH (value_type (elt));
+ }
+
+ /* The value being written to. */
+ struct value *m_dest;
+
+ /* The byte offset in M_DEST at which the next element should be
+ written. */
+ LONGEST m_dest_offset;
+
+ /* Set with a call to VALUE_MARK, and then reset after calling
+ VALUE_FREE_TO_MARK. */
+ struct value *m_mark = nullptr;
+};
+
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
+ slices. This class is specialised for repacking an array slice from a
+ lazy array value, as such it does not require the parent array value to
+ be loaded into GDB's memory; the parent value could be huge, while the
+ slice could be tiny. */
+class fortran_lazy_array_repacker_impl
+ : public fortran_array_repacker_base_impl
+{
+public:
+ /* Constructor. TYPE is the type of the slice being loaded from the
+ parent value, so this type will correctly reflect the strides required
+ to find all of the elements from the parent value. ADDRESS is the
+ address in target memory of value matching TYPE, and DEST is the value
+ we are repacking into. */
+ explicit fortran_lazy_array_repacker_impl (struct type *type,
+ CORE_ADDR address,
+ struct value *dest)
+ : fortran_array_repacker_base_impl (dest),
+ m_addr (address)
+ { /* Nothing. */ }
+
+ /* Create a lazy value in target memory representing a single element,
+ then load the element into GDB's memory and copy the contents into the
+ destination value. */
+ void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
+ {
+ copy_element_to_dest (value_at_lazy (elt_type, m_addr + elt_off));
+ }
+
+private:
+ /* The address in target memory where the parent value starts. */
+ CORE_ADDR m_addr;
+};
+
+/* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array
+ slices. This class is specialised for repacking an array slice from a
+ previously loaded (non-lazy) array value, as such it fetches the
+ element values from the contents of the parent value. */
+class fortran_array_repacker_impl
+ : public fortran_array_repacker_base_impl
+{
+public:
+ /* Constructor. TYPE is the type for the array slice within the parent
+ value, as such it has stride values as required to find the elements
+ within the original parent value. ADDRESS is the address in target
+ memory of the value matching TYPE. BASE_OFFSET is the offset from
+ the start of VAL's content buffer to the start of the object of TYPE,
+ VAL is the parent object from which we are loading the value, and
+ DEST is the value into which we are repacking. */
+ explicit fortran_array_repacker_impl (struct type *type, CORE_ADDR address,
+ LONGEST base_offset,
+ struct value *val, struct value *dest)
+ : fortran_array_repacker_base_impl (dest),
+ m_base_offset (base_offset),
+ m_val (val)
+ {
+ gdb_assert (!value_lazy (val));
+ }
+
+ /* Extract an element of ELT_TYPE at offset (M_BASE_OFFSET + ELT_OFF)
+ from the content buffer of M_VAL then copy this extracted value into
+ the repacked destination value. */
+ void process_element (struct type *elt_type, LONGEST elt_off, bool last_p)
+ {
+ struct value *elt
+ = value_from_component (m_val, elt_type, (elt_off + m_base_offset));
+ copy_element_to_dest (elt);
+ }
+
+private:
+ /* The offset into the content buffer of M_VAL to the start of the slice
+ being extracted. */
+ LONGEST m_base_offset;
+
+ /* The parent value from which we are extracting a slice. */
+ struct value *m_val;
+};
+
/* Called from evaluate_subexp_standard to perform array indexing, and
sub-range extraction, for Fortran. As well as arrays this function
also handles strings as they can be treated like arrays of characters.
@@ -187,51 +302,394 @@ static struct value *
fortran_value_subarray (struct value *array, struct expression *exp,
int *pos, int nargs, enum noside noside)
{
- if (exp->elts[*pos].opcode == OP_RANGE)
- return value_f90_subarray (array, exp, pos, noside);
-
- if (noside == EVAL_SKIP)
+ type *original_array_type = check_typedef (value_type (array));
+ bool is_string_p = original_array_type->code () == TYPE_CODE_STRING;
+
+ /* Perform checks for ARRAY not being available. The somewhat overly
+ complex logic here is just to keep backward compatibility with the
+ errors that we used to get before FORTRAN_VALUE_SUBARRAY was
+ rewritten. Maybe a future task would streamline the error messages we
+ get here, and update all the expected test results. */
+ if (exp->elts[*pos].opcode != OP_RANGE)
+ {
+ if (type_not_associated (original_array_type))
+ error (_("no such vector element (vector not associated)"));
+ else if (type_not_allocated (original_array_type))
+ error (_("no such vector element (vector not allocated)"));
+ }
+ else
{
- skip_undetermined_arglist (nargs, exp, pos, noside);
- /* Return the dummy value with the correct type. */
- return array;
+ if (type_not_associated (original_array_type))
+ error (_("array not associated"));
+ else if (type_not_allocated (original_array_type))
+ error (_("array not allocated"));
}
- LONGEST subscript_array[MAX_FORTRAN_DIMS];
- int ndimensions = 1;
- struct type *type = check_typedef (value_type (array));
+ /* First check that the number of dimensions in the type we are slicing
+ matches the number of arguments we were passed. */
+ int ndimensions = calc_f77_array_dims (original_array_type);
+ if (nargs != ndimensions)
+ error (_("Wrong number of subscripts"));
+
+ /* This will be initialised below with the type of the elements held in
+ ARRAY. */
+ struct type *inner_element_type;
+
+ /* Extract the types of each array dimension from the original array
+ type. We need these available so we can fill in the default upper and
+ lower bounds if the user requested slice doesn't provide that
+ information. Additionally unpacking the dimensions like this gives us
+ the inner element type. */
+ std::vector<struct type *> dim_types;
+ {
+ dim_types.reserve (ndimensions);
+ struct type *type = original_array_type;
+ for (int i = 0; i < ndimensions; ++i)
+ {
+ dim_types.push_back (type);
+ type = TYPE_TARGET_TYPE (type);
+ }
+ /* TYPE is now the inner element type of the array, we start the new
+ array slice off as this type, then as we process the requested slice
+ (from the user) we wrap new types around this to build up the final
+ slice type. */
+ inner_element_type = type;
+ }
+
+ /* As we analyse the new slice type we need to understand if the data
+ being referenced is contiguous. Do decide this we must track the size
+ of an element at each dimension of the new slice array. Initially the
+ elements of the inner most dimension of the array are the same inner
+ most elements as the original ARRAY. */
+ LONGEST slice_element_size = TYPE_LENGTH (inner_element_type);
+
+ /* Start off assuming all data is contiguous, this will be set to false
+ if access to any dimension results in non-contiguous data. */
+ bool is_all_contiguous = true;
+
+ /* The TOTAL_OFFSET is the distance in bytes from the start of the
+ original ARRAY to the start of the new slice. This is calculated as
+ we process the information from the user. */
+ LONGEST total_offset = 0;
+
+ /* A structure representing information about each dimension of the
+ resulting slice. */
+ struct slice_dim
+ {
+ /* Constructor. */
+ slice_dim (LONGEST l, LONGEST h, LONGEST s, struct type *idx)
+ : low (l),
+ high (h),
+ stride (s),
+ index (idx)
+ { /* Nothing. */ }
+
+ /* The low bound for this dimension of the slice. */
+ LONGEST low;
- if (nargs > MAX_FORTRAN_DIMS)
- error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
+ /* The high bound for this dimension of the slice. */
+ LONGEST high;
- ndimensions = calc_f77_array_dims (type);
+ /* The byte stride for this dimension of the slice. */
+ LONGEST stride;
- if (nargs != ndimensions)
- error (_("Wrong number of subscripts"));
+ struct type *index;
+ };
+
+ /* The dimensions of the resulting slice. */
+ std::vector<slice_dim> slice_dims;
+
+ /* Process the incoming arguments. These arguments are in the reverse
+ order to the array dimensions, that is the first argument refers to
+ the last array dimension. */
+ if (fortran_array_slicing_debug)
+ debug_printf ("Processing array access:\n");
+ for (int i = 0; i < nargs; ++i)
+ {
+ /* For each dimension of the array the user will have either provided
+ a ranged access with optional lower bound, upper bound, and
+ stride, or the user will have supplied a single index. */
+ struct type *dim_type = dim_types[ndimensions - (i + 1)];
+ if (exp->elts[*pos].opcode == OP_RANGE)
+ {
+ int pc = (*pos) + 1;
+ enum range_flag range_flag = (enum range_flag) exp->elts[pc].longconst;
+ *pos += 3;
+
+ LONGEST low, high, stride;
+ low = high = stride = 0;
+
+ if ((range_flag & RANGE_LOW_BOUND_DEFAULT) == 0)
+ low = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
+ else
+ low = f77_get_lowerbound (dim_type);
+ if ((range_flag & RANGE_HIGH_BOUND_DEFAULT) == 0)
+ high = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
+ else
+ high = f77_get_upperbound (dim_type);
+ if ((range_flag & RANGE_HAS_STRIDE) == RANGE_HAS_STRIDE)
+ stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
+ else
+ stride = 1;
+
+ if (stride == 0)
+ error (_("stride must not be 0"));
+
+ /* Get information about this dimension in the original ARRAY. */
+ struct type *target_type = TYPE_TARGET_TYPE (dim_type);
+ struct type *index_type = dim_type->index_type ();
+ LONGEST lb = f77_get_lowerbound (dim_type);
+ LONGEST ub = f77_get_upperbound (dim_type);
+ LONGEST sd = index_type->bit_stride ();
+ if (sd == 0)
+ sd = TYPE_LENGTH (target_type) * 8;
+
+ if (fortran_array_slicing_debug)
+ {
+ debug_printf ("|-> Range access\n");
+ std::string str = type_to_string (dim_type);
+ debug_printf ("| |-> Type: %s\n", str.c_str ());
+ debug_printf ("| |-> Array:\n");
+ debug_printf ("| | |-> Low bound: %ld\n", lb);
+ debug_printf ("| | |-> High bound: %ld\n", ub);
+ debug_printf ("| | |-> Bit stride: %ld\n", sd);
+ debug_printf ("| | |-> Byte stride: %ld\n", sd / 8);
+ debug_printf ("| | |-> Type size: %ld\n",
+ TYPE_LENGTH (dim_type));
+ debug_printf ("| | '-> Target type size: %ld\n",
+ TYPE_LENGTH (target_type));
+ debug_printf ("| |-> Accessing:\n");
+ debug_printf ("| | |-> Low bound: %ld\n",
+ low);
+ debug_printf ("| | |-> High bound: %ld\n",
+ high);
+ debug_printf ("| | '-> Element stride: %ld\n",
+ stride);
+ }
+
+ /* Check the user hasn't asked for something invalid. */
+ if (high > ub || low < lb)
+ error (_("array subscript out of bounds"));
+
+ /* Calculate what this dimension of the new slice array will look
+ like. OFFSET is the byte offset from the start of the
+ previous (more outer) dimension to the start of this
+ dimension. E_COUNT is the number of elements in this
+ dimension. REMAINDER is the number of elements remaining
+ between the last included element and the upper bound. For
+ example an access '1:6:2' will include elements 1, 3, 5 and
+ have a remainder of 1 (element #6). */
+ LONGEST lowest = std::min (low, high);
+ LONGEST offset = (sd / 8) * (lowest - lb);
+ LONGEST e_count = std::abs (high - low) + 1;
+ e_count = (e_count + (std::abs (stride) - 1)) / std::abs (stride);
+ LONGEST new_low = 1;
+ LONGEST new_high = new_low + e_count - 1;
+ LONGEST new_stride = (sd * stride) / 8;
+ LONGEST last_elem = low + ((e_count - 1) * stride);
+ LONGEST remainder = high - last_elem;
+ if (low > high)
+ {
+ offset += std::abs (remainder) * TYPE_LENGTH (target_type);
+ if (stride > 0)
+ error (_("incorrect stride and boundary combination"));
+ }
+ else if (stride < 0)
+ error (_("incorrect stride and boundary combination"));
+
+ /* Is the data within this dimension contiguous? It is if the
+ newly computed stride is the same size as a single element of
+ this dimension. */
+ bool is_dim_contiguous = (new_stride == slice_element_size);
+ is_all_contiguous &= is_dim_contiguous;
- gdb_assert (nargs > 0);
+ if (fortran_array_slicing_debug)
+ {
+ debug_printf ("| '-> Results:\n");
+ debug_printf ("| |-> Offset = %ld\n", offset);
+ debug_printf ("| |-> Elements = %ld\n", e_count);
+ debug_printf ("| |-> Low bound = %ld\n", new_low);
+ debug_printf ("| |-> High bound = %ld\n", new_high);
+ debug_printf ("| |-> Byte stride = %ld\n", new_stride);
+ debug_printf ("| |-> Last element = %ld\n", last_elem);
+ debug_printf ("| |-> Remainder = %ld\n", remainder);
+ debug_printf ("| '-> Contiguous = %s\n",
+ (is_dim_contiguous ? "Yes" : "No"));
+ }
+
+ /* Figure out how big (in bytes) an element of this dimension of
+ the new array slice will be. */
+ slice_element_size = std::abs (new_stride * e_count);
- /* Now that we know we have a legal array subscript expression let us
- actually find out where this element exists in the array. */
+ slice_dims.emplace_back (new_low, new_high, new_stride,
+ index_type);
+
+ /* Update the total offset. */
+ total_offset += offset;
+ }
+ else
+ {
+ /* There is a single index for this dimension. */
+ LONGEST index
+ = value_as_long (evaluate_subexp_with_coercion (exp, pos, noside));
+
+ /* Get information about this dimension in the original ARRAY. */
+ struct type *target_type = TYPE_TARGET_TYPE (dim_type);
+ struct type *index_type = dim_type->index_type ();
+ LONGEST lb = f77_get_lowerbound (dim_type);
+ LONGEST ub = f77_get_upperbound (dim_type);
+ LONGEST sd = index_type->bit_stride () / 8;
+ if (sd == 0)
+ sd = TYPE_LENGTH (target_type);
+
+ if (fortran_array_slicing_debug)
+ {
+ debug_printf ("|-> Index access\n");
+ std::string str = type_to_string (dim_type);
+ debug_printf ("| |-> Type: %s\n", str.c_str ());
+ debug_printf ("| |-> Array:\n");
+ debug_printf ("| | |-> Low bound: %ld\n", lb);
+ debug_printf ("| | |-> High bound: %ld\n", ub);
+ debug_printf ("| | |-> Byte stride: %ld\n", sd);
+ debug_printf ("| | |-> Type size: %ld\n", TYPE_LENGTH (dim_type));
+ debug_printf ("| | '-> Target type size: %ld\n",
+ TYPE_LENGTH (target_type));
+ debug_printf ("| '-> Accessing:\n");
+ debug_printf ("| '-> Index: %ld\n", index);
+ }
+
+ /* If the array has actual content then check the index is in
+ bounds. An array without content (an unbound array) doesn't
+ have a known upper bound, so don't error check in that
+ situation. */
+ if (index < lb
+ || (dim_type->index_type ()->bounds ()->high.kind () != PROP_UNDEFINED
+ && index > ub)
+ || (VALUE_LVAL (array) != lval_memory
+ && dim_type->index_type ()->bounds ()->high.kind () == PROP_UNDEFINED))
+ {
+ if (type_not_associated (dim_type))
+ error (_("no such vector element (vector not associated)"));
+ else if (type_not_allocated (dim_type))
+ error (_("no such vector element (vector not allocated)"));
+ else
+ error (_("no such vector element"));
+ }
+
+ /* Calculate using the type stride, not the target type size. */
+ LONGEST offset = sd * (index - lb);
+ total_offset += offset;
+ }
+ }
+
+ if (noside == EVAL_SKIP)
+ return array;
- /* Take array indices left to right. */
- for (int i = 0; i < nargs; i++)
+ /* Build a type that represents the new array slice in the target memory
+ of the original ARRAY, this type makes use of strides to correctly
+ find only those elements that are part of the new slice. */
+ struct type *array_slice_type = inner_element_type;
+ for (const auto &d : slice_dims)
{
- /* Evaluate each subscript; it must be a legal integer in F77. */
- value *arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
+ /* Create the range. */
+ dynamic_prop p_low, p_high, p_stride;
+
+ p_low.set_const_val (d.low);
+ p_high.set_const_val (d.high);
+ p_stride.set_const_val (d.stride);
+
+ struct type *new_range
+ = create_range_type_with_stride ((struct type *) NULL,
+ TYPE_TARGET_TYPE (d.index),
+ &p_low, &p_high, 0, &p_stride,
+ true);
+ array_slice_type
+ = create_array_type (nullptr, array_slice_type, new_range);
+ }
- /* Fill in the subscript array. */
- subscript_array[i] = value_as_long (arg2);
+ if (fortran_array_slicing_debug)
+ {
+ debug_printf ("'-> Final result:\n");
+ debug_printf (" |-> Type: %s\n",
+ type_to_string (array_slice_type).c_str ());
+ debug_printf (" |-> Total offset: %ld\n", total_offset);
+ debug_printf (" |-> Base address: %s\n",
+ core_addr_to_string (value_address (array)));
+ debug_printf (" '-> Contiguous = %s\n",
+ (is_all_contiguous ? "Yes" : "No"));
}
- /* Internal type of array is arranged right to left. */
- for (int i = nargs; i > 0; i--)
+ /* Should we repack this array slice? */
+ if (!is_all_contiguous && (repack_array_slices || is_string_p))
{
- struct type *array_type = check_typedef (value_type (array));
- LONGEST index = subscript_array[i - 1];
+ /* Build a type for the repacked slice. */
+ struct type *repacked_array_type = inner_element_type;
+ for (const auto &d : slice_dims)
+ {
+ /* Create the range. */
+ dynamic_prop p_low, p_high, p_stride;
+
+ p_low.set_const_val (d.low);
+ p_high.set_const_val (d.high);
+ p_stride.set_const_val (TYPE_LENGTH (repacked_array_type));
+
+ struct type *new_range
+ = create_range_type_with_stride ((struct type *) NULL,
+ TYPE_TARGET_TYPE (d.index),
+ &p_low, &p_high, 0, &p_stride,
+ true);
+ repacked_array_type
+ = create_array_type (nullptr, repacked_array_type, new_range);
+ }
- array = value_subscripted_rvalue (array, index,
- f77_get_lowerbound (array_type));
+ /* Now copy the elements from the original ARRAY into the packed
+ array value DEST. */
+ struct value *dest = allocate_value (repacked_array_type);
+ if (value_lazy (array)
+ || (total_offset + TYPE_LENGTH (array_slice_type)
+ > TYPE_LENGTH (check_typedef (value_type (array)))))
+ {
+ fortran_array_walker<fortran_lazy_array_repacker_impl> p
+ (array_slice_type, value_address (array) + total_offset, dest);
+ p.walk ();
+ }
+ else
+ {
+ fortran_array_walker<fortran_array_repacker_impl> p
+ (array_slice_type, value_address (array) + total_offset,
+ total_offset, array, dest);
+ p.walk ();
+ }
+ array = dest;
+ }
+ else
+ {
+ if (VALUE_LVAL (array) == lval_memory)
+ {
+ /* If the value we're taking a slice from is not yet loaded, or
+ the requested slice is outside the values content range then
+ just create a new lazy value pointing at the memory where the
+ contents we're looking for exist. */
+ if (value_lazy (array)
+ || (total_offset + TYPE_LENGTH (array_slice_type)
+ > TYPE_LENGTH (check_typedef (value_type (array)))))
+ array = value_at_lazy (array_slice_type,
+ value_address (array) + total_offset);
+ else
+ array = value_from_contents_and_address (array_slice_type,
+ (value_contents (array)
+ + total_offset),
+ (value_address (array)
+ + total_offset));
+ }
+ else if (!value_lazy (array))
+ {
+ const void *valaddr = value_contents (array) + total_offset;
+ array = allocate_value (array_slice_type);
+ memcpy (value_contents_raw (array), valaddr, TYPE_LENGTH (array_slice_type));
+ }
+ else
+ error (_("cannot subscript arrays that are not in memory"));
}
return array;
@@ -840,11 +1298,50 @@ builtin_f_type (struct gdbarch *gdbarch)
return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
}
+/* Command-list for the "set/show fortran" prefix command. */
+static struct cmd_list_element *set_fortran_list;
+static struct cmd_list_element *show_fortran_list;
+
void _initialize_f_language ();
void
_initialize_f_language ()
{
f_type_data = gdbarch_data_register_post_init (build_fortran_types);
+
+ add_basic_prefix_cmd ("fortran", no_class,
+ _("Prefix command for changing Fortran-specific settings."),
+ &set_fortran_list, "set fortran ", 0, &setlist);
+
+ add_show_prefix_cmd ("fortran", no_class,
+ _("Generic command for showing Fortran-specific settings."),
+ &show_fortran_list, "show fortran ", 0, &showlist);
+
+ add_setshow_boolean_cmd ("repack-array-slices", class_vars,
+ &repack_array_slices, _("\
+Enable or disable repacking of non-contiguous array slices."), _("\
+Show whether non-contiguous array slices are repacked."), _("\
+When the user requests a slice of a Fortran array then we can either return\n\
+a descriptor that describes the array in place (using the original array data\n\
+in its existing location) or the original data can be repacked (copied) to a\n\
+new location.\n\
+\n\
+When the content of the array slice is contiguous within the original array\n\
+then the result will never be repacked, but when the data for the new array\n\
+is non-contiguous within the original array repacking will only be performed\n\
+when this setting is on."),
+ NULL,
+ show_repack_array_slices,
+ &set_fortran_list, &show_fortran_list);
+
+ /* Debug Fortran's array slicing logic. */
+ add_setshow_boolean_cmd ("fortran-array-slicing", class_maintenance,
+ &fortran_array_slicing_debug, _("\
+Set debugging of Fortran array slicing."), _("\
+Show debugging of Fortran array slicing."), _("\
+When on, debugging of Fortran array slicing is enabled."),
+ NULL,
+ show_fortran_array_slicing_debug,
+ &setdebuglist, &showdebuglist);
}
/* Ensures that function argument VALUE is in the appropriate form to
@@ -895,3 +1392,56 @@ fortran_preserve_arg_pointer (struct value *arg, struct type *type)
return value_type (arg);
return type;
}
+
+/* See f-lang.h. */
+
+CORE_ADDR
+fortran_adjust_dynamic_array_base_address_hack (struct type *type,
+ CORE_ADDR address)
+{
+ gdb_assert (type->code () == TYPE_CODE_ARRAY);
+
+ int ndimensions = calc_f77_array_dims (type);
+ LONGEST total_offset = 0;
+
+ /* Walk through each of the dimensions of this array type and figure out
+ if any of the dimensions are "backwards", that is the base address
+ for this dimension points to the element at the highest memory
+ address and the stride is negative. */
+ struct type *tmp_type = type;
+ for (int i = 0 ; i < ndimensions; ++i)
+ {
+ /* Grab the range for this dimension and extract the lower and upper
+ bounds. */
+ tmp_type = check_typedef (tmp_type);
+ struct type *range_type = tmp_type->index_type ();
+ LONGEST lowerbound, upperbound, stride;
+ if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
+ error ("failed to get range bounds");
+
+ /* Figure out the stride for this dimension. */
+ struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
+ stride = tmp_type->index_type ()->bounds ()->bit_stride ();
+ if (stride == 0)
+ stride = type_length_units (elt_type);
+ else
+ {
+ struct gdbarch *arch = get_type_arch (elt_type);
+ int unit_size = gdbarch_addressable_memory_unit_size (arch);
+ stride /= (unit_size * 8);
+ }
+
+ /* If this dimension is "backward" then figure out the offset
+ adjustment required to point to the element at the lowest memory
+ address, and add this to the total offset. */
+ LONGEST offset = 0;
+ if (stride < 0 && lowerbound < upperbound)
+ offset = (upperbound - lowerbound) * stride;
+ total_offset += offset;
+ tmp_type = TYPE_TARGET_TYPE (tmp_type);
+ }
+
+ /* Adjust the address of this object and return it. */
+ address += total_offset;
+ return address;
+}