aboutsummaryrefslogtreecommitdiff
path: root/gdb/dbxread.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/dbxread.c')
-rw-r--r--gdb/dbxread.c2183
1 files changed, 2183 insertions, 0 deletions
diff --git a/gdb/dbxread.c b/gdb/dbxread.c
new file mode 100644
index 0000000..007e768
--- /dev/null
+++ b/gdb/dbxread.c
@@ -0,0 +1,2183 @@
+/* Read dbx symbol tables and convert to internal format, for GDB.
+ Copyright (C) 1986, 1987 Free Software Foundation, Inc.
+
+GDB is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY. No author or distributor accepts responsibility to anyone
+for the consequences of using it or for whether it serves any
+particular purpose or works at all, unless he says so in writing.
+Refer to the GDB General Public License for full details.
+
+Everyone is granted permission to copy, modify and redistribute GDB,
+but only under the conditions described in the GDB General Public
+License. A copy of this license is supposed to have been given to you
+along with GDB so you can know your rights and responsibilities. It
+should be in a file named COPYING. Among other things, the copyright
+notice and this notice must be preserved on all copies.
+
+In other words, go ahead and share GDB, but don't try to stop
+anyone else from sharing it farther. Help stamp out software hoarding!
+*/
+
+#include "param.h"
+
+#ifdef READ_DBX_FORMAT
+
+#include <a.out.h>
+#include <stab.h>
+#include <stdio.h>
+#include <obstack.h>
+#include <sys/param.h>
+#include <sys/file.h>
+#include "defs.h"
+#include "initialize.h"
+#include "symtab.h"
+
+static void add_symbol_to_list ();
+static void read_dbx_symtab ();
+static void process_one_symbol ();
+static struct type *read_type ();
+static struct type *read_range_type ();
+static struct type *read_enum_type ();
+static struct type *read_struct_type ();
+static long read_number ();
+static void finish_block ();
+static struct blockvector *make_blockvector ();
+static struct symbol *define_symbol ();
+static void start_subfile ();
+static int hashname ();
+static void hash_symsegs ();
+extern struct symtab *read_symsegs ();
+
+START_FILE
+
+/* Chain of symtabs made from reading the file's symsegs.
+ These symtabs do not go into symtab_list themselves,
+ but the information is copied from them when appropriate
+ to make the symtabs that will exist permanently. */
+
+static struct symtab *symseg_chain;
+
+/* Symseg symbol table for the file whose data we are now processing.
+ It is one of those in symseg_chain. Or 0, for a compilation that
+ has no symseg. */
+
+static struct symtab *current_symseg;
+
+/* Name of source file whose symbol data we are now processing.
+ This comes from a symbol of type N_SO. */
+
+static char *last_source_file;
+
+/* Core address of start of text of current source file.
+ This too comes from the N_SO symbol. */
+
+static CORE_ADDR last_source_start_addr;
+
+/* End of the text segment of the executable file,
+ as found in the symbol _etext. */
+
+static CORE_ADDR end_of_text_addr;
+
+/* The list of sub-source-files within the current individual compilation.
+ Each file gets its own symtab with its own linetable and associated info,
+ but they all share one blockvector. */
+
+struct subfile
+{
+ struct subfile *next;
+ char *name;
+ struct linetable *line_vector;
+ int line_vector_length;
+ int line_vector_index;
+ int prev_line_number;
+};
+
+static struct subfile *subfiles;
+
+static struct subfile *current_subfile;
+
+/* The addresses of the symbol table stream and the string table
+ of the object file we are reading (as copied into core). */
+
+static FILE *nlist_stream_global;
+static int nlist_size_global;
+static char *stringtab_global;
+
+/* The index in nlist_global of the last dbx symbol to be processed. */
+
+static int symnum;
+
+/* Vector of types defined so far, indexed by their dbx type numbers.
+ (In newer sun systems, dbx uses a pair of numbers in parens,
+ as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
+ translated through the type_translations hash table to get
+ the index into the type vector.) */
+
+static struct typevector *type_vector;
+
+/* Number of elements allocated for type_vector currently. */
+
+static int type_vector_length;
+
+/* Vector of line number information. */
+
+static struct linetable *line_vector;
+
+/* Index of next entry to go in line_vector_index. */
+
+static int line_vector_index;
+
+/* Last line number recorded in the line vector. */
+
+static int prev_line_number;
+
+/* Number of elements allocated for line_vector currently. */
+
+static int line_vector_length;
+
+/* Chain of global symbols whose values are not known yet.
+ They are chained thru the SYMBOL_VALUE, since we don't
+ have the correct data for that slot yet. */
+
+#define HASHSIZE 127
+static struct symbol *global_sym_chain[HASHSIZE];
+
+/* Record the symbols defined for each context in a list.
+ We don't create a struct block for the context until we
+ know how long to make it. */
+
+struct pending
+{
+ struct pending *next;
+ struct symbol *symbol;
+};
+
+/* Here are the three lists that symbols are put on. */
+
+struct pending *file_symbols; /* static at top level, and types */
+
+struct pending *global_symbols; /* global functions and variables */
+
+struct pending *local_symbols; /* everything local to lexical context */
+
+/* List of unclosed lexical contexts
+ (that will become blocks, eventually). */
+
+struct context_stack
+{
+ struct context_stack *next;
+ struct pending *locals;
+ struct pending_block *old_blocks;
+ struct symbol *name;
+ CORE_ADDR start_addr;
+ int depth;
+};
+
+struct context_stack *context_stack;
+
+/* Nonzero if within a function (so symbols should be local,
+ if nothing says specifically). */
+
+int within_function;
+
+/* List of blocks already made (lexical contexts already closed).
+ This is used at the end to make the blockvector. */
+
+struct pending_block
+{
+ struct pending_block *next;
+ struct block *block;
+};
+
+struct pending_block *pending_blocks;
+
+extern CORE_ADDR first_object_file_end; /* From blockframe.c */
+
+/* File name symbols were loaded from. */
+
+static char *symfile;
+
+/* Support for Sun changes to dbx symbol format */
+
+/* For each identified header file, we have a table of types defined
+ in that header file.
+
+ header_files maps header file names to their type tables.
+ It is a vector of n_header_files elements.
+ Each element describes one header file.
+ It contains a vector of types.
+
+ Sometimes it can happen that the same header file produces
+ different results when included in different places.
+ This can result from conditionals or from different
+ things done before including the file.
+ When this happens, there are multiple entries for the file in this table,
+ one entry for each distinct set of results.
+ The entries are distinguished by the INSTANCE field.
+ The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
+ used to match header-file references to their corresponding data. */
+
+struct header_file
+{
+ char *name; /* Name of header file */
+ int instance; /* Numeric code distinguishing instances
+ of one header file that produced
+ different results when included.
+ It comes from the N_BINCL or N_EXCL. */
+ struct type **vector; /* Pointer to vector of types */
+ int length; /* Allocated length (# elts) of that vector */
+};
+
+static struct header_file *header_files;
+
+static int n_header_files;
+
+static int n_allocated_header_files;
+
+/* Within each object file, various header files are assigned numbers.
+ A type is defined or referred to with a pair of numbers
+ (FILENUM,TYPENUM) where FILENUM is the number of the header file
+ and TYPENUM is the number within that header file.
+ TYPENUM is the index within the vector of types for that header file.
+
+ FILENUM == 1 is special; it refers to the main source of the object file,
+ and not to any header file. FILENUM != 1 is interpreted by looking it up
+ in the following table, which contains indices in header_files. */
+
+static int *this_object_header_files;
+
+static int n_this_object_header_files;
+
+static int n_allocated_this_object_header_files;
+
+/* When a header file is getting special overriding definitions
+ for one source file, record here the header_files index
+ of its normal definition vector.
+ At other times, this is -1. */
+
+static int header_file_prev_index;
+
+/* At the start of reading dbx symbols, allocate our tables. */
+
+static void
+init_header_files ()
+{
+ n_allocated_header_files = 10;
+ header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
+ n_header_files = 0;
+
+ n_allocated_this_object_header_files = 10;
+ this_object_header_files = (int *) xmalloc (10 * sizeof (int));
+}
+
+/* At the end of reading dbx symbols, free our tables. */
+
+static void
+free_header_files ()
+{
+ register int i;
+ for (i = 0; i < n_header_files; i++)
+ free (header_files[i].name);
+ free (header_files);
+ free (this_object_header_files);
+}
+
+/* Called at the start of each object file's symbols.
+ Clear out the mapping of header file numbers to header files. */
+
+static void
+new_object_header_files ()
+{
+ /* Leave FILENUM of 0 free for builtin types and this file's types. */
+ n_this_object_header_files = 1;
+ header_file_prev_index = -1;
+}
+
+/* Add header file number I for this object file
+ at the next successive FILENUM. */
+
+static void
+add_this_object_header_file (i)
+ int i;
+{
+ if (n_this_object_header_files == n_allocated_this_object_header_files)
+ {
+ n_allocated_this_object_header_files *= 2;
+ this_object_header_files
+ = (int *) xrealloc (this_object_header_files,
+ n_allocated_this_object_header_files * sizeof (int));
+ }
+
+ this_object_header_files[n_this_object_header_files++] = i;
+}
+
+/* Add to this file an "old" header file, one already seen in
+ a previous object file. NAME is the header file's name.
+ INSTANCE is its instance code, to select among multiple
+ symbol tables for the same header file. */
+
+static void
+add_old_header_file (name, instance)
+ char *name;
+ int instance;
+{
+ register struct header_file *p = header_files;
+ register int i;
+
+ for (i = 0; i < n_header_files; i++)
+ if (!strcmp (p[i].name, name) && instance == p[i].instance)
+ {
+ add_this_object_header_file (i);
+ return;
+ }
+ error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
+ symnum);
+}
+
+/* Add to this file a "new" header file: definitions for its types follow.
+ NAME is the header file's name.
+ Most often this happens only once for each distinct header file,
+ but not necessarily. If it happens more than once, INSTANCE has
+ a different value each time, and references to the header file
+ use INSTANCE values to select among them.
+
+ dbx output contains "begin" and "end" markers for each new header file,
+ but at this level we just need to know which files there have been;
+ so we record the file when its "begin" is seen and ignore the "end". */
+
+static void
+add_new_header_file (name, instance)
+ char *name;
+ int instance;
+{
+ register int i;
+ register struct header_file *p = header_files;
+ header_file_prev_index = -1;
+
+#if 0
+ /* This code was used before I knew about the instance codes.
+ My first hypothesis is that it is not necessary now
+ that instance codes are handled. */
+
+ /* Has this header file a previous definition?
+ If so, make a new entry anyway so that this use in this source file
+ gets a separate entry. Later source files get the old entry.
+ Record here the index of the old entry, so that any type indices
+ not previously defined can get defined in the old entry as
+ well as in the new one. */
+
+ for (i = 0; i < n_header_files; i++)
+ if (!strcmp (p[i].name, name))
+ {
+ header_file_prev_index = i;
+ }
+
+#endif
+
+ /* Make sure there is room for one more header file. */
+
+ if (n_header_files == n_allocated_header_files)
+ {
+ n_allocated_header_files *= 2;
+ header_files
+ = (struct header_file *) xrealloc (header_files, n_allocated_header_files * sizeof (struct header_file));
+ }
+
+ /* Create an entry for this header file. */
+
+ i = n_header_files++;
+ header_files[i].name = name;
+ header_files[i].instance = instance;
+ header_files[i].length = 10;
+ header_files[i].vector
+ = (struct type **) xmalloc (10 * sizeof (struct type *));
+ bzero (header_files[i].vector, 10 * sizeof (struct type *));
+
+ add_this_object_header_file (i);
+}
+
+/* Look up a dbx type-number pair. Return the address of the slot
+ where the type for that number-pair is stored.
+ The number-pair is in TYPENUMS.
+
+ This can be used for finding the type associated with that pair
+ or for associating a new type with the pair. */
+
+static struct type **
+dbx_lookup_type (typenums)
+ int typenums[2];
+{
+ register int filenum = typenums[0], index = typenums[1];
+
+ if (filenum < 0 || filenum >= n_this_object_header_files)
+ error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
+ filenum, index, symnum);
+
+ if (filenum == 0)
+ {
+ /* Type is defined outside of header files.
+ Find it in this object file's type vector. */
+ if (index >= type_vector_length)
+ {
+ type_vector_length *= 2;
+ type_vector = (struct typevector *)
+ xrealloc (type_vector, sizeof (struct typevector) + type_vector_length * sizeof (struct type *));
+ bzero (&type_vector->type[type_vector_length / 2],
+ type_vector_length * sizeof (struct type *) / 2);
+ }
+ return &type_vector->type[index];
+ }
+ else
+ {
+ register int real_filenum = this_object_header_files[filenum];
+ register struct header_file *f;
+
+ if (real_filenum >= n_header_files)
+ abort ();
+
+ f = &header_files[real_filenum];
+
+ if (index >= f->length)
+ {
+ f->length *= 2;
+ f->vector = (struct type **)
+ xrealloc (f->vector, f->length * sizeof (struct type *));
+ bzero (&f->vector[f->length / 2],
+ f->length * sizeof (struct type *) / 2);
+ }
+ return &f->vector[index];
+ }
+}
+
+/* Make sure there is a type allocated for type numbers TYPENUMS
+ and return the type object.
+ This can create an empty (zeroed) type object. */
+
+static struct type *
+dbx_alloc_type (typenums)
+ int typenums[2];
+{
+ register struct type **type_addr = dbx_lookup_type (typenums);
+ register struct type *type = *type_addr;
+
+ /* If we are referring to a type not known at all yet,
+ allocate an empty type for it.
+ We will fill it in later if we find out how. */
+ if (type == 0)
+ {
+ type = (struct type *) obstack_alloc (symbol_obstack,
+ sizeof (struct type));
+ bzero (type, sizeof (struct type));
+ *type_addr = type;
+ }
+ return type;
+}
+
+#if 0
+static struct type **
+explicit_lookup_type (real_filenum, index)
+ int real_filenum, index;
+{
+ register struct header_file *f = &header_files[real_filenum];
+
+ if (index >= f->length)
+ {
+ f->length *= 2;
+ f->vector = (struct type **)
+ xrealloc (f->vector, f->length * sizeof (struct type *));
+ bzero (&f->vector[f->length / 2],
+ f->length * sizeof (struct type *) / 2);
+ }
+ return &f->vector[index];
+}
+#endif
+
+/* maintain the lists of symbols and blocks */
+
+/* Add a symbol to one of the lists of symbols. */
+static void
+add_symbol_to_list (symbol, listhead)
+ struct symbol *symbol;
+ struct pending **listhead;
+{
+ register struct pending *link
+ = (struct pending *) xmalloc (sizeof (struct pending));
+
+ link->next = *listhead;
+ link->symbol = symbol;
+ *listhead = link;
+}
+
+/* Take one of the lists of symbols and make a block from it.
+ Put the block on the list of pending blocks. */
+
+static void
+finish_block (symbol, listhead, old_blocks, start, end)
+ struct symbol *symbol;
+ struct pending **listhead;
+ struct pending_block *old_blocks;
+ CORE_ADDR start, end;
+{
+ register struct pending *next, *next1;
+ register struct block *block;
+ register struct pending_block *pblock;
+ struct pending_block *opblock;
+ register int i;
+
+ /* Count the length of the list of symbols. */
+
+ for (next = *listhead, i = 0; next; next = next->next, i++);
+
+ block = (struct block *) obstack_alloc (symbol_obstack,
+ sizeof (struct block) + (i - 1) * sizeof (struct symbol *));
+
+ /* Copy the symbols into the block. */
+
+ BLOCK_NSYMS (block) = i;
+ for (next = *listhead; next; next = next->next)
+ BLOCK_SYM (block, --i) = next->symbol;
+
+ BLOCK_START (block) = start;
+ BLOCK_END (block) = end;
+ BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
+
+ /* Put the block in as the value of the symbol that names it. */
+
+ if (symbol)
+ {
+ SYMBOL_BLOCK_VALUE (symbol) = block;
+ BLOCK_FUNCTION (block) = symbol;
+ }
+ else
+ BLOCK_FUNCTION (block) = 0;
+
+ /* Now free the links of the list, and empty the list. */
+
+ for (next = *listhead; next; next = next1)
+ {
+ next1 = next->next;
+ free (next);
+ }
+ *listhead = 0;
+
+ /* Install this block as the superblock
+ of all blocks made since the start of this scope
+ that don't have superblocks yet. */
+
+ opblock = 0;
+ for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
+ {
+ if (BLOCK_SUPERBLOCK (pblock->block) == 0)
+ BLOCK_SUPERBLOCK (pblock->block) = block;
+ opblock = pblock;
+ }
+
+ /* Record this block on the list of all blocks in the file.
+ Put it after opblock, or at the beginning if opblock is 0.
+ This puts the block in the list after all its subblocks. */
+
+ pblock = (struct pending_block *) xmalloc (sizeof (struct pending_block));
+ pblock->block = block;
+ if (opblock)
+ {
+ pblock->next = opblock->next;
+ opblock->next = pblock;
+ }
+ else
+ {
+ pblock->next = pending_blocks;
+ pending_blocks = pblock;
+ }
+}
+
+static struct blockvector *
+make_blockvector ()
+{
+ register struct pending_block *next, *next1;
+ register struct blockvector *blockvector;
+ register int i;
+
+ /* Count the length of the list of blocks. */
+
+ for (next = pending_blocks, i = 0; next; next = next->next, i++);
+
+ blockvector = (struct blockvector *) obstack_alloc (symbol_obstack, sizeof (struct blockvector) + (i - 1) * sizeof (struct block *));
+
+ /* Copy the blocks into the blockvector.
+ This is done in reverse order, which happens to put
+ the blocks into the proper order (ascending starting address).
+ finish_block has hair to insert each block into the list
+ after its subblocks in order to make sure this is true. */
+
+ BLOCKVECTOR_NBLOCKS (blockvector) = i;
+ for (next = pending_blocks; next; next = next->next)
+ BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
+
+ /* Now free the links of the list, and empty the list. */
+
+ for (next = pending_blocks; next; next = next1)
+ {
+ next1 = next->next;
+ free (next);
+ }
+ pending_blocks = 0;
+
+ return blockvector;
+}
+
+/* Manage the vector of line numbers. */
+
+static
+record_line (line, pc)
+ int line;
+ CORE_ADDR pc;
+{
+ /* Ignore the dummy line number in libg.o */
+
+ if (line == 0xffff)
+ return;
+
+ /* Make sure line vector is big enough. */
+
+ if (line_vector_index + 1 >= line_vector_length)
+ {
+ line_vector_length *= 2;
+ line_vector = (struct linetable *)
+ xrealloc (line_vector,
+ sizeof (struct linetable) + line_vector_length * sizeof (int));
+ current_subfile->line_vector = line_vector;
+ }
+
+ /* If this line is not continguous with previous one recorded,
+ record a line-number entry for it. */
+ if (line != prev_line_number + 1)
+ line_vector->item[line_vector_index++] = - line;
+ prev_line_number = line;
+
+ /* Record the core address of the line. */
+ line_vector->item[line_vector_index++] = pc;
+}
+
+/* Start a new symtab for a new source file.
+ This is called when a dbx symbol of type N_SO is seen;
+ it indicates the start of data for one original source file. */
+
+static void
+start_symtab (name, start_addr)
+ char *name;
+ CORE_ADDR start_addr;
+{
+ register struct symtab *s;
+
+ last_source_file = name;
+ last_source_start_addr = start_addr;
+ file_symbols = 0;
+ global_symbols = 0;
+ context_stack = 0;
+ within_function = 0;
+
+ new_object_header_files ();
+
+ for (s = symseg_chain; s; s = s->next)
+ if (s->ldsymoff == symnum * sizeof (struct nlist))
+ break;
+ current_symseg = s;
+
+ type_vector_length = 160;
+ type_vector = (struct typevector *) xmalloc (sizeof (struct typevector) + type_vector_length * sizeof (struct type *));
+ bzero (type_vector->type, type_vector_length * sizeof (struct type *));
+
+ /* Initialize the list of sub source files with one entry
+ for this file (the top-level source file). */
+
+ subfiles = 0;
+ current_subfile = 0;
+ start_subfile (name);
+}
+
+/* Handle an N_SOL symbol, which indicates the start of
+ code that came from an included (or otherwise merged-in)
+ source file with a different name. */
+
+static void
+start_subfile (name)
+ char *name;
+{
+ register struct subfile *subfile;
+
+ /* Save the current subfile's line vector data. */
+
+ if (current_subfile)
+ {
+ current_subfile->line_vector_index = line_vector_index;
+ current_subfile->line_vector_length = line_vector_length;
+ current_subfile->prev_line_number = prev_line_number;
+ }
+
+ /* See if this subfile is already known as a subfile of the
+ current main source file. */
+
+ for (subfile = subfiles; subfile; subfile = subfile->next)
+ {
+ if (!strcmp (subfile->name, name))
+ {
+ line_vector = subfile->line_vector;
+ line_vector_index = subfile->line_vector_index;
+ line_vector_length = subfile->line_vector_length;
+ prev_line_number = subfile->prev_line_number;
+ current_subfile = subfile;
+ return;
+ }
+ }
+
+ /* This subfile is not known. Add an entry for it. */
+
+ line_vector_index = 0;
+ line_vector_length = 1000;
+ prev_line_number = -2; /* Force first line number to be explicit */
+ line_vector = (struct linetable *)
+ xmalloc (sizeof (struct linetable) + line_vector_length * sizeof (int));
+
+ /* Make an entry for this subfile in the list of all subfiles
+ of the current main source file. */
+
+ subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
+ subfile->next = subfiles;
+ subfile->name = savestring (name, strlen (name));
+ subfile->line_vector = line_vector;
+ subfiles = subfile;
+ current_subfile = subfile;
+}
+
+/* Finish the symbol definitions for one main source file,
+ close off all the lexical contexts for that file
+ (creating struct block's for them), then make the struct symtab
+ for that file and put it in the list of all such.
+
+ END_ADDR is the address of the end of the file's text. */
+
+static void
+end_symtab (end_addr)
+ CORE_ADDR end_addr;
+{
+ register struct symtab *symtab;
+ register struct context_stack *cstk;
+ register struct blockvector *blockvector;
+ register struct subfile *subfile;
+ register struct linetable *lv;
+ struct subfile *nextsub;
+
+ /* Finish the lexical context of the last function in the file. */
+
+ if (context_stack)
+ {
+ cstk = context_stack;
+ /* Make a block for the local symbols within. */
+ finish_block (cstk->name, &local_symbols, cstk->old_blocks,
+ cstk->start_addr, end_addr);
+ free (cstk);
+ }
+
+ /* Finish defining all the blocks of this symtab. */
+ if (current_symseg == 0)
+ {
+ finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
+ finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
+ blockvector = make_blockvector ();
+ }
+ current_subfile->line_vector_index = line_vector_index;
+
+ /* Now create the symtab objects proper, one for each subfile. */
+ /* (The main file is one of them.) */
+
+ for (subfile = subfiles; subfile; subfile = nextsub)
+ {
+ symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
+ /* Fill in its components. */
+ if (current_symseg)
+ {
+ bcopy (current_symseg, symtab, sizeof (struct symtab));
+ symtab->free_code = free_linetable;
+ symtab->free_ptr = 0;
+ }
+ else
+ {
+ symtab->blockvector = blockvector;
+ type_vector->length = type_vector_length;
+ symtab->typevector = type_vector;
+ symtab->free_code = free_linetable;
+ if (subfile->next == 0)
+ symtab->free_ptr = (char *) type_vector;
+ }
+ symtab->filename = subfile->name;
+ lv = subfile->line_vector;
+ lv->nitems = subfile->line_vector_index;
+ symtab->linetable = (struct linetable *)
+ xrealloc (lv, sizeof (struct linetable) + lv->nitems * sizeof (int));
+ symtab->nlines = 0;
+ symtab->line_charpos = 0;
+
+ /* Link the new symtab into the list of such. */
+ symtab->next = symtab_list;
+ symtab_list = symtab;
+
+ nextsub = subfile->next;
+ free (subfile);
+ }
+
+ type_vector = 0;
+ type_vector_length = -1;
+ line_vector = 0;
+ line_vector_length = -1;
+ last_source_file = 0;
+}
+
+#ifdef N_BINCL
+
+/* Handle the N_BINCL and N_EINCL symbol types
+ that act like N_SOL for switching source files
+ (different subfiles, as we call them) within one object file,
+ but using a stack rather than in an arbitrary order. */
+
+struct subfile_stack
+{
+ struct subfile_stack *next;
+ char *name;
+ int prev_index;
+};
+
+struct subfile_stack *subfile_stack;
+
+static void
+push_subfile ()
+{
+ register struct subfile_stack *tem
+ = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
+
+ tem->next = subfile_stack;
+ subfile_stack = tem;
+ if (current_subfile == 0 || current_subfile->name == 0)
+ abort ();
+ tem->name = current_subfile->name;
+ tem->prev_index = header_file_prev_index;
+}
+
+static char *
+pop_subfile ()
+{
+ register char *name;
+ register struct subfile_stack *link = subfile_stack;
+
+ if (link == 0)
+ abort ();
+
+ name = link->name;
+ subfile_stack = link->next;
+ header_file_prev_index = link->prev_index;
+ free (link);
+
+ return name;
+}
+#endif /* Have N_BINCL */
+
+/* Accumulate the misc functions in bunches of 127.
+ At the end, copy them all into one newly allocated structure. */
+
+#define MISC_BUNCH_SIZE 127
+
+struct misc_bunch
+{
+ struct misc_bunch *next;
+ struct misc_function contents[MISC_BUNCH_SIZE];
+};
+
+/* Bunch currently being filled up.
+ The next field points to chain of filled bunches. */
+
+static struct misc_bunch *misc_bunch;
+
+/* Number of slots filled in current bunch. */
+
+static int misc_bunch_index;
+
+/* Total number of misc functions recorded so far. */
+
+static int misc_count;
+
+static void
+init_misc_functions ()
+{
+ misc_count = 0;
+ misc_bunch = 0;
+ misc_bunch_index = MISC_BUNCH_SIZE;
+}
+
+static void
+record_misc_function (name, address)
+ char *name;
+ CORE_ADDR address;
+{
+ register struct misc_bunch *new;
+
+ if (misc_bunch_index == MISC_BUNCH_SIZE)
+ {
+ new = (struct misc_bunch *) xmalloc (sizeof (struct misc_bunch));
+ misc_bunch_index = 0;
+ new->next = misc_bunch;
+ misc_bunch = new;
+ }
+ misc_bunch->contents[misc_bunch_index].name = name;
+ misc_bunch->contents[misc_bunch_index].address = address;
+ misc_bunch_index++;
+ misc_count++;
+}
+
+static int
+compare_misc_functions (fn1, fn2)
+ struct misc_function *fn1, *fn2;
+{
+ /* Return a signed result based on unsigned comparisons
+ so that we sort into unsigned numeric order. */
+ if (fn1->address < fn2->address)
+ return -1;
+ if (fn1->address > fn2->address)
+ return 1;
+ return 0;
+}
+
+static void
+discard_misc_bunches ()
+{
+ register struct misc_bunch *next;
+
+ while (misc_bunch)
+ {
+ next = misc_bunch->next;
+ free (misc_bunch);
+ misc_bunch = next;
+ }
+}
+
+static void
+condense_misc_bunches ()
+{
+ register int i, j;
+ register struct misc_bunch *bunch;
+#ifdef NAMES_HAVE_UNDERSCORE
+ int offset = 1;
+#else
+ int offset = 0;
+#endif
+
+ misc_function_vector
+ = (struct misc_function *)
+ xmalloc (misc_count * sizeof (struct misc_function));
+
+ j = 0;
+ bunch = misc_bunch;
+ while (bunch)
+ {
+ for (i = 0; i < misc_bunch_index; i++)
+ {
+ misc_function_vector[j] = bunch->contents[i];
+ misc_function_vector[j].name
+ = concat (misc_function_vector[j].name
+ + (misc_function_vector[j].name[0] == '_' ? offset : 0),
+ "", "");
+ j++;
+ }
+ bunch = bunch->next;
+ misc_bunch_index = MISC_BUNCH_SIZE;
+ }
+
+ misc_function_count = j;
+
+ /* Sort the misc functions by address. */
+
+ qsort (misc_function_vector, j, sizeof (struct misc_function),
+ compare_misc_functions);
+}
+
+/* Call sort_syms to sort alphabetically
+ the symbols of each block of each symtab. */
+
+static int
+compare_symbols (s1, s2)
+ struct symbol **s1, **s2;
+{
+ /* Names that are less should come first. */
+ register int namediff = strcmp (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2));
+ if (namediff != 0) return namediff;
+ /* For symbols of the same name, registers should come first. */
+ return ((SYMBOL_CLASS (*s2) == LOC_REGISTER)
+ - (SYMBOL_CLASS (*s1) == LOC_REGISTER));
+}
+
+static void
+sort_syms ()
+{
+ register struct symtab *s;
+ register int i, nbl;
+ register struct blockvector *bv;
+ register struct block *b;
+
+ for (s = symtab_list; s; s = s->next)
+ {
+ bv = BLOCKVECTOR (s);
+ nbl = BLOCKVECTOR_NBLOCKS (bv);
+ for (i = 0; i < nbl; i++)
+ {
+ b = BLOCKVECTOR_BLOCK (bv, i);
+ qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
+ sizeof (struct symbol *), compare_symbols);
+ }
+ }
+}
+
+/* This is the symbol-file command. Read the file, analyze its symbols,
+ and add a struct symtab to symtab_list. */
+
+void
+symbol_file_command (name)
+ char *name;
+{
+ register int desc;
+ struct exec hdr;
+ struct nlist *nlist;
+ char *stringtab;
+ long buffer;
+ register int val;
+ extern void close ();
+ struct cleanup *old_chain;
+
+ dont_repeat ();
+
+ if (name == 0)
+ {
+ if (symtab_list && !query ("Discard symbol table? ", 0))
+ error ("Not confirmed.");
+ free_all_symtabs ();
+ return;
+ }
+
+ if (symtab_list && !query ("Load new symbol table from \"%s\"? ", name))
+ error ("Not confirmed.");
+
+ if (symfile)
+ free (symfile);
+ symfile = 0;
+
+ {
+ char *absolute_name;
+ desc = openp (getenv ("PATH"), 1, name, O_RDONLY, 0, &absolute_name);
+ if (desc < 0)
+ perror_with_name (name);
+ else
+ name = absolute_name;
+ }
+
+ old_chain = make_cleanup (close, desc);
+ make_cleanup (free_current_contents, &name);
+
+ val = myread (desc, &hdr, sizeof hdr);
+ if (val < 0)
+ perror_with_name (name);
+
+ if (N_BADMAG (hdr))
+ error ("File \"%s\" not in executable format.", name);
+
+ if (hdr.a_syms == 0)
+ {
+ free_all_symtabs ();
+ printf ("%s does not have a symbol-table.\n", name);
+ fflush (stdout);
+ return;
+ }
+
+ /* Now read the string table, all at once. */
+ val = lseek (desc, N_SYMOFF (hdr) + hdr.a_syms, 0);
+ if (val < 0)
+ perror_with_name (name);
+ val = myread (desc, &buffer, sizeof buffer);
+ if (val < 0)
+ perror_with_name (name);
+ stringtab = (char *) alloca (buffer);
+ bcopy (&buffer, stringtab, sizeof buffer);
+ val = myread (desc, stringtab + sizeof buffer, buffer - sizeof buffer);
+ if (val < 0)
+ perror_with_name (name);
+
+#ifdef READ_GDB_SYMSEGS
+ /* That puts us at the symsegs. Read them. */
+ symseg_chain = read_symsegs (desc, name);
+ hash_symsegs ();
+#else
+ /* Where people are using the 4.2 ld program, must not check for
+ symsegs, because that ld puts randonm garbage at the end of
+ the output file and that would trigger an error message. */
+ symseg_chain = 0;
+#endif
+
+ /* Position to read the symbol table. Do not read it all at once. */
+ val = lseek (desc, N_SYMOFF (hdr), 0);
+ if (val < 0)
+ perror_with_name (name);
+
+ printf ("Reading symbol data from %s...", name);
+ fflush (stdout);
+
+ /* Throw away the old symbol table. */
+
+ free_all_symtabs ();
+
+ init_misc_functions ();
+ make_cleanup (discard_misc_bunches, 0);
+ init_header_files ();
+ make_cleanup (free_header_files, 0);
+
+ /* Now that the symbol table data of the executable file are all in core,
+ process them and define symbols accordingly. Closes desc. */
+
+ read_dbx_symtab (desc, stringtab, hdr.a_syms / sizeof (struct nlist));
+
+ /* Sort symbols alphabetically within each block. */
+
+ sort_syms ();
+
+ /* Go over the misc functions and install them in vector. */
+
+ condense_misc_bunches ();
+
+ /* Don't allow char * to have a typename (else would get caddr_t.) */
+
+ TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
+
+ /* Make a default for file to list. */
+
+ select_source_symtab (symtab_list);
+
+ symfile = savestring (name, strlen (name));
+
+ do_cleanups (old_chain);
+
+ /* Free the symtabs made by read_symsegs, but not their contents,
+ which have been copied into symtabs on symtab_list. */
+ while (symseg_chain)
+ {
+ register struct symtab *s = symseg_chain->next;
+ free (symseg_chain);
+ symseg_chain = s;
+ }
+
+ printf ("done.\n");
+ fflush (stdout);
+}
+
+/* Return name of file symbols were loaded from, or 0 if none.. */
+
+char *
+get_sym_file ()
+{
+ return symfile;
+}
+
+/* Given pointers to a a.out symbol table in core containing dbx style data,
+ analyze them and create struct symtab's describing the symbols.
+ NLISTLEN is the number of symbols in the symbol table.
+ We read them one at a time using stdio.
+ All symbol names are given as offsets relative to STRINGTAB. */
+
+static void
+read_dbx_symtab (desc, stringtab, nlistlen)
+ int desc;
+ register char *stringtab;
+ register int nlistlen;
+{
+ FILE *stream = fdopen (desc, "r");
+ struct nlist buf;
+ register char *namestring;
+ register struct symbol *sym, *prev;
+ int hash;
+ int num_object_files = 0;
+
+#ifdef N_BINCL
+ subfile_stack = 0;
+#endif
+
+ nlist_stream_global = stream;
+ nlist_size_global = nlistlen;
+ stringtab_global = stringtab;
+ last_source_file = 0;
+ bzero (global_sym_chain, sizeof global_sym_chain);
+
+ for (symnum = 0; symnum < nlistlen; symnum++)
+ {
+ fread (&buf, sizeof buf, 1, stream);
+ namestring = buf.n_un.n_strx ? buf.n_un.n_strx + stringtab : "";
+ if (buf.n_type & N_STAB)
+ process_one_symbol (buf.n_type, buf.n_desc,
+ buf.n_value, namestring);
+ /* A static text symbol whose name ends in ".o"
+ can only mean the start of another object file.
+ So end the symtab of the source file we have been processing.
+ This is how we avoid counting the libraries as part
+ or the last source file.
+ Also this way we find end of first object file (crt0). */
+ else if (buf.n_type == N_TEXT
+ && !strcmp (namestring + strlen (namestring) - 2, ".o"))
+ {
+ if (num_object_files++ == 1)
+ first_object_file_end = buf.n_value;
+ if (last_source_file)
+ end_symtab (buf.n_value);
+ }
+ else if (buf.n_type & N_EXT || buf.n_type == N_TEXT)
+ {
+ int used_up = 0;
+
+ /* Record the location of _etext. */
+ if (buf.n_type == (N_TEXT | N_EXT)
+ && !strcmp (namestring, "_etext"))
+ end_of_text_addr = buf.n_value;
+
+ /* Global symbol: see if we came across a dbx definition
+ for a corresponding symbol. If so, store the value.
+ Remove syms from the chain when their values are stored,
+ but search the whole chain, as there may be several syms
+ from different files with the same name. */
+ if (buf.n_type & N_EXT)
+ {
+ prev = 0;
+#ifdef NAMES_HAVE_UNDERSCORE
+ hash = hashname (namestring + 1);
+#else /* not NAMES_HAVE_UNDERSCORE */
+ hash = hashname (namestring);
+#endif /* not NAMES_HAVE_UNDERSCORE */
+ for (sym = global_sym_chain[hash];
+ sym;)
+ {
+ if (
+#ifdef NAMES_HAVE_UNDERSCORE
+ *namestring == '_'
+ && namestring[1] == SYMBOL_NAME (sym)[0]
+ &&
+ !strcmp (namestring + 2, SYMBOL_NAME (sym) + 1)
+#else /* NAMES_HAVE_UNDERSCORE */
+ namestring[0] == SYMBOL_NAME (sym)[0]
+ &&
+ !strcmp (namestring + 1, SYMBOL_NAME (sym) + 1)
+#endif /* NAMES_HAVE_UNDERSCORE */
+ )
+ {
+ if (prev)
+ SYMBOL_VALUE (prev) = SYMBOL_VALUE (sym);
+ else
+ global_sym_chain[hash]
+ = (struct symbol *) SYMBOL_VALUE (sym);
+ SYMBOL_VALUE (sym) = buf.n_value;
+ if (prev)
+ sym = (struct symbol *) SYMBOL_VALUE (prev);
+ else
+ sym = global_sym_chain[hash];
+
+ used_up = 1;
+ }
+ else
+ {
+ prev = sym;
+ sym = (struct symbol *) SYMBOL_VALUE (sym);
+ }
+ }
+ }
+
+ /* Defined global or text symbol: record as a misc function
+ if it didn't give its address to a debugger symbol above. */
+ if (buf.n_type <= (N_TYPE | N_EXT)
+ && buf.n_type != N_EXT
+ && ! used_up)
+ record_misc_function (namestring, buf.n_value);
+ }
+ }
+
+ if (last_source_file)
+ end_symtab (end_of_text_addr);
+
+ fclose (stream);
+}
+
+/* dbx allows the text of a symbol name to be continued into the
+ next symbol name! When such a continuation is encountered
+ (a \ at the end of the text of a name)
+ call this function to get the continuation. */
+
+static char *
+next_symbol_text ()
+{
+ struct nlist buf;
+ fread (&buf, sizeof buf, 1, nlist_stream_global);
+ symnum++;
+ return buf.n_un.n_strx + stringtab_global;
+}
+
+static int
+hashname (name)
+ char *name;
+{
+ register char *p = name;
+ register int total = p[0];
+ register int c;
+
+ c = p[1];
+ total += c << 2;
+ if (c)
+ {
+ c = p[2];
+ total += c << 4;
+ if (c)
+ total += p[3] << 6;
+ }
+
+ return total % HASHSIZE;
+}
+
+/* Put all appropriate global symbols in the symseg data
+ onto the hash chains so that their addresses will be stored
+ when seen later in loader global symbols. */
+
+static void
+hash_symsegs ()
+{
+ /* Look at each symbol in each block in each symseg symtab. */
+ struct symtab *s;
+ for (s = symseg_chain; s; s = s->next)
+ {
+ register int n;
+ for (n = BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)) - 1; n >= 0; n--)
+ {
+ register struct block *b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), n);
+ register int i;
+ for (i = BLOCK_NSYMS (b) - 1; i >= 0; i--)
+ {
+ register struct symbol *sym = BLOCK_SYM (b, i);
+
+ /* Put the symbol on a chain if its value is an address
+ that is figured out by the loader. */
+
+ if (SYMBOL_CLASS (sym) == LOC_EXTERNAL)
+ {
+ register int hash = hashname (SYMBOL_NAME (sym));
+ SYMBOL_VALUE (sym) = (int) global_sym_chain[hash];
+ global_sym_chain[hash] = sym;
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ }
+ }
+ }
+ }
+}
+
+static void
+process_one_symbol (type, desc, value, name)
+ int type, desc;
+ CORE_ADDR value;
+ char *name;
+{
+ register struct context_stack *new;
+
+ /* Something is wrong if we see real data before
+ seeing a source file name. */
+
+#ifdef N_NSYMS
+ if (type == N_NSYMS) return;
+#endif
+
+ if (type != N_SO && last_source_file == 0)
+ error ("Invalid symbol data: does not start by identifying a source file.");
+
+ switch (type)
+ {
+ case N_FUN:
+ case N_FNAME:
+ /* Either of these types of symbols indicates the start of
+ a new function. We must process its "name" normally for dbx,
+ but also record the start of a new lexical context, and possibly
+ also the end of the lexical context for the previous function. */
+ new = context_stack;
+ within_function = 1;
+ if (new)
+ {
+ /* Make a block for the local symbols within. */
+ finish_block (new->name, &local_symbols, new->old_blocks,
+ new->start_addr, value);
+ }
+ else
+ {
+ new = (struct context_stack *) xmalloc (sizeof (struct context_stack));
+ new->next = 0;
+ new->depth = -1;
+ context_stack = new;
+ }
+ new->locals = 0;
+ new->old_blocks = pending_blocks;
+ new->start_addr = value;
+ new->name = define_symbol (value, name, desc);
+ local_symbols = 0;
+ break;
+
+ case N_LBRAC:
+ /* This "symbol" just indicates the start of an inner lexical
+ context within a function. */
+ new = (struct context_stack *) xmalloc (sizeof (struct context_stack));
+ new->depth = desc;
+ new->next = context_stack;
+ context_stack = new;
+ new->locals = local_symbols;
+ new->old_blocks = pending_blocks;
+ new->start_addr = value;
+ new->name = 0;
+ local_symbols = 0;
+ break;
+
+ case N_RBRAC:
+ /* This "symbol" just indicates the end of an inner lexical
+ context that was started with N_RBRAC. */
+ new = context_stack;
+ if (new == 0 || desc != new->depth)
+ error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
+ local_symbols = new->locals;
+ context_stack = new->next;
+ /* If this is not the outermost LBRAC...RBRAC pair in the
+ function, its local symbols preceded it, and are the ones
+ just recovered from the context stack. Defined the block for them.
+
+ If this is the outermost LBRAC...RBRAC pair, there is no
+ need to do anything; leave the symbols that preceded it
+ to be attached to the function's own block. */
+ if (local_symbols && context_stack->next)
+ {
+ /* Muzzle a compiler bug that makes end > start. */
+ if (new->start_addr > value)
+ new->start_addr = value;
+ /* Make a block for the local symbols within. */
+ finish_block (0, &local_symbols, new->old_blocks,
+ new->start_addr + last_source_start_addr,
+ value + last_source_start_addr);
+ }
+ free (new);
+ break;
+
+ case N_FN:
+ /* This kind of symbol supposedly indicates the start
+ of an object file. In fact this type does not appear. */
+ break;
+
+ case N_SO:
+ /* This type of symbol indicates the start of data
+ for one source file.
+ Finish the symbol table of the previous source file
+ (if any) and start accumulating a new symbol table. */
+ if (last_source_file)
+ end_symtab (value);
+ start_symtab (name, value);
+ break;
+
+ case N_SOL:
+ /* This type of symbol indicates the start of data for
+ a sub-source-file, one whose contents were copied or
+ included in the compilation of the main source file
+ (whose name was given in the N_SO symbol.) */
+ start_subfile (name);
+ break;
+
+#ifdef N_BINCL
+ case N_BINCL:
+ push_subfile ();
+ add_new_header_file (name, value);
+ start_subfile (name);
+ break;
+
+ case N_EINCL:
+ start_subfile (pop_subfile ());
+ break;
+
+ case N_EXCL:
+ add_old_header_file (name, value);
+ break;
+#endif /* have N_BINCL */
+
+ case N_SLINE:
+ /* This type of "symbol" really just records
+ one line-number -- core-address correspondence.
+ Enter it in the line list for this symbol table. */
+ record_line (desc, value);
+ break;
+
+ default:
+ if (name)
+ define_symbol (value, name, desc);
+ }
+}
+
+static struct symbol *
+define_symbol (value, string, desc)
+ int value;
+ char *string;
+ int desc;
+{
+ register struct symbol *sym
+ = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
+ char *p = (char *) index (string, ':');
+ int deftype;
+ register int i;
+
+ bzero (sym, sizeof (struct symbol));
+ SYMBOL_NAME (sym) = obstack_copy0 (symbol_obstack, string, p - string);
+ p++;
+ /* Determine the type of name being defined. */
+ if ((*p >= '0' && *p <= '9') || *p == '(')
+ deftype = 'l';
+ else
+ deftype = *p++;
+
+ /* c is a special case, not followed by a type-number.
+ SYMBOL:c=iVALUE for an integer constant symbol.
+ SYMBOL:c=rVALUE for a floating constant symbol. */
+ if (deftype == 'c')
+ {
+ if (*p++ != '=')
+ error ("Invalid symbol data at symtab pos %d.", symnum);
+ switch (*p++)
+ {
+ case 'r':
+ {
+ double d = atof (p);
+ char *value;
+
+ SYMBOL_TYPE (sym) = builtin_type_double;
+ value = (char *) obstack_alloc (symbol_obstack, sizeof (double));
+ bcopy (&d, value, sizeof (double));
+ SYMBOL_VALUE_BYTES (sym) = value;
+ SYMBOL_CLASS (sym) = LOC_CONST;
+ }
+ break;
+ case 'i':
+ {
+ SYMBOL_TYPE (sym) = builtin_type_int;
+ SYMBOL_VALUE (sym) = atoi (p);
+ SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
+ }
+ break;
+ default:
+ error ("Invalid symbol data at symtab pos %d.", symnum);
+ }
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &file_symbols);
+ return sym;
+ }
+
+ /* Now usually comes a number that says which data type,
+ and possibly more stuff to define the type
+ (all of which is handled by read_type) */
+
+ if (deftype == 'p' && *p == 'F')
+ /* pF is a two-letter code that means a function parameter in Fortran.
+ The type-number specifies the type of the return value.
+ Translate it into a pointer-to-function type. */
+ {
+ p++;
+ SYMBOL_TYPE (sym)
+ = lookup_pointer_type (lookup_function_type (read_type (&p)));
+ }
+ else
+ SYMBOL_TYPE (sym) = read_type (&p);
+
+ switch (deftype)
+ {
+ case 'f':
+ SYMBOL_CLASS (sym) = LOC_BLOCK;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &file_symbols);
+ break;
+
+ case 'F':
+ SYMBOL_CLASS (sym) = LOC_BLOCK;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &global_symbols);
+ break;
+
+ case 'G':
+ /* For a class G (global) symbol, it appears that the
+ value is not correct. It is necessary to search for the
+ corresponding linker definition to find the value.
+ These definitions appear at the end of the namelist. */
+ i = hashname (SYMBOL_NAME (sym));
+ SYMBOL_VALUE (sym) = (int) global_sym_chain[i];
+ global_sym_chain[i] = sym;
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &global_symbols);
+ break;
+
+ /* This case is faked by a conditional above,
+ when there is no code letter in the dbx data.
+ Dbx data never actually contains 'l'. */
+ case 'l':
+ SYMBOL_CLASS (sym) = LOC_LOCAL;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &local_symbols);
+ break;
+
+ case 'p':
+ SYMBOL_CLASS (sym) = LOC_ARG;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &local_symbols);
+ /* DESC == 0 implies compiled with GCC.
+ In this case, if it says `short', believe it. */
+ if (desc == 0)
+ break;
+ /* If PCC says a parameter is a short or a char,
+ it is really an int. */
+ if (SYMBOL_TYPE (sym) == builtin_type_char
+ || SYMBOL_TYPE (sym) == builtin_type_short)
+ SYMBOL_TYPE (sym) = builtin_type_int;
+ else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
+ || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
+ SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
+ break;
+
+ case 'r':
+ SYMBOL_CLASS (sym) = LOC_REGISTER;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &local_symbols);
+ break;
+
+ case 'S':
+ /* Static symbol at top level of file */
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &file_symbols);
+ break;
+
+ case 't':
+ SYMBOL_CLASS (sym) = LOC_TYPEDEF;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
+ && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
+ TYPE_NAME (SYMBOL_TYPE (sym)) = concat (SYMBOL_NAME (sym), "", "");
+ add_symbol_to_list (sym, &file_symbols);
+ break;
+
+ case 'T':
+ SYMBOL_CLASS (sym) = LOC_TYPEDEF;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
+ if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
+ && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
+ TYPE_NAME (SYMBOL_TYPE (sym))
+ = concat ("",
+ (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
+ ? "enum "
+ : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
+ ? "struct " : "union ")),
+ SYMBOL_NAME (sym));
+ add_symbol_to_list (sym, &file_symbols);
+ break;
+
+ case 'V':
+ case 'v':
+ /* Static symbol of local scope */
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_VALUE (sym) = value;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, &local_symbols);
+ break;
+
+ default:
+ error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
+ }
+ return sym;
+}
+
+/* Read a number by which a type is referred to in dbx data,
+ or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
+ Just a single number N is equivalent to (0,N).
+ Return the two numbers by storing them in the vector TYPENUMS.
+ TYPENUMS will then be used as an argument to dbx_lookup_type. */
+
+static void
+read_type_number (pp, typenums)
+ register char **pp;
+ register int *typenums;
+{
+ if (**pp == '(')
+ {
+ (*pp)++;
+ typenums[0] = read_number (pp, ',');
+ typenums[1] = read_number (pp, ')');
+ }
+ else
+ {
+ typenums[0] = 0;
+ typenums[1] = read_number (pp, 0);
+ }
+}
+
+/* Read a dbx type reference or definition;
+ return the type that is meant.
+ This can be just a number, in which case it references
+ a type already defined and placed in type_vector.
+ Or the number can be followed by an =, in which case
+ it means to define a new type according to the text that
+ follows the =. */
+
+static
+struct type *
+read_type (pp)
+ register char **pp;
+{
+ register struct type *type = 0;
+ register int n;
+ struct type *type1;
+ int typenums[2];
+ int xtypenums[2];
+
+ read_type_number (pp, typenums);
+
+ /* Detect random reference to type not yet defined.
+ Allocate a type object but leave it zeroed. */
+ if (**pp != '=')
+ return dbx_alloc_type (typenums);
+
+ *pp += 2;
+ switch ((*pp)[-1])
+ {
+ case 'x':
+ type = dbx_alloc_type (typenums);
+ /* Set the type code according to the following letter. */
+ switch ((*pp)[0])
+ {
+ case 's':
+ TYPE_CODE (type) = TYPE_CODE_STRUCT;
+ break;
+ case 'u':
+ TYPE_CODE (type) = TYPE_CODE_UNION;
+ break;
+ case 'e':
+ TYPE_CODE (type) = TYPE_CODE_ENUM;
+ break;
+ }
+ /* Skip the name the cross-ref points to. */
+ *pp = (char *) index (*pp, ',');
+ /* Just allocate the type and leave it zero if nothing known */
+ return dbx_alloc_type (typenums);
+
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ case '(':
+ (*pp)--;
+ read_type_number (pp, xtypenums);
+ type = *dbx_lookup_type (xtypenums);
+ if (type == 0)
+ type = builtin_type_void;
+ *dbx_lookup_type (typenums) = type;
+ break;
+
+ case '*':
+ type = dbx_alloc_type (typenums);
+ smash_to_pointer_type (type, read_type (pp));
+ break;
+
+ case 'f':
+ type = dbx_alloc_type (typenums);
+ smash_to_function_type (type, read_type (pp));
+ break;
+
+ case 'r':
+ type = read_range_type (pp, typenums);
+ *dbx_lookup_type (typenums) = type;
+ break;
+
+ case 'e':
+ type = dbx_alloc_type (typenums);
+ type = read_enum_type (pp, type);
+ *dbx_lookup_type (typenums) = type;
+ break;
+
+ case 's':
+ type = dbx_alloc_type (typenums);
+ type = read_struct_type (pp, type);
+ break;
+
+ case 'u':
+ type = dbx_alloc_type (typenums);
+ type = read_struct_type (pp, type);
+ TYPE_CODE (type) = TYPE_CODE_UNION;
+ break;
+
+ case 'a':
+ /* Define an array type. */
+ type = dbx_alloc_type (typenums);
+
+ /* dbx expresses array types in terms of a range type for the index,
+ and that range type is specified right inside the array type spec
+ making ar1;MIN;MAX;VALTYPE */
+ if (!strncmp (*pp, "r1;0;", 5))
+ (*pp) += 5;
+ else if (!strncmp (*pp, "r(0,1);0;", 9))
+ (*pp) += 9;
+ else break;
+
+ TYPE_CODE (type) = TYPE_CODE_ARRAY;
+ /* In Fortran, an upper bound may be T... meaning a parameter specifies
+ the length of the data. In this case, just pretend the bound is 1.
+ This happens only for array parameters, which are really passed
+ as pointers anyway, and we will translate them into such. */
+ if (**pp == 'T')
+ {
+ n = 1;
+ while (**pp != ';')
+ (*pp)++;
+ }
+ else
+ n = read_number (pp, ';') + 1;
+ TYPE_TARGET_TYPE (type) = read_type (pp);
+ TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type)) * n;
+ break;
+
+ default:
+ error ("Invalid symbol data: unrecognized type-code `%c' at symtab pos %d.",
+ (*pp)[-1], symnum);
+ }
+
+ if (type == 0)
+ abort ();
+
+#if 0
+ /* If this is an overriding temporary alteration for a header file's
+ contents, and this type number is unknown in the global definition,
+ put this type into the global definition at this type number. */
+ if (header_file_prev_index >= 0)
+ {
+ register struct type **tp
+ = explicit_lookup_type (header_file_prev_index, typenums[1]);
+ if (*tp == 0)
+ *tp = type;
+ }
+#endif
+ return type;
+}
+
+/* This page contains subroutines of read_type. */
+
+/* Read the description of a structure (or union type)
+ and return an object describing the type. */
+
+static struct type *
+read_struct_type (pp, type)
+ char **pp;
+ register struct type *type;
+{
+ struct nextfield
+ {
+ struct nextfield *next;
+ struct field field;
+ };
+
+ register struct nextfield *list = 0;
+ struct nextfield *new;
+ int totalsize;
+ char *name;
+ register char *p;
+ int nfields = 0;
+ register int n;
+
+ TYPE_CODE (type) = TYPE_CODE_STRUCT;
+
+ /* First comes the total size in bytes. */
+
+ TYPE_LENGTH (type) = read_number (pp, 0);
+
+ /* Now come the fields, as NAME:TYPENUM,BITPOS,BITSIZE; for each one.
+ At the end, we see a semicolon instead of a field. */
+
+ while (**pp != ';')
+ {
+ /* Check for and handle cretinous dbx symbol name continuation! */
+ if (**pp == '\\')
+ *pp = next_symbol_text ();
+
+ /* Get space to record the next field's data. */
+ new = (struct nextfield *) alloca (sizeof (struct nextfield));
+ new->next = list;
+ list = new;
+
+ /* Read the data. */
+ p = *pp;
+ while (*p != ':') p++;
+ list->field.name = savestring (*pp, p - *pp);
+ *pp = p + 1;
+ list->field.type = read_type (pp);
+ if (**pp != ',')
+ error ("Invalid symbol data: bad structure-type format at symtab pos %d.",
+ symnum);
+ (*pp)++; /* Skip the comma. */
+ list->field.bitpos = read_number (pp, ',');
+ list->field.bitsize = read_number (pp, ';');
+ /* Detect an unpacked field and mark it as such.
+ dbx gives a bit size for all fields.
+ Also detect forward refs to structures and unions,
+ and treat enums as if they had the width of ints. */
+ if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
+ || TYPE_CODE (list->field.type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (list->field.type) == TYPE_CODE_UNION
+ || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
+ && list->field.bitsize == 8 * TYPE_LENGTH (builtin_type_int)))
+ &&
+ list->field.bitpos % 8 == 0)
+ list->field.bitsize = 0;
+ nfields++;
+ }
+
+ (*pp)++; /* Skip the terminating ';'. */
+
+ /* Now create the vector of fields, and record how big it is. */
+
+ TYPE_NFIELDS (type) = nfields;
+ TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
+ sizeof (struct field) * nfields);
+
+ /* Copy the saved-up fields into the field vector. */
+
+ for (n = nfields; list; list = list->next)
+ TYPE_FIELD (type, --n) = list->field;
+
+ return type;
+}
+
+/* Read a definition of an enumeration type,
+ and create and return a suitable type object.
+ Also defines the symbols that represent the values of the type. */
+
+static struct type *
+read_enum_type (pp, type)
+ register char **pp;
+ register struct type *type;
+{
+ register char *p;
+ char *name;
+ register long n;
+ register struct symbol *sym;
+ int nsyms = 0;
+ struct pending **symlist;
+ struct pending *osyms, *syms;
+
+ if (within_function)
+ symlist = &local_symbols;
+ else
+ symlist = &file_symbols;
+ osyms = *symlist;
+
+ /* Read the value-names and their values.
+ The input syntax is NAME:VALUE,NAME:VALUE, and so on.
+ A semicolon instead of a NAME means the end. */
+ while (**pp && **pp != ';')
+ {
+ /* Check for and handle cretinous dbx symbol name continuation! */
+ if (**pp == '\\')
+ *pp = next_symbol_text ();
+
+ p = *pp;
+ while (*p != ':') p++;
+ name = savestring (*pp, p - *pp);
+ *pp = p + 1;
+ n = read_number (pp, ',');
+
+ sym = (struct symbol *) xmalloc (sizeof (struct symbol));
+ bzero (sym, sizeof (struct symbol));
+ SYMBOL_NAME (sym) = name;
+ SYMBOL_CLASS (sym) = LOC_CONST;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ SYMBOL_VALUE (sym) = n;
+ add_symbol_to_list (sym, symlist);
+ nsyms++;
+ }
+
+ (*pp)++; /* Skip the semicolon. */
+
+ /* Now fill in the fields of the type-structure. */
+
+ TYPE_LENGTH (type) = sizeof (int);
+ TYPE_CODE (type) = TYPE_CODE_ENUM;
+ TYPE_NFIELDS (type) = nsyms;
+ TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
+
+ /* Find the symbols for the values and put them into the type.
+ The symbols can be found in the symlist that we put them on
+ to cause them to be defined. osyms contains the old value
+ of that symlist; everything up to there was defined by us. */
+
+ for (syms = *symlist, n = nsyms; syms != osyms; syms = syms->next)
+ {
+ SYMBOL_TYPE (syms->symbol) = type;
+ TYPE_FIELD_NAME (type, --n) = SYMBOL_NAME (syms->symbol);
+ TYPE_FIELD_VALUE (type, n) = SYMBOL_VALUE (syms->symbol);
+ TYPE_FIELD_BITPOS (type, n) = 0;
+ TYPE_FIELD_BITSIZE (type, n) = 0;
+ }
+
+ return type;
+}
+
+static struct type *
+read_range_type (pp, typenums)
+ char **pp;
+ int typenums[2];
+{
+ char *errp = *pp;
+ int rangenums[2];
+ int n1, n2, n3;
+
+ /* First comes a type we are a subrange of.
+ In practice it is usually 0, 1 or the type being defined. */
+ read_type_number (pp, rangenums);
+ n1 = rangenums[1];
+
+ /* A semicolon should now follow; skip it. */
+ if (**pp == ';')
+ (*pp)++;
+
+ /* The remaining two operands are usually lower and upper bounds
+ of the range. But in some special cases they mean something else. */
+ n2 = read_number (pp, ';');
+ n3 = read_number (pp, ';');
+
+ /* A type defined as a subrange of itself, with bounds both 0, is void. */
+ if (rangenums[0] == typenums[0] && rangenums[1] == typenums[1]
+ && n2 == 0 && n3 == 0)
+ return builtin_type_void;
+
+ /* If n3 is zero and n2 is not, we want a floating type,
+ and n2 is the width in bytes.
+
+ Fortran programs appear to use this for complex types also,
+ and they give no way to distinguish between double and single-complex!
+ We don't have complex types, so we would lose on all fortran files!
+ So return type `double' for all of those. It won't work right
+ for the complex values, but at least it makes the file loadable. */
+
+ if (n3 == 0 && n2 > 0)
+ {
+ if (n2 == sizeof (float))
+ return builtin_type_float;
+ return builtin_type_double;
+ }
+
+ /* If the upper bound is -1, it must really be an unsigned int. */
+
+ else if (n2 == 0 && n3 == -1)
+ {
+ if (sizeof (int) == sizeof (long))
+ return builtin_type_unsigned_int;
+ else
+ return builtin_type_unsigned_long;
+ }
+
+ /* Detect unsigned subranges of int. Int is normally 1.
+ Note that `char' is usually given bounds of 0 to 127,
+ and would therefore appear unsigned; but it is described
+ as a subrange of itself, so we reject it here. */
+
+ else if (n2 == 0 && n1 == 1)
+ {
+ /* an unsigned type */
+ if (n3 == (1 << (8 * sizeof (int))) - 1)
+ return builtin_type_unsigned_int;
+ if (n3 == (1 << (8 * sizeof (short))) - 1)
+ return builtin_type_unsigned_short;
+ if (n3 == (1 << (8 * sizeof (char))) - 1)
+ return builtin_type_unsigned_char;
+ }
+ else
+ {
+ /* a signed type */
+ if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
+ return builtin_type_int;
+ if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
+ return builtin_type_long;
+ if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
+ return builtin_type_short;
+ if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
+ return builtin_type_char;
+ }
+ error ("Invalid symbol data: range type spec %s at symtab pos %d.",
+ errp - 1, symnum);
+}
+
+/* Read a number from the string pointed to by *PP.
+ The value of *PP is advanced over the number.
+ If END is nonzero, the character that ends the
+ number must match END, or an error happens;
+ and that character is skipped if it does match.
+ If END is zero, *PP is left pointing to that character. */
+
+static long
+read_number (pp, end)
+ char **pp;
+ int end;
+{
+ register char *p = *pp;
+ register long n = 0;
+ register int c;
+ int sign = 1;
+
+ /* Handle an optional leading minus sign. */
+
+ if (*p == '-')
+ {
+ sign = -1;
+ p++;
+ }
+
+ /* Read the digits, as far as they go. */
+
+ while ((c = *p++) >= '0' && c <= '9')
+ {
+ n *= 10;
+ n += c - '0';
+ }
+ if (end)
+ {
+ if (c != end)
+ error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
+ }
+ else
+ --p;
+
+ *pp = p;
+ return n * sign;
+}
+
+static
+initialize ()
+{
+ symfile = 0;
+
+ add_com ("symbol-file", class_files, symbol_file_command,
+ "Load symbol table (in dbx format) from executable file FILE.");
+}
+
+END_FILE
+
+#endif /* READ_DBX_FORMAT */